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Abstract
Almost half of the global terrestrial soil carbon (C) is stored in the northern circumpo-
lar permafrost region, where air temperatures are increasing two times faster than the 
global average. As climate warms, permafrost thaws and soil organic matter becomes 
vulnerable to greater microbial decomposition. Long-term soil warming of ice-rich per-
mafrost can result in thermokarst formation that creates variability in environmental 
conditions. Consequently, plant and microbial proportional contributions to ecosys-
tem respiration may change in response to long-term soil warming. Natural abundance 
δ13C and Δ14C of aboveground and belowground plant material, and of young and old 
soil respiration were used to inform a mixing model to partition the contribution of 
each source to ecosystem respiration fluxes. We employed a hierarchical Bayesian 
approach that incorporated gross primary productivity and environmental drivers to 
constrain source contributions. We found that long-term experimental permafrost 
warming introduced a soil hydrology component that interacted with temperature 
to affect old soil C respiration. Old soil C loss was suppressed in plots with warmer 
deep soil temperatures because they tended to be wetter. When soil volumetric water 
content significantly decreased in 2018 relative to 2016 and 2017, the dominant res-
piration sources shifted from plant aboveground and young soil respiration to old soil 
respiration. The proportion of ecosystem respiration from old soil C accounted for up 
to 39% of ecosystem respiration and represented a 30-fold increase compared to the 
wet-year average. Our findings show that thermokarst formation may act to moderate 
microbial decomposition of old soil C when soil is highly saturated. However, when 
soil moisture decreases, a higher proportion of old soil C is vulnerable to decomposi-
tion and can become a large flux to the atmosphere. As permafrost systems continue 
to change with climate, we must understand the thresholds that may propel these 
systems from a C sink to a source.
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1  |  INTRODUC TION

Permafrost is perennially frozen ground that has accumulated 1460–
1600 Pg (1 Pg = 1 billion tons) of soil organic carbon (C) globally since 
the late Pleistocene and Holocene due to freezing temperatures 
(Hugelius et al., 2014; Pries et al., 2012; Schuur et al., 2015, 2018; 
Tarnocai et al., 2009; Zimov et al., 2006). Since the 1850–1900 pe-
riod, human activity has increased air and sea surface temperatures 
by 0.8–1.2°C, at a rate of 0.2°C per decade (Allen et al., 2019). In 
high latitudes, air temperatures are increasing about two times 
faster than the global average (Overland et al., 2019). As the Earth 
warms, permafrost thaws (Romanovsky et al., 2012) and the north-
ern circumpolar permafrost region becomes increasingly vulnerable 
to greater microbial decomposition and C loss to the atmosphere 
(Schuur et al., 2008, 2015).

The potential for Arctic and sub-Arctic ecosystems to store C on 
an annual basis depends on the equilibrium between gross primary 
production and the C released from plant and microbial respiration 
(i.e., ecosystem respiration; Reco; Chapin et al., 2006). Increased Reco 
that is driven by plant respiration is likely to be offset by C uptake 
in aboveground (AG) and belowground (BG) plant biomass and en-
hanced plant productivity under warmer conditions (Shaver et al., 
1986). However, increased Reco that is driven by greater microbial 
respiration, especially from the decomposition of old soil C that cy-
cles on centennial to millennial time scales, can amplify the perma-
frost feedback to climate change (Abbott et al., 2016; Davidson & 
Janssens, 2006; Hobbie & Chapin, 1998; Pries et al., 2013, 2016; 
Schuur et al., 2009). Plant and microbial respiration respond differ-
ently to biological and environmental drivers (Bond-Lamberty et al., 
2004); thus, the relative influence of these Reco components could 
shift in response to changes in soil moisture and temperature that 
occur with climate change.

Experiments that investigate warming effects on permafrost 
processes have found that Reco increases with higher soil tempera-
tures (Dorrepaal et al., 2009; Hobbie & Chapin, 1998; Lupascu, 
Welker, Seibt, Maseyk, et al., 2014; Mauritz et al., 2017; Natali 
et al., 2011; Oberbauer et al., 2007). Studies from a long-term 
soil warming experiment, the Carbon in Permafrost Experimental 
Heating Research (CiPEHR), demonstrated that Reco and gross pri-
mary productivity (GPP) initially increased linearly with warmer 
soil temperatures and deeper permafrost thaw due to enhanced 
plant productivity (Natali et al., 2012; Salmon et al., 2016). But 
after 7 years, Reco increased at a faster rate than GPP as plant pro-
ductivity leveled off (Mauritz et al., 2017). These changes suggest 
a stronger contribution of microbial respiration to Reco over time 
(Mauritz et al., 2017), yet these integrated ecosystem-scale flux 
measurements do not provide mechanistic information on the 
sources driving permafrost C loss.

Carbon isotopes and associated isotope mixing models can be 
used to elucidate relative contributions of plant and microbial res-
piration to Reco (Schuur & Trumbore, 2006; Trumbore, 2000). The 
stable C isotope (13C) can be applied to separate C sources based on 
their isotopic composition due to biological fractionation (Bowling 

et al., 2008; Fry, 2007). Plant respiration has a similar 13C/12C ratio as 
plant tissue (Lin & Ehleringer, 1997) with root respiration being more 
depleted in 13C relative to AG respiration due to the metabolism of 
lipid compounds (Bowling et al., 2008). Microbial metabolism, on the 
other hand, strongly favors the lighter isotope, 12C (Trumbore, 2006). 
Soil organic matter becomes more decomposed and processed with 
depth, and the 13C composition (δ13C) of bulk soil C can increase 
up to 6‰ from the surface down to ~85 cm (Mauritz et al., 2019; 
Pries et al., 2013; Schuur et al., 2003). Stable C isotope data can 
be complemented by radiocarbon (14C) to provide further insight on 
Reco source contributions. For example, 14C composition of respired 
carbon dioxide (CO2) can be used to estimate the age of C since it 
was fixed via photosynthesis and its transit time in each C reser-
voir (Trumbore, 2000). Carbon that is actively cycling on annual to 
decadal timescales will reflect the bomb enrichment of atmospheric 
14C, and C that is cycling on the order of hundreds to thousands of 
years will have undergone radiocarbon decay and will be depleted in 
14C (Trumbore et al., 2016). Implementing both C isotopes supplies 
a mixing model with more information, thus allowing for better res-
olution of multiple source contributions to Reco (Schuur et al., 2016).

At CiPEHR, 10 years of experimental soil warming using snow 
fences and open-top chambers led to a two-fold increase in thaw 
depth (TD) relative to control plots (Mauritz et al., 2017). The degra-
dation of ice-rich permafrost has resulted in thermokarst formation 
across the landscape, caused by soil subsidence from the loss of ice 
structures (Plaza et al., 2019; Rodenhizer et al., 2020). As the surface 
of the soil moves closer to the water table, soil becomes waterlogged 
(Lawrence et al., 2015; Nauta et al., 2015). These thermokarst fea-
tures affect plant and microbial responses by creating spatial and 
temporal variability in soil moisture (Schuur & Mack, 2018), and inun-
dated conditions can shift vegetation composition, as well as cause 
shrub and grass mortality (Li et al., 2017). At our site, the initial in-
crease in Reco in the first 4 years of warming (2009–2012) was driven 
by higher plant respiration, which increased by 30% with warming 
(Pries et al., 2016). Nevertheless, plant biomass has declined since 
2013, especially in inundated plots (Taylor et al., 2018).

This interaction between soil moisture and plant productivity 
after 10 years of permafrost thaw prompted us to ask the question: 
did the proportion of Reco from old soil C increase with changing envi-
ronmental conditions (e.g., soil moisture and temperature) associated 
with thermokarst formation across the landscape? We hypothesized 
that the proportion of old soil C loss would increase (1) with perma-
frost thaw and warmer soil temperatures due to enhanced microbial 
decomposition at depth where the bulk of the soil C pool has ac-
cumulated over many millennia (Pries et al., 2012), and (2) in plots 
experiencing fluctuation in soil moisture due to greater oxygen (O2) 
availability for microbial decomposition at depth. Natural abundance 
δ13C and Δ14C of plant AG and BG, surface young soil (0–25 cm; YS), 
and deep old soil (>25 cm; OS) were used to inform a dual-C isotope 
mixing model to directly partition the contribution of each source to 
the total Reco fluxes from 2016 to 2018. We employed a hierarchi-
cal Bayesian model approach to partitioning that incorporated GPP 
and environmental drivers to help constrain the contribution of each 
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source to improve predictions of the future state of permafrost and 
its climate forcing potential.

2  |  METHODS

2.1  |  Field study

The site is located in Eight Mile Lake, Alaska (63°52′59″N, 149° 
13′32″W) in the ancestral land of the Tanana Athabaskan people, 
where the mean annual average temperature is −1.0°C, and the 
mean annual precipitation is 378 mm (Schuur et al., 2009). The or-
ganic horizon is ~35 cm thick with C concentrations exceeding 20% 
(Natali et al., 2011; Plaza et al., 2019; Pries et al., 2012). The cryo-
turbated mineral soil is classified as Gelisol and comprises glacial 
till, windblown loess, quartz, and feldspars, and is underlain entirely 
by permafrost (Osterkamp et al., 2009). A 30 m borehole that was 
installed in 1985 at Eight Mile Lake (located ~1–1.5 km from our 
study site) shows that ground temperature data ~15 m is close to 
0°C, indicating that permafrost in this region is vulnerable to thaw 
(Osterkamp & Romanovsky, 1999).

The site is moist acidic tundra, dominated by Eriophorum vagina-
tum, and includes Carex bigelowii, Vaccinium uliginosum, Betula nana, 
Rubus chamaemorus, Empetrum nigrum, Rhododendron subarcticum, 
Vaccinium vitis-idaea, Andromeda polifolia, and Oxycoccus microcar-
pus. Nonvascular plants comprise Pleurozium schreberi and Sphagnum 
species, as well as several lichen species (primarily Cladonia spp.; 
Deane-Coe et al., 2015; Natali et al., 2011; Schuur et al., 2007).

2.1.1  |  Experimental framework

This study leveraged the long-term Carbon in Permafrost 
Experimental Heating and Drying Research (CiPEHR and DryPEHR) 
experiments (Natali et al., 2011, 2015). The soil warming experi-
ment (CiPEHR) began in October of 2008, where soil and perma-
frost warming was achieved with snow fences (1.5 m × 8 m) during 
the winter. Fences were installed perpendicular to dominant win-
ter winds so that snow was deposited on the leeward side of each 
fence. In the spring, excess snow was removed to ambient levels to 
achieve similar timing of snowmelt relative to the control side of the 
fence. In the growing season, polycarbonate open top chambers 
were used to simulate air warming. The water table manipulation ex-
periment (DryPEHR) began in 2011 within the footprint of CiPEHR. 
Metal sheets were installed 0.6 m into the ground (2.5 m × 1.5 m), 
and pumps were used to lower the water table. Treatments were 
applied in a split-plot design for a total of 11 plots (0.6 m × 0.6 m) 
nested within each snow fence. To increase spatial representation, 
three blocks were established 100 m apart with two snow fences 
per block.

Our measurements, including environmental variables and CO2 
flux (Section 2.1.2.) and Reco δ13C and Δ14C (Section 2.2.1), com-
prised seven plots in each fences (n = 42) with three plots on the 

control side of the fence and four plots on the soil warming side of 
the fence. After ~5 years, we observed heterogeneous thaw, ground 
subsidence, and thermokarst formation, which have created an array 
of TDs and soil moisture levels. We analyzed the plots as individual 
observations, rather than grouping plots based on assigned treat-
ments because each plot is now unique based on where they are 
located in the landscape.

2.1.2  |  Field measurements of environmental 
variables and carbon dioxide flux

All environmental variables were measured in paired plots adjacent 
to the Reco δ13C and Δ14C sampling plots (see Section 2.2.1). TD was 
measured weekly as the distance (in cm) from the moss/surface 
layer to the permafrost. Soil temperature (°C) was measured at 5, 
10, 20, and 40 cm every half hour using type T copper-constantan 
thermocouples and recorded on a data logger (CR1000; Campbell 
Scientific). We integrated soil temperature by linearly interpolating 
measured temperatures from 5 to 40 cm in 5 cm increments that 
were averaged by plot. Soil temperature was integrated in the deep 
layer (>40 cm) by linearly interpolating measured temperatures from 
40 cm to the permafrost (based on TD measurements) in 5 cm in-
crements that were averaged by plot (Salmon et al., 2018). We 
used −0.2°C as the permafrost temperature anchor based on bore-
hole measurements made annually in Eight Mile Lake (Osterkamp 
et al., 2009; Romanovsky et al., 2017). Soil volumetric water con-
tent (VWC; %) was recorded every half hour in each plot with TDR 
probes (CS 616; Campbell Scientific), and was integrated from 0 to 
20 cm. Plot-level plant productivity was characterized by estimates 
of GPP (µmol C-CO2 m−2 s−1), obtained from automated chamber 
measurements of net ecosystem exchange. The plot-level values of 
TD, depth-integrated surface and deep soil temperatures, soil VWC, 
and GPP were averaged over the 30-day period that preceded each 
Reco δ13C and Δ14C sampling period (Table S1). Net ecosystem ex-
change and Reco were measured continuously during the growing 
season (May 1st–September 30th) using a closed-path, automated 
flux chamber system made from 0.6 cm thick clear polycarbonate 
that was designed to interface with the automated CO2 flux system. 
Automated measurements were taken at each flux chamber every 
1.6 h for 1.5 min using an infrared gas analyzer (LI-820, LICOR Corp.) 
and recorded on a data logger (CR1000; Campbell Scientific) every 
2 s. See Mauritz et al. (2017) and Natali et al. (2011) for more details 
on the automated CO2 flux system.

Site-level annual differences in environmental conditions were 
analyzed to determine if there were any extreme events or envi-
ronmental anomalies during the measurement period that could 
indirectly influence C fluxes. Inter-annual variation in environmen-
tal conditions was determined using a linear mixed effects model, 
via the lme4 package (Bates et al., 2015) in R (R Development Core 
Team, 2015). Plot-level data were nested in corresponding snow-
fence location, and both plot and snow fence were included as 
random effects. Environmental conditions were analyzed over 
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time with year included as a categorical variable and a fixed effect. 
Normality and homoscedasticity were visually examined using re-
sidual plots. Parameter estimates were bootstrapped to obtain 
95% confidence intervals for the fixed effects, which were con-
sidered significant if the intervals did not include zero (Pinheiro & 
Bates, 2000).

2.2  |  Isotope data

2.2.1  |  Carbon isotopes of ecosystem respiration

Ecosystem respired δ13C and Δ14C were collected in the field late 
July and early August in 2016, 2017, and 2018. Samples were col-
lected when wind speed was <3.1 m s−1 to minimize atmospheric 
CO2 intrusion in the chamber. Seven plots were measured in each 
fence (n = 42), including both CiPEHR and DryPEHR treatments. 
A 10 L dark chamber was placed on PVC collars (25.4 cm diam-
eter × 10 cm height) that were permanently installed 6–7 cm into 
the soil, and respired CO2 from the soil and associated AG plant 
material was sampled. Ecosystem respired δ13C was measured from 
6 to 11 a.m. (local time) to limit diurnal variation in δ13C (Dudziak & 
Halas, 1996). Air samples were collected in Helium-flushed, septa-
capped glass vials (Exetainers, Labco Limited) every 2 min, for a total 
of six samples per plot. Sampling was made in line with the cham-
ber, pump, and infrared gas analyzer (Li-820; Licor) so that air cir-
culated continuously, and the CO2 concentration could be recorded 
at the time of sampling (Pries et al., 2013). Samples were shipped 
with CO2 standards to correct for changes in δ13C during travel and 
storage, and were analyzed within a week of collection at Northern 
Arizona University on a Thermo Finnigan Delta V Advantage con-
tinuous flow isotope ratio mass spectrometer (ThermoScientific 
Inc.). The Keeling method was used to obtain Reco δ13C based on the 
linear regression between δ13C and 1/[CO2], where the y-intercept 
denoted the δ13C of Reco (Keeling, 1958, 1961).

Ecosystem respired Δ14C was sampled after circulating the 
chamber headspace through soda lime for 45 min to remove at-
mospheric CO2 while maintaining ambient pressure. Headspace 
air accumulated for 15 min and was collected in zeolite molecular 
sieve traps (Alltech 13X; Alltech Associates) for 15 min (Hardie 
et al., 2005). Traps were shipped to Northern Arizona University 
where they were baked at 650°C to desorb CO2 (Bauer et al., 
1992). Carbon dioxide was cryogenically purified using liquid ni-
trogen, and reduced to graphite by H2 reduction with an iron 
catalyst on a vacuum line (Vogel et al., 1987). Graphite samples 
were sent to the UC Irvine W.M. Keck Carbon Cycle Accelerator 
Mass Spectrometry laboratory for Δ14C analysis (precision ±2‰). 
Radiocarbon samples were analyzed with the standard oxalic acid 
II and corrected for mass-dependent fractionation to a common 
δ13C value of −25‰. The Δ14C of Reco was estimated using a two-
pool mixing model to account for any atmospheric contamination 
(Stuiver & Polach, 1977; Trumbore, Sierra, et al., 2016; Trumbore, 
Xu, et al., 2016).

2.2.2  |  Carbon isotope measurements to inform 
AG and BG plant end-members

Aboveground and BG plant tissues were harvested in July 2018 
using a serrated bread knife to cut a 20 cm3 block of tundra from 
destructive plots (n = 12) adjacent to environmental and Reco δ13C 
and Δ14C plots. All AG live plant materials, including moss and li-
chen, were clipped and placed into foil-covered 1 L Mason jars 
within 5 min of collection. All live roots and rhizomes (>1 mm in 
diameter) were collected from the soil, rinsed twice with deion-
ized water to remove soil particles, shaken to remove excess 
moisture, and placed in separate foil-covered Mason jars within 
30 min of collection. The headspace air in each jar was circu-
lated through soda lime for 5 min at a flow rate of 1 L min−1 to 
remove atmospheric CO2. Delta 13C was sampled by incubating 
AG and BG samples for 10 min and collecting headspace air into 
CO2-free Exetainers. Delta Δ14C was sampled by incubating AG 
and BG plant tissue for 4 h and collecting headspace air in zeolite 
molecular sieve traps for 15 min (Hardie et al., 2005; Pries et al., 
2016). The δ13C and Δ14C sample preparation and analyses were 
conducted as described in Section 2.2.1.

2.2.3  |  Carbon isotope measurements to inform soil 
end-members

Six soil cores were collected in May 2017 to measure the δ13C and 
Δ14C of soil-respired CO2. The seasonally thawed soil was cut using 
a serrated knife, and the underlying frozen soil was cored using 
a SIPRE coring auger (7.5 cm diameter) to the depth at which the 
corer hit rocks (85–102 cm). In the laboratory, the surface vegeta-
tion was clipped off, and cores were sectioned to 15 cm at the sur-
face and 10 cm increments thereafter (0–15, 15–25 cm, etc.) to the 
end of the core, and each soil section was placed in separate 1 L 
Mason jars. Roots >1 mm in diameter were removed from surface 
soil (0–25 cm) before the incubation. Soils were pre-incubated for 
10 days at 15°C to ensure that the labile, recently fixed C from roots 
did not contribute to soil end-member analysis, and so that micro-
bial turnover was stabilized after thaw (Pries et al., 2013; Schuur 
& Trumbore, 2006). After the pre-incubation period, soils were in-
cubated at field moisture at 15°C, and CO2 flux was measured on 
a Licor-820 infrared gas analyzer in a closed-loop automated soil 
incubation system immediately before and after isotope sampling 
(see Bracho et al., 2016 for details on the automated incubation sys-
tem). For isotope collection, the headspace air of each jar was circu-
lated through soda lime for 5 minutes to remove atmospheric CO2. 
Jars were sealed and incubated at 15°C until 0.5–1.5 mg CO2-C was 
accumulated in the headspace, based on the first flux measure-
ment. Headspace air was collected in zeolite molecular sieve traps 
by circulating air for 5 min at a flow rate of 1 L min−1. The Δ14C sam-
ple preparation and analysis was conducted as described for Reco in 
Section 2.2.1. After purification, a subsample of CO2 was collected 
in Helium-flushed Exetainers for δ13C analysis.
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Soil respiration was separated into two sources: YS from the 
surface layer (0–25 cm) and old soil (OS) from deeper layers (25–
102 cm). Surface soil layers have positive Δ14C values that contain 
bomb-produced radiocarbon (post-1950), and indicate soil that is 
“younger” relative to the entire soil profile. Delta 14C values become 
more negative with depth, indicating the bulk of soil C has resided 
in the soil long enough for radioactive decay to occur (i.e., “old” soil; 
Trumbore, 2000). The δ13C values were corrected for the higher in-
cubation temperature because δ13C becomes depleted by 0.16‰ for 
each 1°C increase in temperature (Dorrepaal et al., 2009; Pries et al., 
2013). Since the 14C isotopic composition of CO2 is corrected for 
fractionation during data processing based on the δ13C, we did not 
apply a temperature correction to the Δ14C of soil respiration.

We combined the isotopic signatures of each incubated depth 
increment into a YS (0–25 cm) and OS (>25 cm) end-member for 
each core. We weighted each depth increment's contribution to 
each end-member based on (1) the relative amount of soil mass, 
(2) the relative CO2 flux on a per gram dry soil basis, and (3) the 
average field soil temperature at each depth (Schuur & Trumbore, 
2006). The temperature correction was based on measured field 
temperatures that were averaged for the 2-week period preced-
ing the Reco measurements, and a temperature sensitivity of SOM 
microbial decomposition using a Q10 of 2.6 based on Bracho et al. 
(2016) (Table S2).

2.3  |  Data analysis and isotope mixing model

2.3.1  |  Regression model for Reco δ13C and Δ14C

A Bayesian linear regression model was used to evaluate the environ-
mental drivers of Reco δ13C and Δ14C with the goal of informing the 
Bayesian mixing model (see Section 2.3.2). Covariates included TD, 
GPP, VWC (0–20 cm), depth-integrated surface (Tsurface, 0–40 cm) 
and deep (Tdeep; 40 cm to permafrost) soil temperatures, and all two-
way interactions, minus TD and soil temperature interactions be-
cause TD, Tsurface, and Tdeep covary. Mean-centered covariates were 
used in the regression by subtracting the mean value of each covari-
ate from individual values.

To arrive at the most parsimonious model that could also help 
inform the Bayesian mixing model, model selection was con-
ducted by removing one covariate at a time, starting with the in-
teraction terms, and comparing it to the original full model. The 
final covariates and interactions included in the regression model, 
Equation (2), were determined by comparing changes in the devi-
ance information criterion, effective number of parameters (pD; 
Spiegelhalter et al., 2002), the sum of the squared difference 
(Dsum) between the observed and predicted δ13C and Δ14C data, 
and the adjusted R2 from regressions of observed vs. predicted 
values (Table S3).

For observation i (i = 1, 2, …, 252; based on 42 plots × 2 iso-
topes × 3 years), we assumed that the observed plot-level Reco δ13C 
and Δ14C data followed a normal distribution with mean, μ: 

where y(i) and p(i) denote year (y = 1, 2, 3; for 2016, 2017, 2018) and 
plot (p = 1, 2, …, 42) associated with observation i. Note that the mean, 
μy,p,Iso, and SD term, σIso, both vary by isotope (δ13C and Δ14C), as in-
dicated by the Iso subscript. Our final model resulted in the following 
regression model for μy,p,Iso: 

where X indicates individual covariates, where k = 1, 2, …, 5 denotes 
TD, GPP, VWC, Tsurface, and Tdeep, respectively. All β parameters vary 
by year y and isotope Iso, and all covariates vary by year y and plot p. 
To complete the model, we specified relatively non-informative priors 
for the β parameters and the standard deviation term σIso, such that 
βk,y,Iso ~ Normal(0, 100,000) and σIso ~ Uniform(0, 100).

2.3.2  |  Bayesian dual-isotope mixing model

Our analysis included (1) end-member models based on measured 
δ13C and Δ14C of plant and soil incubations, (2) a dual-isotope mixing 
model to partition Reco, and (3) a generalized linear regression used 
to determine environmental drivers governing the relative contribu-
tions of AG and BG plant respiration, and young (YS) and old (OS) 
soil respiration to Reco. These models were implemented in a hier-
archical Bayesian framework (Gelman et al., 2014) to allow for the 
propagation of both the natural variability in each observed source 
end-member (i.e., AG, BG, YS, and OS) and parameter uncertainty 
(Ogle & Pendall, 2015; Ogle et al., 2014).

End-member models
The δ13C and Δ14C of each plant end-member incubation replicate 
r (δ13C, n = 12; Δ14C, n = 6) and the flux-weighted δ13C and Δ14C of 
each soil end-member incubation replicate r (δ13C, n = 6; Δ14C, n = 6) 
were each assumed to follow a normal distribution:

where EM denotes the end-member of interest (AG, BG, YS, or OS), 
and Iso refers to the isotope (again, δ13C or Δ14C). The predicted mean 
value (μEM,Iso) varies by each end-member and isotope type, as does 
the SD term (σEM,Iso) that describes variation among replicates. The 
end-member models were modularized so that the dual-isotope mixing 
model did not feedback to affect each source end-member estimate, 
μEM,Iso, thus allowing only the observed end-member data to inform 
μEM,Iso (Ogle & Pendall, 2015). We assigned relatively non-informative, 
vague normal priors to μEM,Iso and wide uniform priors to the standard 
deviations, σEM,Iso. These latent or predicted end-members, μEM,Iso, 
were subsequently used in the mixing model (see Equation 4).

(1)Isoi ∼ Normal
(

�y(i),p(i),Iso, �
2
Iso

)

,

(2)

�y,p,Iso = �0,y,Iso +

5
∑

k=1

�k,y,Iso ⋅ Xk,y,p + �6,y,Iso ⋅ GPPy,p ⋅ VWCy,p

+�7,y,Iso ⋅ GPPy,p ⋅ Tsurface,y,p + �8,y,Iso ⋅ GPPy,p ⋅ TDy,p

+�9,y,Iso ⋅ VWCy,p ⋅ TDy,p,

(3)EMr,Iso ∼ Normal
(

�EM,Iso, �
2
EM,Iso

)

,
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Dual-isotope mixing model
To estimate plot-level source contributions to Reco, a dual-isotope 
mixing model was implemented using the same data and normal 
likelihood as described in Equation (1). However, in the mixing 
model, the predicted mean Reco δ13C and Δ14C values, denoted 
by μy,p,Iso, are defined as the sum of the proportional contribution 
of each source. The plot-level proportional contribution pEM of 
each source (EM = AG, BG, YS, or OS) varied by year y and plot 
p, and was multiplied by its corresponding end-member isotope 
value, μEM,Iso, obtained from the end-member models in Equation 
(3) such that:

Note that unlike traditional, non-Bayesian mixing models, the 
end-member values are typically provided as observed data, but 
here, μEM,Iso, is treated as an unknown, stochastic parameters, and 
uncertainty in the end-member values is thus propagated to the mix-
ing model in Equation (4).

Linear regression model
We incorporated the effects of plant productivity (via GPP) and the po-
tentially important environmental drivers to help constrain and under-
stand drivers of the relative contributions of plant and soil respiration 
to Reco. The relative contributions of the plant sources were directly 
constrained by the measured plot-level GPP values since we expected 
that the proportion of Reco from plant (both AG and BG) respiration, 
pPlant, to be related to measured plant activity captured by GPP:

where the year- and plot-specific pPlant,y,p contribution is expected to 
be proportional to GPP with p being the constant of proportionality, 
which is given a uniform prior that ensures that pPlant,y,p is constrained 
between 0 and 1. From a simple mass-balance equation, we derived 
the models for the AG and BG contributions, pAG,y,p and pBG,y,p, by parti-
tioning the total plant contribution into these two plant sources:

where pAG|Plant,y,p is the proportional contribution of AG respiration to 
the total plant respiration.

Since the source proportional contributions to Reco must add to 
1, the total soil contribution, pSoil, is given by:

As in Equation (6), the proportional contributions of OS and YS, 
pOS,y,p and pYS,y,p, are given by:

And, pOS|Soil,y,p is the proportional contribution of OS respiration 
to the total soil respiration.

The conditional proportional contribution of AG respiration, 
pAG|Plant,y,p Equation (6), and the conditional proportional contri-
bution of OS respiration, pOS|Soil,y,p Equation (8), relative to total 
plant respiration and total soil respiration, were modeled on 
a logit scale, thus constraining pAG|Plant,y,p and pOS|Soil,y,p to the  
(0, 1) interval. To account for plot and year random effects, the 
logit-scale contributions were assumed to come from a normal 
distribution:

where the SD terms, σAG|Plant, and σOS|Soil, were assigned relatively 
non-informative priors, Uniform(0, 100).

We modeled the logit-scale means, μAG|Plant,y,p and μOS|Soil,y,p in 
Equation (9), as a linear function of GPP and environmental drivers 
by applying the general form of the linear regression arrived at in 
Equation (2):

where the αk,y and βk,y parameters (k = 1, 2, 3, …, 9) varied by year 
y, and all environmental covariates varied by year y and plot p (see 
Equation 2 for additional details about notation). We specified rel-
atively non-informative priors for the α and β terms, with αk,y and 
βk,y both being assigned Normal(0, 1000) priors. While this prior may 
appear tighter than the prior used for β in Equation (2), because α 
and β enter into a logit-scale mean model in Equation (10), this prior 
is actually quite vague.

2.3.3  |  Total respiration of old soil C model

Total respiration from old soil C was estimated by multiplying the 
cumulative growing season Reco flux (Section 2.1.2), in g CO2-C m−2, 
by the plot-level proportional contributions of old soil respiration, 
pSoil,y,p from Equation (7). We then modeled total respiration from 
old soil C as a linear function of GPP and environmental drivers 
by applying the general form of the linear regression arrived at in 
Equations (2) and (10). Though we expect that the proportion of 
Reco from old soil C to vary throughout the growing season, this is 
a first-order estimate of the magnitude of old soil C loss between 
the sampled years that allowed us to elucidate which covariates 
contributed to the greatest magnitude of old soil C release at the 
ecosystem scale: 

(4)�y,p,Iso = pAG,y,p ⋅ �AG,Iso + pBG,y,p ⋅ �BG,Iso + pYS,y,p ⋅ �YS,Iso + pOS,y,p ⋅ �OS,Iso.

(5)pPlant,y,p = p ⋅ GPPy,p,

(6)
pAG,y,p=pPlant,y,p ⋅pAG|Plant,y,p

pBG,y,p=pPlant,y,p ⋅
(

1−pAG|Plant,y,p
)

,

(7)pSoil,y,p = 1 − pPlant,y,p.

(8)

pOS,y,p=pSoil,y,p ⋅pOS|Soil,y,p

pYS,y,p=pSoil,y,p ⋅
(

1−pOS|Soil,y,p

)

.

(9)
logit

(

pAG|Plant,y,p
)

∼Normal
(

�AG|Plant,y,p, �
2
AG|Plant

)

logit
(

pOS|Soil,y,p

)

∼Normal
(

�OS|Soil,y,p, �
2
OS|Soil

)

,

(10)

�AG|Plant,y,p =�0,y+

5
∑

k=1

�k,y ⋅Xk,y,p+�6,y ⋅GPPy,p ⋅VWCy,p+�7,y ⋅GPPy,p

×Tsurface,y,p+�8,y ⋅GPPy,p ⋅TDy,p+�9,y ⋅VWCy,p ⋅TDy,p

�OS|Soil,y,p =�0,y+

5
∑

k=1

�k,y ⋅Xk,y,p+�6,y ⋅GPPy,p ⋅VWCy,p+�7,y ⋅GPPy,p

×Tsurface,y,p+�8,y ⋅GPPy,p ⋅TDy,p+�9,y ⋅VWCy,p ⋅TDy,p,
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where the βk,y parameters (k = 1, 2, 3, …, 9) varied by year y, and all 
environmental covariates varied by year y and plot p (see Equation 2 
for additional details about notation). We specified relatively non-in-
formative priors for the β parameters and the SD term σ such that 
βk,y ~ Normal(0, 100,000) and σ ~ Uniform(0, 100).

2.4  |  Model interpretation and implementation

The models described by Equations (1)–(11) were implemented in 
OpenBUGS via the R2Openbugs function in R (Sturtz et al., 2005). We 
used OpenBUGS because it allowed us to modularize the end-mem-
ber models (Equation 3) using the cut function (Lunn et al., 2009) such 
that the isotope mixing model and associated data on Reco δ13C and 
Δ14C did not feedback to influence the estimates of the end-members, 
μEM,Iso (Ogle et al., 2013). The regression model for Reco δ13C and Δ14C, 
the Bayesian dual-isotope mixing model, and the total respiration of 
old soil C model were implemented with three parallel Markov chain 
Monte Carlo sequences with 1 × 106 iterations to ensure convergence 
was achieved, as measured by the Gelman–Rubin statistic (Gelman & 
Rubin, 1992). We thinned the sequences every 50 iterations to reduce 
auto-correlation within each chain and storage requirements, result-
ing in a posterior sample size of 20,000 iterations for each parameter. 
Model fit was assessed by comparing observed vs. predicted Reco δ13C 
and Δ14C values and computing the adjusted R2 values (Gelman et al., 
2004). The marginal effects of significant two-way interactions from 
the regression model for Reco δ13C and Δ14C (Equation 2) and the total 
respiration of old soil C model (Equation 11) were plotted using the 
packages sjPlot and sjmisc in R (Lüdecke, 2018).

All parameters of interest were summarized by their posterior 
means and 95% credible interval (CI), defined by the 2.5th and 97.5th 
percentiles of the posterior distributions. Parameters were considered 
significant if the 95% CI did not overlap zero. We computed posterior 
distributions for site-level proportional contribution of each source by 
averaging the plot-level proportions by year and source, from Equations 
(6) and (8). The posterior distributions of each annual, site-level propor-
tional source contribution to Reco were deemed significantly different 
from each other if the 95% CI for one group level (e.g., AG in 2016) did 
not overlap the mean of another group level (e.g., AG in 2017).

3  |  RESULTS

3.1  |  Ecosystem respired δ13C and Δ14C and site 
environmental conditions

Ecosystem respired δ13C varied from −25.8‰ to −17.6‰ 
(mean = −22.6‰; Figure 1a; Table S4), and was significantly dif-
ferent across years. Ecosystem respired Δ14C ranged from −242‰ 
to 43‰ across all plots and years (mean = 18‰; Figure 1b; Table 

S4). Mean measured Reco Δ14C did not significantly differ between 
2016 and 2017, and predominantly reflected respiration of en-
riched “bomb peak” 14C (Figure 1b; Table S4). In 2018, the mean 
Reco Δ14C was −114‰, which was significantly more depleted in 14C 
relative to the previous 2 years and lower than atmospheric Δ14C 
concentrations in 2016–2018 (Figure 1b, Table S4), predominantly 
reflecting respiration of old C that had undergone significant 14C 
radioactive decay.

The much lower mean Reco Δ14C measured in 2018 prompted 
the question of whether site-level environmental conditions were 
significantly different in 2018 relative to 2016 and 2017. We 
found that in 2016, soil VWC, Tsurface, and Tdeep were significantly 
higher relative to 2017 and 2018 (Table 1). In 2017, GPP and Reco 
fluxes were significantly lower, and soil was significantly colder at 
depth with a shallower TD relative to 2016 and 2018 (Table 1). In 
2018, the soil was significantly drier compared to 2016 and 2017 
(Table 1).

(11)

�Ros =�0,y+

5
∑

k=1

�k,y ⋅Xk,y,p+�6,y ⋅GPPy,p ⋅VWCy,p+�7,y ⋅GPPy,p ⋅Tsurface,y,p

+�8,y ⋅GPPy,p ⋅TDy,p+�9,y ⋅VWCy,p ⋅TDy,p,

F I G U R E  1  Ecosystem respiration (Reco) isotopic compositions 
as described by (a) δ13C and (b) Δ14C measured at the plot level in 
2016, 2017, and 2018. Values are represented in permil notation 
(‰) and show the range of values measured each year, summarized 
among plots each year with the sample median, interquartile range 
(IQR = 25th–75th percentile, Q1–Q3), minimum (Q1 − 1.5 × IQR) 
and maximum (Q3 + 1.5 × IQR), and outliers (indicated by the thick 
horizontal line, the boxes, the whiskers, and the small black circle 
symbols, respectively). The gray rhombus shape (b) represent 
atmospheric Δ14C of each year. The Δ14C values above 0‰ 
represent bomb enrichment of atmospheric 14C in the late 1950s 
(b). The y scale differs between (a) and (b). Letters in the x-axis 
denote significant differences among years for each isotope
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3.2  |  Source end-member δ13C and Δ14C

The respired δ13C and Δ14C source end-members, μEM,Iso in Equation 
(3), differed significantly among sources (Figure 2). The posterior 
means of AG and BG δ13C averaged −22.6‰ and −24.9‰, respec-
tively, with BG being significantly more depleted in 13C. The respired 

δ13C of YS was similar to BG and averaged −23.9‰, while the δ13C 
of OS ranged from −26.1 to −16.3‰ (95% CI) and overlapped the 
posterior means of all other source δ13C end-members (Figure 2). 
Conversely, the respired Δ14C of OS was significantly more depleted 
in 14C than all other sources, and averaged −253‰ (Figure 2). While 
the 95% CI for OS Δ14C was also wide, compared to the Δ14C 95% 
CI of the other sources, it did not overlap with the posterior means 
of other sources. The mean plant respired Δ14C was 3‰ and 9‰ 
for AG and BG, respectively, and were not significantly different 
from one another, but were significantly less enriched in 14C than 
the respired Δ14C of YS, which averaged 27‰ (Figure 2). While Δ14C 
clearly separated the OS end-member from the other three end-
members, Δ14C and δ13C were both required to distinguish among 
the younger end-members (AG, BG, and YS).

3.3  |  Model fit

We evaluated the model fit of both the regression model, Equation 
(2), and the dual-isotope mixing model, Equation (4) and linked 
equations that simultaneously modeled variation in the measured 
Reco δ13C and Δ14C. Model fit was quantified with a regression of 
predicted vs. observed plot-level Reco δ13C and Δ14C values. The re-
gression model yielded an R2 of 0.62 (Figure S1a) and 0.84 (Figure 
S1b) for δ13C and Δ14C, respectively. The dual-isotope mixing model 
yielded an R2 of 0.04 (p = 0.02, Figure S2a) and 0.86 (p < 0.001; 
Figure S2b) for δ13C and Δ14C, respectively.

The Δ14C data provided most of the information for the dual-iso-
tope mixing model. We attempted to improve the mixing model 
by constraining the δ13C data to only resolving plant contributions 
(Equations 5 and 6) since the δ13C end-members for AG and BG 
were significantly different from one another (Figure 2). However, 
this modification to the model did not improve the fit for the δ13C 
data (R2 = 0.002), and only slightly improved the fit for the Δ14C data 
(R2 = 0.90); therefore, we used both isotope data to inform plant and 
soil contributions in the mixing model.

TA B L E  1  Environmental variables and gross primary 
productivity (GPP) for the 30-day period before Reco δ13C and 
Δ14C sampling, and growing season (May 1st–September 30th) 
cumulative Reco fluxes (g CO2-C m−2) from 2016 to 2018. Mean 
values are reported, along with the lower (2.5%) and upper (97.5%) 
limits of the 95% confidence interval. Letters in the “Year” column 
represent significant differences between years for each variable

Variable Year Mean

2.5% 
Lower 
limit

97.5% 
Upper 
limit

Volumetric water content 
(VWC, 0–20 cm; %)

2016a 59.1 54.9 63.2

2017b 53.2 51.4 55.0

2018c 47.6 45.9 49.3

Thaw depth (TD, cm) 2016a 78.9 74.1 83.7

2017b 57.5 53.9 61.1

2018a 77.3 73.7 80.9

Surface soil temperature 
(Tsurface, 0–40 cm; °C)

2016a 6.0 5.6 6.4

2017b 5.3 5.0 5.7

2018b 5.5 5.1 5.8

Deep soil temperature 
(Tdeep, 40 cm-
permafrost; °C)

2016a 1.3 1.0 1.6

2017c 0.5 0.3 0.7

2018b 1.0 0.8 1.2

Gross primary 
productivity (GPP, 
µmol C-CO2 m−2 s−1)

2016a 5.4 4.6 6.3

2017b 6.6 6.3 7.0

2018a 5.6 5.2 6.0

Ecosystem respiration 
(Reco; g C-CO2 m−2)

2016a 416.6 357.0 476.4

2017b 295.8 262.7 328.8

2018a 399.1 366.7 430.7

F I G U R E  2  Posterior means and 95% 
credible intervals (CI) for the δ13C (‰) 
and Δ14C (‰) of aboveground (AG), 
belowground (BG), old soil (OS), and 
young soil (YS) end-members (Equation 
3). Source endmembers were considered 
statistically significant if the posterior 
mean of one source was not contained 
within the CI of another source
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3.4  |  Drivers of Reco δ13C and Δ14C

Overall, GPP and environmental conditions explained variation in 
Reco δ13C in the wet years (2016 and 2017), but not in the dry year 
(2018). For example, TD and the interaction between TD and VWC 
were significant drivers of Reco δ13C in 2016 and 2017 (Table S5; 
Figure S3a), but not in 2018. TD had contrasting effects on Reco δ13C 
in 2016 and 2017, where deeper TD decreased Reco δ13C in 2016, 
but increased Reco δ13C in 2017. The positive TD × VWC interaction 
effect for Reco δ13C indicates that Reco δ13C was more positive (i.e., 
more enriched in 13C) in deeply thawed plots that were wetter. In 
2016, GPP was significant and associated with more enriched Reco 
δ13C values (Table S5; Figure S3a).

Conversely, GPP and environmental conditions explained varia-
tion in Reco Δ14C in the dry year, but not in the wet years. Variation in 
Reco Δ14C in 2018 was associated with the main effects of Tsurface and 
Tdeep, and the interactions between GPP and the covariates VWC, 
Tsurface, and TD (Table S5; Figure S3b), with no significant covariate 
effects in 2016 and 2017. In 2018, Reco Δ14C decreased with warmer 
Tsurface and increased with warmer Tdeep, which was opposite to what 
we expected (Table S5; Figure S3b). As main effects, GPP, VWC, and 
TD were not significant predictors by themselves, but interacted to 
affect Reco Δ14C. The significant GPP × VWC and GPP × Tsurface inter-
actions indicate that Reco Δ14C become increasingly more enriched 
(i.e., younger C) in plots with high GPP that were wetter (Figure 3a; 
Table S5; Figure S3b) and warmer at the surface (Figure 3b; Table S5; 
Figure S3b). Also surprising was the significant interaction between 
GPP and TD, showing that regardless of GPP, plots with shallower TD 
induced respiration of more depleted Reco Δ14C (i.e., older C), whereas 
deeper TD had higher Reco Δ14C (Figure 3c; Table S5; Figure S3b).

3.5  |  Proportional source contributions to Reco

The proportional source contributions to Reco differed among years 
(Figure 4). Based on the posterior mean and 95% CI estimates for 
pAG, pBG, pOS, and pYS, the proportional source contributions were 
similar in 2016 and 2017, but changed in 2018. In 2016 and 2017, 
YS and AG were the dominant sources, contributing 56.7% (CI: 42.4, 
71.0) and 38.3% (CI: 20.4, 54.3) to Reco in 2016, and 45.5% (CI: 28.1, 
63.2) and 49.5% (CI: 31.4, 67.4) to Reco in 2017 (Figure 4). In 2018, 
there was a shift in the main source contributions, where OS and BG 
respiration contributed 38.8% (CI: 25.2, 52.0) and 37.6% (CI: 17.6, 
54.8) to Reco, and were significantly higher than YS (17.0%, CI: 6.8, 
28.9) and AG respiration (6.6%, CI: 0.0, 24.0; Figure 4). In the dry 
year, the shift in the proportional contribution of OS to Reco repre-
sents a 30-fold increase compared to the average pOS of wet years.

3.6  |  Drivers of old soil C respiration

The magnitude of growing season OS respiration, based on plot-
level proportions of OS multiplied by the plot-level cumulative 

growing season Reco (g C m−2), was significantly higher in 2018 
than 2016 and 2017 (Figure 5). In 2016 and 2017, the growing sea-
son OS loss was 0.98 g C m−2 (0.01, 6.80) and 3.58 g C m−2 (0.00, 
14.00). In 2018, the average growing season OS loss increased to 
151.51 g C m−2 (97.51, 204.30), representing a 65-fold increase in 
the magnitude of growing season OS loss relative to wet years.

The variation in the growing season OS respiration in 2018 was 
explained by the main effect Tdeep, and the GPP × VWC interaction 
(Figure S4). There were no significant covariate effects on growing 
season OS respiration in 2016 or 2017. In 2018, warmer Tdeep re-
sulted in a decrease in OS loss, which was similar to the tempera-
ture effect on Reco Δ14C. At the same time, plots with warmer Tdeep 
tended to also have greater soil VWC (2018 R2 = 0.3, p < 0.001; 
Figure 6), which may have suppressed OS respiration, thus counter-
acting the expected temperature response on old soil C loss. Soil 
VWC also interacted with GPP to affect growing season OS respi-
ration in a similar way it affected Reco Δ14C; there was a significantly 

F I G U R E  3  Marginal effects of the interaction terms (a) gross 
primary productivity (GPP) and volumetric water content (VWC), (b) 
GPP and Tsurface, and (c) GPP and thaw depth (TD) on Reco Δ14C (‰) 
in 2018. The variables VWC, Tsurface, and TD are mean-centered 
and for the continuous variable, GPP, the minimum and maximum 
values are chosen as the grouping levels (i.e., high and  
low GPP)
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negative effect on OS loss in plots with high GPP that were also 
wetter (Figure 7; Figure S4).

4  |  DISCUSSION

Enhanced Reco in tundra undergoing permafrost thaw is likely to be 
a positive feedback to the atmosphere from an increase in old soil 
C loss (Czimczik & Welker, 2010; Dorrepaal et al., 2009; Nowinski 
et al., 2010; Pries et al., 2013, 2016; Schuur et al., 2009). Warmer 
soil temperature has been shown to increase the proportion of old 
soil C to Reco (Pries et al., 2013, 2016; Schuur et al., 2009); how-
ever, our study highlights that long-term experimental permafrost 
warming can introduce a soil hydrology component that, along 
with temperature, affect old soil C loss. In 2018, old soil C loss was 
suppressed in plots with warmer deep soil temperatures, as they 
tended to be wetter from increased soil subsidence in thermokarst 
features across the landscape. Additionally, the surprisingly large 

F I G U R E  4  Posterior means and 95% 
credible intervals (CI) for the proportional 
contributions of aboveground (AG), 
belowground (BG), young soil (YS), and 
old soil (OS) respiration to ecosystem 
respiration (Reco) for 2016, 2017, and 
2018. These year-specific contributions 
were obtained by averaging the plot-
level contributions (pAGy,p, pBGy,p, pYSy,p, 
pOSy,p; Equation 4) across all plots p for 
each year y. Source contributions were 
considered significantly different if the 
posterior mean of one group (given by 
source type and year) was not contained 
within the CI of another group

F I G U R E  5  Posterior means and 95% credible intervals (CI) 
for growing season old soil C respiration (g CO2-C m2) based on 
plot-level proportional contributions of OS respiration (pOSy,p, 
Equation 2) multiplied by the plot-level cumulative growing season 
Reco (g CO2-C m2), averaged by year

F I G U R E  6  Plot-level soil volumetric 
water content (VWC, %) and deep soil 
temperature (Tdeep, °C) measured in 2016, 
2017, and 2018. The solid line shows the 
fit of a linear model and the shaded band 
represents the 95% confidence interval on 
the fitted values
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release of old soil C that dominated Reco in 2018 occurred when soil 
moisture was lowest, relative to other sampling years. Our study 
supplements a growing body of literature showing that thermokarst 
formation may act to moderate microbial decomposition of old soil 
C when soil is highly saturated (Estop-Aragones et al., 2018; Natali 
et al., 2015). Nonetheless, we also found that when soil moisture 
decreases, a higher proportion of old soil C is vulnerable to decom-
position and can become a large flux to the atmosphere.

Our analysis showed that warmer deep soils had a positive ef-
fect on Reco Δ14C and a negative effect the magnitude of old soil C 
loss, contrasting our original hypothesis that the proportion of Reco 
from old soil C would increase with warmer deep soil temperatures. 
The negative relationship between deep soil temperature and old 
soil C loss and the positive relationship between soil VMC and deep 
soil temperature indicate that soil moisture and temperature are 
linked. Changing soil moisture can affect the propagation of heat 
through the soil profile (Abu-Hamdeh, 2003; Lakshmi et al., 2003), 
and soil temperatures in thermokarst depressions can be 2–4˚C 
higher relative to ambient tundra soil temperatures (Osterkamp 
et al., 2009). Water accumulation in collapse-scar bogs and fens that 
occurs from ground subsidence and thermokarst features has been 
shown to increase soil temperature in the top 3 m of the soil profile 
(Jorgenson et al., 2001; O'Donnell et al., 2012). Consequently, when 
soil becomes drier, heat capacity and thermal conductivity decrease 
in highly organic soil, thus keeping deeper soil layers colder (Abu-
Hamdeh & Reeder, 2000).

Thermokarst formations shape permafrost landscapes, and are 
increasing in frequency and magnitude due to rising air and soil tem-
peratures (Jorgenson et al., 2001; Kokelj & Jorgenson, 2013; Lantz 
& Kokelj, 2008). Thermokarst features impact permafrost loss, and 
thus affect C dynamics in tundra ecosystems (Kokelj & Jorgenson, 
2013). When ground collapses because of ice melt, local soil hy-
drology is affected, and subsided areas can become saturated de-
pending on the stage of thermokarst expansion and its positioning 
in the landscape (O'Donnell et al., 2012). Soil moisture is one of the 
primary drivers of permafrost C exchange (Oberbauer et al., 2007; 
Oechel et al., 1998), and waterlogged conditions have been shown 

to inhibit microbial soil decomposition and old soil C respiration, 
even in deeply thawed plots with warmer soil temperatures (Estop-
Aragones et al., 2018; Natali et al., 2015). In wet sedge and moist 
acidic tundra, a decrease in soil moisture can increase flux rates at 
the ecosystem scale (Kwon et al., 2016; Oechel et al., 1998), and this 
trend has also been reported at Eight Mile Lake (Kwon et al., 2019; 
Mauritz et al., 2017; Natali et al., 2015). Water pooling in deep soil 
or at the permafrost table restricts microbial respiration by decreas-
ing O2 availability, osmoregulation, and enzyme activity (Lee et al., 
2010; Lupascu, Welker, Seibt, Xu, et al., 2014; Moyano et al., 2013; 
Stonestrom & Rubin, 1989). As a result, microbes exhibit moisture 
sensitivity, and activity is optimal up to a certain threshold, after 
which decomposition rates decline (Moyano et al., 2013).

This soil moisture threshold can be inferred in our site based on 
previous partitioning studies that investigated drivers of old soil C 
loss. From 2009 to 2011, warmer soil temperatures decreased Reco 
Δ14C and increased the Reco proportion of old soil C (Pries et al., 
2016). During this period, soil warming and permafrost thaw had 
occurred, but there were no signs of thermokarst formation or 
water pooling at our site. In fact, site-level soil VWC in 2009–2011 
ranged from 38.3% to 62.2%, and soil moisture was not a signif-
icant predictor of old soil C loss (Pries et al., 2016). From 2012 
to 2013, soil warming continued to be a significant predictor of 
old soil C loss, but when warming was combined with a soil drying 
experiment (Natali et al., 2015), the proportion of old soil C res-
piration was suppressed, even though Reco rates increased over-
all (Kwon et al., 2019). During this period, the average soil VWC 
ranged from 39.4 to 54.1%, indicating soils were not yet highly sat-
urated and a decrease in moisture essentially hindered microbial 
decomposition at depth.

After a decade of experimental soil warming, permafrost deg-
radation induced significant soil subsidence ranging from 1.20 to 
6.12 cm yr−1, causing the soil to collapse and the average water table 
depth to be 74% closer to the soil surface in 2018 relative to 2009 
(Rodenhizer et al., 2020). By 2016, plot-level soil VWC reached a 
maximum of 90%, and ~25% of the plots measured from 2016 to 
2018 had soil VWC greater than 60%. Our study supplements a 

F I G U R E  7  Marginal effects of the 
interaction terms: GPP and VWC on 
growing season OS loss (g CO2-C m2) in 
2018. The variable VWC is mean-centered 
and for the continuous variable, GPP, the 
minimum and maximum values are chosen 
as the grouping levels (i.e., high and low 
GPP)
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long-term record of old soil C loss dynamics at this site, and provides 
new insight on the role of soil moisture on old soil C loss. Though 
highly saturated soil conditions inhibit the respiration of old soil C 
after permafrost thaw, in a dry year, the shift in the proportional 
contribution of old soil C to Reco represents a 30-fold increase com-
pared to the average proportional contribution of old soil C to Reco 
in wet years.

The variability in soil moisture created by thermokarst features 
in 2018 also interacted with GPP to affect old soil C loss. Though 
GPP had a marginal positive effect on Reco Δ14C (Figure S3), it was 
only significant when it interacted with depth of permafrost thaw 
and soil moisture. Previous studies determined that progressive per-
mafrost thaw increases old soil C loss in tundra ecosystems (Pries 
et al., 2013; Schuur et al., 2009). However, we found that plots with 
a shallower active layer (~60 cm) had higher old soil C loss relative 
to more deeply thawed plots, despite having a smaller volume of 
unfrozen soil available for decomposition. While permafrost thaw 
affects C cycling (Schuur et al., 2008), the extent of TD is not nec-
essarily the main driver old soil C loss (Pries et al., 2016). Permafrost 
degradation causes landscape feedbacks that change environmental 
conditions that can favor both higher GPP and enhanced microbial 
decomposition, which can have implications for net C exchange in 
permafrost. We found that plots with high GPP that were drier in 
2018 had lower Reco Δ14C, and thus greater old soil C loss during 
the growing season. Though higher plant productivity is projected to 
offset permafrost C losses through 2100 (McGuire et al., 2018), the 
soil C pool at our site is ~40.2 kg m−2 (using a fixed depth of 55 cm; 
ref. Plaza et al., 2019) and is several orders of magnitude larger than 
the plant C pool (0.41–0.70 kg C m−2; ref. Natali et al., 2012, Salmon 
et al., 2016). Consequently, environmental conditions that favor 
higher Reco in tundra may further exacerbate the effects of climate 
change because it is unlikely that increases in GPP will offset poten-
tial soil C losses in the long term (Plaza et al., 2019; Schädel, Koven, 
et al., 2018).

Comparing multiple source responses to climate feedbacks is 
necessary to estimate long-term C dynamics because plant and 
microbes respond differently to biotic and abiotic changes (Bond-
Lamberty et al., 2004). We made an improvement to the commonly 
used dual-C isotope mixing model method that relies solely on the 
δ13C and Δ14C source end-members to partition Reco, by incorpo-
rating a model-based approach that explicitly included GPP and en-
vironmental covariates to constrain source contributions. With this 
method, we found that the variation in Reco Δ14C and end-member 
Δ14C informed the mixing model to a greater extent than the δ13C 
data. We believe that this occurred because (1) though there was 
very little variation in measured Reco Δ14C in 2016 and 2017, the 
large variation in Reco Δ14C in 2018 was more informative than Reco 
δ13C for partitioning ecosystem respiration based on the model 
fit (Figure S1 and S2); (2) while the 95% CI for the old soil Δ14C 
end-member was wide (as compared to Δ14C of the other sources; 
Figure 2), it did not overlap with the Δ14C posterior means of other 
sources, unlike the δ13C end-member isotope data; and (3) GPP and 
environmental covariates may have supplied the mixing model with 

more mechanistic information than the δ13C data. Nonetheless, in-
cluding the δ13C data ensured that the predicted δ13C values were 
constrained within the realistic range of the end-member data, and 
that predicted δ13C values were not unreasonably biased toward 
certain end-members.

5  |  CONCLUSION

In the initial stages of permafrost thaw, there is a positive relation-
ship between soil temperature and old soil C loss at the ecosystem 
scale (Czimczik & Welker, 2010; Dorrepaal et al., 2009; Nowinski 
et al., 2010; Pries et al., 2013, 2016; Schuur et al., 2009). Over the 
long term, experimental permafrost warming introduces a soil hy-
drology component that, along with temperature, affect old soil C 
loss. After almost a decade of permafrost degradation, plots with 
warmer deep soil temperatures suppressed old soil C loss because 
they were wetter. Nonetheless, when soil moisture decreased, deep 
soil C became vulnerable to greater microbial decomposition and the 
proportion of Reco from old soil C increased by 30-fold compared to 
the wet-year average. Our hierarchical Bayesian modeling approach 
to partitioning Reco allowed the mixing model to be directly informed 
by measured GPP and environmental drivers, which helped constrain 
the proportional source contributions to Reco. This method provided 
the mixing model with process-based, mechanistic information of 
the ecosystem that was constrained by field measurements, rather 
than solely relying on end-members to inform the model (Ogle et al., 
2014). As permafrost systems continue to change with warmer air 
temperatures, we must understand the thresholds that may propel 
this system from a C sink to a C source to the atmosphere, as old soil 
C fluxes can represent a substantial amount (39%) of the growing 
season C flux.
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