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Abstract

Realizing Practical LLM-assisted Al Assistant

in the Semiconductor Domain
by

Yueling (Jenny) Zeng

The emergence of Large Language Models (LLMs) offers new opportunities for apply-
ing Machine Learning (ML) and Artificial Intelligence (AI) in semiconductor chip design
and test (D&T). Realizing these opportunities requires a fundamentally different think-
ing from the past. For more than two decades, the semiconductor industry has been
exploring applications of ML in D&T. Despite many promises, notable challenges remain
in most of the application contexts.

The first part of the thesis (Chapter 2, 3 and 4) includes a review of works for ap-
plying ML in D&T, starting in 2003, and describes the journey leading to the current
development of an Al Assistant called Intelligent Engineering Assistant (IEA). The jour-
ney evolved from one view to another, where each view perceived applying ML in D&T
differently. In the first decade, the research took a data-driven view similar to that in
common ML practices. This view was changed to a knowledge-driven view in 2014, due
to the experience of solving a production yield problem for an automotive chip supply
company. This experience is highlighted in the thesis, together with learning lessons from
a variety of other works in the first decade.

The knowledge-driven view then lasted for four years. During the period, the research
focused on finding ways to incorporate domain knowledge into the data learning process.
It was in this period, the idea of Co-ML (complementary ML) first emerged. Co-ML

formulates a ML problem as a decision problem where the outcome of the learning can
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be either a model (an answer) or no model (no answer). Then, in 2018 the idea of IEA,
as an autonomous system, was first construed. This changed the knowledge-driven view
to an autonomous system view.

In 2022, the autonomous system view was once again revised. It was realized that
in order to achieve a practical IEA, one had to take a fundamentally different view from
the past and perceived problem and solution as a pair, rather than perceived problem
as given for finding a solution. We call this thinking the problem-solution dual view
(Chapter 5).

Under our problem-solution dual view, applying ML in D&T is no longer seen as
“static” in the sense that for a given problem, there is an ML tool for it. It is seen
as a data exploration process, a search process driven by user, where each search step
comprises a pair of problem instruction and problem solver. Consequently, there are two
requirements for an IEA: (1) to provide a language for specifying problem instructions and
(2) to provide a software platform capable of solving each acceptable problem instruction.
This novel IEA thinking was realized in our first end-to-end IEA in 2022 (IEA-2022) in
the application context of wafermap analytics.

The development of IEA-2022 preceded the release of ChatGPT. At the time, IEA-
2022 utilizes its predecessor GPT-3 model, only in a restricted way because of the limi-
tations of the LLM. Then, the release of ChatGPT and its later models fundamentally
changed design of IEA again (Chapter 6). In the latest IEA, called IEA-Plot, a knowledge
graph (KG) is in place as the central piece to connect problem instruction to problem
solver (Chapter 7). With a powerful LLM, the problem instruction can therefore be
given in natural language. The instruction is then grounded by the KG internal to TEA
in order to find a matching solution based upon a collection of solvers in the backend of
IEA. TEA-Plot, again focusing on wafermap analytics, was demonstrated based on test

data collected from several product lines. In the thesis, four chapters are devoted to

X



discuss the development of IEA-Plot which is the central piece of this thesis work.

IEA-Plot is the first step moving forward to build a practical LLM-assisted Al As-
sistant in the semiconductor domain. There is one essential issue with the development
of IEA-Plot: the construction of the KG. This motivated us to explore the possibility of
using an LLM to assist the development of KG. Furthermore, in the current IEA the do-
main knowledge is stored explicitly in the KG. The LLM is used off-the-shelf. This raises
the question whether or not it is possible to ingest the domain knowledge into an LLM
and remove the dependency on KG. The last part (Chapter 8) of the thesis will touch
base on these two aspects. In particular, we present a novel idea called oracle-checker
scheme (OC scheme) for utilizing an LLM by treating the LLM as an oracle. Findings
for using LLM for KG development are summarized. Then, in the last Chapter 9 before
the conclusion we paint a picture for how to ingest domain knowledge into an LLM by
taking a generative Al approach.

While IEA-Plot is at the center of this thesis, it should not be seen as a standalone
invention. IEA-Plot is a direct consequence from two decades of research on trying to
apply ML in D&T. It exemplifies how to build an LLM-assist Al Assistant in practice.

It marks the end of a two-decade journey and opens a new one toward generative Al.

x1
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Chapter 1

Introduction

TR, WIRER. A RERE, WA,
Ten years sharpening a sword, its frosty blade untested. Today, I present

it to you, to whom does impediment persist.

— (#%&E) A poem from Tang Dynasty

Technology [> Application <:] Technology
Provider Adopter

Space

Figure 1.1: Application space developed from two perspectives

The application space of an emerging technology can be viewed from two distinct
perspectives: the technology provider perspective and the technology adopter perspec-
tive (Figure 1.1). For a technology provider, their interests include exploration of new
applications that can be enabled by the technology. For a technology adopter, their
interests often lie in leveraging the technology, for example to make improvements in
an existing application context. Exploring a new application and improving an existing

application involve different considerations and constraints. The focus of this thesis is
1
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on the latter, in particular, on adopting the latest technologies in Machine Learning in
application contexts existing in the semiconductor industry.

Machine Learning (ML), including the broader domain of Artificial Intelligence (Al),
is one of the fast-growing technological areas since the breakthrough performance of deep
learning in image-related tasks in 2012 [17, 18]. The launch of ChatGPT in late 2023
[19, 16], powered by a type of large language model (LLM) based on deep learning, with
its ubiquitous use in natural language dialogues, has set off a new wave of technological
advancements. Generative Al (genAl) [20, 21], a term denoting the Al's capability of
generating text, images videos, or other data in general, has become one of the industry’s
most trending words. This is evidenced by substantial investments from industry giants
such as Google, Microsoft, and Meta etc., along with a funding topping $21.8B across
426 deals for investment in generative Al startups in the year of 2023 [22]. This com-
mercial booming in genAl has been driving a dramatic exploration in the breadth of its
applications. A report from Deloitte [23] listed 60 example use cases of genAl, assisting
applications in various areas including legal, healthcare, finance, and human resource etc.
The particular use of LLMs as fundamental controllers for autonomous Al agent has also
become an active R&D area, with the number of papers published growing exponentially
each year [24, 25].

On the other hand, applying ML and Al in semiconductor design and test flows has
been an important area of R&D within the semiconductor industry for decades. There
are many potential applications of ML/AI technologies in design and test, which can
be categorized into modeling, simulation, optimization, debugging, diagnosis, and so on.
Recently, there has been a growing interest in leveraging the power of LLMs in the semi-
conductor industry. For example, researchers from Nvidia has explored the applications
of LLMs for industrial chip design [26]. The work [26] adopted various domain adaptive

fine-tuning techniques for enabling three selected LLM applications for chip design: an
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engineering assistant chatbot, EDA script generation, and bug summarization and anal-
ysis. A recent article [27] featured insights from multiple senior executives at leading
EDA vendors regarding the utilization of LLMs in electronic design automation (EDA).
LabVIEW from National Instruments, a graphical programming software largely used
in automated test system development, has witnessed a transformative shift with LLM-
powered tools like Github Copilot, an Al code developing tool capable of converting
verbal descriptions or even rough sketches into functional code [28].

In view of LLMs, the two perspectives in Figure 1.1 can be more precisely defined as
the following. A technology provider has ownership of the LLM and has the resources to
train the LLM model. As a result, they can make an LLM model to fit an application
context by developing an appropriate dataset and by training or finetuning the LLM
model. In contrast, a technology adopter does not own an LLM model nor has the
ability or resources to train or retrain an LLM model. They take an LLM model as it
and try to utilize the model in an application. For example, this usage can be through a
web service provided by another company. The adopter has no access to the model itself
nor has the ability to alter the model.

In this thesis, we consider building an LLM-assisted Al assistant from the perspective
of a technology adopter. In other words, the LLM model is given as it. The application
space we consider includes engineering work contexts existing in a semiconductor com-
pany: We are interested in building an Al assistant to assist engineers working in the
semiconductor company. We give a special name of our Al assistant and call it Intelli-
gent Engineering Assistant, or IEA. For building a practical IEA, the trust aspect is a
crucial concern. This is because engineers often have much more stringent requirements
for an Al assistant than casual users. If an engineer cannot trust the Al assistant and
is frequently required to debug its work or check its result, then the utilization of the

assistant can diminish, thus reducing its practical value.
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While our focus is on leveraging the latest LLM development, it is worth noting that
despite decades of efforts trying to apply ML and AI technologies, the semiconductor
industry has not observed a similar pace of expansion in the application space of ML
and Al as those seen in some other industries. In this introduction chapter, we will point
out the fundamental barriers that impede the adoption of ML/AI technologies in the
semiconductor industry. These barriers will be seen as the gaps between ML and prac-
ticing ML in domain-specific applications. Semiconductor industry demands solutions
beyond standard ML practices. In this thesis, we will describe IEA as a framework for
building a domain-specific AI Assistant. Key innovative components will be elaborated
to explain the design of IEA for closing the aforementioned gaps. On top of that, we will
explain why building an IEA is a natural way to realize a ML/AI solution to address
those domain-specific needs, and more importantly the design of IEA demonstrates why

LLMs play a key role for building a domain-specific AT Assistant.

1.1 An Example of Engineering Work Content

To build an AT assistant to help an engineer, we begin by understanding the work
content of the engineer. In this section, we discuss an example to illustrate a type of

work content in a semiconductor company.

1.1.1 Optimization of yield

For a semiconductor company, the yield is an important figure to optimize, which
directly affects the profitability of a production line. Yield is defined as the ratio of the
total number of good chips over the total number of manufactured chips. Deciding if a
chip is good (passing) or bad (failing) is done by testing. In a typical test flow, wafer

probe, which tests silicon dies on wafers, is the first stage of testing, followed by final test
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which tests standalone packaged chips, and system-level test which tests packaged chips
in a system. A semiconductor design company can carry out the test process internally
or provide the test content to contract a specialized test service company to run the
process. In either case, test data is collected and made available for engineers to analyze.

It is important for a semiconductor company to analyze the test data throughout the
test flow in order to understand and improve their yield. Yield optimization typically
starts by understanding the failures exhibited on the failing chips® In testing, failing chips
are sorted according to a list of pre-defined failure bins. If a failure bin includes a large
number of chips, it is desirable to find ways to reduce the number and thus improve the
yield. Failure bins can be grouped according to the tests performed, for example, those
used to test some leakage characteristics of an analog block can belong to one test group.
There are three areas of changes to improve the yield: changing the test itself, changing
the design, or changing the manufacturing process.

For a fabless company, the manufacturing process is operated by a foundry company.
To change the process, the foundry company needs to be convinced that the cause for
the yield issue is due to the manufacturing process. In other words, the foundry needs
to see a clear evidence before taking an action to adjust their process.

One type of such evidences can be presented as a correlation between an FE-test pa-
rameter and a type of failure in wafer probe, measured across wafers produced over time,
as shown in Figure 1.2. An E-test is a specialized measurement provided by the foundry
to measure some characteristic of the manufacturing process. Collectively, E-tests intend
to measure the health of an entire wafer. The measurements are usually carried out on

multiple sites on a wafer and on each site, the measurements can include a large number

"'We use the term “failing chips” rather than “bad chips” because a chip failing the test does not
imply the chip is bad for sure. For example, the failure can be due to an issue in the test itself. To be
more precise, we will use the term “failing chips” throughout the thesis. When we use the term “bad
chip”, we refer to a confirmed bad chip, e.g. confirmed by failure analysis (FA) on the silicon chip.
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N parameters Wafer M tests
measured on Probe e
k sites (N>>k) wafer dies

A parameter value
averaged over sites
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Figure 1.2: Finding a correlation between E-test and wafer probe failure

of E-tests. A strong correlation from a failure type to an E-test parameter can indicate

the impact of some wafer-to-wafer process variations to the particular type of yield loss.

1.1.2 A success story

The story is about a real yield optimization task as reported in [9]. The task is about
finding strong correlations between E-tests and wafer probe failures.

In 2013, a team at Freescale Semiconductor was trying to solve a yield problem that
significantly affected a product line already in high-volume production. The product was
an automotive SoC (System-on-Chip), more specifically a tire pressure monitor sensor
(TPMS). A TPMS constantly measures the pressure of a tire and transmits the measured
value wirelessly to a central control unit mounted in the car. A TMPS is supposed to
operate with extremely low power consumption, in order to have a long lifetime with
its mounted battery. Hence, this extreme low-power constraint typically is a critical
optimization objective for this type of design.

Before the yield problem was handed over to our lab, it had lasted for a long period.
During this period, the product team had gone through one design revision, multiple test

revisions, and even asking the contracted foundry to conduct several process adjustments.
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Despite all these efforts, the yield problem persisted.

The yield problem is illustrated in Figure 1.3. The figure shows a density plot and
the density is based on wafer yield numbers calculated over 2000+ wafers. Due to con-
fidentiality, the x-axis has no label. It suffices to say that the yield was not satisfactory
and significantly fluctuated from wafer to wafer. The desired outcome had two aspects,
as shown in the figure: (1) we desired the entire yield distribution to shift right, and (2)

we desired the width of the distribution to be minimized.

Density plot based on
2000+ wafers S~
1+ Desired
. | outcome

n
"
I
I
I
I
I
'
'
'
I

Yield

Figure 1.3: Yield distribution as a density plot based on 2000+ wafers

To our lab, the underlying problem was the same correlation problem as depicted in
Figure 1.2 before. Such an analytic problem includes three aspects: the E-test data, the
wafer probe data, and the correlation methods. It should be noted that other than the
two types of data, our lab had no other data or further knowledge about the problem.

The E-test for this product had 130 process parameters measured on five sites on a
wafer. The passing and failing chips were sorted into various test bins. As a common
start, we could aggregate the value of an E-test parameter by taking average on the five
sites. And we could use some standard statistical correlation methods such as Pearson
correlation. Then, the problem could be specified as “finding a strong Pearson correlation

between an average E-test value and a test bin”. Note that this correlation could be for
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a passing bin or failing bin.

If we were lucky, the simple problem formulation could lead to a high correlation
result and we would not need to pursue further. However, the reality was that the simple
problem formulation was far from being sufficient. As reported in [9], the best correlation
found with this simple formulation was merely 0.463. This correlation was not considered
as a strong evidence, specifically, not meaningful enough for the foundry to be willing to
make an adjustment to their manufacturing process.

It is important to see that the simple formulation is just one of many ways to formulate
the analytic problem. For example, we could consider a more fine-grained view of the
E-test data by considering measurements on each site individually, or collectively on a
subset of sites based on their physical proximity on the wafer.

On the wafer probe side, we could also consider failures based on a specific test
rather than a test bin (note: a test bin can be based on multiple tests). Further, we
could calculate the failure number by focusing on a particular wafer region. Wafers were
grouped in lot throughout production, so we could also introduce a lot-based view in
addition to the wafer-based view. Given that the wafers were produced and tested over
time, it was possible that a correlation itself could fluctuate over time. In other words,
while the correlation might be low when considering an entire period, it could be high
when examining specific windows within that period. These windows could be defined
based on the production time or the test time.

The various aspects listed above provided choices in the formulation of an analytic
problem. The combinations of those choices could render an enormous space of potential
problem formulations. Therefore, the underlying challenge to solve the yield problem
was to navigate in this space, form a specific and concrete search space, and to reach a
satisfactory answer in the search space (if the search space contains the answer).

It is important to point out that satisfaction of an answer was subjective. Different
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people involved might have a different requirement for this satisfaction. Hence, a “high
correlation” result did not mean that the result would be automatically accepted by
multiple parties. Our job was to discover results “interesting enough to be presented to
the product team”. If the product team could be convinced by the meaningfulness of a
result, they would then present the result to the foundry. Keep in mind that both the
product team and the foundry team were organizations with a hierarchical management
structure. Hence, one could imagine a communication chain from us as one end all the
way to the decision makers in the foundry side as the other end. In other words, as
the data analyst working in one end of this communication chain, our real job was to
present results that were likely to get though the chain and convince the decision maker
to produce an action on the other end. Under this realistic view, it is not hard to see
that deciding if a correlation was high enough or not, involved judgment calls.

To reach a satisfactory answer quickly in a given search space, one needs two strate-
gies: one to efficiently identify where the answer might locate and the other to efficiently
decide where is unlikely to have the answer. In other words, one needs a filter-in strategy
and a filter-out strategy and both have to be efficient.

Note that the filter-in and filter-out strategies are analogous to the branch and bound
in a traditional search algorithm, respectively. More importantly, the efficiency of both
strategies largely depends on the communication chain. Given such complications, it
is therefore not uncommon that a less-experienced person can get trapped in the space
and unable to find an answer while a more-experienced person can successfully find the
answer that results in a meaningful action.

This was what happened even within our lab. Initially, the students involved in the
project spent a month on analyzing the data and did not reach a meaningful answer (did
not pass through the product team, i.e. the first level of the communication chain).

Then, my advisor got involved and within a week, more results were found. Their
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meaningfulness was confirmed by the product team. Based on those results, it took
several additional weeks to expand them into further findings before the foundry was
convinced to take action. Then, implementing the process adjustments and collecting
the silicon data spanned several months. The final confirmation that the yield problem
was resolved arrived many months later.

The first set of meaningful results were found after my advisor decided to try out a
new failure type he called X,. This X, failure type was never separately considered in all
previous attempts. This was because the X, failure, together with a few other failures,
was already aggregated into a failure type in the original test data. As a result, no one
thought about separating X, as a failure type by itself.

By focusing on the newly-defined X failure type, our lab was ab