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ABSTRACT

A systematic study is-made of the electromagnetic pfoperties of
charged vector mesons. Thefvarious_'..formalisms used to describe charged
particles of spin 1 are compared, and a new first-order formulation of the
-Stuckelberg.theory is developed. . For the most general first-order Proca
Lagrangian, subjéct to the usual symmetry re_quifements we eliminate the
re,dund‘a,nt components to obtain a Hamiltonian ‘foi'rrnula.tion, The theory is
‘interpreted in the nonrelativistic limit, and the terms corresponding to spin-
orbit éoupling _é.nd electric quadrupole-moment interaction are identified. The
analogy to spin 1/2 theory has led us to consider classical spin equations .of
motion which agree with the qlv;.xantu'rn-.mechanical\ equétions to order 1'171—.2e

This general form for the electromagnetic interaction ié applied to a
| recalculation of the Q* e+ vy dvecay rate through a vector meson intermediary.
We conclude; that th-e‘-«aarbsvencewo.f this - process. is not nef.ces,sva»rily an argument

™

against the existence of an intermediary meson in weak .interactions.
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ELECTROMAGNETIC PROPERTIES OF A CHARGED VECTOR MESON™
James A. YoungT and Sidney A. Bludman¥

Lawrence Radiation Laboratory
University of California
Berkeley, California ”
- October 12, 1961 |
I.. INTRODUCTION

The charged vec‘to'r meson .that has been proposed as a possible inter -
mediary field (B field) in the weak interactions must, iﬁ it exists, have a mass
greater tha.ﬁ that of the K meson and a very short l.ifetirne,1 Against such an
intermediary field, Feinberg2 and Gell—Ma,nn3 have ai'gued that, provided
the two neutrinos in p de;:ay are capable of annihilating each other, such a
B field would allow the decay }J.—"’ e+ Y in first order in the p-decay coupliﬁg
constant G with a rate considerably 1arger than that experimentally observed.
This rate depends very strbngly on the nature of the vector meson electro-
magnetic coupling which we will investigate in this paper.

The vector meson field theory differs from the Dirac theory by the
appearance of redundant components in the covariant equations of motion,
arlld bgr the necessity of defining expectation values with an indefinite metric.
We begin by demonstrating 'the equivalence of the various formalisms used
for describing charge-dvecfor- mesons. In particular, we present a new first-
order treatment of the Stuckelberg theory. > Inva/rié,r“lc'e»argumehts enable us
to write down the most general Lagrangian for such particles from whichv a
generalized Sakata-Taketani6 equation can be derived. The nonrelativistic
form (to order m_z) of the theory is r'eadily obtained by a Foldy'—Wouthuysen7
reduction of these Sakata-Taketani equations. As in the Dirac case, the
electromagnetic momenfs are identified with various terms in the nonrelativ-
istic Hamiltonian for the vector meson int‘.era.c.ti'ng»/with an extérnal electro-

magnetic field. In a uniform electromagnetic field the equations of motion
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of a vector meson of magnefic‘moment ge f/2mc agreesito .order-m_ .

with that obtained on invariance grounds-for a classical spinning particle.
By way of appliéatibn the i'a.te for the uhobse;'ve’d procjess L ety

is, recalculated for a vector rneson‘of a.fbitr.a.ry (conv:stant)r fna.gnetic dipole E

and electric ‘Qua;drupole.m‘omentsc With a suitable ,ciloice of these tvs/;o param-

etvervs the ra.te-fo'r. this proéess, .anc-:'l for the also unobs'e'r\.rebd n-e conversidn

in a nuclear field, can be made equal to zero.
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" II. ELECTROMAGNETIC INTERACTIONS OF A CHARGED VECTOR MESON

A, Comparison of the Formulations of the Theory of Spin 1

1. First-Order Proca Equations

A first-order form of the Proca theory8 is given by the L.agrangian

;Z/ 1+ ) 1, b oot |

A =g UL, (B,US8, U (0, UL U)T (2.1)
lut v imfutu
2 pvopvo B

for the case of free fields. In Eq. {(2.1) Up(x), UHV(X) are independent field
variables, U+}-L(x,)>, in (x) aré the Hermitiaﬁ conjugate fields, and m is the
"mass. The above Lagrangian gives the free-field equations

U =8'U‘8U,
pvo pov Vo

. In the presence of an electromagnetic field we perform the usual gauge-
invariant 'replacements 9 - ® - i e A, where A (x)is the

B b e B [ .
electromagnetic four-potential, which yields the field equations

U =7 U -w U, ' . (2.2)

U =m“U | (2.3)
The second-order wave equation

2

(@ -m¥ U - U =0 (2.4)
v T v | ‘

is obtained by substituting Eq. (2. 2) into Eq. (2.3). Since a four-vector field
must actually possess only three independent components, a subsidiary con-
dition eliminating the unwanted fourth component is needed. This is most

easily obtained from Eq. (2.3),



- or

o1 i
LY TTIJ"- by = E-(Tr. -
T U - '="(ie/2m2) F U
V. v SRV e
where

- . The second-order wave equati"on'(?_'.‘l)-then becomes -

2 2. 20 g )
o (mT -m ) _I.Jv - (ie/2m”" )ﬂv.(FH)\UHX) + ie Fp.V'Up

2. Duffin-Kemmer Formalism

T ) UHV =(ie/2) FHV'-UHV

- UCRL-9889

émzﬁ ~U
B

(2.5)

=0, . (2.6)

‘Th'e first-order Proca equations (2.2) and (2.3) may be written in the

matrix form ({3“ ﬁp'+ m)y = 0 by ée’ttin_g '

r.

1/m Usy

1/m U

Pa—

1/m U14

1/@.U24

1/m U;23

31

1/m U12

a

a

a
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— ] -
-1
51_ 1 ’ E’2: -1
-1
.1
-1 1
| 1
. -1
s -1
1. -1
-1
1 .
P3= By=
1 -1
. -1 -i
. -1

These B's satisfy the algebra-defining equation

BB By T BBLB, BB, TR,

The first order Proca equations are thus a realization of the Duffin-Kemmer

formalism..

3. Discussion of Second-Order: FieldrEquatibns

In a first-order formalism, the subsidiary condition eliminating the

timelike vector mesons either is one of the equations of motion or can be

derived from them. When the equations of motion are of second order, how-

ever, the subsidiary condition must be separately assumed. The second-

order equations obtained by the substitution 8 -7 are then generally not
I\L .
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"mutually consistent without the addition of suitable: _va terms. For example,

equations _
-.('Elz—-mz)U =0 and 8 ‘U =0
on Bpé T become
(11"2 —’rnz):U =0 , o ' ' ' (2.7)
[ _ :
T U =0. . .. ' . (2.8)
o T o

“Since |7, 7%] # 0, Eq. (2.7) is inconsistent with Eq. (2.8). A similar dif-
ficulty arises with the conventibnal Stuckelberg formalism5~ in the case of

electromagnetic interaction. For these reasons we have preferred to use a

Lagrangian giving first-order equations of motion which after 8H—> 1Tu -can

be iterated so as to yield the consistent second-order equations (2.5) and (2.6).

4. Stuckelberg Formalism

There is one other dynamical form of the vecrtof 1;neson theory intro- -
fduced by Stuckelbefgs which is ‘well known in the neutral-meson case. There
‘has apparently been, however,_no- c.onéi_ste'ﬁt treatment of the electromagnetic

interaction of charged mesons in the Stuckelberg fo_rmalism. - The original
Stuckelberg theory is a sec.ond—orde‘r formalism involving a fo.ur—vector field
ZH' and a sv.c':alar field B. 5 In the absvence .of- intera.ction,' Ithese fields are
- related to the Proca field U|¢ “by the equati’oﬁ 'U'}‘L = Z|J. + rn_l BH- B. By the -
‘ subsvidiary condition‘
3 Z -+mB%O,
L -
the scalar field B cancels out the fo’u‘rth component of the vector meson
.field. . In the conventionalj formulation, when the glectromagnetic interaction
is introduced by the minimal substitution é}l -7 ., this separately imposed

subsidiary condition becomes inconsistent with the field equations. We will
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consider here a new first-order formulation of this theory which is internally
consistent automatically and turns out to be identical with the Proca theory.

. For free mesons consider the Lagrangian

i:l/zz+ o z -8 2z +m_l('8 8 -98_ 0 )B]
_ pY Sopvo Vo povooovop

. + + -1 . ' +
t1/2 [auzv -9,z +m (8.9, -3, 8}.1.) B ]ZHV'

c1/22% 2z +m?z'z +mz' 9 Bims B'z
v Ty T pops R n

.+c¢ts B+o B'c -ctc, | (2.9)
T BT T e | o R

"where Z v,.'B, ZH,. Cp‘are independeht field variables. On variation of d{, '
i o : ‘
we obtain the equations

572 -mZ -md B=0, | (2.10)
v T T m |

z =02 -8 2 -, '- (2.11)
5 Z +mtas Cc =0, | - (2.12)
1% 1%

C =8 B. | | - (2.13)

By operating on Eq. (2.10) with Bu, we obtain Eq. (2.12) on using Eq. (2.13).

Substitute Eq. (2.11) into, Eq. (2.10) to obtain
(0% -m?) z -0 (a'z + mB) = 0
p moovov o

and, using Eqs. (2.12) and (2.13), we find

2’)(Zu+m_la-B):0. | O (2.14)

(0% - m |
M o
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Set U = z“m'1 0B so that Eq. (2.14) along with the condition
9U =82 +m}

: " wZu 0%B=0 (which'is identical to Eqs. 2i12 and 2.13)

reduces to the Proca equations. Thus the internally consistent equations.

8 Z -m°Z -md B=0, | . (2.15)

'z =9 Z -8 Z , o - (2.16)

together with (2.14), are equivalent to the Proca equations. |

. The advantage of the above first-order formulation is the possibility

- of introducing the electromagnetic interaction conéistently. Put BH* m in

. Eq. (2.9) to obtain

-~

+ . - '-. .
1/2 2 w.[npzv - _zp- ie/m va B]
+1/2fnzt-n 2zt tie/mF BT z
, V8 -V. .V M- p,v, p,v

1722 2z +m®z' 2 +mz' w B+mn B'z
By pv BR oo R e
+chir B+nBTc -ctc . | | (2.17)
B e T T . :
From Eq (2.17) follow the equations
2

T Z ‘-m~Z -mm ‘B=0, ‘ - (2.18)
v Vp, ! M ) .

Z =w-Z -m 'Z -ie/mF B, S (2.19)
RY  pv Vo Tpv '

| Sl 2 o |

T Z +m w-C -ie/2mF Z =0, _ (2.20)
v v TR} LBV ooy o : L _

=7 B, ' - , | | o (2.21)

C ;
N H - u -
as in the free-field case (if we use Eq. 2.21) operativng on Eqg. (2.18) with

‘w gives Eq..(2.20). Substitute Eq. (2.19) into, Eq. (2.18) to find
B | ;

y



9. UGRL-9889

-‘(}rz-mz)Z'-—Tr-'TrZ -mm B -ie/m m (F_ B)=0.
v v o v v v

+ When Eqs. (2.20) and (2.21) are used_, this latter equation bécomes

% - m?)(z +m ir B)+ieF (Z +m ' 7 B)
T T v Ty v

wiul=o (@)

- ie/ZmZ m (F
v
on making use of the commutation relations

A, TTZ] =-ien F. -ieF w
M v pv v

Ifweset U =2 +'m-1 w-B, thenZ =T V , and Eq. (2.22) becomes
, (] P P 4 pv , ‘

2 2 e 2 S
(T - m )UI-’- - ie/2m Trp.(F)\vU)\_v).f}.e 'vaf Uv— 0,

which is identical with Eq. (2.6) in the Proca theory. In addition, the sub-

'sidiary condition Eq. » (2.5) in the Proca theory is readily seen to be identical

to. Eq. (2.20).

B. Most General Lagrangian for a Charged. Vector Meson

1. Divergence Transformations

The theories we have just considered possess, as we shall see’ in

" Section D, a '"normal' magnetic moment; i.e., their gyromagnetic ratio

gis 1. The Lagrangians we have been using are not unique, however. In

the Proca theory the divergence

rd .

_ ot + : S (2
CZ =yo_ 68 UT U -8 U U T, . (2.23)
Y,V[u ViR R u»v] , 23

where vy is a dimensionless constant, may be ad_déd to the free field
. / . ..

Lagrangian (2. 1). The divergence % will _nbt change the field equations
. - : . < ] .
derived from the Lagrangian. However, the Lagrangian i + i— will

have, as field equations in the presence of electromagnetic interaction,
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U =7 U -1 U ’ . - (2.24)

: ’ #
R o] - mz".U +ieyF U =0. o v (2.25)
HV VY pV M o

: : _ e
The term proportional to y in Eq. (2.25) will correspond to an additional

magnetic moment interaction. > We see then that there are infiniteiy many

: free-particle: Lagrangians leading to the free-field equations but diffei'ing in
'the distribution of bharge dens.ity‘. : Thus the principle of minimal electro-

- magnetic interaction déesbnot define a '""normal'' magnetic moment ulllless the

: frvee—particle' Lagrangian is specified. Since, for any choice of vy, the theory -
is nonrenorrnalizable,9 this Criterion.toov(uﬁlike the spin ql/Z.case).is not

usable to define a preferred electromagnetic interaction.

. 2. Electric Quédrupole: Moment Interaction

‘Croup theoretical éonsiderations allow a particle of spin 1 to possess
an electric quadrupole moment i.n addition to a: rﬁagnetic dipole moment. We
now prdceed to show how an electric q‘_uadrupole-moment _interagtion can be
added to the first-order Proca Lagrangian. We require that such an inter-
acfién be bilinear in thve meson field variables UI-; -and qu, and linear in the

“electric charge e and the derivativés of the electromagnetic field‘ ax F

Since these derivatives are constrained by the Maxwell equations

F - ,a,F = F T . . ‘ ‘ .
av A ap V)\-a}\ YR Y : : s

. only the form
4 + v % + . |
= U §) -F o+ : - F : : (2,26
aelU U, 0, HV.a‘?U)\UH"a\ " | (2, i)
satisfies these requirements along with the requirements of Lorentz and

‘gauge invariance. The multiplication factor 'a is now determined by
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~demanding invariance of this electromagnetic interaction under time reversal.

We define the time-reversed fields (apart from arbitrary phases,

which are the same for all terms in the total Lagrangian) by

. T T T =
~Ai ,—Ai (r, -t), AO (r,
U, =0 (T, -, - Uy (r,

T T _

81 = ai ’ i 84 -

Applying these definitions to. Eq. (2.26), we have_

\

)" vt u s '
=~~~ =a eU U 8 F +an U
' T MY oA pv v

t) = - AO (rs —t),
t) = - UO (.I‘,—t),
T %

- 84, a = a‘
Y pr ’

and thus, in complete analogy to the [3 decay Ham1lton1an, all couphng con-

stants must be relat1ve1y real, and a pure imaginary.

gquadrupole-moment interaction

1"
g 2 + _ 1t :
T - (e q/am JEMRARRCEAR

|J,V

. where q is an arbitrary dimensionless constant,

F

N

nv

Choosing a =i q/4m2, -

we obtain the electric

(2.27)

- We have been unable to introduce a term like (2.27) in a '"'normal"

“way by suitable choice of a free-particle Lagrangian without going to deriv-

atives of third or higher order. The quadrupole moment is nevertheless

subject to the same degree of ambiguity as the magnetic moment, since, as

we shall see in Section D, the "normal' interaction (2.23) already implies a

certain amount of quadrupble moment.

Adding Eqs. (2.1), (2.23) (with 3 > 7

~as the total Lagrangian

, and Eq.
HL) q

(2.27), we now have
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, o + \
ai = l/Z.UVHV(T_rH.;UV anp) + 1‘./2 (n H.:U v__-T_Tv ULL) u

: pv
. . . ef
~1/2ut U 4w Ut U stey/2yutu -utugE
pYoopv T ' pov v.opoopv
. 20 tert T + S
+(1e,q/4m-)[UHv U)\ - U)\-qu]a)\ FHV . . (2.28)
- Except for the possibility of letting y and g have form factor space-time
dependence, this Lag‘rangian is the most generalv charged vector rheson
.Lagrangian consistent with the 6rdinary in(zariance requirements. , The vector-

meson theory tacitly used in the original pw—~e +y _argumentz’ 3 corresponded
to the choice y = q = 0. As discussed in Section. II. B. 1, we know of no phys-
ical criterion justifying a particvular' choice of y.

In the next two sections we investigate more fully the physical content
of this theory.

C. Generalized Sakata-Taketani Equation

1. Elimination of Redundant Components

The 'Lagréngviani'(2.28) furnishes the field equations

™ U e rﬁZ-U. +.iey U “F _+ (ierq/;m-zr)lfj‘ . 8 F =0, (2.29)

Beopyo oo v Mooy IR 12 R DN '
. g - -
_ A N :

quv’- i U, -, Up‘+(1e q/?.m ). U, ?)\ J:fw_‘. , - (230) .
A meson field satisfying first-order wave’é‘qtiatidns is expected to have six .

' . ’ . ' b‘\.

dynamically independent components, _co'r're'sponding to the three independent
field variables and their time derivatives. Equations (2.29) and (2.30) must
therefore contain four redundant components which we wish to eliminate.

Since in Eqs. (2. 29) and (2.30) Uy (i,j = 1,2,3) and U, do not contribute to
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the time development of the meson field, these are the four components to .be. ..

ehmmated After th1s ehmmatwn we w111 possess a Hamlltoman form of the
‘theory For S1mp11c1ty, we cons1der the electromagnetxc f1e1ds t1me mde— '

_ pendent and the magnet1c f1eld spatlally constant, in the terms proportmnal

to q only ‘I‘he terms not proportmnal to q can be considered completely
general A | -
. 'Fr',om Eq. (2.29) vv've"haye_.v ,

2 STy
U, -:.-V.~(1'/mv) (wiUvi_4:+_1e VU F,,).

Let moiE Ui4’ so that we _have

=1/m'1r ¢+(ey/m)U ,

where E is the electnc f1e1d strength Also from Eq (2 29), L

| 2. . N | :
; 'rrJ Uji_-m -Ui_+ “4U_4i = -,1eiji Uj -1eyU4._F4i
-(1eq/2m )U 8 F, ;-( 1eq/4m )U m 9 F .,

which becomes

9 ¢,

-t ° e(P¢ +mU +m [1r ...... x ('rr xU)] +1eym " (ﬁ'x:ﬁ)i

+'eym-2)_]§.(;r"-$.)+e2y2m 3E (ﬁ -f:) e(q/i)t‘n ¢ 9 E '(2;31)

'where q’xs the scalar potent1al and H is the magnetlc f1e1d strength We ‘

w1sh to wnte th1s last equat1on in matnx form It is lqngthy, but not d1ff1-

' .cult to show that if one 1ntroduces the spm 1 matrlces '

/o 0 o\ /0 o i\ . /0. 0

0 0

W
"

lo o-i}] ", s,=l 0o 00| s

o i o/ \-i 0 0 - 0 0. 0



-14- : UCRL-9889

:, Eq. '(2.3'1) can be ‘wkritten as

i %‘1’ = ed¢p+mU-m L (E TV U-eym H(F H)U-eym 2S.S.Emo "
9 t ' ‘ _ : , 1737 1 ‘ ~
+eym (B T)4- A 2mi 3§ - BP0+ eyPm E-Z-.U
+e(q/2)m™° si,sjaj E ¢ - e(q/2)m "(v: E)¢ - (2.32)
o 2%
~and ¢ = ¢2 ‘ , U = . Now Eq. (2.30) bécomes,
b3

U

o 2 o
+ie 2m “U.9.F
4 (a/2) 93

_=“4Ui-"_iU 4i’

4i
which can also be written in matrix form:

%%J =AUt motm  E T g T m)-em G H e

s eym-ZiSiSjﬂj'(EiU) - eym 2T . (EU)+e(q/'z')m"2.sisj(aiEJ;);U

—e(q/Z)m (V E)U S - - ' (2.53)
Uté

"~ We now def1ne a six-component wave: functlon = (1/\/7 <U+¢

)- so that .
(2 32) and (2 33) take the Schrod1nger form ’
GOV leotp,mti -(s-'n)/m-( +ip,) (T2 +eS - H)/2m

ot~ | P3 P2 /AP 3 TIPS M

- =

“lpy-ipyley @ HY2m - (ey/2m®) (140 NIE - ENE:7) -iE- (Exr) -E- v]
3 2 T 1

(ey/2m2)(1-p ) [E THE D) T xE) 7B
) . B o e : (L“

(e?y /2 )(p 5-ip B BNP-E7) + (eq/amP)(Q, (8 E,/0x,)-2(0 E,/3 xi)]} b
- | (2.34)

where Q -S S, +SJS For y=q =0, Eq. (2.34) reduces to the Sakat:a—Ta»ketani6
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equation. The charge 'no_atrices\ Py

R R

o p = . 1p = s P, = ]

)

2. _(‘)p7efators and Expeetation:Va{lees. ' A

Since the charge is given by
Q‘:efdx¢ P3L|J'=‘e(4‘9 P3\Hy
10 '
expectatmn values A of. operators A must be def1ned relatwe to the 1ndef—
inite charge metric p 3> ie.

A= fd x¢ p 3 AY.

In order that these expectatmn values be real, the ope‘rators must satisfy the

‘cond1t10n of pseudo Hermiticity,

A.fP3A P3e T (2.35)

where A+-= (AT) is the ordinarily d’efined'He‘rrr'litian adjoint Note that H

| .1s pseudo Herm1t1an (H =p 3 ="' p3), so that its 1nterpretat1on as the energy

is con51stent For the canomcal transformatwns (Y = Sx.i; ) between the same

‘ physic_ai state in dlfferent 1."epresentat1011sy we requlre Q to be 1nvar1ant,

i.e.-; that
-1 + - S ' . o :
S = p3l,s P : (2.36?

Such Vtrens.fox.'matione S are called pseudo—unitary transformations. We

f1nd as in the nonrelat1v1st1c case (p3 = 1),

d vv‘_.
—d—‘EA—-l[H A]

In the following discussion we shall omit the prefix ''pseudo, " alwayvs :

understanding Hermiticity and unitarity to be defined relative to the metric

p, by Egs. (2.35) and (2.36).

P s P are the qsqel 2 hy 2 Pauli matrices:
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D. Nonrelativistic Limit of the Vector Meson Theory .‘

To find‘ the'no_nr_elati\)istic limit of Eq. (2.34) wc use the‘Fpldy-

7,12

Wouthuysen method of successive unitary'tranéfofma'tions. "The free- -

particle Hamiltonian (e = 0 in Eq. 2.34) is diagonalized by the initary trans-

formation
exp ((1/2) ip 4,

where | |
tan (42) = 2iAE" +m®) (B2 - B - BV,

so that we have

— ‘ o 2 2]
E+m | (P72 - (S P))
2(mE) /2 (E+m) (mE) /°
U= |
_(P%/2 - (5 P%)) Et+m
(E+m) (mE)/2 2(mE)/2

- 1 -

Thus, in the non-interacting case, H =U 'HU-= Py E, so that each sign. of

the charge (energy) can be représented by a three-éomponent-wave function.

In the interacting Hamiltonian of Eq. (2.34) we define "even' operators

as thosé containing--pé or 1, and "odd" operators as those éontéihing pé
or p - For the- nonrelativistic lirhit»wé require-théf- H be freg of odd
operators_vup‘t-o‘ some order in _the invexf‘sermas’:s». . S'uclcess‘iv‘e. canqniqai
transformations U, where U = eiS". S = ip, O/Zr_r}, and tihe"‘O are odd op-
erétors of the Hamiltonian, will eliminate O. from the‘ AHami.ltoni.an. An

exérh_ple of such an 'O is ip, (g . ;)Z/m. The 'resuitirigf"wa'.ve eduation is

oyt = (Hy +H)) ¥ ; ST R T (2.37)

and

CH, = eC+m + ?2/2m -;,(1—;?‘.)2 /8m3

L&)
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-eQ/tQ; 0 Ei/a x tie (Q2)T < E + otm?>),
where ;zﬁ— eA and Q = -(g 1+q) (ﬁ/mc) Ti’xe threé terms in I—I1 are
1dent1f1ed as a magnetic- moment spln -orbit couphng term, an electrlc -quad-
rupole- couplmg term, and a (non- Herm1t1an) Darwin term Except for this . |
last term, the samevHami_l‘to“nian Ho-i—Hl is _a%so:‘obtained for spin—O_(Si;Qijzo)v
and for spin-1/2 particles (that is, Si = (71/2, 'Qij‘ - 0) of‘.arbitra.ry gyromagnetic
ratio. The Darwin 'germ is zero for spin 0 and le ﬁ/Z,(Zriilq);] v E_)’ for spin

1/2.,. Except for these Darwin terms, which vanish in the classical (h=0)

11m1t, partlcles of different spin are thus found to obey the same nonrelat1v1st1c

‘wave equatlon (2.37), once a.llowance is made for the p0551b111ty of a.rbltra.ry ‘

ma.gnetic dipole a.nd evlectric quadrupole moments in the higher—spin cases.
This result suggests that, except for the obscure and spe01f1ca11y qﬁanturn—
mechanical Darw1n term, the nonrelat1v1st1c wé.ve equation is actually spin-
indepenc_lent and that its form depends - on classical ‘in‘varla.nce arguments
only. |

It is worTA:h‘ noting that a vector particle .c_ould have, except for g = 1,
a quadvrupoile-moment interaction pfopbrtional to the I”a,nomal.ous moment"'
g -1, éven:-if the specific form (-2.,2.:7) ‘ha;d not been intr«o‘du:ced., . Unless there
are reasons (unknown) for p;eferring g = 1 theory, a term (2.27) is not to be
exclu.:.c'ledv-, " As we shall see la,fer, sucha q tei‘ni-app'arehtiy does not lead to

any more divérgent a form of electromagnetic interaction than does the Yy

‘term itself.

The factor 1/4 has been introduced before Q in I—Il in order to make

‘our normalization of the qua.drupéle-moment strength conform to that con-

ventionalized by Ramsey. 1 Consider the meson to have its spin along the
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positive z axis, and also take as a véry weak electric field :

E1 = - (k/2)x, EZ:-— (k/2)y, E3 =kz,

where Kk is a small constant. For a meson with spin up {= —L172— i,
T 2

'\

so that we write : S : ' . r

-e . 9 E. -eQ
| <T—.-QQ.. = /]\>: k .
g Y 8%, 4

. Ramsey defines the energy E of an electric-quadrupole moment ¢ as

E = - (q/4) (8 Ey/02), _,

for particles with spin along the positive z axis. The quadrupole moment is

usually divided by the charge and given in units cmz, and so the vector meson

has quadrupole moment Q=--(g- 1+q_)(1‘\/mc)2 cmz. If we consider the spin

0\
projection along the z axis tobe 0, then we have :<O> and
' ‘ : AN |

eQ O E,
1

eQ)
<S3 =0 |- 7K Q;

§,=0) =—— k,

to give Q' (S3 = 0) = - 2Q, in agreement with the group theoretical result
L LQm). = Q [31fn2 -S(S+1)]/s(2s - 1)

where S is the particle spin and m the pr'ojection‘ of the spin along the =z

axis. . The charge distribution can be considered as having the shépe of an

ellipsoid of revolution centered at the origin, and thus Q =‘4/5 M RZ, where

n=(c?-a%)/(c®+a®), R = 2 (a°

2, . " . :
+C"7) is the mean square radius, C .is the ~
axis of the ellipsoid in the z direction, and a is the axis perpendicular to
the z direction. A positive quadrupole moment corresponds to a cigar—shaped

chatge distribution, and a negative quadrupole moment corresponds to a pan -

cake-shaped charge distribution.
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Forg=1, q= 0,..6_111: result (2.37) reduces to that obtained byvC‘ase. 12

. E. Classical Spin Eq_uva'tionsvof Motion

In the pi‘eceding section we noted that spinning particles of the same
gyromafgnetic ratio hawve (except for the Darwin t'erm)'the same Hamiltonian,
at least to order l/mz. This suggests the possibility of a classical spin-

independent de‘scriptic}n of the magnetic-moment precession. Bargmann,

. Michel, and Telegdil»3 have recently given such a description, using a four-

vector SH for the spin or magnetic moment. In quantum mechanics the spin
has, however; more often be‘en'described as‘[‘:)a‘rt of the angular momentum
antisymmetric tensor va. We wili here derive‘cm‘fariant‘ ciassical equations
of motion in terms of the more familiar SHV. ‘While the equations (2.40) we
obtain are apparently quite different from the equations (2.42) obtainéd by
Bargmann, Michél, and Telegdi, the two sets "of equations are actually the
same when SH and Spv are related as fhey have to be. This:will show then
that covariant spin-precession equa‘tiqns eq:uivalent to those of Bargmann, -
Michel, and Telegdivcan. be derived fromb classical‘ invariance arguments by
gsing the more familiar Spv formuiatiqn for the spin angular .moment:um.
We wish to generalize to an éi;bitrary Lorentz frame the equation of

spin precessioh |

 dg/at - (eg/2m) s xH , o o - (2:38)
whi‘c]‘n holds in a resvt frame, by using an anti.symmetric tensor SFWD The

tensor SHV ‘must have only three independent components, which in a rest

frame are S, 55, s3.: This condition is expressed covariantly by the con-

straint :
Spv u, = O‘? , . ‘(2.39)

where u_ is the four-velocity (ﬁz = -1). It is readily confirmed that the

unique expression for the time variation of SH‘; consistent with the particle



-20- ' . UCRL-9889

equation of motion du /d7T =e/m vauv and reducing to the form'(2.38) in a
. 16 ' '
rest frame is "~

_ dsw ‘/dv = - (eg/2m) [Sua" F - :sl'/a:. ~Fa.p]

- (e(g-2)/2m)[u S; -u S, . ] F, u. ' - 2.40
- (elg-2)/2m)lu, S5, - u,S0.) vy (2.40)
Here . T is the -:t_,é_i:_gen;"t'ifne. :
Define a four-vector S, by the relation
{:sa = - I/ZYGO-IJ'V_‘B SHV ugs (2.41)

which then also satisfies a supplementary condition -

-

s u =0,
I

The time variation of s, can be obtained from"Eqs. (2.40) and (2.21):

+u S ]

ds /d7=-i/2 ¢ lass
a/ / awﬁ[ﬁuv B pv

1l

. 4 . _ ! .
lé/_ m eo.pwﬁ [guﬁ(Sm\ F)\v va F)\p),

t(g-2)u. F . u.[u S -u S ]
(g-2)u, px-ﬁ[ppv VPPL],]

- ie/2m Ea].;vﬁ SHV Fﬁ)\ Uy

I

‘where A= dA/dT. Now use the two relations

:Sp,v =1 ep_vvaﬁ_,ua SB‘,'- B - ) : . v o _ ‘

. : =[5 s -8 6 - +6 &5 - & .
‘wapy  “prpo [ak.sﬁp ov . .a\x Bo Vép-\" ap VA of )

.

-0 B 6(10 E‘)’Bp 6)\1}

ap %x Sov* Bao Spn Sup
to obtain
.o (2.42)

dsa:/d'T:e/m [g/Z Fo.v s, - (g/Z—l)‘sv' FVMuMuCL
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" This is the result obt'ﬂa_i_ried by'Bargmann, Michel, and Telegdi. 13

" We now show, -inv particula}(',, that Eqs. (2.40) and (2.42) both lead to
the samg; coupling (spin-orbit coupling) between spin and momentum in an

electric field, and thus .to‘o_raer-bl/mz.. . For this purpose we expre_sslb.oth

equations in three-vector form and keep terms linear in the velocity v.

‘From Eq: {(2.40) we have

ds /dt =-eg/2m| s xH+(s xV)xE] - e(g-2)/2ms (v - E)-E(s V)]
= eg’/angxI—-I’{e(g'— 2)/2m_s>x.(—173x:)+e/rh E_x(—;x;:)'.

1t);ut-'

Ex(s xv) = —;—sx'(Exv)&m/Ze dv'/dt,
where v =sv -v (s- v); and we have used v = e/mE, so that we write

d;/dt :»eg/Zmzs*xA_ﬁ+e(g—l)/Zm;xgﬁx;)+ m/Z‘.'é'_d;’»//d‘t to terms linear in

V. Now consider the case in which the spin changes slowly compared with the

velocity, and the velocity periodically takes on the same values, so that we

“can drop the last term. . The spin precession result to order. m_z "then be-

comes

d;/dt = eg/2m s xH# e(v'g_—bl*)_-/Zrn2 ;X(Ex;) (2.43)
for particles with a positive éharge, Equation (2.42) expressed in the same |

way becomes

-

ds/dt ‘e/m [g/Z.;’x-I:I)+g/Z_E(;; v)-(g/2 1)V (5 - E))

H

eg_/Zm,;x.ﬁ + é(g—'l)/Zm-gx.(—E’lx;,) + m/2e d-\?"/dt9

where v''= +’{7(:= 7). . Thus, by dropping the last term in e‘xactly the same

‘way as we afrived» at Eq. (2.43), we obtain the same result. Itis easily

shown that (2.43) is identical with the result obtained from the Hamiltonian

,Eq. {2.37) through the relation d;/dt =i[H,5].
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III. Application to Decay: p*—»'é* +y

CA. (pl —~ey) Matrix: Element ., .

The' Feynman disgrams for the process .y = e+ y are glven in F1g 1
the matrix element for the process 9 —+e with emission of a’ real or v1rtua1
photon is given by the expression

m =1e'u"e(1_-'Y5)r{; upAv,’ - | : (3',1)

where Uy u are the electron and muon spinors respectively, and

3 2
| Fp‘fl(z'“) {1fO(kaV RNES ’+f1°u"/”} Ky

. Thus . .
. ext. , 2 . :

i’ A 2m /kTH(f,/2p)0 O F Oy . 3.2

A= (2 { oV T 200 Hv} 5.2)
Here k is the photon morvnentum, N Ithe_-_rnuon mass, and

F - =i(k A -k A ),
VIR p v

The form factors fO and fl, which are functions of kz, are responsible for’

§ '“
‘monopole radiation (in the Coulombﬁ_%ﬁfeld of a nucleus) and dipole radiation
respectively. The réte for p—>e +vy with er’nission of a real photon is pro-

'fl (0) 2 , and the rate for the coherent process |.L+n - e+n is

portional to
proportional to '[fo(p )-I;_f (o ) ]

B. -'Branching Ratio w Jw

p-—>e+y Ve e+v+v

If the p > e conversion proceeds through wvt B and v+B—>e,
then the branch1ng ratio between the unobserved decay p—e+ty and the

normal decay can be written as .

Yu->et 2 |
p =wFL Y = (3a/8m)N7, o - (3.3)
pe+v+v ' "

where a is the fine-structure-constant, and N is a number independent 6f

»

Iy
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the weak-cOuplilng constant. The amplitude N g-ene‘rallyd’iver-ges logarithmically

"where

with 'A/m, the ratio of cutoff to the B-meson mass. Féinbergz and Gell;Mann3_ :

- found (tacitly assuming unit magnetic. moment for the vector meson), fovrv' :

~ nucleon mass, and m ® K-meson mass, N = 1. This value for ‘N gives

p = 10.3 , which is 10'3 times the _expe’rimentally measured upper limit for p-.

- Aside from the mild cutoff dependence; there are two reasons in a

one-neutrino theory as to why the above-calculated p need not be taken as

evidence against the B meson. We have already pointed out that there is an
infinity of free-particle B-meson Lagfangians which differ in their definition
of "norrhal" magnetic moment. Also, if the B meson exists it must have

a'large mass (greater than the K-mesén mass), 'and yet the gauge-invariance

- . 15, -, : .- , H i
type of argument for its presence 5,1nd1cates that it should have a vanishing

mass, This implies that th-'_én B meson must have ‘a rather complicated
structﬁre, so.thaf one should keep an open mind with regard ‘to.it_s eleétro-
magneti‘;: pro'pertiesm

We_have recalculated th‘ev pe\‘(‘ vertex as a functibn.of magnétic mo-
men-t (1+y) eh/2mc and electric quadrupole moment Q - (y+q)- (‘h/mc)zj,‘ )

with the interaction Lagrangian given by Eq. (2.28). After a lengthy ca:iéu—

lation, the value of N ob’cainedl6 is
CN=(1-y-qu®/8m?) U+ (1 2y +qul/am®) 1)
4 (3-yp®/2m® + 11,5/ 6m )T, + (22/3 +ay)(ul/mAr + 10p%/m°r,
| - | ' (3.4)

- This result is correct 'to.o.;;der p-z/fnzs terms of order '(-u/m)4 have been

dropped, and the electroﬁ mass has been set equal to zero. The expression

(3.4) for N .is.con.,.s._‘istent with that obtained by Meyer and Salzrnan17 and by
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" Ebel and Erﬁst, 18 whvo, however, did not calculate terms in/uz/m2 or q.
Because g was 6riginally defined divided by the square of the boscn mass
mz,. and the muon mass is the only-' other quantity of dimensions of maas in . -7
our calculation, q always appears in N rriultiplied by pz/mz.

s

. C. Discussion of N

In oﬁr calculation of n, vy and q aﬁp"ear only in the ccmbinati'on

v =y+tap?/sm?=(g-1)(1-p2/8m?) - qui/s. (3.5)
Thisvmeans that the rate for p—>e+vy 'dépends onlf on this combination of
'r_nomentvs. This result is apparently fortuitous, since in the monopcle form .
factor fo j:his particular co‘rn.bination does not occu'r.
1. Finite N

The integral "‘IO is logarithmically divergent so that, elxcept for

y =1, Nis formally divergent. Since we have
n = (-) /n n+1), : | S - (3.6)
for y ‘1 we obtain | |
N = 1+2:MZ/9m2.- , | o B . - (3.7)

which for any value of the boson mass leads to a brahching ratio p>10"
~ The cutoff iﬁdepehdent calculation of N is thus in definite disagreement
with experiment.

2. Logarithmically divergent N

N can be made vaqishingly small by rctaining the intégral I'O, making
it finjté by the forvmalu devi'lce of‘ a'vcovariant cutoff- A.. Consistency then
requires that all integrals. | I" be calculated with.the same kind of cutoff. A
With the Feynman cutoff factor -A m / —Azmz) we obtain the integrals

= (-im ™ )f[d a/(a%-m®)™ 4 [8%m? /(g% A%m)] (3.8)

A:O‘r
I, = [A%/(1-0%)%] [1-2%+ A% 1og A%]
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and : : S
antl 2, - a2 N _ADNT :
I = (-1)™! A% /n(n41)(1-2%) - (1n-A% L.y, fornzl. |
By defining Y'-O as that value of_:i y which makes N vanish we find '
Yo = A+Be, S £ X2
wh_ere -

A :.(10+11+312)/(10-_211),
. o © o7 -1 72 T )
B = (I,-2L;) (11/6 12+__2,2/3 I, + 10;4)

. . ‘ . ) - _ZV " ‘ l_\z ‘.v'
- (l/Z.IZ —4.1.3.) (I-O -i—I1 +3'I2)(.Io - ZII) s and e‘ = (|.L/m)<< 1; in

fact, we expéct the upper limit for ¢ to be 1/25, since m ‘must be greafer

than the K-meson mass. For two representative values of A, say A= 1,
A =2, we have

1, PR L, I, A B

A=1 - 0.5000 -0.167 0.084 -0.050 -0.033 0.700 = -0.91°

A=2 . 113  -0.296 0.125 -0.070 -0.044 0.702  -0.67

- This table shows that YO' is ir_l_sensit'ive to both the cutoff .A, and the square .

"of the ratio o'fwthe masses. ¢ (as long as € is. small). W1th e =1/25, then

for A=1, YO' =0.698 and for A =2, YO' :O'.:70_3. In the expression (3.4) lej N,
it is evident that we can write

N=RO-v/yg) )
where

+1, 431, +e (11/6 12+22/3 I, +10 I).

. The term pfopdr‘tional to e in R will always be small in comparison with

the other terms, 'so that in-R.'we can neglect e to obtain

24']

R = [A%/2(1-1%)] {ZA‘Z.,(A‘1 “A%43)log %4 (1- A%y (2a%4n% s 3)}'

B The branching ratio-p thén becomes

0 =(3a/8n)33(1 4\1";/'\/(,",)‘2, -

I
|
|
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Fig. 1. Diagrams for decay p = e + y.

'
®
(c)
MU=-22733
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