
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Realizing Practical LLM-assisted AI Assistant in the Semiconductor Domain

Permalink
https://escholarship.org/uc/item/14x4v0zb

Author
Zeng, Yueling

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/14x4v0zb
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Realizing Practical LLM-assisted AI Assistant

in the Semiconductor Domain

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Yueling (Jenny) Zeng

Committee in charge:

Professor Li-C. Wang, Chair
Professor Kerem Camsari
Professor Luke Theogarajan
Professor Zheng Zhang

June 2024

The Dissertation of Yueling (Jenny) Zeng is approved.

Professor Kerem Camsari

Professor Luke Theogarajan

Professor Zheng Zhang

Professor Li-C. Wang, Committee Chair

June 2024

Realizing Practical LLM-assisted AI Assistant

in the Semiconductor Domain

Copyright © 2024

by

Yueling (Jenny) Zeng

iii

To all the truth, goodness and beauty of this world.

iv

Acknowledgements

I can still vividly recall the first day of arriving in Santa Barbara in the summer

of 2014. As I traveled down the coast from LAX, the beautiful landscape of Southern

California gradually came into view. Gentle breezes carried the scent of saltwater from

the nearby Pacific Ocean, blending with the warmth of the Mediterranean climate. It

was in this enchantment that the ten-year story of my college life began to unfold.

The four years of undergraduate studies were like a vibrant fantasy, filled with youth-

ful recklessness, yet lingering with delightful surprises and cherished memories. What

followed was the unexpected turning point of deciding to continue with a PhD program.

Even now, I still wonder what kind of magical forces led me down this rabbit hole.

If the undergraduate years were like painting freely on a colorful canvas, then the

PhD studies were like constructing a grand castle from the ground up. This construction

was by no means a linear process. It was on a certain day when I suddenly realized that

the highest tower of the castle had long been thrusting into the clouds. The spectacular

and magnificent scale of this endeavor has undoubtedly left a profound mark on my life.

Only in retrospect can I truly grasp the extent of what I’ve learned throughout this

journey—not just in terms of the research subject, but also in becoming aware of the

chaos that exists in our world while still appreciating its inherent beauty.

No single word can fully express my gratitude to my advisor, Professor Li-C. Wang,

for his support and guidance throughout the journey. His non-stopping curiosity about

the world and his passion for thinking have inspired his students to delve into great

depths of research, often immersing themselves in the realms of innovation and creativ-

ity. I will surely miss our discussions, where we would brainstorm topics ranging from

AI to quantum mechanics to the wisdom in Buddhism. These vibrant conversations

would often extend several hours, with no one paying attention to the passage of time.

v

He wholeheartedly takes the responsibility of supporting his students in all aspects of

their lives, guiding them through every milestone toward graduation, assisting them in

seeking promising career opportunities, and ensuring their happiness both in the present

and for the future. It was under his support that my PhD journey was undoubtedly

a pleasant experience, where I had the freedom to focus on my personal development,

which naturally culminated in the attainment of the PhD degree.

I want to extend my gratitude to all my co-authors, reviewers, professors, and uni-

versity staffs who have supported me throughout my academic journey. In particular, I

want to express my deep appreciation to my lab mates, Min Jian Yang, Thomas Ibbet-

son, and Matthew Dupree, for their contributions to completion of this thesis. Min and

Matthew played pivotal roles in developing the backend scripts and knowledge graph in

IEA-Plot, as well as conducting extensive experiments. Thomas took the lead as the

primary investigator in the entity extraction work detailed in Chapter 8.

This journey was also accompanied by my beloved families and friends. Thanks to my

mom and dad for their enormous support, for sending me overseas to explore the world,

for respecting all my decisions, and for always providing me a warm shelter whenever

I wanted to be home as if I were a little girl again. Thanks to my roommates who

brought great joy to my leisure moments and comforted me during the tough times. And

thanks to my cohorts and friends—from the States to China and beyond—who I know

will always be there for me, now and forever.

I believe this acknowledgment only scratches the surface of the invaluable people and

experiences I am grateful for. As I reflect on these memories, vividly flashing before my

eyes, I gaze out my window to see the sunshine piercing through the mist and fog, a

typical early summer morning in Santa Barbara. In this very moment, I am filled with

certainty that today will be another bright day, as will tomorrow and all the days to

come.

vi

Curriculum Vitæ
Yueling (Jenny) Zeng

Education

2020 - 2024 Ph.D. in Computer Engineering,
University of California, Santa Barbara.

2018 - 2020 M.S. in Computer Engineering,
University of California, Santa Barbara.

2014 - 2018 B.S. in Electrical Engineering,
University of California, Santa Barbara.

Publications

1. Wang, LC., Zeng, Y. (2023). Machine Learning Support for Wafer-Level Failure
Pattern Analytics. In: Girard, P., Blanton, S., Wang, LC. (eds) Machine Learning
Support for Fault Diagnosis of System-on-Chip . Springer, Cham.

2. M. Dupree, M. J. Yang, Y. J. Zeng and L. -C. Wang, “IEA-Plot: Conducting
Wafer-Based Data Analytics Through Chat,” 2023 IEEE International Test Confer-
ence (ITC), Anaheim, CA, USA, 2023, pp. 122-131, doi: 10.1109/ITC51656.2023.00028.

3. Y. J. Zeng, M. J. Yang and L. -C. Wang, “Wafer Map Pattern Analytics Driven
By Natural Language Queries,” 2022 IEEE International Test Conference in Asia
(ITC-Asia), Taipei, Taiwan, 2022, pp. 31-36, doi: 10.1109/ITCAsia55616.2022.00016.

4. M. J. Yang, Y. Zeng and L. -C. Wang, “Language Driven Analytics for Failure Pat-
tern Feedforward and Feedback,” 2022 IEEE International Test Conference (ITC),
Anaheim, CA, USA, 2022, pp. 288-297, doi: 10.1109/ITC50671.2022.00037.

5. Y. J. Zeng, L. -C. Wang and C. J. Shan, “MINiature Interactive Offset Networks
(MINIONs) for Wafer Map Classification,” 2021 IEEE International Test Confer-
ence (ITC), 2021, pp. 190-199, doi: 10.1109/ITC50571.2021.00027.

6. Y. J. Zeng, L. -C. Wang, C. J. Shan and N. Sumikawa, “Learning A Wafer Feature
With One Training Sample,” 2020 IEEE International Test Conference (ITC), 2020,
pp. 1-10, doi: 10.1109/ITC44778.2020.9325254.

7. L. Liang, L. Deng, Y. Zeng, X. Hu, Y. Ji, X. Ma, G. Li, Y. Xie, “Crossbar-Aware
Neural Network Pruning,” in IEEE Access, vol. 6, pp. 58324-58337, 2018, doi:
10.1109/ACCESS.2018.2874823.

Preprints

1. Yueling Zeng, Li-C Wang and Thomas Ibbetson. 2024. “Per-Sample Examination
of LLM’s Responses by Treating LLM as an Oracle,” under-review by NeurIPS 2024.

vii

2. M. J. Yang, Y. J. Zeng and L. -C. Wang, “WM-Graph: Graph-Based Approach
for Wafermap Analytics,” under-review by ITC 2024.

3. Yueling Zeng, Li-C Wang and Thomas Ibbetson. 2024. “Oracle-Checker Scheme
for Evaluating a Generative Large Language Model”. arXiv preprint arXiv:2405.03170
(2024).

4. Yueling Zeng and Li-C Wang. 2023. “Domain Knowledge Graph Construction
Via A Simple Checker”. arXiv preprint arXiv:2310.04949 (2023).

Best Paper Awards

1. “Language Driven Analytics for Failure Pattern Feedforward and Feedback”, IEEE
International Test Conference (ITC), 2022

2. “Learning A Wafer Feature With One Training Sample”, IEEE International Test
Conference (ITC), 2020

Other Awards

1. IEEE International Test Conference 2023 Gerald W. Gordon Student
Award: The Gerald W. Gordon Award is a certificate presented annually to a
current student in good standing at an accredited university or college for credible
service to IEEE test technology related activities, programs and organizations, given
by IEEE Computer Society at IEEE International Test Conference..

2. ECE Department - Outstanding Teaching Assistant Awards: The recipient
was recognized for the outstanding service and dedication to student success in
UCSB’s Computer Engineering department, received in three academic quarters for
Winter 2019, Spring 2021, and Winter 2022.

Work Experience

2023.06 - 2023.09 Machine Learning Engineer Intern,
LinkedIn Corporation, Sunnyvale, CA.

2022.06 - 2022.09 Machine Learning Engineer Intern,
LinkedIn Corporation, Sunnyvale, CA.

2021.06 - 2021.09 Data Scientist Intern,
NXP Semiconductor, Austin, TX.

2020.06 - 2020.09 Data Scientist Intern,
NXP Semiconductor, Austin, TX.

viii

Abstract

Realizing Practical LLM-assisted AI Assistant

in the Semiconductor Domain

by

Yueling (Jenny) Zeng

The emergence of Large Language Models (LLMs) offers new opportunities for apply-

ing Machine Learning (ML) and Artificial Intelligence (AI) in semiconductor chip design

and test (D&T). Realizing these opportunities requires a fundamentally different think-

ing from the past. For more than two decades, the semiconductor industry has been

exploring applications of ML in D&T. Despite many promises, notable challenges remain

in most of the application contexts.

The first part of the thesis (Chapter 2, 3 and 4) includes a review of works for ap-

plying ML in D&T, starting in 2003, and describes the journey leading to the current

development of an AI Assistant called Intelligent Engineering Assistant (IEA). The jour-

ney evolved from one view to another, where each view perceived applying ML in D&T

differently. In the first decade, the research took a data-driven view similar to that in

common ML practices. This view was changed to a knowledge-driven view in 2014, due

to the experience of solving a production yield problem for an automotive chip supply

company. This experience is highlighted in the thesis, together with learning lessons from

a variety of other works in the first decade.

The knowledge-driven view then lasted for four years. During the period, the research

focused on finding ways to incorporate domain knowledge into the data learning process.

It was in this period, the idea of Co-ML (complementary ML) first emerged. Co-ML

formulates a ML problem as a decision problem where the outcome of the learning can

ix

be either a model (an answer) or no model (no answer). Then, in 2018 the idea of IEA,

as an autonomous system, was first construed. This changed the knowledge-driven view

to an autonomous system view.

In 2022, the autonomous system view was once again revised. It was realized that

in order to achieve a practical IEA, one had to take a fundamentally different view from

the past and perceived problem and solution as a pair, rather than perceived problem

as given for finding a solution. We call this thinking the problem-solution dual view

(Chapter 5).

Under our problem-solution dual view, applying ML in D&T is no longer seen as

“static” in the sense that for a given problem, there is an ML tool for it. It is seen

as a data exploration process, a search process driven by user, where each search step

comprises a pair of problem instruction and problem solver. Consequently, there are two

requirements for an IEA: (1) to provide a language for specifying problem instructions and

(2) to provide a software platform capable of solving each acceptable problem instruction.

This novel IEA thinking was realized in our first end-to-end IEA in 2022 (IEA-2022) in

the application context of wafermap analytics.

The development of IEA-2022 preceded the release of ChatGPT. At the time, IEA-

2022 utilizes its predecessor GPT-3 model, only in a restricted way because of the limi-

tations of the LLM. Then, the release of ChatGPT and its later models fundamentally

changed design of IEA again (Chapter 6). In the latest IEA, called IEA-Plot, a knowledge

graph (KG) is in place as the central piece to connect problem instruction to problem

solver (Chapter 7). With a powerful LLM, the problem instruction can therefore be

given in natural language. The instruction is then grounded by the KG internal to IEA

in order to find a matching solution based upon a collection of solvers in the backend of

IEA. IEA-Plot, again focusing on wafermap analytics, was demonstrated based on test

data collected from several product lines. In the thesis, four chapters are devoted to

x

discuss the development of IEA-Plot which is the central piece of this thesis work.

IEA-Plot is the first step moving forward to build a practical LLM-assisted AI As-

sistant in the semiconductor domain. There is one essential issue with the development

of IEA-Plot: the construction of the KG. This motivated us to explore the possibility of

using an LLM to assist the development of KG. Furthermore, in the current IEA the do-

main knowledge is stored explicitly in the KG. The LLM is used off-the-shelf. This raises

the question whether or not it is possible to ingest the domain knowledge into an LLM

and remove the dependency on KG. The last part (Chapter 8) of the thesis will touch

base on these two aspects. In particular, we present a novel idea called oracle-checker

scheme (OC scheme) for utilizing an LLM by treating the LLM as an oracle. Findings

for using LLM for KG development are summarized. Then, in the last Chapter 9 before

the conclusion we paint a picture for how to ingest domain knowledge into an LLM by

taking a generative AI approach.

While IEA-Plot is at the center of this thesis, it should not be seen as a standalone

invention. IEA-Plot is a direct consequence from two decades of research on trying to

apply ML in D&T. It exemplifies how to build an LLM-assist AI Assistant in practice.

It marks the end of a two-decade journey and opens a new one toward generative AI.

xi

Contents

Curriculum Vitae vii

Abstract ix

List of Figures xv

List of Tables xx

1 Introduction 1
1.1 An Example of Engineering Work Content 4
1.2 The Search Process . 11
1.3 Reflection in Other Contexts . 13
1.4 Ten Points from ML to Our AI Assistant . 20
1.5 Conclusion . 31

2 Journey to IEA - The 1st Decade 33
2.1 Data-Driven View (2004 – 2013) . 35
2.2 Design-Silicon Timing Correlation . 37
2.3 Speedpath Analysis . 44
2.4 RTL Functional Verification . 45
2.5 Customer Return Analysis . 55
2.6 Other Areas to Apply Machine Learning . 64
2.7 Lessons Learned from the First Ten Years . 72
2.8 A Chronological Remark for the First Ten Years 78

3 Journey to IEA - The 2nd Decade 81
3.1 Knowledge-Driven View (2014 – 2017) . 81
3.2 Modeling domain knowledge with an executable workflow 83
3.3 Plot-based analytics . 84
3.4 Learning Domain Knowledge in Functional Verification 92
3.5 Three Challenges Motivating Language-Driven Analytics 96
3.6 Co-ML Capabilities . 98

xii

3.7 Monomial Learning . 102
3.8 Uniqueness in View of Occam’s Learning . 104
3.9 Local No-Free-Lunch (L-NFL) . 106
3.10 Autonomous System View (2018 – 2021) . 117
3.11 The Latest Three Views (2022, 2023, 2024) 120
3.12 DSML in View of Computational Complexity 121

4 Wafermap Analytics 127
4.1 Yield Excursion . 128
4.2 A Yield Excursion Example . 130
4.3 ML View to Wafermap Analytics . 136
4.4 Types of Analytic Questions . 145
4.5 From ML Classifier to DSML Oracle . 147
4.6 Concept Recognition . 149
4.7 The MINIONs Approach . 155
4.8 Experiment Results . 170

5 Problem-Solution Dual View 173
5.1 Dual View of DSML . 174
5.2 Language-Driven Analytics . 179
5.3 IEA 2022 . 183
5.4 Connecting LLM via Semantic Parsing . 184
5.5 Implementation of Backend API . 196

6 IEA 2023 214
6.1 Introduction . 214
6.2 Use of Knowledge Graph . 220
6.3 Wafermap Analytics in IEA-Plot . 221
6.4 Analytics Driven by a Dialog . 225
6.5 Frontend Parser for Task Grounding . 226
6.6 A Remark about IEA-Plot . 232

7 Knowledge Graph 234
7.1 Development of the KG in IEA-Plot . 235
7.2 The Importance of Having the First KG . 247
7.3 A Formalism Regarding the KG in IEA . 248
7.4 Toward Automating KG Construction . 252

8 Oracle-Checker Scheme 268
8.1 Per-Sample Examination of LLM’s Responses 269
8.2 Realizing GH-check In Entity Extraction . 273
8.3 Realizing GI-check In Paraphrase Decision 279
8.4 Experiments . 285

xiii

8.5 Related Work . 295
8.6 Limitations . 296
8.7 Summary . 296

9 Journey from IEA - The Next Decade 297
9.1 The Generative AI View . 298
9.2 The Oracle-Checker View . 303

10 Conclusion 305
10.1 Takeaways . 306
10.2 Ten Questions And Their Answer . 308
10.3 Philosophical Remarks . 310

Bibliography 311

xiv

List of Figures

1.1 Application space developed from two perspectives 1
1.2 Finding a correlation between E-test and wafer probe failure 6
1.3 Yield distribution as a density plot based on 2000+ wafers 7
1.4 Yield improvement in silicon validation of recommended process adjustments 10
1.5 The illustration of a ”Choose-and-Bound” search process 11
1.6 Reflecting Choose-and-Bound search in a functional verification context . . 13
1.7 Reflecting Choose-and-Bound search in a speedpath analysis context 16
1.8 Reflecting Choose-and-Bound search in an outlier analysis context 17
1.9 An end-to-end training view of machine learning 20
1.10 ML view vs. Choose-and-Bound view to approach the yield problem 21
1.11 Benchmark thinking vs. Specification thinking 21
1.12 Objective machine view vs. subjective human views 23
1.13 The task of ML and Co-ML perform on a given dataset 25
1.14 Contrasting to Figure 1.9, an AI Assistant is to help find a simple answer . 26
1.15 Drawing a line to separate the knowledge to be captured in an assistant . . 28
1.16 An AI Assistant works in two worlds: Free-Lunch and No-Free-Lunch . . . 29
1.17 The data generator is evolving over time . 29
1.18 Building an automation flow vs. building an assistant 30
1.19 IEA-Plot: from vague problem description to concrete solution 32

2.1 Evoluation of views along the journey to IEA 35
2.2 10 categories of works carried out under the data-driven view 35
2.3 Data learning based diagnosis as summarized in [1] 38
2.4 Transduction diagnosis vs. traditional diagnosis, as explained in [1] 40
2.5 A rule learning example, reported in [2] . 41
2.6 A simple dataset example to illustrate over-fitting 43
2.7 Manual learning in the context of functional verification 45
2.8 Proposed automatic learning in the context of functional verification 46
2.9 A notable result on improving simulation efficiency, later reported in [3] . . 50
2.10 The fundamental issue of kernel-based learning in functional verification . 50
2.11 Two learning points in a functional verification environment 52

xv

2.12 A notable result on improving verification coverage, reported in [4] 54
2.13 A notable result on improvement from zero coverage, report in [5] 54
2.14 Justifying an outlier model with multiple CQIs 56
2.15 Justifying an outlier model with domain knowledge 57
2.16 CQI model effectiveness shown in time view, reported in [6] 58
2.17 Being an outlier does not imply being abnormal [7] 59
2.18 The reason why we need a 2nd CQI to justify a CQI outlier model [7] . . . 60
2.19 The reason why in test, one prefers an outlier model based on correlated

tests [7] . 61
2.20 For outlier screening a simple co-variance model might suffice [7] 63
2.21 Seeing a D&T problem as a ML problem . 72
2.22 Seeing a D&T problem with a more realistic big picture 73
2.23 A chronological view of the first ten years (2004-2013) 79

3.1 Two types of domain knowledge to drive the search 83
3.2 Modeling domain knowledge as a workflow based on a plot-based view . . . 84
3.3 Plot-based view to enable definition of primitive analytic steps 84
3.4 Plot-based view to enable definition of primitive steps in a workflow [8] . . 85
3.5 Summarizing the main idea in [8] . 86
3.6 An example to illustrate process discovery [8] 87
3.7 Illustration of the issue yield addressed in [8] 89
3.8 The process learned from the work in [9], reported in [8] 91
3.9 Findings to explain the yield issue in Figure 3.7, reported in [8] 91
3.10 Constrained process discovery for functional test generation in [10] 95
3.11 A-KCCA risk evaluation on a target process parameter PP [9] 99
3.12 Many tests showing no outlier based on the minimum consistent threshold

[11] . 102
3.13 Solving the monomial learning problem in practice, as suggested in [12] . . 105
3.14 A no-free-lunch situation in the context of outlier screening 106
3.15 Local No-Free-Lunch (L-NFL) when learning from production data 107
3.16 Measuring applicability of an outlier model 109
3.17 Over-fitting illustrated in terms of model complexity 111
3.18 Illustration of Occam’s learning in DSML . 112
3.19 “Learning” in traditional ML vs. “learning” in DSML 113
3.20 The original IEA proposed in 2018 aimed for an autonomous system 117
3.21 An optimization view in DSML . 122

4.1 (a) Show the failure pattern constituting a yield excursion; (b) Show the
number of impacted wafers over weeks of the production [13] 130

4.2 Result after using method in [13] and evidence from Failure Analysis report134
4.3 Eight pattern classes and one “None” class in the WM-811K dataset 136
4.4 Two common ML approaches to solve a multi-class image classification

problem . 137

xvi

4.5 Examples of mistakes in Table 4.2 . 141
4.6 Two-step classification employed by the two trained VGG models [14] . . . 143
4.7 Examples of questionable classification (the shown labels were reported by

the model and were considered questionable in the manual review) [14] . . 143
4.8 ML view vs. DSML view to approach wafermap analytics 145
4.9 Within-class pattern variations seen in WM-811K dataset 147
4.10 An example of pattern class varying within a single lot in WM-811K dataset148
4.11 A DSML oracle provides decision support at the concept level 151
4.12 High-level idea of the MMINIONs approach 159
4.13 An example connected component extracted from a MINIONs recognition

graph . 160
4.14 Different ways to attain one-shot learning . 161
4.15 The idea of manifestation learning presented in [15] 162
4.16 Visualization of latent space learned with MNIST samples in [15] 164
4.17 Codebook mapping in MINION training with augmented training data. . . 166
4.18 The neural network architecture of a MINION model. 167
4.19 The two parts in loss function for training a MINION model. 168
4.20 An example of finding a problematic lot . 170
4.21 An example of searching for a similar lot based on a given wafermap 172

5.1 Problem and solution dual view in DSML . 174
5.2 Search flow driven by user inputs to achieve a high-level analytic goal . . . 179
5.3 NLP is a necessary component for interpreting the analytic question 182
5.4 Overview of IEA 2022 . 183
5.5 A semantic parser interfacing with natural language queries 184
5.6 The workflow from queries to a summary plot 185
5.7 Constrained parsing from user query to meaning representations with LM 192
5.8 Merged summary plot of Table 5.2 and Table 5.5 193
5.9 An example of Minions’ recognition graph on wafer maps 196
5.10 Attaining describable sets through NLI . 197
5.11 An example of cluster and cluster core . 199
5.12 The parsing tree for one wafer map in Figure 5.11. The wafer map is

described as: ”Null length thin thickness arc type at 12 o’clock di-
rection null spread along edge extend to ...”, and at high level (using
the high-level descriptor “something”), can be captured as: ”something
at 12 o’clock direction null spread along edge extend to ...” 201

5.13 The definition of Region on the wafer map 205
5.14 Flow to investigate a correlation between wafer probe and final test where

each try starts with a simple query to find a group of wafers. 211
5.15 Finding of a pattern trend lasting over three periods 212
5.16 E-test correlation plot based on wafer maps describable by “cluster fails

at direction from 11 o’clock to 12 o’clock along edge” 212

xvii

6.1 Dialog with ChatGPT (03/26/2023) based on questions for how to corre-
late wafer map patterns to E-test parameters 215

6.2 Overview of IEA 2023 . 215
6.3 Task grounding problem: How to confine model responses within the scope

of an embodiment with admissible actions {a1, a2, . . . , an}? 216
6.4 Using a knowledge graph to connect LLM and admissible actions 219
6.5 A user query corresponds to a subgraph in the KG 221
6.6 Identifying a pattern group satisfying a pattern Concept 222
6.7 Results based on the Center pattern concept 223
6.8 IEA-Plot outputs based on the two consecutive queries 224
6.9 A dialog example and IEA-Plot’s outputs shown in Figure 6.10 225
6.10 IEA-Plot output screenshots for queries listed in Figure 6.9, screenshots

for Q4 and Q5 displayed in Figure 6.8 previously 226
6.11 Generating acceptable queries using a GPT model [16] 227
6.12 An example to obtain a list of acceptable queries 227
6.13 Intent capture by comparing pairwise SBERT embeddings 228
6.14 Fine-tuning SBERT improves our intent capture 229
6.15 Phrase matching by comparing pairwise BERT embeddings 230
6.16 Examples of parsing a query into a KG configuration 231
6.17 LLM enables data exploration through dialog 231

7.1 Hierarchy in our knowledge graph design . 236
7.2 Axioms in the domain graph, representing the ontology we use 237
7.3 A conceptual example to illustrate our graph construction 239
7.4 Semantic meanings of the six relations for subgraph management 241
7.5 Subgraph for “Show me the Arc pattern at 11 o’clock direction” 243
7.6 Intent Capture and Phrase Matching for parsing a query 244
7.7 A constraint graph is separately maintained in our KG 245
7.8 Extending tool functionality by adding nodes in KG 246
7.9 An DSML oracle decides on the value of a Boolean concept x 248
7.10 The DSML hierarchy where k can be treated as a constant 249
7.11 An example of KGC using a prompt to GPT3.5. The input is a paragraph

from the RISC-V Spec and the output is in RDF TTL format. 252
7.12 Improved RDF by repeating the example in Figure 7.11 and supplying the

background facts (BFs). 254
7.13 The KGC study is based on the oracle-checker view 258
7.14 Results of consistency check without BFs provided; ∎: Show the most

consistent group in 10 repeated runs; ∎: # of runs that failed 261
7.15 Results of consistency check with BFs provided; ∎: Show the most consis-

tent group in 10 repeated runs; ∎: # of runs that failed 262
7.16 Two prompts used in the entailment check 263

xviii

7.17 Results of entailment check for the two chapters of paragraphs; Each chart
shows overlapping of two results from the runs without and with BFs
provided; ∎: showing % of RDF Facts passing the check where those
Facts are obtained with no BFs provided; ∎: showing % of RDF Facts
passing with BFs provided; ∎: With BFs provided, some Facts fail the
check (mostly because of including the auxiliary entities not given in the
paragraph) and are bypassed after manual review. 264

7.18 No correlation between the size of largest group from consistency check
and the entailment check score . 265

7.19 Chapter 1 (With BFs): there are 75 concepts shared by at least two para-
graph and the total number of edges is 454; In the bipartite graph, the
bottom dots each represents a paragraph from chapter 1 and the upper
squares each represents a subject concept. More transparent the color
indicates more edges are connected between the concepts and paragraphs. 267

7.20 Chapter 2 (With BFs): there are 82 concepts shared by at least two para-
graph and the total number of edges is 388; In the bipartite graph, the
bottom dots each represents a paragraph from chapter 2 and the upper
squares each represents a subject concept. 267

8.1 Realizing the two theoretical checks in practice by treating GPT-3.5 as an
oracle. 271

8.2 Illustration of the reference function h, the entity extraction g, and the
function-under-check f , with an example starting with Es containing four
extracted entities from original sentence s . 275

8.3 Two ways for realizing GI-check (yes and no claims separately) in para-
phrase decision . 279

8.4 Probabilistic check by querying the oracle: πi(h) = g1 or πi(h) = g2 ? 281
8.5 Finding candidates (U,V). µ1 to µ4 form a decomposition of sa, and

(µi → νi, i = 1 . . .4) are the matching pairs, so the checker can ask the
LLM the four questions: if µi ≡ νi, i = 1 . . .4. 282

9.1 IEA-Plot is a query generator . 299
9.2 MINIONs with a Natural Language Interpreter (NLI) as a wafermap gen-

erator . 300
9.3 With a wafermap generator, retrieval of wafermaps according to a user

description can be made simpler — similarity search achieved (and sim-
plified) by a generative approach . 300

9.4 Does a retrained LLM provide generalization from A to B? 301

10.1 Evoluation of views along the journey to IEA 306

xix

List of Tables

2.1 The number of possible outlier models can grow substantially [7] 63

3.1 Number of H-paths included in the learned model for each i-prefix rule [8]. 90
3.2 A simple Boolean learning L-NFL example 108

4.1 Labeled wafer maps from the WM-811K dataset, used in [14] 140
4.2 Confusion Matrix (On All 967 Wafer Maps):

⇒: Given Label, ⇓: Predicted Label . 141
4.3 Classification on the 741 unlabeled wafer maps 143

5.1 A snapshot of the wafermap database table 186
5.2 Example queries, their parses and the generated plot 188
5.3 A snippet of the grammar and lexicon . 190
5.4 A snippet of operators and their expressions 191
5.5 Second result . 194
5.6 Third result . 195
5.7 The lexicon for the formal language L0 . 202
5.8 The Grammar for L0. 204
5.9 Salient wafer maps from a cluster core and their canonical utterances . . . 208
5.10 Examples of wafer grouping . 209
5.11 Examples of wafer pattern interpretation . 210

8.1 (1) GH-check on RISC-V sentences fails more than DOCRED sentences
(51.6% vs. 20.46%). (2) GPT3.5 extracted about 70% (= 8830+2349

15931) of the
human-labeled entities and also extracted 7457 not labeled as entities in
DOCRED. 289

8.2 (1) In-sample acceptance rate (Arate) is correlated to the in-sample con-
sistency measure (Conrs), and not as correlated to ∣Es∣. (2) Cross-sample
correlations: Cono is the % of consistency on the original sentence. Conrs

is the % of smallest consistency on the 15 modified sentences. Arate is the
% of passing out of the 113 combinations. 290

xx

8.3 GPT3.5 claims compared with MSRP labels. * indicates GPT disagree-
ments with the labels. GPT3.5 disagrees on 25.16% of the human labels
in MSRP. 292

8.4 % of provable “Yes” cases is up to 57%. 292
8.5 On 500 GPT3.5’s own generated paraphrases, GPT3.5 answers “Yes” on

495 and their provable % is shown below. 292
8.6 Show % of those “No” cases, where our checker found a proof for their

semantic equivalence. 293
8.7 On 1832 GPT3.5 claimed “No” cases, show % rejected by the checker in

two scenarios: with (“w/”) or without (“w/o”) using an indifferentiable
paraphrase p (using WP or SP) . 294

xxi

Chapter 1

Introduction

十年磨一劍，霜刃未曾試。 今日把示君，誰有不平事。

Ten years sharpening a sword, its frosty blade untested. Today, I present

it to you, to whom does impediment persist.

— 《劍客》 A poem from Tang Dynasty

Figure 1.1: Application space developed from two perspectives

The application space of an emerging technology can be viewed from two distinct

perspectives: the technology provider perspective and the technology adopter perspec-

tive (Figure 1.1). For a technology provider, their interests include exploration of new

applications that can be enabled by the technology. For a technology adopter, their

interests often lie in leveraging the technology, for example to make improvements in

an existing application context. Exploring a new application and improving an existing

application involve different considerations and constraints. The focus of this thesis is

1

Introduction Chapter 1

on the latter, in particular, on adopting the latest technologies in Machine Learning in

application contexts existing in the semiconductor industry.

Machine Learning (ML), including the broader domain of Artificial Intelligence (AI),

is one of the fast-growing technological areas since the breakthrough performance of deep

learning in image-related tasks in 2012 [17, 18]. The launch of ChatGPT in late 2023

[19, 16], powered by a type of large language model (LLM) based on deep learning, with

its ubiquitous use in natural language dialogues, has set off a new wave of technological

advancements. Generative AI (genAI) [20, 21], a term denoting the AI’s capability of

generating text, images videos, or other data in general, has become one of the industry’s

most trending words. This is evidenced by substantial investments from industry giants

such as Google, Microsoft, and Meta etc., along with a funding topping $21.8B across

426 deals for investment in generative AI startups in the year of 2023 [22]. This com-

mercial booming in genAI has been driving a dramatic exploration in the breadth of its

applications. A report from Deloitte [23] listed 60 example use cases of genAI, assisting

applications in various areas including legal, healthcare, finance, and human resource etc.

The particular use of LLMs as fundamental controllers for autonomous AI agent has also

become an active R&D area, with the number of papers published growing exponentially

each year [24, 25].

On the other hand, applying ML and AI in semiconductor design and test flows has

been an important area of R&D within the semiconductor industry for decades. There

are many potential applications of ML/AI technologies in design and test, which can

be categorized into modeling, simulation, optimization, debugging, diagnosis, and so on.

Recently, there has been a growing interest in leveraging the power of LLMs in the semi-

conductor industry. For example, researchers from Nvidia has explored the applications

of LLMs for industrial chip design [26]. The work [26] adopted various domain adaptive

fine-tuning techniques for enabling three selected LLM applications for chip design: an

2

Introduction Chapter 1

engineering assistant chatbot, EDA script generation, and bug summarization and anal-

ysis. A recent article [27] featured insights from multiple senior executives at leading

EDA vendors regarding the utilization of LLMs in electronic design automation (EDA).

LabVIEW from National Instruments, a graphical programming software largely used

in automated test system development, has witnessed a transformative shift with LLM-

powered tools like Github Copilot, an AI code developing tool capable of converting

verbal descriptions or even rough sketches into functional code [28].

In view of LLMs, the two perspectives in Figure 1.1 can be more precisely defined as

the following. A technology provider has ownership of the LLM and has the resources to

train the LLM model. As a result, they can make an LLM model to fit an application

context by developing an appropriate dataset and by training or finetuning the LLM

model. In contrast, a technology adopter does not own an LLM model nor has the

ability or resources to train or retrain an LLM model. They take an LLM model as it

and try to utilize the model in an application. For example, this usage can be through a

web service provided by another company. The adopter has no access to the model itself

nor has the ability to alter the model.

In this thesis, we consider building an LLM-assisted AI assistant from the perspective

of a technology adopter. In other words, the LLM model is given as it. The application

space we consider includes engineering work contexts existing in a semiconductor com-

pany: We are interested in building an AI assistant to assist engineers working in the

semiconductor company. We give a special name of our AI assistant and call it Intelli-

gent Engineering Assistant, or IEA. For building a practical IEA, the trust aspect is a

crucial concern. This is because engineers often have much more stringent requirements

for an AI assistant than casual users. If an engineer cannot trust the AI assistant and

is frequently required to debug its work or check its result, then the utilization of the

assistant can diminish, thus reducing its practical value.

3

Introduction Chapter 1

While our focus is on leveraging the latest LLM development, it is worth noting that

despite decades of efforts trying to apply ML and AI technologies, the semiconductor

industry has not observed a similar pace of expansion in the application space of ML

and AI as those seen in some other industries. In this introduction chapter, we will point

out the fundamental barriers that impede the adoption of ML/AI technologies in the

semiconductor industry. These barriers will be seen as the gaps between ML and prac-

ticing ML in domain-specific applications. Semiconductor industry demands solutions

beyond standard ML practices. In this thesis, we will describe IEA as a framework for

building a domain-specific AI Assistant. Key innovative components will be elaborated

to explain the design of IEA for closing the aforementioned gaps. On top of that, we will

explain why building an IEA is a natural way to realize a ML/AI solution to address

those domain-specific needs, and more importantly the design of IEA demonstrates why

LLMs play a key role for building a domain-specific AI Assistant.

1.1 An Example of Engineering Work Content

To build an AI assistant to help an engineer, we begin by understanding the work

content of the engineer. In this section, we discuss an example to illustrate a type of

work content in a semiconductor company.

1.1.1 Optimization of yield

For a semiconductor company, the yield is an important figure to optimize, which

directly affects the profitability of a production line. Yield is defined as the ratio of the

total number of good chips over the total number of manufactured chips. Deciding if a

chip is good (passing) or bad (failing) is done by testing. In a typical test flow, wafer

probe, which tests silicon dies on wafers, is the first stage of testing, followed by final test

4

Introduction Chapter 1

which tests standalone packaged chips, and system-level test which tests packaged chips

in a system. A semiconductor design company can carry out the test process internally

or provide the test content to contract a specialized test service company to run the

process. In either case, test data is collected and made available for engineers to analyze.

It is important for a semiconductor company to analyze the test data throughout the

test flow in order to understand and improve their yield. Yield optimization typically

starts by understanding the failures exhibited on the failing chips1 In testing, failing chips

are sorted according to a list of pre-defined failure bins. If a failure bin includes a large

number of chips, it is desirable to find ways to reduce the number and thus improve the

yield. Failure bins can be grouped according to the tests performed, for example, those

used to test some leakage characteristics of an analog block can belong to one test group.

There are three areas of changes to improve the yield: changing the test itself, changing

the design, or changing the manufacturing process.

For a fabless company, the manufacturing process is operated by a foundry company.

To change the process, the foundry company needs to be convinced that the cause for

the yield issue is due to the manufacturing process. In other words, the foundry needs

to see a clear evidence before taking an action to adjust their process.

One type of such evidences can be presented as a correlation between an E-test pa-

rameter and a type of failure in wafer probe, measured across wafers produced over time,

as shown in Figure 1.2. An E-test is a specialized measurement provided by the foundry

to measure some characteristic of the manufacturing process. Collectively, E-tests intend

to measure the health of an entire wafer. The measurements are usually carried out on

multiple sites on a wafer and on each site, the measurements can include a large number

1We use the term “failing chips” rather than “bad chips” because a chip failing the test does not
imply the chip is bad for sure. For example, the failure can be due to an issue in the test itself. To be
more precise, we will use the term “failing chips” throughout the thesis. When we use the term “bad
chip”, we refer to a confirmed bad chip, e.g. confirmed by failure analysis (FA) on the silicon chip.

5

Introduction Chapter 1

Figure 1.2: Finding a correlation between E-test and wafer probe failure

of E-tests. A strong correlation from a failure type to an E-test parameter can indicate

the impact of some wafer-to-wafer process variations to the particular type of yield loss.

1.1.2 A success story

The story is about a real yield optimization task as reported in [9]. The task is about

finding strong correlations between E-tests and wafer probe failures.

In 2013, a team at Freescale Semiconductor was trying to solve a yield problem that

significantly affected a product line already in high-volume production. The product was

an automotive SoC (System-on-Chip), more specifically a tire pressure monitor sensor

(TPMS). A TPMS constantly measures the pressure of a tire and transmits the measured

value wirelessly to a central control unit mounted in the car. A TMPS is supposed to

operate with extremely low power consumption, in order to have a long lifetime with

its mounted battery. Hence, this extreme low-power constraint typically is a critical

optimization objective for this type of design.

Before the yield problem was handed over to our lab, it had lasted for a long period.

During this period, the product team had gone through one design revision, multiple test

revisions, and even asking the contracted foundry to conduct several process adjustments.

6

Introduction Chapter 1

Despite all these efforts, the yield problem persisted.

The yield problem is illustrated in Figure 1.3. The figure shows a density plot and

the density is based on wafer yield numbers calculated over 2000+ wafers. Due to con-

fidentiality, the x-axis has no label. It suffices to say that the yield was not satisfactory

and significantly fluctuated from wafer to wafer. The desired outcome had two aspects,

as shown in the figure: (1) we desired the entire yield distribution to shift right, and (2)

we desired the width of the distribution to be minimized.

Figure 1.3: Yield distribution as a density plot based on 2000+ wafers

To our lab, the underlying problem was the same correlation problem as depicted in

Figure 1.2 before. Such an analytic problem includes three aspects: the E-test data, the

wafer probe data, and the correlation methods. It should be noted that other than the

two types of data, our lab had no other data or further knowledge about the problem.

The E-test for this product had 130 process parameters measured on five sites on a

wafer. The passing and failing chips were sorted into various test bins. As a common

start, we could aggregate the value of an E-test parameter by taking average on the five

sites. And we could use some standard statistical correlation methods such as Pearson

correlation. Then, the problem could be specified as “finding a strong Pearson correlation

between an average E-test value and a test bin”. Note that this correlation could be for

7

Introduction Chapter 1

a passing bin or failing bin.

If we were lucky, the simple problem formulation could lead to a high correlation

result and we would not need to pursue further. However, the reality was that the simple

problem formulation was far from being sufficient. As reported in [9], the best correlation

found with this simple formulation was merely 0.463. This correlation was not considered

as a strong evidence, specifically, not meaningful enough for the foundry to be willing to

make an adjustment to their manufacturing process.

It is important to see that the simple formulation is just one of many ways to formulate

the analytic problem. For example, we could consider a more fine-grained view of the

E-test data by considering measurements on each site individually, or collectively on a

subset of sites based on their physical proximity on the wafer.

On the wafer probe side, we could also consider failures based on a specific test

rather than a test bin (note: a test bin can be based on multiple tests). Further, we

could calculate the failure number by focusing on a particular wafer region. Wafers were

grouped in lot throughout production, so we could also introduce a lot-based view in

addition to the wafer-based view. Given that the wafers were produced and tested over

time, it was possible that a correlation itself could fluctuate over time. In other words,

while the correlation might be low when considering an entire period, it could be high

when examining specific windows within that period. These windows could be defined

based on the production time or the test time.

The various aspects listed above provided choices in the formulation of an analytic

problem. The combinations of those choices could render an enormous space of potential

problem formulations. Therefore, the underlying challenge to solve the yield problem

was to navigate in this space, form a specific and concrete search space, and to reach a

satisfactory answer in the search space (if the search space contains the answer).

It is important to point out that satisfaction of an answer was subjective. Different

8

Introduction Chapter 1

people involved might have a different requirement for this satisfaction. Hence, a “high

correlation” result did not mean that the result would be automatically accepted by

multiple parties. Our job was to discover results “interesting enough to be presented to

the product team”. If the product team could be convinced by the meaningfulness of a

result, they would then present the result to the foundry. Keep in mind that both the

product team and the foundry team were organizations with a hierarchical management

structure. Hence, one could imagine a communication chain from us as one end all the

way to the decision makers in the foundry side as the other end. In other words, as

the data analyst working in one end of this communication chain, our real job was to

present results that were likely to get though the chain and convince the decision maker

to produce an action on the other end. Under this realistic view, it is not hard to see

that deciding if a correlation was high enough or not, involved judgment calls.

To reach a satisfactory answer quickly in a given search space, one needs two strate-

gies: one to efficiently identify where the answer might locate and the other to efficiently

decide where is unlikely to have the answer. In other words, one needs a filter-in strategy

and a filter-out strategy and both have to be efficient.

Note that the filter-in and filter-out strategies are analogous to the branch and bound

in a traditional search algorithm, respectively. More importantly, the efficiency of both

strategies largely depends on the communication chain. Given such complications, it

is therefore not uncommon that a less-experienced person can get trapped in the space

and unable to find an answer while a more-experienced person can successfully find the

answer that results in a meaningful action.

This was what happened even within our lab. Initially, the students involved in the

project spent a month on analyzing the data and did not reach a meaningful answer (did

not pass through the product team, i.e. the first level of the communication chain).

Then, my advisor got involved and within a week, more results were found. Their

9

Introduction Chapter 1

meaningfulness was confirmed by the product team. Based on those results, it took

several additional weeks to expand them into further findings before the foundry was

convinced to take action. Then, implementing the process adjustments and collecting

the silicon data spanned several months. The final confirmation that the yield problem

was resolved arrived many months later.

The first set of meaningful results were found after my advisor decided to try out a

new failure type he called X4. This X4 failure type was never separately considered in all

previous attempts. This was because the X4 failure, together with a few other failures,

was already aggregated into a failure type in the original test data. As a result, no one

thought about separating X4 as a failure type by itself.

By focusing on the newly-defined X4 failure type, our lab was able to reach a result

of -0.766 correlation to an E-test parameter called PP1. This was the turning point for

the entire effort [9].

Figure 1.4: Yield improvement in silicon validation of recommended process adjustments

At the end, our lab suggested five process parameters for process adjustments. The

foundry responded with two adjustments. This was because some parameters had to be

adjusted together. Let us call these two adjustments ADJ #1 and ADJ #2.

The foundry implemented three silicon experiments: by applying ADJ #1 alone,

by applying ADJ #2 alone, and by applying them both together. In each experiment,

10

Introduction Chapter 1

multiple lots of wafers were manufactured and the wafer yield statistics were collected.

The overall result is summarized in Figure 1.4. As shown, each adjustment improved

the yield from the original yield distribution and the yield was the best when both

adjustments were applied. Following this confirmation, both adjustments were adopted

in mass production and the production yield thereafter indicated that the yield problem

had indeed been resolved.

1.2 The Search Process

The story described in section 1.1.2 reveals several interesting points regarding an an-

alytic process in practice. At the high level, we see that the analytic process is conducting

a search. We can call this search a Choose-and-Bound search process.

Figure 1.5: The illustration of a ”Choose-and-Bound” search process

Figure 1.5 illustrates the Choose-and-Bound search flow. First, one specifies a prob-

lem formulation, for example, narrows down to a particular search scope with a particular

failure type. Then, within the search scope one searches for a high correlation result. If

a potential result is found, then the result is sent for further validation and evaluation,

i.e. passing through the communication chain. For almost all the time, either one could

not reach a result worthy of initiating a discussion in the communication chain or the

result was turned down somewhere in the communication chain. At some point, one has

to decide to give up the problem formulation and re-formulate a new one.

11

Introduction Chapter 1

The search is iterative in nature. Each iteration involves an adjustment to the problem

formulation, resulting in the preparation of a new dataset. Different problem formulations

can be the results by taking different perspectives. One perspective can lead to multiple

problem formulations each defining a unique dataset. Then, a search space as seen

by a person conducting the analytics, includes all possible formulations based on the

perspectives the person can think of. Consequently, different persons can come out with

different search spaces based on the same data, due to different experience and domain

knowledge they possess.

In this iterative search, deciding whether or not one particular perspective would

eventually lead to a satisfactory answer, involves various judgment calls and can be

tricky. Because of this, one can get trapped in certain perspectives and consequently be

trapped in a given search space.

A key reason why previous efforts failed to discover the adjustment and we did [9], was

due to the fact that we examined the data from a perspective that was not previously

considered in the search, i.e. the X4 perspective. In other words, the search spaces

explored by other attempts did not include the X4 perspective. Ideally, if there was a

way to exhaustively enumerate all possible problem formulations based on given data to

form a “universal” search space, and suppose the answer was included with one of the

formulations in the search space, then given enough time, anyone would be able to reach

the answer, e.g reaching the answer with the failure type X4 as we did. In practice,

exhaustively enumerating all possible formulations is usually infeasible, and deciding

whether or not a satisfactory answer is contained in a given search space can be hard.

Even by assuming that the formulation with the answer is reachable in the search,

whether or not the answer can be reached within a given time frame is another issue. This

means that we require an approach to systematically and efficiently explore all problem

formulations in a given search space.

12

Introduction Chapter 1

As mentioned earlier, the efficiency can be associated with two strategies: filter-in

and filter-out. The filter-in corresponds to the Choose and the filter-out corresponds to

the Bound. Because most problem formulations in a search space contains no answer,

the efficiency of the Bound is critical. In the context of finding a strong correlation, this

can mean that we need a method to tell there is “no high correlation” exists in a given

dataset. In other words, we desire a robust method for making this ”no” decision, i.e.

to bound the effort spent in a correlation analysis attempt. This bounding is to indicate

that the current dataset, formulated under a particular perspective, is inadequate for

reaching a satisfactory answer we are looking for.

1.3 Reflection in Other Contexts

The Choose-and-Bound search is at the core of many analytic tasks in the contexts of

semiconductor design and test [2]. Below we provide three additional example contexts

to reflect such a search process.

1.3.1 Functional verification

Figure 1.6: Reflecting Choose-and-Bound search in a functional verification context

In a typical design flow, the primary goal of functional verification is to reach RTL

golden which means that the RTL simulation model is signed off and ready for its physical

13

Introduction Chapter 1

implementation. This implementation can be done through synthesis and custom design

effort to obtain the final layout model for chip production.

To justify RTL sign-off, a common methodology is to check on a set of coverage

metrics in RTL simulation. A coverage metric can be defined based on a set of coverage

points. For example, Figure 1.6 shows a scenario where the RTL model is simulated

under a testbench, i.e. a simulation environment. A test is used to drive the input to

the RTL model and the output result is observed. For an SoC design, a test typically is

represented as a software program, e.g. compiled into a sequence of machine instructions.

In Figure 1.6, there is a coverage point named A. Suppose this coverage point had not

been hit by previous tests. Hence, the underlying task is to reach a test that can cover

this coverage point A.

In the figure, x1, . . . , xn represents a set of microarchitecture states that are control-

lable at the software test level. In other words, an engineer can alter some options in the

test to affect the values of those states. These microarchitecture states are usually de-

scribed in the microarchitecture specifications. In view of these microarchitecture states,

the underlying problem can be thought of as finding the combinations of state values that

enable hitting the coverage point A [3][4].

The search process is iterative. An engineer runs some tests, observes and analyzes

the output results, and decides how to adjust the tests to have a better chance of hitting

the coverage point. The Choose aspect in this search can be a decision to focus on a

subset of microarchitecture states. The Bound aspect in this search can be the decision

to give up on this subset and move on to another one. It is important to note that even

under the narrower focus with a subset of microarchitecture states, there can still be

many options to fine-tune the tests. Hence, it is not an easy step to decide on giving up

a chosen subset of states and looking for a new one.

In this context, a success means that the Choose-and-Bound search process eventually

14

Introduction Chapter 1

reaches a subset of microarchitecture states and asserts their relevancy to the coverage

of point A. In parallel, a test for hitting A is obtained and confirmed through RTL

simulation.

It is interesting to note that the Choose-and-Bound search process effectively forces

a verification engineer to learn more about the microarchitecture specifications. It is not

uncommon that this learning reveals some inaccuracies in the specifications and results

in their change. From this perspective, we can say that functional verification helps

converging the design and its specifications [4]. This view is in contrast to the traditional

view that functional verification is to verify a design against a specification.

1.3.2 Speedpath analysis

For a high-performance chip product, the design effort continues in the post-silicon

stages [2]. It is a common practice in the industry to improve the performance of a

design by examing a set of so-called speed-limiting paths, or simply speedpaths [48][45]. A

speedpath is a timing path that limits the operation speed of a chip. Hence, by removing

the path through re-design, the operation frequency can be pushed higher.

Suppose through silicon samples, a set of speedpaths are identified. To help the re-

design effort, it is desirable to understand the underlying causes for those speedpaths. A

speedpath can be due to its unique reason or can share a cause with other speedpaths.

This aspect complicates the analysis on a group of speedpaths [29], i.e. an analysis needs

to reveal two things: (1) which group of speedpaths share the same cause, and (2) what

the cause is. A cause is usually represented as a combination of design features [2].

Figure 1.7 illustrates the analytic task reported in [48]. The speedpath analysis task

is associated with a multi-core high-performance processor product of AMD at the time.

The left picture in Figure 1.7 shows a distribution of timing paths over four frequency

15

Introduction Chapter 1

Figure 1.7: Reflecting Choose-and-Bound search in a speedpath analysis context

steps: Step 1 to Step 4. Each dot represents a timing path. The frequency of Step 1 is

the lowest. There are four dots in this category. These paths are shown in the Step 1

category because they were the failing paths identified when the chips were operated in

the lowest frequency. In other words, these four paths were the first set of speed limiters.

To improve performance, it was therefore desired to understand the causes for those four

speedpaths and seek a way to re-design and remove those paths.

Analyzing the cause of a speedpath can be based on the method depicted by the right

picture in Figure 1.7. This method can be called feature-based analytics [2]. To analyze

a speedpath P1, one collects a set of non-speedpaths P2, . . . , Pm as the contrasting set.

Then, one chooses a set of design features f1, . . . , fn to encode each path into a feature

vector. Then, the analytic question becomes: what combination of feature values separate

P1 from P2, . . . , Pm? This can be seen as a rule learning type of analytics [30].

In practice, there can be a large number of potential design features to choose from.

Considering all of them at once is practically infeasible. This infeasibility has two aspects.

First, it is difficult to enumerate all possible features in advance. For example, there can

be many ways to enumerate features based on the layout. To think in advance all possible

features not only is hard but also is ineffective because most of the features would not

16

Introduction Chapter 1

be relevant to the cause. The second aspect is about the rule learning which is applied

to a specialized datatset containing one positive sample (speedpath) with many negative

samples (non-speedpaths). Due to the scarcity of the positive samples, using too many

features can easily lead to over-fitting a rule.

Consequently, in practice one chooses a set of features to conduct an analysis. If the

analysis does not lead to a satisfactory answer, one moves on to another set of features.

Hence, each iteration of the Choose-and-Bound search in this context involves choosing

a set of design features, and making a decision that the current dataset contains no

satisfactory answer.

1.3.3 Outlier analysis

Figure 1.8: Reflecting Choose-and-Bound search in an outlier analysis context

In semiconductor testing, outlier analysis is a common approach for screening out

potential bad chips [31]. The idea of outlier screening is simple: If the behavior of a chip,

as measured by some test(s), is “significantly different” from others, then the chip is

screened out. To apply outlier screening, one develops an outlier model. The left picture

of Figure 1.8 illustrates the basic three elements for developing an outlier model: (1) the

sample set, (2) the outlier method, and (3) the threshold.

An outlier is with respect to a sample set. For example, a chip can be outlying with

17

Introduction Chapter 1

respect to other chips from the same wafer but not as outlying with respect to other

chips from the same lot (a lot contains 25 wafers). Hence, the meaning of an outlier very

much depends on the sample set used to determine the outlying property.

In semiconductor testing, there are many outlier methods to choose from [31]. An

outlier method basically computes an outlier score for each chip. Then, the chips can be

ranked according to those scores. Different methods result in different rankings of chips.

Once an ourlier rank is obtained, one still needs to decide on a threshold to separate

outliers from inliers. For example, a simple Gaussian modeling can say that a chip is

5.9σ away from the mean. This number 5.9 is the outlier score. However, whether 5.9

should be called an outlier or not is a subjective decision. If one insists on a 6-sigma

rule, then it is not an outlier.

Because in practice it is challenging to make outlier screening robust, one usually only

considers an outlier model that screens out very obvious outliers. Outlier screening is

also considered under a yield budget. For example, a product team can decide that they

are willing to allocate 0.5% of the yield loss for outlier screening. Then, the test team

needs to develop outlier models that in total screen out no more than 0.5% of the chips.

Because outlier screening is applied in a rather conservative way initially, over time

when more test data become available, by learning from the data one may desire to

introduce additional outlier models to either improve the test quality [32] or to improve

the test efficiency [6].

The right picture in Figure 1.8 shows an example in the second context, trying to

improve the test efficiency. In this context, one desires to develop outlier models that

can identify chips that require going through the burn-in process. More importantly, one

desires to identify chips that do not require the expensive burn-in stress test. Hence,

minimizing its use can reduce the test cost substantially.

The picture shows a two-dimensional outlier model based on two tests A1 and A2.

18

Introduction Chapter 1

The outlier boundary is shown as two dash lines defining an inside region for those inliers.

All dots (chips) outside the region are outliers. The red dot shows a chip known to fail

in the burn-in. The bottom-right shows an in-picture illustrating the root cause of the

fail. This in-picture was generated by the failure analysis team.

The model would not have been meaningful if tests A1 and A2 were not relevant to

testing the particular capacitor. Hence, reaching an outlier model to screen out the given

failing chip does not imply the model is meaningful. One has to validate that the tests

used by the model are meaningful in view of the underlying cause for the failure.

Given a set of known fails, the search for outlier models to screen them can also be

seen as a Choose-and-Bound iterative process. An outlier model is based on a test space

defined by one or more tests. Hence, the search space comprises all possible test spaces.

In each iteration, one makes a choice and tries to use the test data to find a meaningful

outlier model in the selected test space(s). The bounding part means that one gives up

on the selected test space(s) and move on to another selection.

1.3.4 Summary

We see that the Choose-and-Bound search paradigm can capture the essence of many

engineering practices in a semiconductor company. In general, the Choose involves choos-

ing a problem formulation, a hypothesis for the answer, and/or a dataset. The Bound

means giving up the formulation, the hypothesis, and/or the dataset. The iterative

process is to search for a satisfactory answer. The acceptability of an answer might be

determined by a group of people, and sometime through a communication chain across

different organizations. Our goal is to develop an AI assistant that provides added-values

to engineers working in a Choose-and-Bound search context.

Developing such an AI assistant requires fundamentally different thinking than to-

19

Introduction Chapter 1

day’s common practices for applying machine learning in design & test and for developing

an AI assistant in general. In the next section, we will highlight some key points to dif-

ferentiate our thinking from others. To be more specific, we will elaborate our thinking

in view of the thinking in common practices of machine learning.

1.4 Ten Points from ML to Our AI Assistant

Figure 1.9: An end-to-end training view of machine learning

It is common that when thinking of “machine learning” (ML), one thinks about

building a machine learning model. Figure 1.9 depicts this view. A dataset is prepared

and used to build and validate a model. This dataset can be seen as the benchmark for

defining the underlying problem to be solved. In application, an input is given to the

model and the model provides an answer for the problem.

1.4.1 Well-defined problem vs. Ill-defined problem

By taking the ML view, an implicit assumption is that the dataset defines the under-

lying problem to be solved. If we took this view to approach the yield problem discussed

in section 1.1.2, we would come out with a very different picture.

Figure 1.10 illustrates how taking the ML view would be different from taking the

Choose-and-Bound view as discussed in section 1.2 before. The ML view starts with a

benchmark to define the problem.

20

Introduction Chapter 1

Figure 1.10: ML view vs. Choose-and-Bound view to approach the yield problem

The overall problem can be stated as the following: Given a pair of E-test data and

wafer probe data, find a particular failure type such that it is highly correlated to an

E-test parameter. Hence, the input to the problem is given as two pieces of data and the

output is a failure type. With the ML thinking, we prepare a benchmark as illustrated

in the left of Figure 1.10. There are m samples in this benchmark and each sample is in

the form of “[input z→ output]”.

In contrast, the right plot of Figure 1.10 depicts our Choose-and-Bound view. Instead

of preparing m pairs of data as the benchmark, this view focuses on learning with only

one pair of data. Note that this learning focuses on finding one specific mapping “z→”

between the specific pair of data. In our Choose-and-Bound view, this mapping is seen as

one instance in a search space comprising problem formulations that can be defined based

on the pair of data. Hence, the learning is about expanding and exploring this search

space. The assumption is that, in this search space there exists at least one problem

formulation that is represented by a dataset extracted under a limited scope from the

original pair of data, and analyzing this limited dataset leads to the failure type we are

looking for.

Figure 1.11: Benchmark thinking vs. Specification thinking

21

Introduction Chapter 1

Figure 1.11 summarizes the discussion above. Given some data to analyze, the ML

view calls for collecting more data to define the problem in general. In contrast, the

Choose-and-Bound view focuses on the given data by specifying the problem space that

can be defined by the data. The problem space becomes our search space. This specifi-

cation requires “domain knowledge”.

In other words, if we were to take a ML view, we would try to define the general

problem first by developing a benchmark. Our Choose-and-Bound view does not seek

for defining the general problem. Instead, it starts with a problem space specific to the

given data. To obtain this space, our view is to enumerate a set of problem formulations

that can be specified from the given data. This space defines the scope of the problem,

and searching for the answer translates into searching for the right problem formulation.

An obvious reason why taking the ML view is not feasible is because in practice it

is difficult, if not impossible, to obtain a reliable benchmark as depicted in Figure 1.10.

For example, in the yield optimization context the input-output mapping “z→” can be

extremely complex. To learn this complex mapping, one would desire a very large and

comprehensive benchmark. This means that we need to collect data on many known and

resolved yield issues from the past, i.e. m needs to be sufficiently large. This is difficult to

do as the number of yield issues (worthy of the yield optimization) is not supposed to be

large for a product line. Otherwise, there is something seriously wrong with the design,

the test, or the manufacturing to begin with. In view of the challenges in obtaining a

reliable benchmark, we can say that the analytic problems in the semiconductor field are

mostly ill-defined.

22

Introduction Chapter 1

Figure 1.12: Objective machine view vs. subjective human views

1.4.2 Objective evaluation vs. Subjective evaluation

There is another reason why pursuing the left direction in Figure 1.11 is difficult. As

discussed earlier, in many contexts the acceptability of an answer depends on a group of

people. This is further illustrated with Figure 1.12. For a machine to compute an optimal

answer, it needs to start with a definition for the optimization objective and evaluates

potential answers according to the objective. However, such an optimal answer from a

machine might or might not be an acceptable answer from a domain expert’s perspective.

As mentioned before, the human evaluation might involve a chain of parties each having

its own subjective view regarding the acceptability of an answer. Consequently, an answer

is acceptable when it can pass all these diverse subjective evaluations.

When the acceptability of an answer is not based on a unified objective view, at-

tempting to completely define a problem for evaluation becomes difficult. If we were

to prepare a dataset with the goal to completely define the problem in an application

context, we would need to consider all those subjective and diverse views, leaving the

benchmark preparation effort somewhat open-ended.

1.4.3 Optimization vs. Exploration

A key difference between the two opposite directions in Figure 1.11 is that going left

means the focus is on optimization while going right means the focus is on exploration.

Given the general problem as represented by a benchmark, the underlying goal be-

23

Introduction Chapter 1

comes finding the best model to solve the problem. The merit of a model can be evaluated

with the dataset and hence, is defined as well. Consequently, learning is achieved through

optimization.

When we go right in Figure 1.11, learning is done by continuous search, i.e. explo-

ration. Hence, we desire efficient methods to help explore the search space.

Building an AI Assistant to assist in optimization and building an AI Assistant to

assist in exploration are different. This thesis focuses on the later. However, it should

be noted that focusing on assisting in an exploration context does not mean that our AI

Assistant would not involve a tool or a ML model for solving an optimization problem.

On the contrary, the AI Assistant may still perform steps that are formulated as solving

an optimization problem.

1.4.4 ML vs. Co-ML

In this thesis, we use the term machine learning (ML) to broadly refer to a tool or an

algorithm that takes data as input and produces the “best” answer or model. In other

words, it is data-driven and it performs some optimization.

In our Choose-and-Bound view, as shown in the right of Figure 1.10 earlier, we can

think of the search space as comprising a set of datasets derived from the original data.

Each dataset corresponds to a specific problem formulation. Hence, the search is about

searching for the dataset with the specific problem formulation such that solving the

problem leads to an acceptable answer.

Figure 1.13 illustrates this perspective. Note that in the search process, only one

dataset is under focus at a time. Typically, one applies an ML tool or model to find

the best answer on the dataset. This “best” can be thought of as according to some

pre-defined optimization objective. To find the best answer across all datasets, one needs

24

Introduction Chapter 1

Figure 1.13: The task of ML and Co-ML perform on a given dataset

to apply the ML tool or model to each dataset. However, as mentioned before, the search

space can be enormous and hence, going over every dataset is not practical. Moreover,

applying ML on each dataset might involving trying on various ML methods and various

options associated with each method. On top of that, as depicted in Figure 1.12 before

the best answer from a machine view does not imply the answer is acceptable.

To facilitate the search, we therefore desire a complementary tool or model that can

help identify those datasets likely to contain no acceptable answer. We call the second

type of the tool or model as Co-ML (complementary ML). Hence, in an ideal situation

in Figure 1.13, we desire to apply Co-ML to prune out as many choices as possible.

It is important to note that ML and Co-ML focus on different objectives. ML focuses

on optimization and Co-ML focuses on unacceptability. It is possible that a Co-ML

tool or model is built upon a ML tool or model. Hence, demanding Co-ML tools and

models does not mean that the importance of ML is diminishing. The emphasis is that

for building an AI Assistant in practice, we desire the Assistant to have ML as well as

Co-ML capabilities — both are important.

The idea of Co-ML can be broadly applied to situations outside the scope of our

Choose-and-Bound search view. For example, in yield optimization it is possible that the

original data provided contains no meaningful answer at all, regardless how we conduct

25

Introduction Chapter 1

the search. In other words, failing to find an answer due to insufficient data can be a

common outcome from an analytic task. Reaching such a conclusion quickly can prevent

wasted efforts and prompt the pursuit of an alternative sooner, such as collecting a

different set of data.

1.4.5 Complex model vs. Simple answer

Figure 1.14: Contrasting to Figure 1.9, an AI Assistant is to help find a simple answer

In view of Figure 1.9 before, Figure 1.14 provides a contrasting view. The goal of an

AI Assistant is to help find a simple answer than build a complex model. This is because

simpler answer is more likely to be understood, justified, and consequently accepted by

people. While simplicity does not imply acceptance, it is important to keep in mind that

in practice, when someone does not understand or cannot justify an answer, it is unlikely

for the person to accept and act upon it.

1.4.6 Looking for a trend vs. Looking for a signal

In a company, analytics is often referred as looking for a signal in the data. This is

in contrast to building a complex model for capturing a trend or pattern in the data.

Looking for a signal can sometime be like solving a needle-in-a-haystack problem.

This so-called “signal” can mean different things in different contexts. It is important

to note that the interest level of a signal can depend on its novelty to a person. For

example, for a signal representing a common phenomenon frequently appearing in the

given type of data, it is not very interesting to a person because the person learns very

26

Introduction Chapter 1

little new information from the analytics. Therefore, while a simple signal is more likely to

be understood and accepted, a simple and commonly-occurring signal is less interesting.

In other words, a simple and uncommon signal is more desirable.

1.4.7 Prediction vs. Prescription

In practice, a signal also needs to be actionable in order to be meaningful and ac-

cepted. In other words, we can say that the type of analytics is prescriptive. This is

in view of the three types of analytics commonly mentioned: predictive, descriptive, and

prescriptive. Predictive analytics is about learning from the current data to predict the

future. Descriptive is about understanding the current data and prescriptive is about

analytics leading to meaningful actions.

For the most part of our work, we consider assisting in a prescriptive type of analytics

job content. As discussed before, moving from an analytic result to a meaningful action

can involve decisions from diverse groups of people. Consequently, to achieve prescriptive

analytics we need to, in one way or another, consider the decision making process.

1.4.8 Data-driven vs. Knowledge-driven

Because the success of an analytic task cannot completely ignore human decisions

and judgment calls, a pure data-driven approach would not work effectively (or simply

would not work). An effective AI Assistant needs to capture the domain knowledge

involved in the specific application context. There can be various sources of this domain

knowledge, from how an individual engineer performs the analytic task to how a decision

maker reaches an action. For an assistant to effectively assist an engineer in the context

of an analytic job, the assistant needs to incorporate some of these various types of

knowledge, especially how a successful outcome was attained in the past. Possessing the

27

Introduction Chapter 1

requisite knowledge to attain success in a job is important. The success story reviewed

in section 1.1.2 demonstrates this aspect.

In addition to the individual engineer’s perspective, the effectiveness of an AI As-

sistant can also be considered from a company perspective. Consider three companies:

company A supplies high-performance processor chips to be used in a data server, com-

pany Q supplies high-performance chips for mobile devices, and company N supplies

micro-controller chips in the automotive market. Each of them can have their own unique

emphasis on yield optimization. For example, company A emphasizes on performance

yield. Company Q emphasizes on power consumption and company N emphasizes on

quality and reliability. Consequently, the view towards the effectiveness of an AI Assis-

tant for one company might not be the same for another company. It is intuitive to see

that an effective AI Assistant for a company might need to consider the company-specific

knowledge, e.g. their specific operations and business model.

Figure 1.15: Drawing a line to separate the knowledge to be captured in an assistant

If developing an AI Assistant universally effective across diverse companies is difficult

and suppose we do not want our AI Assistant to “over-fit” a company, then it becomes

important to consider drawing a line to separate out the company-specific knowledge that

is not to be captured in the assistant. Figure 1.15 depicts this aspect of consideration.

If this line is drawn overly close to the left end, transferring the assistant built for one

company to another might require substantial modifications. If this line is drawn overly

close to the right end, the assistant might not be seen as effective by an engineer. Hence,

there is a tradeoff between the effectiveness of an assistant and its transferability.

While the above discussion stays at the intuition level, it should be noted that the term

28

Introduction Chapter 1

“knowledge” remains vague in the above discussion. Consequently, “domain knowledge”,

“company knowledge”, “individual knowledge” are all vague terms. When we say that

the AI Assistant needs to capture the domain knowledge, it remains unclear what exactly

the knowledge is, not to mention how to “capture” it. These are some fundamental

questions that we will answer in the rest of the thesis in order to build a practical AI

Assistant.

1.4.9 Free Lunch vs. No Free Lunch

Figure 1.16: An AI Assistant works in two worlds: Free-Lunch and No-Free-Lunch

In machine learning, there can be two camps of beliefs: one believes a world of free-

lunch and the other believes a world of no-free-lunch [33][34]. In a free-lunch world,

optimization can help. In a no-free-lunch world, optimization is futile. The AI Assistant

we envisioned needs to consider both worlds.

Figure 1.17: The data generator is evolving over time

Loosely speaking, we say that a no-free-lunch situation occurs when the current data

is not representative to the future data. In other words, what we learn from the current

29

Introduction Chapter 1

data might not be applicable to the future data. This aspect can be inherent in the

analytics of design and test data.

Figure 1.17 brings the data generator into the picture for illustration. This data

generator depends on the specific design, manufacturing process, and/or test where each

can evolve over time. In addition, an action resulting from an analytics task can lead

to changes in the design, manufacturing process, and/or test. Consequently, the data

changes over time and the current data might not be representative to the future data.

To give an example, consider the three common stages to bring up a production line:

yield learning, ramp-up, and mass production. In the yield learning stage, the goal is

to improve the yield to a satisfactory level. In the ramp-up, the production volume is

gradually increased. When the mass production starts, the yield is expected to reach a

sufficiently high level and also stabilize. In this context, it is intuitive to see that yield

issues learned during the yield learning stage may not necessarily be representative of

the yield issues encountered during the mass production. A yield issue during the mass

production is supposed to be a new issue not seen before. Therefore, if one desires to

train a model with the data collected in the yield learning stage and use the model to

predict yield issues in the mass production stage, it is possible that the learning task falls

into a no-free-lunch world.

1.4.10 Automation vs. Assistance

Figure 1.18: Building an automation flow vs. building an assistant

30

Introduction Chapter 1

In design and test, it is common that one aims for building a flow to achieve design

automation and/or test automation. Software companies supplying products to serve the

semiconductor industry often call their tool an automation tool. An automation tool

aims to automate the end-to-end process from an input to an output. It is important to

emphasize that an assistance fulfill that role.

Figure 1.18 highlights a few points to separate our AI Assistance view from the

traditional view of building an automation flow. An automation flow makes various best

decisions for its user, driven by the underlying optimization objectives and assuming

a free-lunch world. In contrast, an assistant makes a suggestion to its user and leaves

the ultimate decision to the user. What driving the assistance is for achieving a better

understanding of the data. And as mentioned in the previous section, an assistance

includes consideration of a no-free-lunch world.

Contrasting our AI Assistant view with traditional automation thinking is important

because designing a tool to assist in a job and designing a tool to take over the job are

fundamentally different thinkings. The former thinking aims to aid the engineer while

the ultimate goal of the latter is to replace the engineer, e.g. providing a “push-button”

solution to perform the job. Hence, it should be emphasized that our AI Assistance view

stands in stark contrast to building a push-button solution.

1.5 Conclusion

Given all the complications discussed above for building an effective AI Assistant

in practice, it would not be surprised that the development of the first prototype took

years. This first AI Assistant is called IEA-Plot and was publicly announced in 2023

[35]. In the rest of the thesis, we will discuss the journey leading to the completion

of IEA-Plot, explain the key ideas behind several milestones along the way, elaborate

31

Introduction Chapter 1

the technological innovations for realizing those ideas, and lay down a framework for

further extensions and enhancements of IEA-Plot in the foreseeable future. Chapter 2

and Chapter 3 provide a retrospective view of the early works in applying ML and AI

in design and test (conducted by our lab), prior to the first prototype of IEA in 2018.

Readers may opt to skip ahead to Chapter 4, which marks the start of the primary focus

of this thesis: the realization of the LLM-assisted AI assistant.

Figure 1.19: IEA-Plot: from vague problem description to concrete solution

It is understandable that the scope of the problem discussed in this introduction

chapter remains vague, especially since some terms used in the discussion might seem

somewhat loosely defined. Indeed, it is quite difficult to precisely describe an engineer-

ing job content in practice. In fact, the very essence of developing the IEA-Plot is to

overcome this difficulty. The development process starts with a vaguely-defined engineer-

ing problem and concludes with a concrete solution. Articulating the problem scope is

central to this development. Figure 1.19 illustrates this point.

Therefore, the contribution of IEA-Plot should not be seen as just providing a solution

to solve a given problem or to solve it more efficiently. The development of IEA-Plot

includes an articulation of the problem itself and implementation of innovative ML/Co-

ML methods for realizing an efficient and practical solution. This dual problem-solution

view is fundamental to the development of IEA-Plot and it is under this view that

leveraging power of LLMs in IEA becomes crucial. This aspect will be elaborated in

more detail throughout the thesis.

32

Chapter 2

Journey to IEA - The 1st Decade

橫看成嶺側成峰, 遠近高低各不同。

不識廬山真面目, 只緣身在此山中。

A range viewed in front and many peaks viewed from the side,

Assuming different shapes viewed from far and wide;

Of Mountain Lu we do not see clearly its true face,

For we are lost inside the very place.

— 《題西林壁》蘇轼， A poem from Song Dynasty

The journey to IEA can be traced back to the starting point two decades ago where

the works in [36][37] tried to apply ML to solve a problem in design and test. The

specific ML method used in those works was Support Vector Machine (SVM) [38] which

was considered as state-of-the-art at the time. The specific problem was critical timing

path selection [39]. These works were among the earliest, if not the earliest, attempts to

apply modern ML in design and test.

The critical path selection problem can be stated as the following: Given a design, find

all timing paths under statistical process variations, such that each path has the chance to

33

Journey to IEA - The 1st Decade Chapter 2

impact the timing performance of the design [39]. These paths are called critical timing

path. The static version of the problem does not consider the inputs to the design. The

dynamic version does and hence, is much more complicated. This is because a static

critical path might never be activated by an input and hence, can become a non-critical

path under the dynamic view. In other words, static analysis provides a bound to the

timing analysis but is not accurate as dynamic analysis.

The main idea in [36][37] was to formulate the path selection problem as a feature

selection problem. In the setup, a large set of paths were used as the set of features, i.e.

treating each path as a feature. A ML model (more specifically, an SVM model) was

built from statistical timing simulation data to predict the circuit delay. Then, from the

model a subset of important features were selected, under the constraint that modeling

with the selected subset achieved almost the same accuracy as modeling with the original

feature set. In other words, the selected features are the critical timing paths identified

using the model.

“Applying ML in Design and Test (D&T)” was exemplified by these early works as

taking the following four steps:

1. Formulating the D&T problem as a ML problem

2. Preparing the dataset for learning a model

3. Choosing a learning method in view of the ML problem

4. Utilizing the learning model to solve the original D&T problem

We can call this the data-driven view to apply ML. This can be seen as the standard

ML view, i.e. to apply ML we first prepare the dataset to train a model. As discussed

in section 1.4, this dataset implicitly formulates the underlying problem to be solved. In

34

Journey to IEA - The 1st Decade Chapter 2

other words, in the data-driven view, one begins by formulating the problem as a ML

problem and then formulating the ML problem through a dataset (e.g. a benchmark).

Figure 2.1: Evoluation of views along the journey to IEA

Starting from the data-driven view in 2004, the journey to IEA then underwent an

evolution of views to reach the IEA-Plot in 2023. Figure 2.1 depicts this evolution. In

the rest of this chapter, we will elaborate the data-driven view taken in the first decade

and discuss the lessons learned which motivated the works in the second decade. The

second decade will be reviewed in Chapter 3.

2.1 Data-Driven View (2004 – 2013)

Figure 2.2: 10 categories of works carried out under the data-driven view

35

Journey to IEA - The 1st Decade Chapter 2

The era of data-driven view lasted about a decade. In this period, various categories

of works were carried out to tackle problems originated from design and test. Figure 2.2

depicts ten categories across three stages: the design automation flow, the post-silicon

stage, and the manufacturing test flow. We consider post-silicon as the stage after the

first silicon and before the start of mass production. Note that the categorization shown

in the figure is not precise. A particular category of work might be done in a different

stage.

It is interesting to note that in Figure 2.2, most of the works conducted were situ-

ated at the boundary of a stage: The leftmost category that entering the design flow

(functional verification), the categories crossing the design-silicon boundaries (design-

silicon correlation and speedpath analysis), and the rightmost category leaving the test

flow (customer return analysis). These occurrences were not accidental. These areas

were critical and demanded a lot of engineering efforts and hence, companies were highly

motivated to explore ML to improve their operations.

In practice, functional verification was often tedious and time-consuming, limited by

the simulation speed and requiring substantial manual efforts to fine-tune the functional

tests and the specifications during the process. From the time the 1st silicon was obtained,

much engineering efforts were spent on debugging issues due to mismatches between

design model and manufacturing process. These issues could be manifested as low yield,

unexpected low performance, and/or unexpected functional bugs. These issues needed

to be fully resolved before proceeding with mass production.

For a company, defective parts per million (DPPM) or per billion (DPPB), is an

important metric promised to its customers. Consequently, throughout the production

cycle, continuously driving down DPPM/DPPB was a top priority. This was usually done

through analyzing parts returned by the customer(s). Analyzing these returned parts

might lead to inclusion of new tests to screen out future parts with similar characteristics.

36

Journey to IEA - The 1st Decade Chapter 2

Traditional customer return analysis involved going through a dedicated failure analysis

(FA) team where a part was opened up and physically inspected to identify the root

cause of failure. FA was considered as an expensive process and hence, companies were

motivated to find a feasible alternative.

Next, we will provide a retrospective review of the ten categories of works from

the ten-year period, with a particular focus on elaborating more on the four categories

highlighted in Figure 2.2.

2.2 Design-Silicon Timing Correlation

In an ideal situation, models used in a design should accurately reflect the outcomes

from the manufacturing process. In reality, it is not the case. For example, after the

models are released to the design team, the manufacturing process can continue going

through some adjustments. It is not always the case that changes to the process resulting

in model updates to the design team.

For efficiency, models used in a design are usually approximate models. For example,

a timing model captures the worst-case, the nominal-case, and the best-case of the delay

and ignores the statistics in between them. In practice, models used in the design can

only be accurate to a certain extent [1].

As manufacturing technologies continued to scale and designs became increasingly

complex in the period, predictability of silicon behavior based on models and simulations

degraded. This degradation of predictability had been known for a while within com-

panies that designed high-performance products. For these companies, it was therefore

a common practice that optimization of a design continued into the post-silicon stage,

utilizing information collected from silicon samples.

Design-silicon correlation, pioneered by the work in [40], was about learning from

37

Journey to IEA - The 1st Decade Chapter 2

silicon samples to resolve design-silicon mismatches. It was usually applied in the context

of yield learning and optimization. At the time, operation frequency remained to be the

top concern for a high-performance design. Hence, the works in this period concerned

mostly design-silicon timing correlation, e.g. see [41][40][42][43][44][1][29].

2.2.1 Data learning based diagnosis

The methodology to achieve design-silicon timing correlation was summarized as data

learning based diagnosis [1] in contrast to traditional fault-model based diagnosis.

Figure 2.3: Data learning based diagnosis as summarized in [1]

To implement the methodology, three components are required as highlighted in Fig-

ure 2.3: (1) design database, (2) sample definition, and (3) sample measurement results.

Each application is based on a particular sample definition. For example, a sample

can be a timing path. Based on the definition, a set of samples are decided. Some

property on each sample is measured on silicon chips, resulting in a measured value for

each sample. Based on this value, the “y” label can be obtained in the dataset. For

example, the y value can be the difference between the measured value and the value

predicted by a pre-silicon simulation model.

To obtain the “x” vectors, each sample is encoded based on a pool of features selected

from the design database which supposedly contains all models on the design and data

generated from the design process (e.g. from simulation and verification, etc.). For

38

Journey to IEA - The 1st Decade Chapter 2

example, the work in [40] defined features in terms of cells and interconnects. The work in

[43] gave a more comprehensive list of features in five categories: cell-based, interconnect-

based, location-based, dynamic effects (e.g. cross-talk, IR drop, temperature), and tool-

related effects. For dynamic effect features, they are based on models and simulations.

Hence, a feature value is only a predicted value, not the actual value.

In practice, the bottleneck for executing the methodology is on preparation of the

learning dataset (X, y). Preparing y requires preparing the test content and running

the test flow. This means a requirement to access and utilize the test infrastructure.

Preparing X requires a feature extraction and encoding process which accesses and uti-

lizes the design infrastructure. Comparing to data preparation, analyzing the data is

much more straightforward because it does not need to deal with the complex design and

test infrastructures in a company. The analysis can be done locally by an individual.

Once the dataset is available, the analysis can be based on different approaches. It

can be formulated as a (binary) classification problem [40] or as a regression problem [43].

In both cases, one can pursue a feature importance ranking [40][42][45][43] to identify the

top design features relevant to the “y” labels. When it is formulated as a classification

problem, one can also choose to apply classification rule learning to extract a specific

rule to separate the classes [29][44].

2.2.2 Transduction diagnosis

The summary paper [1] calls the type of diagnosis performed by the methodology

as transduction diagnosis, inspired by the concept transduction proposed in statistical

learning theory [46]. Figure 2.4 illustrates the idea.

Traditional diagnosis goes through an induction process, followed by a deduction

process. To analyze an unexpected silicon behavior, the goal of the induction is getting

39

Journey to IEA - The 1st Decade Chapter 2

Figure 2.4: Transduction diagnosis vs. traditional diagnosis, as explained in [1]

to the root cause. Then, the goal of deduction is to inference from the particular instance

of the root cause to obtain a fix or fixes. In general, a fix can mean to modify the design,

the test, the manufacturing process, or a combination of them. Getting to the root cause

involves forming a set of hypotheses and search for a valid hypothesis based on the data.

For example, a common practice in traditional defect diagnosis is by assuming a fault

model consisting of defect hypotheses (or “faults”) [47]. Given the test data showing an

unexpected result (a failure), fault simulation on those faults is used to match a fault

to the failure signature. A fault is a hypothesis and hence, it does not necessarily mean

the root case. In practice, the root cause is identified through physical inspection during

FA (failure analysis). For example, the right picture in Figure 1.8 shown in section 1.3.3

earlier includes a demonstration of the root cause for the burn-in failing chip.

The transduction diagnosis intends to bypass the complex root-causing process. The

idea is to apply machine learning on the data directly to obtain some rules (or relevant

features), and from them to hypothesize a fix.

2.2.3 A binary classification case

Figure 2.5 depicts an example of transduction diagnosis applied in practice. In this

case, it was formulated as a binary classification problem.

40

Journey to IEA - The 1st Decade Chapter 2

Figure 2.5: A rule learning example, reported in [2]

The data comprise two sets of timing paths: slow paths and fast paths. A slow path

means that the observed delay of the path is slower than the delay predicted by the static

timing analyzer (STA) (or equivalently, the actual timing slack is smaller than predicted

slack)). A fast path means the opposite. The picture shows a diagonal black line to

indicate where the observed slack matches the predicted slack.

In an ideal situation, the design team thought that these paths should fall closer to

the diagonal black line. However, out of their expectation these paths form two clusters,

one above the line (fast paths) and the other below the line (slow paths).

The transduction diagnosis methodology was applied to resolve this issue. One of

the results found is shown on the right in Figure 2.5. It is a decision-tree type of rule.

The rule classifies the paths into two classes, marked by one “slow path” bucket (in red

color) and two “fast path” buckets (in blue color). In the picture on the left, the paths

are colored accordingly based on the rule as red dots and blue dots. As seen, most of the

red dots fall below the diagonal black line, indicating a good fit of the rule to the data.

The two features used in the rule concern about the via occurrences on a path between

metal layer 4 and 5 and between metal layer 5 and 6. This was an evidence pointing to

some issue related to metal layer 5. Later we were informed by the process team that

there was a known issue on metal layer 5 which went through a fixing. The data we saw

41

Journey to IEA - The 1st Decade Chapter 2

was before the fix and afterwards, the issue disappeared.

2.2.4 Scarcity of the positive samples

The binary classification formulation is common for applying the transduction diag-

nosis methodology. Samples are divided into two classes to begin with, such as pass and

fail, fast and slow, expected and unexpected, etc. They can be called negative samples

and positive samples, respectively. The positive samples (fail, slow, unexpected) are the

focus, i.e. one desires to understand what causes the positive samples.

The case shown in Figure 2.5 confirms that transduction diagnosis can be effective in

practice. However, the case represents a relatively easier scenario because the dataset is

more balanced on the positive and negative samples. In other situations, the number of

positive samples can be very small, sometime with only one positive sample available for

the analysis. Dealing with such extremely-unbalanced dataset requires a specialized rule

learning approach [30].

2.2.5 Feature extraction to enable a data-driven analysis

Implementing a feature extraction process to support the transduction diagnosis ob-

viously involves some domain knowledge about the design, the test, and even the manu-

facturing process. It is also apparent that the effectiveness of the methodology depends

on the features used in the analysis. Nevertheless, the transduction diagnosis itself is

data-driven. This view follows the same data-driven view in machine learning where a

dataset is prepared to enable the learning. Under this view, feature extraction is done as

a pre-processing step for dataset preparation. More importantly, a large number of irrel-

evant features can be included in the dataset and then, it is up to the learning algorithm

to filter out those unimportant features efficiently.

42

Journey to IEA - The 1st Decade Chapter 2

2.2.6 A retrospective remark

Figure 2.6: A simple dataset example to illustrate over-fitting

Ideally, suppose one can exhaustively list all possible features and one has a dataset

with sufficient information to filter out all irrelevant features, plus there existing a learn-

ing algorithm to do so, then the transduction diagnosis methodology should work. In

practice, this ideal situation rarely happens. In most scenarios, a person works with a set

of features known to the person and the analysis is done with a limited set of samples.

Consequently, over-fitting a rule to the dataset can be quite common.

Figure 2.6 uses a simple example to illustrate the issues. There is one positive sample

and four negative samples in this dataset. Each feature fi is a binary feature, indicating

whether the feature is present or not on the sample. Because our interest is on the

positive sample and only features f1, . . . , f4 appear on the sample, we can ignore all other

features f5, . . . , fn.

To differentiate the positive sample from the four negative samples, we see that the

reason cannot be a single feature f1, f2, f3 and f4 alone. For example, f1 cannot differen-

tiate the positive sample from the first negative sample. By removing those single-feature

reasons, there are six possible two-feature reasons: {f1 ∧ f2, f1 ∧ f3, f1 ∧ f4, f2 ∧ f3, f2 ∧

f4, f3 ∧ f4}. While each of them can be used to differentiate the positive samples from

the four negative samples, choosing any one of the four reasons is over-fitting.

One can look at the over-fitting from two perspectives. The obvious perspective is that

43

Journey to IEA - The 1st Decade Chapter 2

we need more data, i.e. more negative samples. Suppose in the practical environment,

this is hard to do. Then, we are left with the second perspective. That is, we need a

different set of features than { f1, f2, f3, f4 }. There can be two ways to get new features,

either by creating a new one or by deriving more detailed features from a given one,

e.g. splitting f1 into f11 and f12. Both approaches aim to describe the samples with

more detailed features, potentially corresponding to more domain knowledge involved in

preparing the dataset. Consequently, these features are more effective in discerning the

positive versus the negative.

The Choose-and-Bound search (e.g. the example discussed in section 1.3.2 before)

is required because over-fitting happens frequently in practice, and it is challenging to

determine in advance if a dataset is sufficient to differentiate the positive sample from

the negative ones. Consequently, selecting the feature set to run transduction diagnosis

becomes the most crucial step to influence the outcome of an analysis. This step is

tedious and may demand substantial domain knowledge, thus requiring most of the help

from an assistant.

2.3 Speedpath Analysis

There are two types of speedpath analysis: one to explain speedpaths and the other

to predict speedpaths based on a given small set of speedpath examples.

The works on explaining speedpaths [48][30] followed the same transduction method-

ology discussed in the previous section, except that the number of speedpaths (i.e. pos-

itive samples) is much smaller than the number of non-speedpaths. To the extreme,

one can face a dataset with only one speedpath to analyze. In this case, the positive

sample is used to form a hypothesis space and the negative samples are used to prune

out hypotheses [30]. When there are multiple speedpaths, one can also face a subgroup

44

Journey to IEA - The 1st Decade Chapter 2

discovery problem [29][49] to decide which paths share the same reason and which paths

are due to its own unique reason. The example reviewed with Figure 1.7 in section 1.3.2

belongs to this type of speedpath analysis [48].

The works on predicting speedpaths [45][50] followed a methodology similar to that

depicted in Figure 2.3, except for no “y” labels in the dataset to be learned, i.e. the

learning is unsupervised. Instead of getting to a rule or finding the set of relevant

features, the goal is to built a model to identify paths similar to the speedpaths, i.e. a

model to enable similarity search. In [45], the model was built as a one-class SVM model

[38]. The work in [50] proposed a more sophisticated method. It is important to note

that like the transduction diagnosis methodology, the effectiveness of a similarity search

model also largely depends on the features in use. Hence, selecting the feature set was

still the most important step in the works reported in [45][50].

When there is only one or few speedpaths to learn from, the over-fitting scenario as

illustrated in section 2.2.6 before, is likely to happen. Hence, while the transduction

diagnosis and building one-class model were both promising, in reality selecting the most

relevant features to start the learning remained to be the key to success.

2.4 RTL Functional Verification

Figure 2.7: Manual learning in the context of functional verification

Figure 2.7 illustrates the context of (RTL) functional verification. There is a generator

45

Journey to IEA - The 1st Decade Chapter 2

G that is capable of producing a set of functional tests T . This generator can be a

person, i.e. tests being manually developed, or an automatic tool such as a Constrained

Random Test Generator. For an SoC or processor design, each test is a sequence of

instructions/transactions, i.e. a software program. The simulator Sim simulates the set

of tests and produces simulation result R which is evaluated through a component E.

This evaluation can be based on a coverage metric, for example how many coverage points

are covered through the simulation. The evaluation of tests is usually used to identify

important tests T ′ and include them into a test suite. For example, an important test

could be the one that excites a bug or provides a unique coverage. The test suite can be

seen as the ultimate asset accumulated from the verification efforts.

Verification process is highly iterative, driven by a coverage objective. The job of

a verification engineer is to develop tests that achieve a required coverage level, e.g.

covering every coverage point is a given set at least once. Hence, when a coverage point

is not yet covered, the engineer inspects the simulation result, traces the design model

itself, and reads the design-related documents to come out with a test that can hit the

coverage point. This learning is manual and based on three sources: simulation traces,

design model (RTL model), and design-related documents. In many cases, obtaining the

desired test can be based on modifying an existing test or test template.

Figure 2.8: Proposed automatic learning in the context of functional verification

Figure 2.8 then illustrates two possible components to add an automatic learning

capability, marked as the F box and “Learning” box. The F stands for a filter component

46

Journey to IEA - The 1st Decade Chapter 2

between the test generator G and the simulation Sim. The goal of F is to filter out

“unimportant” tests before the simulation, avoiding their simulation to save simulation

resources.

In addition to improving simulation efficiency, the F component can also be seen

from the viewpoint of improving verification effectiveness. For example, suppose the

number of tests to be simulated is limited at N . Without the filtering, N tests would

be generated and simulated. With the filtering, K ∗N tests could be generated and N

selected important tests would be simulated. The idea is that the N selected tests from

the K ∗N tests should provide a higher coverage than the first N tests from the K ∗N

tests. Consequently, a more effective test suite can be obtained.

The second component intends to automate the learning process for guiding the test

generation G. The goal is to provide information on how to improve coverage on a

coverage point or a family of coverage points. The learning approach in this applica-

tion context is very similar to the transduction diagnosis methodology discussed earlier.

Essentially, it is still a feature-based diagnosis approach [4].

Just like the application contexts reviewed above, to apply machine learning in the

two functional verification contexts, the most critical and time-consuming step is also to

set up the learning environment, e.g. preparing the dataset. This setup needs to consider

a number of questions [3]:

� What is a sample?

� What information is in the data?

� How is a sample represented (or encoded)?

� How is the learning model represented?

� How will the learning model be used?

47

Journey to IEA - The 1st Decade Chapter 2

In setting up a learning environment, perhaps the most important aspect is to provide

a definition of the sample. For example, a sample can be an entire test or selected

instructions from a test. A sample can also be a state vector based on a selected set of

microarchitecture states appearing in a test.

Generally speaking, the data includes the simulation trace and the corresponding

coverage report. In RTL simulation, a simulation trace is a cycle-based simulation dump

file based on a set of selected signal names from the design. If one desires to learn a

relationship between a microarchitecture state and a target signal, both the state signal

name and the target signal name need to be included in the simulation dump instruction

file.

Sample representation is another important aspect of consideration. If the goal is

to learn a rule, a sample needs to be encoded as a vector form based on the selected

features. If the goal is to build a one-class novelty detection model, a sample might not

necessarily be represented as a vector [3].

Different learning algorithms produce learning models in different forms. The rep-

resentation of a learning model can be based on rule, tree, equation, a collection of the

samples (e.g. an SVM model), etc. This leads to the next consideration for how will a

learning model be used. For example, if the model is first to be interpreted by a person,

then a complex model like an SVM model would not work.

2.4.1 Test filtering to improve verification efficiency

The work in [51] pioneered the idea of building a test filtering component, by solving

it as a novelty detection problem with kernel-based unsupervised learning. The idea

is simple and can be summarized as the following. Suppose a set of tests T has been

simulated. In novelty detection the learning machine builds a model to capture the

48

Journey to IEA - The 1st Decade Chapter 2

“coverage space” represented by the tests in T . The model is then used to filter future

tests. If a future test falls inside the modeled coverage space, it is filtered out. If a future

test falls outside, it is predicted as a novel test and selected for simulation.

It was recognized in [51] that the effectiveness of a test filtering component based

on a kernel-based learning model, largely depends on the kernel in use. A kernel in this

context computes a similarity score between two tests. As a result, a test is deemed novel

or not depends on this computation.

The work [52] extended the idea to learn novel tests where tests were given as assembly

programs. Each program was represented as a program flow graph and a kernel between

two flow graphs was defined based on an edited distance between them, i.e. the number

of graph operations to transform one graph to another. While the graph-based kernel

worked well on small designs with short-length programs, it was unknown how well it

might perform on a complex commercial processor where the tests could be relatively

much longer programs in length.

Then, the work in [53] applied the idea on a commercial dual-thread low-power pro-

cessor core. The verification context was unit-level verification on the fixed-point unit

and the load-store unit. Load-store unit was among the most complex units in a typical

processor design. It is interesting to note that the work in [53] abandoned the graph-

based kernel idea proposed in [52] earlier. This was because converting the tests for the

commercial processor into program flow graphs, by itself was a difficult problem.

The central idea in [53] was to measure the similarity between two tests based on

approximate coverage estimations on the tests. The work proposed to build a coverage

database comprising a large number of instances (t, c) where t was a short test up to

three instructions and c was the coverage table of the test. Then, approximate coverage

estimation on a given test is calculated based on information provided in this database.

The work demonstrated that the novelty program detection model based on such a kernel

49

Journey to IEA - The 1st Decade Chapter 2

could be quite effective.

Figure 2.9: A notable result on improving simulation efficiency, later reported in [3]

Figure 2.9 shows a result reported later in [3] based on the same experiment setup in

[53]. Without the novelty program detection model, the maximal coverage was achieved

with 6010 tests. With it, the maximal coverage was achieved with only 310 tests. The

actual saving of simulation resources was measured in run time, and was estimated about

19 hours on a high-end simulation server.

Figure 2.10: The fundamental issue of kernel-based learning in functional verification

From the early work [51] to the work [52] and then to the work [53], we could say

that the underlying issue was to come out with a kernel function that made sense for the

application context. The coverage database idea proposed in [53] was more robust and

easier to implement in practice. It was also discovered that the similarity measure did

50

Journey to IEA - The 1st Decade Chapter 2

not need to be close to perfect for the filter component to work effectively. [52][53].

Figure 2.10 illustrates the underlying issue faced in the approach. A kernel function

measures the similarity between tests in some space. However, this measure only makes

sense if it reflects the actual similarity situations in the actual coverage space that is

invisible to the learning. For example, if t1 is deemed more similar to t2 than to t3 by

the kernel function, then intersection of t1’s covered set to the t2’s covered set should

be larger than that to the t3 covered set. In a sense, the actual coverage situations are

unknown to the learning, the kernel function is only “assuming” what would happen in

the actual coverage space about different tests. If this assumption is far from the reality

in the coverage space, then the novelty detection model would not work well.

Because the actual coverage space depends on the set of coverage points under eval-

uation, it is not hard to see that a kernel function ignoring the set of coverage points

would not work well. This was why the coverage database idea proposed in [53] was

more effective than the graph-based kernel idea, as the coverage database idea took into

account the set of coverage points in a given application context.

2.4.2 Learning to guide test generation

The scenario reviewed in section 1.3.1 before belongs to this category where learning

is to guide the test generation for obtaining a test that can help improve the coverage.

In most scenarios, the test is obtained by refining an existing test or test template.

Figure 2.11 illustrates the learning setup with two levels of learning: input level and

template level. The early work in [54] applied learning at the input level and the later

works in [4][5] applied learning at the test template level.

The implicant learning is a simplified view of the actual learning problem. In practice,

hitting a verification target usually requires controlling multiple signals, resulting in

51

Journey to IEA - The 1st Decade Chapter 2

Figure 2.11: Two learning points in a functional verification environment

multiple implicant learning problems combined.

Suppose the input X comprises m vectors x⃗1, . . . , x⃗m where each x⃗i essentially can

be seen as a binary vector of length n. For simplicity, the output y⃗ concerns only

one particular signal and with m input vectors, y⃗ can be seen as an m-value vector.

Essentially, the learning is based on the dataset (X, y⃗) where the m samples is drawn

from an unknown Boolean function. The learning can be seen as learning the implicants

of this function based on the samples [54].

In general, the implicant learning problem can be thought of as learning the Boolean

function itself. However, as studied in [55] learning a Boolean function works only when

the function has limited complexity. In fact, learning a Boolean function in general is a

difficult problem [56]. As a result, the work in [54] applied the concepts from Association

Rule Mining [57] to implement a method for learning implicants.

The works in [4][5] were applied in a Constrained Random Test Generation (CRTG)

verification environment. In CRTG, a test is randomly instantiated from a test template

that is constrained. For example, a test template is an assembly problem where some

operands can be randomly selected from a set. In verification, each test template is

instantiated into some number of tests. These tests are called constrained random tests.

52

Journey to IEA - The 1st Decade Chapter 2

They are in contrast to direct tests composed entirely manually by a verification engineer.

In [4][5], the learning is based on dividing a set of constrained random tests into two

group: important tests (positive samples) and unimportant tests (negative samples). Im-

portant tests are those interesting for learning a property. Like other scenarios discussed

before, typically one has few important tests and many more unimportant tests. Hence,

the learning has the same challenge discussed before, i.e. scarcity of the positive samples.

The work in [4] used features separated into two levels: microarchitecture state fea-

tures and instruction-based features. When the analysis was carried out with state fea-

tures, the learning tried to uncover important state feature combinations. Then, with

the instruction-based features, the learning tried to uncover what instruction properties

were likely to achieve those combinations.

Learning at the test template level avoided the complicated implicant learning prob-

lem. The features were used to learn a rule to guide modification of the test template for

hitting the target. Once the two classes of tests were represented in terms of the features,

classification rule learning could be applied to uncover properties of the positive samples

as rules [4].

Because the emphasis was on the discovery of properties of the positive samples,

the number of the positive samples was much more important than the number of the

negative samples. As discussed in [5], as the number of negative samples grows beyond

a point (e.g. 10K), adding more negative samples would not help the learning.

Figure 2.12 shows an example to demonstrate the effects of the learning [4]. The

experiments were conducted on a commercial processor verification environment. Origi-

nally, the tests based on the test template written by the verification team were not able

to deliver good coverage on a family of five assertions - only assertion IV was hit once

by 2000 tests generated. By learning the properties on the test hitting the assertion IV,

the test template was modified and used to generate 100 more tests. This resulted in

53

Journey to IEA - The 1st Decade Chapter 2

Figure 2.12: A notable result on improving verification coverage, reported in [4]

(labeled as ”combined macro”) coverage of assertions I to IV. With more positive samples

available, the learning was carried out again. Test template was modified accordingly

and 100 more tests were produced. With the 100 tests (labeled as ”iteration 1”) all five

assertions could be covered. The learning was applied again and the result (labeled as

”iteration 2”) showed further improved coverage.

Figure 2.13: A notable result on improvement from zero coverage, report in [5]

Figure 2.13 then shows an example to explain how the learning could be applied

when the initial simulation had zero coverage on the events under consideration [5]. In

this example, the events were to cover E8 to E13. Simulation of more than 30K tests

generated from a given test template could not cover any of the six events. Because there

was no test to cover any of the events, there was no positive sample to learn from.

54

Journey to IEA - The 1st Decade Chapter 2

For this example, domain knowledge was applied to recognize that signal values on

C and on S0 to S5 were highly related to the activation of the six E’s events. Hence,

learning was used to learn about the properties related to the signal C and the signals S0

to S5. Figure 2.13 shows that after one iteration of learning, the modified test template

could cover 4 out of the 6 events (with 1K new tests). By learning on the new positive

tests, the modified test template could cover all 6 events with 100 tests [5].

2.5 Customer Return Analysis

Customer returns are parts that pass all the tests before shipment but are determined

as failing parts by the customer. Customer returns are sometime called Customer Qual-

ity Incidents (CQIs) because returning by the customer does not necessarily mean that

the parts are defective from the part supplier’s perspective. As reviewed before in sec-

tion 1.3.3, a typical way to analyze customer returns is failure analysis through physical

inspection. The desired outcome of CQI analysis is to obtain a test to prevent similar

incidents from happening in the future.

Physical inspection through failure analysis is an expensive process. Hence, it is

desirable to pursue an alternative to develop a test capable of screening out similar

failing chips. One popular thinking is to construct an outlier model for the screening,

which is based on learning from the CQI in view of the test data. For several years, this

thinking led to the outlier screening studies for CQIs with the automotive product lines

in Freescale Semiconductor, Inc. [58][6][32]. Preventing CQIs is a critical consideration

for automotive product lines as their quality requirements are usually much higher than

other consumer product lines. At the time, companies were aiming for sub-one DPPM

quality, i.e. no more than 1 CQI per million chips shipped.

As reviewed before in section 1.3.3, to find an outlier model for a CQI, one needs to

55

Journey to IEA - The 1st Decade Chapter 2

define a test space for the outlier model to operate in. A test space is defined based on

one or more tests [6]. Searching for a proper test space is part of the outlier modeling

effort. Even with a fixed test space, construction of an outlier model can still be quite

subjective, depending on various choices such as the base sample set, the outlier method,

and the outlier threshold. Consequently, the real challenge of outlier model development

is not about getting to an outlier model, but about justifying a given model [6][32].

Figure 2.14: Justifying an outlier model with multiple CQIs

An outlier model might be justified in different ways. For example, Figure 2.14 shows

that a 3-dimensional outlier space was learned based on one CQI, which also projected

another CQI as an outlier in view of the same model. The second CQI provided a

justification of the model. When the model was applied to a sister product, it could

capture 5 more CQIs as outliers, hence providing further justification. These products

were SoCs sold to the automotive market [32].

Figure 2.15 shows another example where the outlier model was justified validated

through design knowledge and failure analysis report [7]. In this example, 10 CQIs were

analyzed. It was known that they all failed due to some defective DC pins on the sensor

interface. 7 out of 10 CQIs could be projected as (marginal) outliers in a test space

comprising two tests related to the DC line.

In practice, justification of an outlier model and deployment of the model are two

56

Journey to IEA - The 1st Decade Chapter 2

Figure 2.15: Justifying an outlier model with domain knowledge

different things. Model deployment needs to take another consideration into account:

the resulting yield loss by the model. For example, the model in Figure 2.15 had about

600 PPM loss estimated based on the wafers where those CQIs were located. 600 PPM

could be an acceptable figure. However, when the model was applied on 500+ wafers,

the observed loss was about 12.1K PPM which could not be accepted by the product

team. As a result, the team had to look for an alternative way to screen those CQIs, e.g.

by developing a specialized test focusing on the type of failure.

The work in [32] studied 62 CQIs over a time window. One question was whether it

was possible to build an outlier model using an earlier CQI to screen out a later CQI.

If possible, then the question concerned what was the response time for learning the

model. This response time spanned from the date the earlier CQI was reported back to

the company to the date the later CQI was tested.

Figure 2.16 shows that 7 CQIs could have been prevented, i.e. it would have been

possible to find the outlier models based on earlier CQIs within the response times and

screen out those 7 CQIs at their test times.

In the figure, CQIs are named as R# according to their chronological order in the

time window. The green triangle pointed downward marks the shipped date of a part

57

Journey to IEA - The 1st Decade Chapter 2

that would eventually fail in the field. There was a period of time before the part was

returned by the customer. This period of time is represented by the light blue bar. When

the part was returned, the date is marked by the yellow triangle pointed upward. At

this time, it was possible to learn from the CQI to build an outlier model. The red

arrow pointed downward marks the last test date of the future CQI that could have been

screened out by the outlier model, if it was ready. Hence, the response time is bounded

by the period between the yellow arrow and the red arrow.

Figure 2.16: CQI model effectiveness shown in time view, reported in [6]

The response time was 5 days between R24 was returned and the last test date of

R43. This was the minimal turn-around time required for the learning. The response

time was more than 3 weeks between R37 and R53. Hence, if learning and deploying an

outlier model required more than a week, R43 would be missed but the other six could

still be prevented.

It is interesting to note that in practice, a simpler outlier model is more likely to be

accepted for deployment. For example, it would be harder to accept and deploy a 3-test

(3-dimensional) model than a 2-test model (2-dimensional). This was why along the line

of the studies, after all the works in [58][6][32], the later work in [7] advocated that the

model search should be constrained with simple models.

58

Journey to IEA - The 1st Decade Chapter 2

2.5.1 Considerations in outlier model development

Outlier analysis is similar to novelty detection, and could be thought of as a form of

unsupervised learning. In practice, an outlier score is only a relative measure, i.e. relative

to some sample population used to judge the outlier property. Hence, to construct an

outlier screening model, one has to first decide on the population of the parts used to

calculate the outlier scores. Earlier, we called this set the base set.

Being an outlier does not mean being abnormal

In testing, it is common to construct an outlier model based on wafer probe tests.

Hence, it is natural to use all dies on a single wafer as the base set. In practice, one

desires to screen out “gross” outliers. Figure 2.17-(a) illustrates this aspect.

Figure 2.17: Being an outlier does not imply being abnormal [7]

The figure shows a distribution of all samples from a base set according to their test

values. This is a hypothetical picture for illustration purpose only. Typically, one desires

to draw the outlier threshold away from the distribution. This decision can be subjective.

In practice, this decision is impacted by the concern of yield loss due to over screening.

Because the threshold is set far away from the distribution, it is possible that a part

whose value falls to the left of the leftmost red dash line gets shipped to the customer

59

Journey to IEA - The 1st Decade Chapter 2

and becomes a CQI, i.e. the part is a “marginal” outlier under this test. Hence, when

the part is returned, one desires to adjust the threshold to screen out “marginal” outlier.

Finding an outlier model for a given CQI can easily run into an over-fitting situation.

Figure 2.17-(b) illustrates this point. The plot was based on 1000 randomly selected good

dies. The test data was based on an airbag sensor product line and the number of wafer

probe tests was greater than 950. Those tests were parametric tests, i.e. measurements

that give values rather than logical tests that output pass/fail.

The x-axis shows the number of tests on which a die shows outlying behavior. Here,

being an “outlier” on a given test was defined as being among the top five most outlying

dies on the wafer according to their test values. In this case, the die could be seen as a

marginal outlier based on the test. As the plot shows, only less than 60 dies were not

classified as an outlier with any test. All other dies were outliers based on one or more

tests. More than 150 dies were outliers with respect to ≥ 16 tests.

Figure 2.18: The reason why we need a 2nd CQI to justify a CQI outlier model [7]

Plot in Figure 2.17-(b) could be explained with a simple intuition. Assume that there

are M tests and 1000 selected dies. Further assume that the measured values of each

test follow a given Gaussian distribution. In a Monte Carlo simulation, let the measured

values of each die be randomly drawn from the Gaussian distribution. Figure 2.18-(a)

shows a plot where the y-axis is the percentage of dies found to be an outlier based on at

60

Journey to IEA - The 1st Decade Chapter 2

least one test and the x-axis is the assumed M . Again, an outlier is defined to be among

the top five most outlying dies with respect to a particular test distribution. Observe

that, as the number of tests M grows passing 1000, almost all dies become outliers,

outlying based on at least one test. The intuitive is that with enough number of tests,

any die can become a marginal outlier according to one of the tests.

Figure 2.18-(b) shows a different plot by ignoring tests in Figure 2.18-(a), which are

associated with only one outlier. In other words, only tests with two or more outliers

are considered. In this case, we see the percentage of outliers drops significantly. This

is why in CQI outlier modeling, an outlier model for a given CQI needs to be validated

with some other CQIs. Otherwise, the model is likely to be over-fitting.

Outlier modeling based on correlated tests

Figure 2.19: The reason why in test, one prefers an outlier model based on correlated tests [7]

In practice, parametric tests are often grouped into families of tests and within each

family, values of the tests can be correlated. In outlier modeling, it is more often to use

correlated tests (e.g. from a family) to define an outlier space than to use uncorrelated

tests. Figure 2.19 provides an intuition for this practice.

The left plot in Figure 2.19 shows a 2-dimensional test space based on two hypothetical

tests, with their test values across x-axis and y-axis. The rectangle box in the test space

61

Journey to IEA - The 1st Decade Chapter 2

shows the “good die” region based on some assumed upper and lower limits of each test

individually. In other words, any die whose test values falling outside the rectangle box

is screened out.

Suppose test values on the two tests follow the same Gaussian model assumption.

For a 2-dimensional outlier model, we can simply consider a co-variance model, e.g.

within the 3σ bound [7]. Then, the inlier region of this co-variance model depends on

how the two tests correlated. The different inlier regions based on different correlation

assumptions are shown in the plot with different colors.

Let A be the inlier region based on the rectangle box (region inside the box) and let B

be the inliner region based on a correlation assumption (region inside the colored oval),

the region difference D = A−B can be seen as the actual screening region based on the co-

variance outlier model. As seen this D is larger as the two tests become more correlated.

The right plot illustrate this point by plotting how D
A (y-axis) changes according to the

correlation of the two tests (x-axis). As seen, D
A is larger when the correlation is higher.

High-dimensional and/or complex models not preferred

Consider the wafer probe data from the airbag sensor product again [7], Table 2.1

shows how the number of possible models can grow fast as the dimensionality of the test

space grows. This was based on one CQI on one wafer with about 1300 dies, i.e. the

base set. Recall that the number of tests is 950+. The definition of being an outlier is

the same as above, among the top 5 most outlying dies. The models were built using

one-class SVM [38]. As seen, with a 3-dimensional space there can be 795K possible

models (out of about 142M 3-test combinations).

It is a myth that people often might think using a more “advanced” algorithm is

“better”. Figure 2.20 provides an opposite view to this myth. The figure compares an

SVM one-class model to a simple co-variance model. In [7], it was found that 93% of the

62

Journey to IEA - The 1st Decade Chapter 2

Table 2.1: The number of possible outlier models can grow substantially [7]

Test space dimensionality 1 2 3

Number of possible SVM one-class outlier models 11 3027 795128

tests had their test values follow a Gaussian distribution and 1.3% follow a exponential

distribution. Others failed the two statistical hypothesis tests for the two distributions.

For a test whose test values follow a Gaussian distribution, the benefit of having a

more complex model like one-class SVM diminishes. One of the reasons why a test value

distribution (based on a wafer) does not follow a Gaussian distribution is due to some

within-wafer variations which can be caused by the manufacturing process or the wafer

probe testing. For example, in wafer probe four dies might be tested in parallel at once

and there are some systematic variations across the four test site.

Figure 2.20: For outlier screening a simple co-variance model might suffice [7]

The left plot in Figure 2.20 shows an example of this site-to-site variations. The test

values obviously do not follow a Gaussian distribution. Hence, a one-class SVM model,

as shown, could take the clusters into account while a co-variance model could not.

On the other hand, if one knew site-to-site variations exist and this would happen,

then one could easily align the test values from different sites according to their means.

After the four clusters are aligned, a co-covariance model would still suffice, which is

63

Journey to IEA - The 1st Decade Chapter 2

shown in the right plot. In the right plot, a co-variance model and an SVM one-class

model are compared. As seen, their inlier regions overlap significantly.

While pursuing a higher dimensional model or employing a more complicated model-

building algorithm might be considered advancements in problem-solving for many ap-

plication scenarios, this is usually not the case in customer return analysis (and outlier

screening in general). Outlier screening prefers simpler models and this simplicity can

manifest in several ways: constructing low dimensional test space, using correlated tests,

and building a model with a simple outlier algorithm.

2.6 Other Areas to Apply Machine Learning

The above reviews the works in the four areas highlighted in Figure 2.2 before: design-

silicon correlation, speedpath analysis, functional verification, and customer return analy-

sis. In the following we will provide a brief review for each of the other six areas. Lessons

learned from the works in those six areas echo the experience learned in the previous

four. The overall conclusion is that, in general, applying ML to an application context

in design and test was far more complicated than initially anticipated when starting on

the work in this context.

2.6.1 Yield optimization

The success story reviewed in section 1.1.2 was the only work done in the area of yield

optimization in the period. The work also marked the end of the period, which will be

explained in more detail in section 3.1 later. It should be noted that yield optimization

is an important area for a product line and the reason that there was not much works

published in the period, was mostly due to lack of data for the research. Yield data was

often regarded highly confidential and without access to this data, data-driven research

64

Journey to IEA - The 1st Decade Chapter 2

would not be possible.

2.6.2 Test cost reduction

Another important area of test data analytics is for test cost reduction. Test cost

reduction can take place within a test stage [59] or across multiple stages [60]. During

within-stage test cost reduction, one desires to remove a test or a test insertion. For

example, in [59] the goal was to remove some of the parametric tests while maintaining

the same quality level. This type of test cost reduction is typical, as testing usually starts

with a higher volume of test content at the beginning of production, which is gradually

optimized during the early period of the production. The intuition behind this is that

when initial knowledge is limited, a more conservative approach is needed, whereas as

knowledge accumulates, a more aggressive strategy can be adopted.

During cross-stages test cost reduction, one desires to use the test data from one test

stage to predict the potential failing parts of a future stage. For example, one desires

to use the wafer probe test data to predict potential parts that may fail in the burn-in

test stage [60]. By predicting these parts, only those parts identified need to go through

the burn-in process, thus saving burn-in costs on other parts. However, as explained in

[2], predicting future burn-in fails can be a difficult task. A part may appear perfectly

normal in wafer probe testing, yet exhibit obvious defective behavior after burn-in. This

is because the burn-in process alters some characteristic on the part. Indeed, a weak

part is among those whose characteristics are changed by burn-in. Before burn-in, these

characteristics have not yet been altered, making it difficult for using wafer probe test

data to predict such changes.

In a subsequent paper [61], it was explained that achieving test cost reduction while

aiming for a minimal DPPM impact can be exceedingly challenging. For example, if the

65

Journey to IEA - The 1st Decade Chapter 2

DPPM impact is limited to 1, this means that by implementing a cost reduction method,

the method is guaranteed to miss at most 1 defective part per million. Defective parts

often occur at the tail end of a test distribution, and meeting such a requirement demands

a model capable of capturing the behavior of this tail in high accuracy, which can be

quite difficult [61].

2.6.3 Fmax prediction

The term “Fmax” stands for the maximum frequency a chip can be operated on.

Speed binning is the process to categorize chips according to their Fmax. Speed binning

is usually carried out in a system test environment and hence, commonly considered as

an expensive step. As a result, one desires to minimize the use of this step by finding an

alternative on deciding the Fmax. In the early dates, this alternative could be based on

establishing a correlation between a low-cost on-chip measurement and the Fmax. For

example, the measurement can be for measuring the speed of a ring oscillator, the delay

of a critical timing path, the maximum frequency based on a set of transition pattern

set, and/or performance of some circuitry designed specific for the purpose. We can call

this the univariate Fmax modeling era, see e.g. the work in [62].

When ML became more noticeable in the semiconductor design industry, companies

started to be interested in more “advanced” Fmax modeling methods and hence, started

the studies focusing on multivariate Fmax modeling, i.e. predicting Fmax based on a set

of low-cost measurements collectively, see e.g. [63][64][65].

An Fmax prediction model is essentially a regression model [63] to map low-cost

measurements x = (x1, . . . , xn) to Fmax y. The work in [63] studied five different learning

methods: nearest neighbor, least-square fit, ridge regression [66], SVM regression [38],

and Gaussian Process (GP) regression [67]. The focus was on the applicability of a model,

66

Journey to IEA - The 1st Decade Chapter 2

i.e. asking the question whether or not a given model should be used to predict the Fmax

of a given part. The work suggested to use a confidence band based on GP modeling to

help assess model applicability. In addition, the work proposed an idea called conformity

check to identify training samples as “noisy samples” that ought ot be removed from the

training dataset.

There were three issues that prevent adopting a ML-based Fmax prediction model.

First, it was hard to bound and characterize the prediction error of a model. Fmax for

a chip represents a promise from the chip supplier to its customer. For example, if a

chip is labeled as 2.4GHz, it is promised that the chip will function correctly with that

frequency. Hence, a prediction error that results in labeling a chip as faster than it should

be means a defective part and can become a customer return. If the DPPM requirement

is 50 DPPM, this means that the one-side error has to be below 0.005%. This is hard to

achieve.

Second, the number of samples used to learn a model can be small, e.g. a hundred

[64][65]. This was because chips with Fmax labels were usually characterized from a

dedicated system test lab. The characterization was comprehensive and complicated.

One of these chips’ focuses was to achieve a reliable Fmax test suite to be used for

determining the Fmax. The job was not to provide samples for building a reliable ML-

based Fmax prediction model.

Third, due to process variations, the regression function to map x to y could change

from one production period to another. For example, a process recipe change might be

the cause. As a result, it is hard to ensure that a model learned from chips produced in

one period has the required prediction power for chips produced in the future, especially

under the extreme accuracy requirement mentioned above.

Overcoming the three issues above in practice was very challenging. As a result, the

work on applying ML in Fmax prediction in our lab terminated after 2010.

67

Journey to IEA - The 1st Decade Chapter 2

2.6.4 Layout hot-spot prediction

A layout hot-spot is a piece of layout which has a high chance to cause an issue in

chip fabrication. An “issue” usually means that the actual geometric shape of the piece

can deviate significantly from the shape in the layout model. Hot-spot detection is an

important step during library cell development. A typical way to identify layout hot-

spot is through lithography simulation, which is complicated and time-consuming. Hence,

there has been a desire to build a ML hot-spot prediction model as a faster alternative

[68][69].

As one of the pioneering works in this area, the work in [68] applied SVM binary clas-

sification to build a prediction model. The training data comprised good layout samples

and bad layout samples where good and bad were determined by the lithography simu-

lation. These samples were extracted from a given layout by applying Raster scanning,

i.e. moving window with overlapping boundary [68].

Similar to the filtering component discussed in section 2.4.1, the main challenge for

learning an SVM model was on choosing an effective kernel function. The work in [68]

used the Histogram Intersection (HI) kernel and experimentally showed its effectiveness.

Another important issue was on selecting of the window size in the Raster scan, where

in [68], the size was determined experimentally with cross validation.

A fast hot-spot predictor, even if not highly accurate, can still be useful during the

cell library development process. The design development process is iterative, where

a designer makes adjustments to the design, runs simulations, and makes further ad-

justments. Once the design is finalized, it then undergoes the final verification through

simulation again. By using a fast and approximate predictor, the iteration process can

be expedited, reserving the slow lithography simulation for the final verification stage.

Since the final verification is still guarded by the lithography simulation, any prediction

68

Journey to IEA - The 1st Decade Chapter 2

errors are guaranteed to be detected later. Hence, a prediction error does not translate

into a quality issue but only affects the efficiency of the process.

However, assessing the added-value of using a predictor can be difficult. Even during

the development process, the slow lithography simulation does not need to be applied

to the entire design but only to the local regions currently being modified. In addition,

a prediction error might cause a designer to expend effort on optimizing the design

unnecessarily. Assessing this unnecessary engineering cost is not a straightforward task.

2.6.5 Delay testing

In delay testing, one of the main issues is to decide on the clock frequency used in

testing. Note that this frequency is usually slower than the Fmax. This is because delay

testing applies test vectors structurally through scan structures, not functionally from

the primary input of a chip. Often, the delay test frequency is determined via timing

analysis and further learning from silicon samples. The work in [70] therefore tried to

improve the characterization of delay test frequency through statistical timing analysis.

However, with a statistical timing view, the subsequent works in [71][72] provided an

alternative to look at delay testing from a binary classification perspective. By applying

a test pattern with a faster-than-speed test clock and collecting the result on a set of n

flip-flips, a delay test characterization vector (c1, . . . , cn) could be obtained, where each

ci is either 0 (pass under the clock) or 1 (fail under the clock). Essentially, the idea was

to turn testing into characterization. Then, by characterizing m sample chips, one could

obtain a dataset of m × n characterization matrix. Suppose the pass and fail labels on

these chips could be determined with another more rigorous and expensive test process.

Then, one had a dataset for learning a binary classification model to predict the pass or

fail of a chip based on its characterization vector, bypassing the difficulty for determining

69

Journey to IEA - The 1st Decade Chapter 2

the delay test frequency. The work in [70] used SVM for learning the model and the work

in [72] used random forests [73].

The work in [74] explained the above idea in more detail and suggested to use multiple

faster-than-speed test clocks for the characterization, essentially making the feature vector

go beyond binary. Instead of taking a binary classification view, the work took an outlier

analysis view to remove the necessity of having the pass/fail labels. In this way, an

outlier deemed from a characterization matrix was considered a failing chip. The work

studied three outlier methods: Principle Component Analysis (PCA) based analysis [75],

random forests, and one-class SVM. The works in [76] and [77] later then extended the

idea by optimizing the number of clocks, the test pattern set, and the chip samples in

use for building models and for screening delay defects.

A barrier to adopt a ML model in delay testing is the cost. Traditional delay testing

follows a deterministic process. A test pattern is applied with a test clock. If a chip

fails the test pattern under the clock, the chip is considered as defective. Adopting a

ML model means that the application of a test is treated only as a characterization of

chip’s behavior. To accurately determine the pass and fail of a chip, more characterization

steps are required to enable learning the behavior. While the thinking is not scientifically

flawed, adding even a single additional step can result in doubling the test application

cost, which is practically prohibitive. As a result, it is difficult to adopt the above ML

view in an actual delay test practice.

2.6.6 Circuit behavior modeling

Building a behavior model for a circuit is a common practice. A behavior model can

be simulated faster than simulating the original circuit model. For example, a supplier of

analog products provides behavior models (e.g. equation based models) for their products

70

Journey to IEA - The 1st Decade Chapter 2

to enable a potential customer to assess the functionality of a product in the simulation

environment on the customer site. The works in [78][79] were done in this application

context and the work in [80] applied Gaussian Process regression to learn behavior models

based on SPICE simulation.

Given a circuit, its behavior can be observed by injecting various inputs and obtaining

the outputs through simulation, e.g. SPICE simulation. Hence, creating a training

dataset is straightforwad, and it is intuitive to think about applying ML to build a

behavior model. However, as pointed out in [81], traditional regression modeling may

not be adequate for the application. This is mainly because the input of a circuit is often

represented as a waveform, and similarly, the output is also a waveform. Further, even

a slight change on the input waveform can result in a significant change in the output

waveform. Such type of drastic behavior is usually of interest to engineers, while typical

behavior that conforms to a trend is less interesting. Developing a model to cover all

those corner behaviors can be challenging.

To overcome the challenge, the work in [81] then suggested building a collection of

“micro” models where each micro model covered only a rather restricted input space.

Then, on a given input the most appropriate micro model was used for its prediction.

Accordingly, a method was needed to determine that no micro model was suitable and

hence, the input could be deemed as unpredictable. The intuition for building micro

models was that, within a restricted input space, the input-output mapping could be

more accurately captured with a simple ML model, e.g. a linear SVM model. Moreover,

using a collection of micro models enabled a way to determine that some input sub-spaces

were not yet predictable because of lack of training samples [81].

The thinking for building a collection of simpler but more reliable micro models

exemplifies the point mentioned in Section 1.4.6. In practice, it is desired to build a ML

model for predicting simple and uncommon behavior rather than generalizing to common

71

Journey to IEA - The 1st Decade Chapter 2

trend.

2.7 Lessons Learned from the First Ten Years

The most important lesson learned during the first ten years was that the data-driven

view was not sufficient for applying ML in design and test. In other words, applying ML

in design and test was not as simple as solving a stand-alone ML problem. Consequently,

the period began by taking this simple view, and ending with a view that was much more

complicated. Figure 2.21 to Figure 2.22 illustrates the transition of the view.

Figure 2.21: Seeing a D&T problem as a ML problem

As introduced at the beginning of this chapter, the data-driven view follows a standard

ML practice, i.e. starting with a benchmark dataset that defines the problem. Applying

ML to solve a D&T problem is to formulate the D&T problem in terms of a dataset for

ML. Once the dataset is given and treated as a benchmark, the focus becomes finding (or

developing) the best ML algorithm for learning a model with respect to the benchmark.

The effectiveness of this practice largely depends on the assumption that the dataset is

a benchmark representing the underlying D&T problem to be solved. In reality, this is

rarely the case.

Figure 2.22 depicts a more realistic picture based on what we learned in the period.

First of all, practicing ML in view of a D&T problem needs to consider three important

aspects: (1) data sample sufficiency, (2) behavior complexity, (3) feature space adequacy.

72

Journey to IEA - The 1st Decade Chapter 2

Figure 2.22: Seeing a D&T problem with a more realistic big picture

These three aspects are illustrated as three dimensions in Figure 2.22.

2.7.1 Data wall

It is important to note that for all D&T problems studied in this period, there was a

data wall limiting the sufficiency of data samples. In a D&T environment, data can come

from various sources. For example, production test data usually come from somewhere

in the cloud. It is common that a design company contracts a test service company to

run their test flow. The test data is collected by the test service company and managed

by a separation data organization, e.g. a 3rd-party data service company.

When one desires to use the test data in a certain application context, e.g. yield

optimization, the context-relevant data needs to be downloaded into a local database.

When one desires to conduct a task, the task-relevant data needs to be extracted from

the database. This task-relevant data can be seen as the input to the “learning”. Notably,

73

Journey to IEA - The 1st Decade Chapter 2

this learning may not necessarily be machine learning but could be human learning, i.e.

the learning is manually conducted by human and the knowledge learned stays with the

human. Given the data, a dataset is then created for machine learning.

In a pre-silicon design environment, there can be various types of data: simulation

results, design models, testbenches, design specifications, test plans, bug reports, reports

generated by an electronic design automation (EDA) tool, etc. For tasks involving learn-

ing from data, if this learning was human learning, it could involve any of these data

types. However, if this learning was machine learning, to our experience in this period,

the data mostly referred to simulation results.

Regardless of the application context, a data wall for ML exists because of two aspects

of issues: availability and accessibility. Availability concerns if the data needed to solve

the problem is available or not. Unavailability can be inherent, i.e. for a problem there is

no data containing the information for solving the problem. For example, a future yield

issue might not be predictable by current data because the yield is caused by a process

recipe change. A burn-in fail might not be predictable by wafer probe data because the

fail is caused by unique characteristics in burn-in.

Unavailability can also be due to some barriers in the generation of data. For example,

in a pre-silicon context, limitations such as simulation efficiency and time constraints to

complete a task can restrict the amount of available data. In a post-silicon context,

limitations like data downloading efficiency and time constraints can also impede data

availability. Moreover, both simulation data and production test data are contingent

on the applied tests. Consequently, due to a lack of proper tests, certain interesting

behaviors may never manifest in the data.

Assuming the required data is available somewhere, accessing the data is another

issue. Unaccessibility can be due to lack of the security privilege to access the data or

in some cases, lack of accessing the right personnel to get to the data. Therefore, even

74

Journey to IEA - The 1st Decade Chapter 2

assuming the data is available, it does not imply that the data is always accessible.

2.7.2 Implications of the data wall

Ideally, end-to-end ML would become feasible in D&T application contexts if the

data wall could be pushed to the right end infinitely, i.e. effectively there was no data

wall. However, due to the presence of the data wall, the three dimensions of consider-

ation shown in Figure 2.22—data sample sufficiency, behavior complexity, and feature

space adequacy—all become part of the learning process itself. In essence, learning be-

comes an exploration along these three dimensions, driven by domain knowledge. Note

that domain knowledge can involve knowledge from diverse areas, including knowledge

from the design and design models, from verification practices, from test practices, from

manufacturing process, from company specific operations, and from its business models.

Further, a single area includes diverse knowledge by itself. For example, test practices

can encompass logical testing, delay testing, analog testing, and memory testing etc.,

each associated with its specialized domain knowledge. We characterize this complex

exploration bounded by the data wall as the Choose-and-Bound search earlier in sec-

tion 1.2. In Figure 2.22 here, the Choose-and-Bound search is re-illustrated with a more

complete picture.

It is a common step in machine learning to formulate and prepare a dataset under the

assumption that it represents a problem solvable by applying machine learning. However,

it’s important to recognize that this assumption can often be false. Learning that such

an assumption is false is part of the learning process. For example, when dealing with

a particular behavior of interest, one formulates a particular dataset. However, the

corresponding ML problem might be unsolvable due to either an inadequate feature

space or insufficient data samples. Recognizing and reaching this conclusion requires

75

Journey to IEA - The 1st Decade Chapter 2

considerable effort. Once the conclusion is reached, one might take a step back and

reformulate a different dataset. Alternatively, one might adjust the behavior of interest

to be learned.

2.7.3 Decision chain

Suppose one reaches a dataset and produces an answer (a model, a rule, etc.). This

answer is only locally acceptable from the learning perspective depicted in Figure 2.22.

For the answer to be accepted, e.g. to trigger model deployment or an action, the answer

needs to pass through a decision chain. In some contexts, the decision chain can involve

people in different organizations. Acceptance of an answer depends on four aspects of

considerations: constraints, cost, explainability, and added-value.

For example, a model is only acceptable when it meets a certain constraint. As

reviewed before, a customer return screening model needs to meet the yield budget con-

straint. A burn-in fail prediction model (or Fmax prediction model) needs to guarantee

no miss of any part that may fail the burn-in (no Fmax miss-labeling). These are domain-

specific constraints usually not considered in a standard ML practice.

Cost is another important consideration. For example, in yield optimization changing

the process recipe is quite expensive and hence, can only be done when the evidence is

clear that the yield issue is due to the manufacturing process. In design-silicon correlation,

changing the design is also expensive because silicon re-spin is expensive, in addition to

all the verification cost associated with a change of design. In delay testing, increasing

the test pattern size and/or increasing the number of test clocks represent significant

increase of test cost.

Because the acceptance of an answer depends on people, explainability of the answer

is important. It is hard for people to accept an answer and take an action without a

76

Journey to IEA - The 1st Decade Chapter 2

certain extent of understanding the answer, especially when there is a cost associated

with the answer.

Even an answer is somewhat accepted under all of the above considerations, the an-

swer can still be rejected if its added-value is not evident. In many cases studied during

this period, existing tools and methodologies were already available for addressing the

problems at hand. Therefore, an answer is only deemed valuable if it cannot be obtained

using existing tools and methodologies within a reasonable timeframe. Furthermore,

adopting an ML-based flow often means modifications to existing tools and methodolo-

gies. Without a clear understanding of the added value, it can be challenging to justify

taking such actions.

2.7.4 Decision-Support ML (DSML)

At the end of this period, we could conclude that applying ML in a domain-specific

scope as depicted in Figure 2.22 was fundamentally different from ML. To emphasize this,

we could call the learning in Figure 2.22 Decision-Support Machine Learning (DSML).

In view of the ten points highlighted in section 1.4 before and based on what we learned

in the period, we could say that DSML was to apply (machine) learning with data in an

application context where

� The problem definition is vague to begin with.

� There is no unified objective evaluation for the problem answer.

� The learning is in the form of exploration.

� The learning is to find explainable solution to support decision making.

� The learning includes applying ML and Co-ML.

77

Journey to IEA - The 1st Decade Chapter 2

� The learning cannot be just data-driven and it has to involve domain knowledge.

� The learning can enter a world of no-free-lunch.

� The success of the learning is only when a meaningful action is taken.

2.7.5 Fundamental challenges in DSML

If we were going to use one equation to define DSML, we could say that:

DSML = {ML +Co-ML}∣Domain Knowledge (2.1)

where ∣ stands for “conditioning on”. Then, it is intuitive to see that to develop a

successful DSML solution, in addition to harnessing existing ML capabilities, one needs

to answer four essential questions:

� What is the required Co-ML capability?

� How to implement the Co-ML capability?

� What is the required domain knowledge?

� How to incorporate the domain knowledge in a DSML solution?

Consequently, in the next period our research was driven by this set of questions.

2.8 A Chronological Remark for the First Ten Years

Figure 2.23 depicts the first ten-year period in a chronological view of key ML devel-

opments leading up to the emergence of deep learning, marked by the famous AlexNet

78

Journey to IEA - The 1st Decade Chapter 2

[18] in 2012. It is interesting to see that in the period reviewed above, key ML tech-

niques employed in the studies–such as SVM classification, SVM regression, SVM one-

class, Gaussian Process regression, and CN2 subgroup discovery rule learning, random

forests—all originated around the early 2000s. Hence, they could be seen as state-of-the-

art techniques for ML from a technology consumer’s perspective at the time. Notably,

none of the works in the period involved deep learning. This absence is understandable,

considering that deep learning emerged in 2012, and its widespread applications became

apparent only thereafter.

Figure 2.23: A chronological view of the first ten years (2004-2013)

2.8.1 Further clarification of terms, e.g. “Machine Learning”

Some of the works reviewed in the first ten years was not strictly classified as “machine

learning”. For example, the yield optimization work [9] mostly involved finding statistical

correlations. Outlier analysis mostly involved in finding a low-dimensional test space. In

design-silicon timing correlation, sometime it was sufficient to find a simple decision tree.

In some cases, using a sophisticated learning algorithm like SVM, Gaussian Process, or

random forests, was not necessary. Therefore, some works reviewed above were referred as

79

Journey to IEA - The 1st Decade Chapter 2

data learning rather than machine learning. The term data learning was used to reference

a more general sense of learning from data, which may include statistical learning and

human learning.

As mentioned in section 1.4.4, we use the term machine learning to broadly refer

to a tool or an algorithm that performs learning from data in terms of optimization.

Then, depending on how “optimization” is defined, machine learning can mean differently.

Under one definition, finding the optimal correlation or identifying the best outlier model

might be considered machine learning. However, under a different interpretation, these

tasks may not necessarily fall within the scope of machine learning.

To avoid such a debate, we employ the term DSML, which refers to applying ML for

decision support in view of Figure 2.22. Later in Section 3.12 we will provide further

clarification to differentiate DSML from ML. We will explain that the ML stated in

equation (2.1) above is not with a traditional sense and in Section 3.12, the ML and

Co-ML will be more specifically referred to as ML∗ and Co-ML∗.

Throughout the first ten-year period, the term used was data learning. Towards the

conclusion of this period, the transition to using the term DSML became somewhat ap-

parent. This shift was prompted by the lessons learned, which enabled us to achieve a

clearer understanding of why applying machine learning in design and test was funda-

mentally distinct from conventional ML practices.

80

Chapter 3

Journey to IEA - The 2nd Decade

半畝方塘一鑑開，天光雲影共徘徊。

問渠那得清如許，為有源頭活水來。

Half a mu of square pond, one mirror opens wide.

Heavenly light and clouds’ shadows side by side.

Ask the stream, how it stays so clear?

For there’s a source, where living waters appear.

— 《觀書有感 其一》 朱熹， A poem from Song Dynasty

3.1 Knowledge-Driven View (2014 – 2017)

Although the yield optimization paper [9] was published in 2014, most of the work

was done in 2013. It took more than six months to obtain the silicon results, deploy

the new recipe into the manufacturing process, and finally confirm the removal of the

yield issue in mass production. The work marked the ending of the the first ten-year

period, i.e. the ending of the data-driven view. From the work, it had become clear

that learning from data demanded domain knowledge. As a result, in the next four years

81

Journey to IEA - The 2nd Decade Chapter 3

“applying ML” was seen from a knowledge-driven view, i.e. a DSML view as described

in sections 2.7.4 and 2.7.5 above.

After the tremendous success for resolving the difficult yield issue, the company im-

mediately desired to duplicate the success on yield issues seen on other product lines.

Other companies were also interested in the technology transfer. Often, people asked for

a “tool” that could duplicate the success reported in [9].

In fact, this was not the first time of requests for a tool in view of technology trans-

fer. As reviewed in section 2.1, over the first ten-year period, numerous successes were

reported across multiple practices: design-silicon timing correlation, speedpath analysis,

and functional verification in terms of both simulation efficiency and coverage, among

others. Many sought a replication of these achievements through technology transfer.

However, we could not provide a “tool” to such transfer because these successes were not

solely attributed to the tools in use. In each case, the essential component for success was

“domain knowledge”, predominantly residing in the human mind and not encapsulated

within the tool itself.

3.1.1 Two types of domain knowledge to drive the search

In view of the yield optimization effort reported in [9], Figure 3.1 depicts two types of

domain knowledge. While the concept of domian knowledge itself may seem elusive, its

practical application suggests two types of domain knowledge: one to drive the ML and

the other to drive the Co-ML. (Note: In the figure, “ML” is used to include correlation

analysis, despite some potential interpretations differing from traditional ML definitions).

To drive ML, the knowledge is used to create a dataset and perform correlation

analysis utilizing that dataset. To drive Co-ML, the knowledge is used to decide when

the dataset is inadequate for finding a satisfactory answer, prompting the creation of

82

Journey to IEA - The 2nd Decade Chapter 3

Figure 3.1: Two types of domain knowledge to drive the search

a new dataset. Overall, the domain knowledge is used to drive the Choose-and-Bound

search.

If we were going to provide a piece of software to duplicate the success, we needed to

incorporate a model of the domain knowledge into the software.

3.2 Modeling domain knowledge with an executable

workflow

In a company, it is common to refer to a workflow for task execution as comprising

both tools and methodology. Here, the methodology can be thought of as a flowchart,

while each tool is associated with a specific step in that flowchart. An automation

flow refers to a workflow that can be executed automatically. Therefore, it is intuitive

to consider providing an automated workflow to execute our Choose-and-Bound search

process conducted in the yield optimization work [9]. This thinking requires us to convert

our domain knowledge into an executable workflow. The work in [8] follows this thinking.

The high-level idea behind the work is depicted in Figure 3.2.

As illustrated with Figure 1.13 in section 1.4.4 before, the Choose-and-Bound search

space could be thought of as a collection of datasets. In section 1.4.4, we emphasize that

exhaustively enumeration of all possible datasets is impractical. Nonetheless, at the time

the work in [8] made an attempt to enumerate this search space as much as possible.

83

Journey to IEA - The 2nd Decade Chapter 3

Figure 3.2: Modeling domain knowledge as a workflow based on a plot-based view

Hence, the idea in [8] was to capture the domain knowledge into a workflow model

such that execution of this workflow generated a collection of datasets to be analyzed.

Each analysis went through a “ML” analytic tool and produced the “best” result. Then,

a “Co-ML” step was applied to select which results to report. The core of the analytic

tool in the yield optimization context was canonical correlation analysis (CCA) [83] and

the Co-ML step was based on the risk evaluation method implemented in the work [9].

Further detail for the Co-ML step is provided in Section 3.6.1 below.

3.3 Plot-based analytics

Figure 3.3: Plot-based view to enable definition of primitive analytic steps

An important idea proposed in work [8] can be called plot-based analytics. Although

the concept was initially proposed in [8] and subsequently in [84][85], the specific term

“plot-based analytics” was not explicitly articulated until the keynote presentation in

2020 [86]. Figure 3.3 illustrates the idea. Plot-based analytics conceptualizes the input

for analytics as encompassing all conceivable plots, with the job of the analytics being

to select certain plots for output. From this view, the search space comprises all possible

84

Journey to IEA - The 2nd Decade Chapter 3

plots.

Given that the search space is defined in terms of plots, we can then consider a work-

flow that generates all possible plots derived from the data. Note that this enumeration

of plots implicitly includes enumeration of all possible datasets derived from the data and

hence, can be thought of as obtaining a representation of the Choose-and-Bound search

space for a given task.

Figure 3.4: Plot-based view to enable definition of primitive steps in a workflow [8]

For example, in the yield optimization work [9], the prevalent plots utilized were two-

dimensional scatter plots. Figure 3.4 then illustrates seven facets that might be associated

with a scatter plot [8]. To formulate a specific scatter plot, a definition is needed for each

facet. A step used to furnish this definition can be regarded as a primitive step executed

by a workflow. As a result, the seven facets can be viewed as seven groups of primitive

steps. The definitions of each facet are listed below:

1. Defining the meaning of a dot shown in the plot. For example, a dot can represent

a single part or represent a single wafer.

2. Defining the population of the dots shown in the plot. For example, they are from

a single wafer or from a single lot.

3. Defining the meaning of the x axis. For example, the x axis is based on an E-test.

85

Journey to IEA - The 2nd Decade Chapter 3

4. Defining how the x value is calculated. For example, the value is calculated as the

average across all sites.

5. Defining the meaning of the y axis. For example, the y axis is based on a test.

6. Defining how the y value is calculated. For example, the value is the test value.

7. Optionally, defining how to color a dot. For example, classifying the dots into two

pass and fail and color them differently.

Each group includes multiple primitive steps to provide an executable definition for

the facet. Suppose group i has ni primitive steps. In total, the number of possible plots

that can be generated is bounded by n1 × ⋯ × ni. Note that this bound represents an

estimation because some primitive steps can have a dependency among them, e.g. one

step might only be invoked after another has been previously executed.

3.3.1 Process discovery

Suppose a set of primitive steps are developed and each step is represented as a piece

of Python code so that it is also executable. Then, constructing a plot corresponds to

execution of a sequence of primitive steps. Such a sequence was called hypothesis path or

H-path in [8]. A set of H-paths was called a process log.

Figure 3.5: Summarizing the main idea in [8]

The main idea in [8], summarized in Figure 3.5, was to construct a process log as the

model for past analytic experience and apply process discovery [87][88] on the process log

86

Journey to IEA - The 2nd Decade Chapter 3

to learn a workflow graph. For example, in work [8], a process log was built based on the

procedures detailed in [9], and the learned workflow was then applied to address another

production yield issue.

Figure 3.6: An example to illustrate process discovery [8]

Figure 3.6 shows a simple example to illustrate the basic idea of process discovery.

In this example, the log file contains five H-paths based on primitive steps labeled A to

F. Graph (a) basically depicts each of these H-paths individually within a single graph.

Graph (b) consolidates by merging nodes with identical labels from graph (a). It is

noteworthy that graph (b) contains paths (from START to END) that extend beyond

the original five H-paths. In a sense, graph (b) generalizes from the process log to include

new H-paths.

Generalization was needed because in [8], the goal of obtaining an executable workflow

was to apply it, along with the domain knowledge modeled within, to solve a different

yield issue. The resolution of a new yield issue was unlikely to be the same as that in

[9]. In other words, following each of the H-paths in the process log built upon the work

[9] was not sufficient for resolving the new yield issue. Hence, there was a need for some

generalization to include new H-paths.

87

Journey to IEA - The 2nd Decade Chapter 3

Generalization of a process log aims to encompass a broader search space. However,

an excessive number of H-paths might not be desirable due to the increased costs and

potential irrelevance. Hence, an essential consideration in learning a workflow model

is the trade-off between over-fitting and under-fitting. Over-fitting means little or no

generalization (e.g. graph (a) in Figure 3.6). Under-fitting means excessive generalizing

(e.g. graph (b) in Figure 3.6). Since the primary objective is Generalization, overfitting

is undesirable. However, under-fitting can become problematic if it is not controlled [8].

3.3.2 Prefix constrained merging

The solution to addressing under-fitting lies in imposing constraints on whether node

merging is permissible. Assuming no constraint are imposed on primitive steps to begin

with, any steps with multiple occurrences in the process log can be treated as a single

node in the process graph. To tackle the under-fitting issue, one way is to constrain

which steps are allowed to merge by considering their preceding steps. A prefix rule [88]

can be applied to decide whether two steps with identical names should be represented

with the same node in the process model. Suppose one H-path contains a segment αX

and another H-path contains a segment βX, where α and β each is a sequence of one or

more steps and X is a single step. Given a length requirement i ≥ 0, let αi be the last i

steps in α and βi be the last i steps in β. An i-prefix rule means that the two X steps

would be represented by one node in the process model if αi = βi.

For example, consider two H-paths containing the subsequences “BA” and “CA”,

respectively. Without any constraint, both occurrences of step A would be treated iden-

tically. However, with the 1-prefix rule, the two would be treated as different nodes. For

another pair of H-paths including the subsequences “BDA” and “CDA”, respectively. In

this case, the two occurrences of step A are represented as a single node because for both

88

Journey to IEA - The 2nd Decade Chapter 3

occurrences of A, the preceding step is D. Therefore, it satisfies the 1-prefix rule.

The length of the matching prefix is a variable that inversely controls the degree of

generalization. To demonstrate this idea, the graph (c) in Figure 3.6 shows a construction

based on the 1-prefix rule. Compared to graph (a) which produced 22 new H-paths, the

1-prefix graph (c) only includes two new H-paths, BCF and ABCDF, highlighted in two

different colors.

3.3.3 An application example

Figure 3.7: Illustration of the issue yield addressed in [8]

The yield issue addressed in [8] is illustrated in Figure 3.7 and is described as follows.

The product was an automotive part that operated in the 76-77 GHz band allocated

for vehicular radars on an unlicensed basis (see e.g. FCC page [89]). To meet the

specification, packaged chips were tested under cold temperatures, operating at 76 GHz,

and under hot temperatures, operating at 77 GHz. In both conditions, the voltage

required to drive the oscillator was measured. Upper and lower limits were set for the

measured voltage during hot and cold testing, respectively. The yield issue arose from

an unexpected drop in yield, which was observed in some assembly lots during the cold

and hot temperature tests.

Final test data was originally organized by assembly lots. Using each chip’s ECID

89

Journey to IEA - The 2nd Decade Chapter 3

(Electronic Chip ID), the data was then reorganized into their production lots. In total,

there were 175 wafers arranged by their production lots. Figure 3.7 shows wafer-to-wafer

variations of the test values at cold and hot temperatures. In the figure, two vertical bars

are depicted for each wafer, denoting the cold (blue) and hot (red) results, respectively.

Each bar shows the range of measured values obtained from dies on the corresponding

wafer. This range spans from µ − σ to µ + σ where µ stands for the mean and σ stands

for the standard deviation. Additionally, the upper and lower limits are shown as two

horizontal green dashed lines. As seen, hot values exhibit a more frequentl drift beyond

the limit compared to cold values.

Based on the past work in [9], a process log with 39 H-paths was constructed. Process

discovery was applied to learn a workflow model based on an i-prefix rule. Table 3.1 shows

the number of H-paths included in the resulting model for each of the i-prefix rule, for

i = 0, . . . ,6.

i-prefix rule, where i = 0 1 2 3 4 5 6
Number of H-paths 98990 1271 160 63 53 42 39

Table 3.1: Number of H-paths included in the learned model for each i-prefix rule [8].

As seen in the table, the number of H-paths can significantly decrease as i increases.

In practice, one may desire to start with a large i-prefix rule to produce analytic H-paths

closely resembling those already present in the log. Subsequently, as resources allow, one

could explore H-paths generalized from smaller i-prefix rules.

It is important to note that in process discovery, the H-paths produced by a larger

i-prefix rule are always contained within the H-paths produced by a smaller i-prefix rule,

i.e. if Pi is the set of H-paths for i-prefix, then Pi+1 ⊆ Pi. Figure 3.8 shows the process

model learned using the 2-prefix rule [8]. Under this model, recall that an H-path is a

sequence of multiple primitive steps, each generating a plot in order.

Figure 3.8 highlights two H-paths within the model. The first, highlighted in green,

90

Journey to IEA - The 2nd Decade Chapter 3

Figure 3.8: The process learned from the work in [9], reported in [8]

is the H-path generating several meaningful plots initially reported in [9]. The second

highlighted H-path is a generalized path identified by the process discovery. This H-path

was never used in the analytic work reported in [9]. However, it is important to note

that this H-path is only included when i is at most 2 according to the i-prefix rule. With

the 2-prefix model, there are 121 (= 160 − 39) new H-paths to explore. The highlighted

H-path results in two findings, marked as B1 and B2 in the model. These findings are

shown in Figure 3.9, and their meanings are explained below.

Figure 3.9: Findings to explain the yield issue in Figure 3.7, reported in [8]

Before conducting the cold/hot final test, the frequency of the on-chip oscillator was

91

Journey to IEA - The 2nd Decade Chapter 3

measured at room temperature. Then, the oscillator underwent a tuning process known

as a trim process, which is standard for components such as an oscillator. The trim count

was treated as a different test value. The left plot of Figure 3.9 shows the result from

stage B1, where test-to-test association was analyzed. In this plot, each dot represents

a part. It shows an association between the trim count and the hot test with a high

confidence, indicating that parts failing the hot test had a high trim count.

In stage B2, the right plot of Figure 3.9 was obtained, showing a strong correlation

between the room temperature frequency test and a process parameter C. We knew that

trim count was related to the room temperature frequency test, with higher frequency

implying a higher trim count. Consequently, based on both figures, we could conclude a

possible resolution to the yield: pushing parameter C to the right corner. This adjustment

could effectively reduce the trim count and mitigate the occurrences of parts failing the

hot test.

3.4 Learning Domain Knowledge in Functional Ver-

ification

In addition to learning a yield optimization workflow model [8], the process discovery

approach also found application in functional verification. Specifically, the work in [10]

applied an improved approach called constrained process discovery in the context of func-

tional test generation. The goal was to produce functional tests that were challenging to

obtain using other existing approaches. The approach was useful in the area of security

verification (e.g. verifying the security features of an SoC) where it was usually difficult

to construct penetration tests capable of exposing unspecified design spaces within a se-

curity design. In-depth domain knowledge of both the design and the security features

92

Journey to IEA - The 2nd Decade Chapter 3

was often required to develop the penetration tests that could successfully expose system

vulnerabilities.

This work was therefore motivated by the observation that developing successful

penetration tests was challenging in practice, and this challenge could be viewed in two

aspects. Firstly, there was often a deficiency in domain knowledge necessary for writing

a penetration test. This knowledge gap might manifest in various scenarios, such as a

security specialist lacking familiarity with the design or a verification engineer lacking

insight into security features. Secondly, there existed a scarcity of personnel possessing

the requisite domain knowledge. If only a handful of people were proficient in writing

penetration tests, scaling up the practice to obtain a large collection of such tests could

be difficult.

The approach to overcome the challenge was to learn from the test examples written

by an expert. After the learning, the model was able to produce tests resembling those

crafted by the expert. The clear advantage of this approach lay in its ability to effectively

“clone” the domain knowledge of an expert, making this knowledge readily accessible for

test generation at any time. Consequently, a greater number of tests could be obtained

within a specified timeframe, thereby boosting the productivity of security verification

efforts.

Without loss of generality, the work in [10] considered each expert’s test as a C

program. To learn from a set of C programs, one needed a way to represent the programs,

as this formed the basis of the learning process. Similar to the approach in [8], where an

analytic path was modeled as a sequence of primitive steps, [10] represented a C program

using a set of primitive transactions. These primitive transactions can be conceptualized

as parameterized scripts capable of generating specific pieces of C code when invoked. In

practice, these primitives served as a TPI (Test Programming Interface) for a person to

write direct tests.

93

Journey to IEA - The 2nd Decade Chapter 3

3.4.1 Relation to grammatical inference

With the primitives defined, a direct test was represented symbolically. Similar to

that in [8] for representing an H-path, a test could also be represented as a sequence of

steps, e.g. [A,B,C,. . .]. Then, each test could be viewed as a “sentence” example derived

from an unknown formal language, as described in the field of formal language theory [90].

In other words, primitives were seen as words of the unknown language. Then, methods

from grammatical inference [91] could be applied to discover an automata model, such

as a finite automato, to describe this language based on a given set of examples.

The learnability problem in grammatical inference asks whether a model could be

learned with a finite number of samples. In this context, two types of samples are defined:

in-model samples, which comply with the model (i.e. the language) being learned, and

out-model samples, which do not comply with the model. The main result of [92] points

out that if only in-model samples are available, the only learnable class is the set of

finite-length languages, i.e. there is a bound on the maximum length of a sentence.

If both in-model and out-model samples are both available, then all classes up to the

Context-Sensitive grammar in the Chomsky Hierarchy can be learned [90].

Since the work [92], the learnability of a finite automaton has been among those that

received the most attention [93]. Later, process discovery emerged as a separate field,

primarily targeting business applications [94]. In this context, a process model is derived

from an event log that records instances of business transactions. In process discovery,

a common representation for the process model is Petri Net [94], wherein the graph

model allows loops and concurrency. Notably, learning such a process model is as hard

as learning a finite automaton.

Process discovery and the approach in [10] had fundamentally different objectives.

Process discovery was for discovering business intelligence from event logs. Hence, it

94

Journey to IEA - The 2nd Decade Chapter 3

was important for the learning model to be interpretable, i.e. simplicity of the model to

enable visualization was a key consideration. The work in [10] was for test generation,

where it was not necessary to condense all learned information into a single interpretable

process model. This difference enabled the developmemt of the novel constrained process

discovery approach.

The work in [10] considered only in-model samples, i.e. tests that were meaningful in

view of the verification. As a result, only finite-length language models were learnable.

The work also excluded loops and concurrency in the model and otherwise, the learning

would be too difficult to pursue.

3.4.2 Constrained process discovery

Figure 3.10: Constrained process discovery for functional test generation in [10]

Figure 3.10 illustrates the constrained process discovery approach. The approach

splits the learning into two parts: (1) learning an upper-bound model, and (2) learning a

set of constraints.

The goal of an upper-bound model is to capture a bound on the space of all possible

tests such that a desired test is ensured to fall within this space. However, due to its

nature as an upper bound, the model can include many undesirable tests. To address this

issue, a separate constraints database is maintained to impose constraints between and

95

Journey to IEA - The 2nd Decade Chapter 3

among primitives. In the methodology outlined, constraints are learned independently

of the process learning. Then, for test generation, the upper-bound model and the

constraints from the database are combined to formulate a constraint solving problem.

Each solution to this problem correspondes to a viable test. In this work, a Boolean

satisfiability (SAT) solver [95] was used for the constraint solving.

The approach enabled a desirable feature in the context of the verification: The

constraints database served as an innate repository for accumulating and disseminating

verification knowledge. This knowledge could be added manually, based on previous

learning sessions, or based on a separate constraint discovery method. With the incor-

poration of additional constraints, the test space was constricted, thereby enabling the

generation of more targeted and focused tests.

3.5 Three Challenges Motivating Language-Driven

Analytics

The process discovery approaches [8][10] for learning domain knowledge into a process

model encountered three fundamental challenges:

Completeness The first challenge concerns the completeness of the set of primitive

steps. The effectiveness of the approach depends on this completeness. Developing

a comprehensive list of primitive steps demands extensive domain experience and

deciding its completeness can be an open-ended issue.

Abstraction The second challenge concerns the right abstraction level to define prim-

itive steps. In [8], the primitive steps were defined at a rather detailed level for

constructing a plot. In practice, an investigation might involve a sequence of plot

types, one after another, to reach a finding. Using low-level primitive steps to

96

Journey to IEA - The 2nd Decade Chapter 3

model such an analytic path can be tedious. Applying learning with a log based on

these low-level steps might be inefficient. In [10], the primitive steps were defined

at a transaction level. This limited the test generation from reaching a test that

requires modifications of a transaction.

Recognition The third challenge concerns recognizing the meaningfulness of the in-

stances generated from a process model. In [8], this challenge involved selecting

meaningful plots in view of plot-based analytics depicted in Figure 3.3. While the

approach in [8] generated a comprehensive search space for exploring the data, it

did not address the issues of automatically selecting plots for output. To automate

a plot-based analytic workflow, a separate component is needed, which should be

capable of determining the meaningfulness of a plot and selecting interesting plots

for output. In [10], the meaningfulness of a generated test could be determined

through simulation and in this sense, the issue might be less severe than that in the

plot-based analytics context. Nevertheless, the meaningfulness of generated tests

from a model depends on the constraints stored in the constraint database. As a

result, this aspect of challenge is still reflected in the recognition of the usefulness

of the stored constraints.

The original proposal of the Intelligent Engineering Assistant (IEA) in [84] tried to

address some of these challenges, particularly focusing on the third challenge in view

of the plot-based analytics. However, a solution addressing all three challenges was not

realized until the work presented in [96], where the idea of language-driven analytics was

proposed. Language-driven analytics will be discussed in detail in Chapter 5.

97

Journey to IEA - The 2nd Decade Chapter 3

3.6 Co-ML Capabilities

As discussed with Figure 3.1 in section 3.1.1, two types of domain knowledge can

be considered: one to drive ML and the other to drive Co-ML. The process discovery

approaches reviewed earlier in [8] and [10] were primarily geared towards modeling the

first type of domain knowledge. Specifically, they operated in the context of test data

analytics and functional verification, respectively.

The “recognition” challenge, as highlighted in section 3.5 above, can be considered

part of the challenges associated with modeling the second type of the domain knowledge.

Specifically, recognizing whether an output is meaningful includes some Co-ML capability

of determining the acceptability of an answer. As mentioned earlier, the challenge was not

completely addressed until the proposal of language-driven analytics in [96]. Nevertheless,

in this period (2014-2017), two methods were developed for Co-ML, each tailored to

a specific context. In the context of correlation analysis, a method was provided to

determine “no correlation” [9]. In the context of outlier analysis, a method was provided

to determine “no outlier [11]. Below, we will review both methods and their thinking..

3.6.1 Showing “no correlation”

When adjusting a process parameter to improve yield, it is important to show that

the adjustment, while solving one yield issue, is unlikely to cause another issue [9]. One

type of the evidences is to show that the target E-test parameter to be adjusted has “no

correlation” to the failure types that are not currently under concern. The work in [9]

developed a risk evaluation method to provide this type of evidence.

The essence of risk evaluation is to show that an E-test parameter and a failure type

is likely to be statistically independent. A well-known method for assessing statistical

independence is the Canonical Correlation Analysis (CCA) [83]. CCA finds the maximum

98

Journey to IEA - The 2nd Decade Chapter 3

correlation between two random vectors across all possible linear transformations of them.

The more complex version, the kernel CCA (KCCA), applies the so-called “kernel trick”

[97] to extend CCA to consider non-linear transforms.

However, KCCA is not very useful in practice. Given a kernel function that is complex

enough, KCCA can always find a mapping to over-fit the data such that the resulting

correlation is 1.0 [98]. To resolve this issue, the work [9] adopted a different implemen-

tation based on the idea in [99]. The idea was to approximate KCCA (A-KCCA) by

running kernel Principal Component Analysis (KPCA), followed by regular CCA on a

dataset transformed with the first C principal components. With C = 0, A-KCCA be-

comes regular CCA. This setup allowed sweeping the number of principal components,

thereby incrementally increasing the model complexity for finding the correlation.

Figure 3.11: A-KCCA risk evaluation on a target process parameter PP [9]

Figure 3.11 shows an example of A-KCCA risk evaluation. In this example, we

evaluated the risk of adjusting a process parameter PP by assessing the dependence

between the value of PP and the number of failures from different test bins (each bin

categorizes a type of failure). Initially, the complexity control C is swept from 0 until the

correlation with at least one of the test bins becomes high, say above a threshold of 0.6.

In this case, the A-KCCA correlation on Bin 31 jumps above 0.6 when C = 17. Then,

99

Journey to IEA - The 2nd Decade Chapter 3

based on a higher complexity of C = 50, the A-KCCA correlations to different bins are

shown in the left plot of Figure 3.11. As seen, even with this high complexity, only Bin

31 stands out. Thus, Bin 31 is considered as the risky bin. Others are considered not

risky because even with a high complexity assumption, their correlations are still below

the threshold.

The next step is therefore to visually inspect the risk on Bin 31. Bin 31 had only 1

test and the risk inspection on this test is shown in the right plot of Figure 3.11. The

plot shows a scatter plot where each dot is a wafer. Let M be the average of test values

across dies on a wafer. The y-axis indicates the wafer’s M value and the x-axis shows

the average PP value across sites on a wafer. The plot shows that the adjustment of PP

has a minimal impact on the test value distribution, as it remains distant from both the

upper and lower test limits. Hence, even though adjusting PP may somehow affect the

test result, the risk would be very low.

In essence, the idea behind the A-KCCA method is as follows: Showing “no corre-

lation” means to show that the A-KCCA correlation falls below a predefined threshold

(e.g., 0.6), while adhering to a specified complexity bound. The essence lies in devising

a method for measuring complexity, such as the number of kernel principle components

used in this case. Although it might be impossible to assert that a dataset contains no

answer, we could say that a dataset contains no target answer (e.g. exceeding a threshold)

that is not overly complicated (e.g. below a complexity level).

3.6.2 Showing “no outlier”

As discussed in Section 1.3.3 earlier and further elaborated in Section 2.5, outlier

analysis can be quite subjective and over-fitting a model can be a common occurrence.

Consider a scenario where a known failing part p (e.g. a customer return) and a list of

100

Journey to IEA - The 2nd Decade Chapter 3

wafer probe tests t1, . . . , tn are provided. One asks the question: on which 2-dimensional

test space, based on titj, does the failing part p appear as a wafer-based outlier? Ad-

dressing this question involves considering n(n−1)
2 test spaces.

A simple answer is to choose an outlier method and find the test space where p is the

most outlying die on the wafer. However, as discussed before, being the most outlying die

does not mean the outlier model is justifiable. Instead, based on the outlying property,

the test spaces can be ranked accordingly. Then, one may need to systematically justify

them from the top of the list, one by one, until a satisfactory test space is found.

A Co-ML method in this context is the capability to assert that a given test space

contains “no outlier”. This assertion should be independent of the subjective threshold

used to calculate the outlying property in the justification process. As a result, for a

high-ranking test space—signifying a greater degree of outlying behavior—if it is deemed

to have “no outlier” by the separate Co-ML method, then there is no need to pursue

further justification. Ideally, the Co-ML method can eliminate many test spaces in the

search space, thereby reducing both the efforts in search and outlier model justification.

This was one of the motivations for work [11] that proposed a method for asserting

that a given test space contained no outlier. The essence of the method lies in a concept

called consistency check. The check is based on the assumption that outlier decision

on one wafer should be consistent with outlier decisions on other wafers. For a test

value, instead of calculating one outlier score per die based on the wafer it locates in,

a vector of outlier scores are calculated based on a set of other wafers. At the high

level, we say a given threshold to classify one die as outlier and the other die as inlier is

consistent, if the outlier scores for the two dies across a set of wafers do not violate these

classification decisions. Given n dies with n outlier score vectors calculated (each vector

has m dimensions where m is the number of wafers), the method searches for a minimum

threshold such that the threshold is consistent across the n vectors. On a test space, if

101

Journey to IEA - The 2nd Decade Chapter 3

no die can be deemed as an outlier according to the minimum consistent threshold, then

the test space is asserted to have no outlier [11].

Figure 3.12: Many tests showing no outlier based on the minimum consistent threshold [11]

For example, Figure 3.12 shows the number of outliers identified by the minimum

consistent threshold for each test based on the Dynamic Part Average Testing (DPAT)

method [100]. Notice that many tests in Figure 3.12 shows no outlier, i.e. no die screened

by using the minimum consistent threshold. Most of them have a small number of outliers

screened out by the minimum consistent threshold. In customer return analysis, if the

returned part is not identified as one of the consistent outliers, then there is no need

to consider the corresponding test spaces. Hence, the method can effectively eliminate

many tests from consideration in a customer return analysis case.

3.7 Monomial Learning

Discussion in Section 2.2.6 with Figure 2.6 illustrates a special case of monomial

learning where there is only one positive sample. Monomial learning can be seen as

learning a simple form of Boolean function. Learning a Boolean function in general is

discussed in computational learning theory (CLT) [56].

102

Journey to IEA - The 2nd Decade Chapter 3

Given n Boolean features f1, . . . , fn, a monomial is a conjunction of some features. The

Boolean hypothesis space contains 2n hypotheses, including the empty hypothesis with

no feature. To the extreme, given n Boolean features and without any constraint, the

Boolean hypothesis space contains all 22
n
Boolean functions. In CLT, a hypothesis space

is usually specified with a representation. For example, a k-term DNF (disjunctive normal

form) restricts the functions to those representable with the sum of k monomials (product

terms). Restricting the hypothesis space does not necessarily avoids the computational

hardness, though. For example, learning DNF formulas is as hard as solving a random

K-SAT problem [101]. Even for k = 3, the DNF learning problem remains hard [56], in

the sense that it is hard to find a polynomial-time algorithm unless RP = NP (note: P

⊆ RP ⊆ NP [102]).

Due to the computational difficulties discussed in CLT, learning with a dataset based

on Boolean features in practice (e.g. Figure 2.6) is often restricted to monomial learning.

This is because from the perspective of CLT, monomials are efficiently learnable [56].

However, this does not imply that monomial learning is easy from a practical point of

view.

To explain this point in a simple way, suppose the training samples are generated

based on uniformly random sampling. Suppose the true answer is the monomial with j

features for a large j. It is possible that no positive sample is generated in the training

samples, i.e. the output labels across all samples are zero — they are all negative sample.

Learning from such a dataset would result in a model where f() = 0, simply the constant

0. From the CLT perspective, f() is a good answer because the error probability for

any randomly drawn sample remains low. However, in practice a constant 0 most often

means the learning has failed.

While a model that gives a small error probability is considered a good model from the

viewpoint of CLT, merely considering the error probability is not sufficient in practice.

103

Journey to IEA - The 2nd Decade Chapter 3

Often, one desires to learn the monomial that represents the underlying cause for the

observed behavior. And as discussed before, this learning can be based on only one or

few positive samples, making the learning problem more challenging. In fact, if there is

only one positive sample and many negative samples, finding the shortest monomial is

NP-hard [103].

3.8 Uniqueness in View of Occam’s Learning

The work in [12] proposed a tool called VeSC-CoL (Version Space Cardinality based

Concept Learning) [104] to address the practical challenges with monomial learning. The

core idea can be stated as the following: Find the simplest monomial that fits the data

(Occam’s learning) while the monomial is also the unique answer at that complexity

level (the uniqueness requirement). To justify the Occam’s Razor principle in machine

learning, the author in [105] already suggested that the simplest model was better because

the model was more likely to be unique. In other words, it would be computationally

harder to find another answer with the same complexity which could also fit the data.

Hence, instead of implicitly hinted by adopting an Occam’s learning approach, the idea

proposed in [12] is to make the model uniqueness an explicit requirement for the learning.

The VeSC-CoL tool is built upon Boolean Satisfiability (SAT) solving, achieving this by

encoding a given monomial learning problem into a SAT problem [12][104].

3.8.1 A Co-ML view of monomial learning

Based on the VeSC-CoL tool, the work in [12] suggested a solution to solve the special

monomial learning problem in practice, particularly when only one or few positive samples

are available. The solution is illustrated in Figure 3.13.

Based on the one or few positive samples, a hypothesis space is formed. For monomial

104

Journey to IEA - The 2nd Decade Chapter 3

Figure 3.13: Solving the monomial learning problem in practice, as suggested in [12]

learning, this hypothesis space essentially is a Boolean lattice contains all 2n monomial

based on n Boolean features (see e.g. example in Figure 2.6). This hypothesis space can

be divided into n levels of complexity. The ith level contains monomials with length i,

i.e. with i features. First, a complexity bound is imposed to eliminate all hypotheses

whose complexity is higher than the bound and treat them as practically unacceptable

answers. For example, for any monomial whose complexity is higher than level 3, i.e.

i ≥ 3, is treated as unacceptable. This is usually a reasonable assumption as a complex

answer is more difficult for people to accept (see discussion in Section 1.4.5).

It is interesting to note that, in view of the discussion with Figure 2.22 in Section 2.7

before, while the decision chain complicates the search for an acceptable answer in one

way, it can also simplify the search space in another way. The complexity bound, arising

from practical considerations in the context of monomial learning, helps eliminate a

significant portion of the search space in the Boolean lattice, thus exemplifying this

simplification.

For hypotheses whose complexity falls within the bound, we search for an answer

with the lowest complexity. This process can be viewed as a sweep from complexity 1

downward, level by level, until we reach a hypothesis that fits the training dataset. In

105

Journey to IEA - The 2nd Decade Chapter 3

Figure 3.13, this hypothesis is found at level i+1. Note that in the implementation of the

VeSC-CoL tool, this search was achieved by SAT solving. Finding the lowest-complexity

monomial answer that fits the data follows the Occam’s learning principle.

The VeSC-CoL tool has two ways to reach the conclusion that a given dataset is

insufficient for solving the monomial problem, essentially achieving a Co-ML capability.

First, if a monomial answer is found within the complexity level, the tool proceeds to

check if the answer is unique. If the uniqueness is confirmed, the answer is accepted. If

not, the answer is rejected, and the monomial learning problem is considered unsolvable

with the dataset. Second, if no fitting hypothesis within the complexity bound is found

in the first place, the problem is also considered unsolvable.

3.9 Local No-Free-Lunch (L-NFL)

No-free-lunch situations, as pointed out in Section 1.4.9 before, can happen when

analyzing or modeling data from design and test processes. During the first decade

of works reviewed in Chapter 2, no-free-lunch was not yet a main subject of concern.

However, in the following decade it became apparent that accounting for no-free-lunch

was imperative when implementing a practical solution.

Figure 3.14: A no-free-lunch situation in the context of outlier screening

106

Journey to IEA - The 2nd Decade Chapter 3

In the context of outlier screening, the concern for no-free-lunch is apparent, as illus-

trated in the example in Figure 3.14. The left plot shows the minimum and maximum

test values for a particular test, across the first 100 wafers ordered chronologically. Note

that the minimum and maximum test values on each wafer were calculated based on all

the dies passing the test. There was a CQI (customer return) and based on the plot,

the CQI could be seen as an outlier in the sense that its test value did not follow the

min/max trend. A threshold could be set to screen out future dies behaving similarly to

this CQI on the test.

However, the right plot shows what happens on the subsequent 500 wafers after the

first 100 wafers. As depicted in this plot, outliers seen within the first 100 wafers no

longer appear to be outliers when considering the perspective of the subsequent 500

wafers. Again, note that the minimum and maximum test values in the right plot were

also calculated based on all the dies passing the test.

Figure 3.15: Local No-Free-Lunch (L-NFL) when learning from production data

Figure 3.15 illustrates the situation in general which can be called local no-free-lunch

(L-NFL) [31]. In a process, in this case a chip production process, a model learned from

the initial set of data (L) might or might not be applicable to the future data (L′). A

L-NFL situation means that the behavior of the unseen data is not predictable based on

learning from the seen data, i.e. “L-NFL: Unseen = Unpredictable”.

Even though L-NFL was not a focal point until the second decade of the journey to

IEA, it had already been an issue encountered in the context of Boolean learning in an

107

Journey to IEA - The 2nd Decade Chapter 3

early work [55]. This work tried to learn an abstract design model based on the input-

output simulation samples from a given design. Table 3.2 shows a simple example to

illustrate the point.

Table 3.2: A simple Boolean learning L-NFL example
x1 x2 x3 y
1 1 1 1
1 0 1 1
0 1 1 1
0 0 1 1
0 0 0 0
0 1 0 0
1 0 0 0
1 1 0 ?

The learning problem is based on a Boolean function with three inputs, x1, x2, x3 and

one output y. There are 8 possible input values where the data provides the output

values on 7 of them already. The task is to learn a model to predict the unknown output

value denoted by a question mark in the last row, corresponding to the input “110”.

If we assume that a simpler model is better (i.e. Occam’s learning), then we would

choose the model fa(x) = x3 which will output “y =0” as the answer for the input “110”.

However, the true answer can be fb(x) = x3+x1x2 which will output “y =1” as the answer

for the input “110”. Both models have zero error rate based on the samples in Table 3.2.

Thus, without an acceptable assumption to choose between the two models, we simply

would not know which one should be used. From the L-NFL perspective, both answers

are possible and hence, the data is simply insufficient for answering the question.

As an early attempt to mitigate the L-NFL issue, the work in [55] used Ordered Binary

Decision Diagram (OBDD) [106] as the representation for a Boolean function and used

the OBDD size as a regularization objective in the learning. In other words, the OBDD

size was kept as small as possible when the OBDD was used to fit the training samples.

108

Journey to IEA - The 2nd Decade Chapter 3

The OBDD-based regularization helped learn a good model, yet this model was never

100% accurate [55]. At that time, the L-NFL issue had never been explicitly addressed.

3.9.1 Model applicability in view of L-NFL

The work [31] in 2017 explicitly addressed the L-NFL issue in the context of outlier

analysis for defective part screening. The main idea, illustrated in Figure ??, was to

develop a method for measuring the applicability of an outlier model. Given a model M

and a piece of data D, applicability is to ask whether or not M is suitable to be applied

on D.

Figure 3.16: Measuring applicability of an outlier model

A key observation made in [31] was that a learning model was always associated with

an implicit assumption. To implement an applicability measure, one needed to find a

way to evaluate the data against this assumption. In the context of outlier screening, the

work in [31] found that methods commonly practiced in the industry implicitly followed

an Gaussian assumption. Figure 3.16 summarizes the key observations.

At the high leve, the finding is that an outlier method transforms each test values into

an outlier score following the assumption that the outlier scores should form a Gaussian

distribution. It is then based on this assumption, a threshold is set to screen out outliers.

The Gaussian assumption is the key for a practitioner to more intuitively capture the

meaning of a threshold, e.g. a 6σ threshold. Based on this observation, the work in [31]

then developed an applicability measure statistically, based on which a methodology was

109

Journey to IEA - The 2nd Decade Chapter 3

implemented to accomplish two tasks: (1) For a given set of outlier models for a given

wafer, decide if there is any model applicable to the wafer, and (2) If there is, then decide

which model is the best.

It is interesting to note that the idea of model applicability was also considered in

another work [81] in the context of circuit behavior modeling (reviewed in Section 2.6.6

before). The mirco-modeling approach suggested in [81] aimed to capture a sub-input-

space wherein predicting the output is possible, thereby avoiding the challenge of making

predictions outside the space.

3.9.2 A remark on the concept of over-fitting in DSML

Suppose in ML, the true answer to be learned is a function f(x) and the learning

yields a model h(x) to approximate this function. In ML, the concern is usually how

close h(x) is to f(x). This closeness is often measured in a probabilistic sense. For

example, for a sample randomly drawn from the input space (or produced by a data

generator G following a certain probabilistic distribution), the expected error Err(h, f) =

EXP (f(x) ≠ h(x)) can be an inverse measure for the closeness.

Consequently, the optimization in ML is to find a model h(x) as close as to the

function f(x). Since f(x) is unknown, the optimization objective cannot be formulated

based on f(x) directly. Instead, it must be based on a set of samples in the dataset. It

is important to note that in ML, achieving strict equality between h and f , i.e. h = f ,

is not necessary for success. Rather, in a sense, the extent of success is gauged by the

probabilistic performance of h in approximating the behavior of f .

Because learning is carried out on the samples in a given dataset D, the main concern

in ML is over-fitting. Over-fitting can be illustrated as Figure 3.17 in view of model

complexity [46]. In ML practice, over-fitting is often explained with two error rates in a

110

Journey to IEA - The 2nd Decade Chapter 3

Figure 3.17: Over-fitting illustrated in terms of model complexity

cross-validation setting. Let D and D′ denote a training dataset and a validation dataset,

respectively. For a given hypothesis h, let EmErr(h, dataset) be an error function to

report an empirical error rate when applying h onto a dataset. Let the training error

rate be eT = EmErr(h,D) and validation error rate be eV = EmErr(h,D′). In ML, a

learning algorithm operates solely on D. Hence, while the algorithm can try to improve

on eT , it remains unaware of the potential outcome for eV .

To fit the dataset D better, a more complex model is picked. In this case, the

learning process can be viewed as moving to the right along the x-axis in Figure 3.17.

In optimization, this corresponds to minimize the fitting error. As shown in Figure 3.17,

this minimization alone is problematic: As the model complexity continues to increase,

while eT continues to approach zero, the difference between eT and eV will continue to

increase. In other words, eT is no longer a good “tracker” for eV . The situation where

eT deviates from eV , is called over-fitting from the perspective of Figure 3.17.

In view of the DSML discussed with Figure 2.22 before, the scenario shown in Fig-

ure 3.17 is not likely to instantiate in practice. This is mainly due to the existence of

data wall discussed in Section 2.7.1. Because of the data wall, cross-validation is not

practically feasible in a DSML context. Consequently, the traditional ML perspective on

over-fitting depicted in Figure 3.17 is no longer applicable for signifying over-fitting in

111

Journey to IEA - The 2nd Decade Chapter 3

DSML practices. A more applicable perspective in DSML is illustrated in Figure 3.18.

Figure 3.18: Illustration of Occam’s learning in DSML

In this view, ML starts with a total hypothesis space assumptionH. Samples in a given

dataset D are used to filter out hypotheses in H which are inconsistent with the dataset.

What remains is a set C of consistent hypotheses, i.e. they are competing hypotheses that

explain known observations equally well. To avoid over-fitting, with traditional Occam’s

learning, it tries to pick the “simplest” model from C.

In Figure 3.18, a given hypothesis space assumption is divided into two sets: the set C

of consistent hypotheses and the set C̄ of inconsistent hypotheses. If ∣C ∣ = 0, this is called

under-fitting, i.e. no hypothesis can fit the data. If ∣C ∣ > 1, this is called over-fitting,

i.e. many hypotheses can fit the data. In ML, the starting H is usually complex enough

to ensure the existence of at least one hypothesis for fitting the data. As a result, it is

almost certain to have the situation where ∣C ∣ > 1. To resolve an over-fitting situation,

Occam’s learning is therefore applied to pick the simplest one as the best hypothesis.

112

Journey to IEA - The 2nd Decade Chapter 3

3.9.3 The meaning of Occam’s learning in DSML

In DSML, both under-fitting and over-fitting are not desirable. The desirable situa-

tion is ∣C ∣ = 1 and is called just fitting [12]. This is similar to the uniqueness requirement

discussed above in Section 3.8.

In view of Figure 3.18, Occam’s learning has a different meaning in DSML than

that in ML. As mentioned above, Occam’s learning in ML can be seen as finding the

simplest hypothesis in C. In DSML, both under-fitting and over-fitting are considered

not successful and the learning is to seek a just-fit model. As a result, Occam’s learning

in DSML means to search for the simplest hypothesis space assumption to achieve just-

fitting, i.e. there exists one just-fit hypothesis in an assumed hypothesis space.

Figure 3.19: “Learning” in traditional ML vs. “learning” in DSML

Figure 3.19 shows the difference between DSML and ML from the perspective of learn-

ing. We can say that “learning” in traditional ML is to find the best hypothesis in a given

hypothesis space assumption. “Learning” in DSML focuses on finding and justifying a

hypothesis simultaneously. The justification is done by ensuring the just-fitting property.

Because the just-fitting property of a hypothesis can only be evaluated with respective

to a given hypothesis space assumption, the learning cannot be just about searching for

a hypothesis. As a result, the learning has to include a search for the hypothesis space

assumption, constrained by the just-fit requirement. The hypothesis space assumption is

113

Journey to IEA - The 2nd Decade Chapter 3

then used to justify the found hypothesis by showing just-fitting. With Figure 3.19, we

see that the so-called “learning” in ML takes place across hypotheses, i.e. at hypothesis

level. In contrast, the “learning” in DSML takes place at the level of hypothesis space

assumption.

Specifically, consider a triple (h,H,D) where D is a given dataset, H is an assumed

hypothesis space, and h ∈ H is a hypothesis fitting D. In ML, H is assumed and fixed

before the learning (e.g. H is the total hypothesis space assumption H mentioned above).

D can grow to be extremely large. The goal is to find the best h fitting D according to

Occam’s learning. In DSML, D is limited by a data wall. Just-fitting for a hypothesis is

a requirement. The goal is to find the hypothesis space assumption H.

Refer to Figure 3.18 again for how “learning” in DSML might take place. Justification

required in DSML is unlikely to be realized by starting with a complex hypothesis space

assumption like H. Due to the existence of data wall, it is unlikely to filter out all

inconsistent hypotheses in H and reach just one consistent hypothesis. Hence, DSML

has to be accomplished at the level of individual hypothesis space assumptions.

Let us say that the total hypothesis space assumption H consists of individual hy-

pothesis space assumptions H0,H1, . . . ,H∞ that can be used to justify a hypothesis.

Learning in DSML needs to be justifiable with respect to some Hi. As stated above, ML

starts with H and uses the data to find the simplest hypothesis h in the entire H. In

DSML, to achieve justification, this h must be a just-fit hypothesis with respective to

some individual hypothesis space assumption Hi. If h was found by ML based on H,

the requirement for justification would not be ensured. Even though h can be evaluated

with each hypothesis space assumption Hi in H individually, the h might not be a just-fit

hypothesis with respect to any Hi, i.e. h is still not justifiable.

To satisfy the justification requirement, in DSML we therefore work on one hypoth-

esis space assumption Hi at a time. Without loss of generality, let us assume that

114

Journey to IEA - The 2nd Decade Chapter 3

H0,H1,H2, . . . are ordered with increasing complexity. Here, the complexity of a hypoth-

esis space assumption might be seen as the highest complexity allowed for a hypothesis

in the space. For example, if we see each Hi as a set, then one way for the ordering might

be that H0 ⊂ H1 ⊂ ⋯ ⊂ Hi ⊂ Hi+1 ⊂ ⋯. With these hypothesis space assumptions ordered

in a certain way, Occam’s learning in DSML can be explained as the following.

Occam’s learning in DSML is applied to choose the simplest hypothesis space assump-

tion Hi, rather than to choose the simplest hypothesis. We start with H0 and evaluate

one hypothesis space assumption at a time. Ideally, Occam’s learning in DSML proceeds

by sequentially evaluating these hypothesis assumptions, beginning with the simplest one

and progressively increasing in complexity. The objective is to find the simplest hypoth-

esis space assumption that yields a just-fit model. For example, for all hypothesis space

assumptions up to Hi−1, we find that they are all under-fitting, i.e. ∣C ∣ = 0. Then, the

search continues until we find Hi that contains a just-fit hypothesis. The reason to find

the simplest Hi where a just-fit hypothesis exists is that the found hypothesis is most

acceptable with this simplest assumption.

In essence, Occam’s learning in DSML is an iterative search process, i.e. a Choose-

and-Bound search. One chooses a hypothesis space assumption and evaluates if it con-

tains a just-fit hypothesis. If it is not just-fitting, one moves on to choose another

hypothesis space assumption. It should be noted that in practice, within the same com-

plexity level there might be many hypothesis space assumptions to search on. Across

different complexity levels, the Occam’s Razor principle is used to guide the search to

ensure that we search on a simpler hypothesis space assumption before moving onto a

complex one.

Occam’s learning in DSML has a practical meaning as well. A just-fitting model with

a hypothesis space assumption as simple as possible has a better chance to be accepted in

practice. This goes back to our earlier discussion in Section 1.4.5 that a simpler answer is

115

Journey to IEA - The 2nd Decade Chapter 3

more likely to be understood, justified, and consequently accepted by people. Notice that

in DSML the simplicity of an answer is not measured on the answer itself, but measured

on the simplicity of the hypothesis space assumption satisfying the just-fitting property.

In the context of monomial learning, the learning methodology proposed in [12] is to

achieve Occam’s learning under the DSML view. When practicing DSML in a broader

learning context, as depicted in the overarching view of Figure 2.22, Occam’s learning is

more often guided by domain knowledge and achieved by a person. In other words, the

person often chooses a simpler assumption to try before moving onto a more complex

one. Thus, the Occam’s learning in DSML can be mostly operated by a person. Conse-

quently, to automate Occam’s learning in DSML we have to provide automation at the

AI Assistant level. Automation at the ML tool level simply would not work.

Another important reason behind the just-fit requirement in DSML can be explained

as follows. Even though Occam’s learning guides a ML algorithm to find the simplest

model, this remains a difficult optimization problem. In ML practice, the limited effective

capacity of a learning algorithm does not actually find the best model, but merely one

that significantly reduces the training error [107]. Consequently, while ML promises

to find answers that are probably correct about most member of the set they concern,

DSML often requires a deterministic answer regarding a particular behavior of interest.

For example, when finding a rule to explain a design-silicon mismatch, a rule that is 90%

correct (evaluated based on limited data) and covers obvious patterns may not be deemed

acceptable for diagnosing the hidden issue, especially as the underlying assumption of the

hypothesis within the black-box ML model is incomprehensible to humans. We can say

that such a DSML problem is essentially a decision problem, i.e. decides whether there

is a rule that can explain the issue. It is because of this decision nature that achieving

just-fitting becomes an important requirement in DSML. This thinking will be further

explained in Section 3.12.

116

Journey to IEA - The 2nd Decade Chapter 3

3.10 Autonomous System View (2018 – 2021)

To achieve automation at the AI Assistant level, the idea of Intelligent Engineering

Assistant (IEA) was first proposed in 2018 [84]. The original IEA aimed at building an

autonomous system, as depicted in Figure 3.20.

Figure 3.20: The original IEA proposed in 2018 aimed for an autonomous system

The autonomous system view of IEA was inspired by the autonomous system view

of an intelligent vehicle [108]. The intelligence of an autonomous vehicle is essentially

achieved with three components. A “Sensing & Data Processing” component that collects

data from the environment. This component can operate a list of sensors such as short-

range radar, long-range radar, LiDAR, ultrasonic, vision, stereo vision, etc. Once the

data is collected, the system needs to process it to extract meaningful information. This

is accomplished by the “Perception” component. The component interprets the data,

for example to perform object recognition and lane detection, etc. The result of an

interpretation can be establishing a concept, e.g. the vehicle is crossing the right lane

boundary. The third component is the “Reasoning and Control” component that utilizes

the information provided by the perception component to make decisions and control the

vehicle. Functions of this component include calculating the free space and moving the

117

Journey to IEA - The 2nd Decade Chapter 3

vehicle, planning its path, and controlling the speed/brake/wheel.

Essentially, the “Sensing & Data Processing” component collects data from the en-

vironment and processes them. The “Perception” component recognizes what the data

mean. For example, with a deep learning neural network [109], a picture taken by a

mounted camera is interpreted for its meaning. The “Reasoning and Control” compo-

nent decides what to do next. Another important piece for the autonomous vehicle is

the “World View” that defines a world for the vehicle to operate in [108].

The analogy to IEA is illustrated In Figure 3.20. IEA also comprises three compo-

nents: a “Data Retrieving & Processing” component, a “Concept Recognition” compo-

nent, and an “Executable Workflow” component, respectively. An important difference

is that the “World View” is seen as a “Plot-Based World View” to realize the plot-based

analytics as discussed in Section 3.3 before. Thus, while an autonomous vehicle is for

driving in a world with roads and terrains, IEA was original thought of as an autonomous

system that navigated in a world of analytic plots.

3.10.1 The inclusion of an NLP interface and its necessity

The original IEA 2018 included an Natural Language Processing (NLP) interface with

voice recognition capability. Because IEA 2018 operated as an autonomous system, it

was supposed to perform analytics automatically by itself. On given data, interesting

analytic findings were discovered and stored in the system. A user only needed to query

for the findings. The user asked the IEA what it had found but could not tell the IEA

how to perform the analytics. Therefore, the NLP interface was only for facilitating

information retrieval.

IEA 2018 was designed as a PowerPoint (PPT) slide generator [84]. A user is supposed

to interact with the IEA and pick interesting plots to be included in a summary PPT

118

Journey to IEA - The 2nd Decade Chapter 3

presentation. The IEA 2018 included the functionality for PPT generation [110].

If the NLP interface was used only for information retrieval, this raised the question

whether or not the NLP component was necessary. For example, a user might prefer

to use a GUI with mouse clicks to retrieve interesting plots. The necessity of the NLP

interface was not justified until the later time when the approach of language-driven

analytics was realized in IEA 2022 [96][111].

3.10.2 The executable workflow component in IEA 2018

The “Executable Workflow” component in IEA 2018 followed the same idea of model-

ing the domain knowledge as a workflow process [8][10] (see discussion in Sections 3.2 to

3.4 above). The original intent was to model “all domain knowledge” as a comprehensive

analytic workflow that was executable.

Steps in the workflow involved concept recognition [84]. For example, a step might be

an if-else statement such as “if a correlation exists, do something”. The word “correla-

tion” here means a concept. This concept is represented in terms of a plot. To decide if

there is a correlation or not, we need a plot recognizer to recognize those plots satisfying

the particular correlation concept. This motivated the plot-based concept recognition

work done in [85]. Concept recognition will be discussed in detail in Chapter 4 in the

context of wafermap analytics.

Setting aside concept recognition for the moment, as discussed before, the pressing

issue with a workflow model lies in its completeness. It is difficult, if not impossible,

to ensure that a workflow model is complete, i.e. sufficient for a given analytic job

content. In fact, in the next few years after the publication of IEA 2018, our lab tried

to collaborate with a fabless company closely to implement a practical IEA, based on

their test data analytic application context. What we learned was that it would be

119

Journey to IEA - The 2nd Decade Chapter 3

very difficult to develop a complete analytic workflow sufficient enough to address all

practical requirements. Consequently, we gradually abandoned the notion of pursuing an

autonomous system view.

3.11 The Latest Three Views (2022, 2023, 2024)

Figure 2.1 at the beginning of Chapter 2 provides an overview of the journey to IEA.

Chapter 2 and Chapter 3 so far cover the first three views in the journey: the data-driven

view (2004-2013), the knowledge-driven view (2014-2017), and the autonomous system

view (2018-2021). The latest three views in 2022, 2023, and 2024, will be discussed in

detail in three separate chapters, respectively:

Problem-Solution Dual View (2022) This view will be discussed in Chapter 5. Re-

alizing the importance of this view in order to move forward in the journey of IEA,

perhaps is the most intriguing and critical discovery in the entire IEA journey.

Chapter 5 will provide a detailed explanation of this view.

Knowledge Graph View (2023) This view will be discussed in Chapter 7. Adopting

this view can be seen as a direct consequence following the Problem-Solution Dual

view. The Knowledge Graph view also enabled our successful implementation of

the first complete IEA called IEA-Plot, an end-to-end AI Assistant solution in the

context of wafermap analytics. The implementation of IEA-Plot will be discussed

in Chapter 6.

Generative AI View (2024) This view will be discussed in Chapter 9. In the devel-

opment of IEA-Plot, the knowledge graph was manually constructed. One of the

commonly-asked questions was: why we had to manually develop the knowledge

graph rather than training an LLM to model those knowledge? In this chapter,

120

Journey to IEA - The 2nd Decade Chapter 3

we will explain why taking the Generative AI view has to happen after taking

the Knowledge Graph view. In other words, manual construction of a knowledge

graph, in our journey, was seen as a must-taken step that enables the realization

of generative AI capabilities eventually. In Chapter 9, we will elaborate on this

observation.

Following the initial IEA in 2018 and preceding the adoption of the Problem-Solution

Dual view in 2022, our works were primarily directed towards realizing the “Concept

Recognition” component. In this period, we narrowed our focus on the application con-

text of wafermap analytics. With a narrower application focus, we intended to develop a

more comprehensive “Concept Recognition” component that could be deployed into an

industrial production environment. In the next Chapter, we will go over the innovations

during this period.

It is interesting to observe that it took us 10 years to progress beyond the first stage

(the data-driven view), 4 years each to progress beyond the second and the third stages

(knowledge-driven and autonomous system views), and only one year each to proceed

with the last three stages. In a way, the views in the first three stages were “incomplete”

views for us to learn the experience. It is also important to note that the last three views

can be seen as one integrated view, despite being developed over three consecutive years.

The culmination of our learning was encapsulated within these last three views, which

have already been integrated into our current LLM-assisted AI Assistant, the IEA.

3.12 DSML in View of Computational Complexity

As mentioned in Section 1.4.4 and further elaborated in Section 2.8.1, we use the term

machine learning to broadly refer to learning from data through optimization. In other

words, a learning problem is seen as an optimization problem. The above discussion

121

Journey to IEA - The 2nd Decade Chapter 3

regarding Occam’s learning in DSML hints that a DSML problem can also be seen as

solving an optimization problem. However, the way we see DSML optimization is different

from the way we see ML optimization.

Figure 3.21: An optimization view in DSML

3.12.1 Decision problem vs. optimization problem

Figure 3.21 draws an analogy between computational complexity classes to the prob-

lems solved in DSML. On the left, we consider two versions of the Boolean Satisfiability

(SAT) problem. In the decision version (based on a given threshold k), the SAT problem

asks if ≥ k clauses can be satisfied for the given formula f(x). The answer is a binary

yes or no. In the optimization version, the problem asks for the k such that at most k

clauses can be satisfied in f(x). This is commonly-known as the MaxSAT problem [112].

It is well known that SAT is an NP-Complete problem. It is also known that the

threshold version of SAT shown in Figure 3.21 is NP-Complete. However, it is unclear

122

Journey to IEA - The 2nd Decade Chapter 3

whether the optimization version of SAT is in NP. In fact, the work in [112] defined the

class FPSAT and showed that MaxSAT is FPSAT [O(log(n))]-complete. The class FPSAT

is widely known as the PNP class (also denoted as △P
2) [113] that includes (formal)

language decidable in polynomial time (the “P”) with access to an NP oracle, e.g. a

SAT solver. Indeed, if there exists a SAT solver to solve the decision version of the SAT

problem in Figure 3.21, then the optimization version can be solved by making O(log(n))

calls to the SAT solver, i.e. by performing a binary search to find k.

The intuition behind the definition of the PNP class is commonly known as oracle

machine [114], which is illustrated in the bottom of Figure 3.21. Suppose we have an

oracle that has the ability to solve the SAT decision problem. Given f(x) the oracle

solves the problem on f and provides a certificate c (or a proof) to the verifier to verify the

correctness of the answer. In the decision version, c can simply be an input assignment

that satisfies ≥ k clauses. The verifier can check on this fact by applying the input

assignment to the formula f and verify the number of satisfied clauses is ≥ k. The

verifier can do this in polynomial time and hence, the threshold version is in NP. In other

words, the oracle only needs to show one input assignment as the certificate to prove the

correctness of an answer. This is a classical definition of the NP class, i.e. ∃ one input.

The optimization version is more difficult because to prove that k is the maximum

number, the oracle needs to provide a certificate to show that there is no input assignment

that can satisfy > k clauses, i.e. ∀ inputs, it is impossible to satisfy > k clauses. The

inclusion of the ∀ quantifier introduces the CoNP aspect into the problem. In other

words, the optimization version is at least as hard as both NP and CoNP. The inclusion

of both quantifiers, ∃ and ∀, make a problem go beyond NP and CoNP. Note that in

Figure 3.21, the SAT oracle should be able to answer yes or no, i.e. be able to answer

both an ∃ (NP) and a ∀ (Co-NP) question.

In general, the polynomial hierarchy (PH) (ΣP
1 ,∏P

1 ,Σ
P
2 ,∏P

2 , . . ., Σ
P
i ,∏P

i , . . .) captures

123

Journey to IEA - The 2nd Decade Chapter 3

the complexity of a sequence of alternations between the two quantifiers ∃ and ∀. For

example, for i = 1 the sequence contains one quantifier: ∃. For i = 2, the sequence contains

two alternating quantifier: ∃, ∀. For i = 3, the sequence contains three alternating

quantifier: ∃, ∀, ∃, and so on [114].

With the oracle machine notation [113], we have ΣP
i+1 ∶= NPΣP

i , i.e. ΣP
i+1 has access to

an ΣP
i oracle and with that access, the complexity from the verifier’s perspective is NP.

Similarly, we have ∏P
i+1 ∶= CoNP∏

P
i . At the first level of PH, we have ΣP

1 =NP and ∏P
1 =

CoNP, as shown in Figure 3.21. Note that through the PH, we also have an “optimization

hierarchy” where △P
i+1 ∶= PΣP

i where P stands for the class of polynomial time complexity

(in contrast to NP), i.e. with a ΣP
i oracle, the complexity of the verifier is in P.

3.12.2 Decision and optimization in DSML

As mentioned above, Occam’s learning in DSML can be seen as solving an optimiza-

tion problem and DSML includes solving both an ML problem and a Co-ML problem.

We will see that the problem solved by DSML is analogous to the PH class in general. In

practice if the number of Choose-and-Bound iterations is limited to a constant, we can

say that we are dealing with problems that is in the O(1)DSML class where DSML rep-

resents a DSML oracle solving a DSML problem (ML and Co-ML) and O(1) represents

a constant. If the number of iterations is in O(poly(n)) for some input size n, then the

problem class is O(poly(n))DSML.

However, a learning problem solved by the DSML oracle is not the same as those in

traditional ML. Traditional ML solves an optimization problem by following the Occam’s

learning. The learning problem solved by the DSML oracle can be seen as a decision

problem: Given a dataset and a decision question, the oracle DSML answers yes or no.

In rule learning, the uniqueness requirement is included and hence, the problem can

124

Journey to IEA - The 2nd Decade Chapter 3

be converted into a decision version of the SAT problem [12] (see also discussion in

Section 3.9.3). In correlation analysis, the problem can be viewed as follows: given a

threshold, determine if, on a given hypothesis space assumption (i.e. a given dataset),

there exists a correlation ≥ the threshold. Similarly, in outlier analysis, a distribution-

based threshold, e.g. 6σ can be used as the threshold. Hence, the ML problems solved

by the oracle DSML are not an optimization problem in view of the analogy shown in

Figure 3.21. We can say that in those ML problems solved by DSML, we are looking

for the existence of a “just-fitting” answer. Hence, the “ML” in DSML corresponds to

showing the existence of such an answer and “Co-ML” in DSML corresponds to showing

the non-existence of such an answer. Because this “ML” is different from traditional

ML, we can call it ML∗ to avoid any confusion. To be more precise than before, we can

rephrase the earlier equation stated in Section 2.7.5 as:

DSML = {ML∗ +Co-ML∗}∣{IEA +Human Knowledge} (3.1)

In essence, Decision Support ML includes a DSML oracle which is called by IEA

and human. This is in contrast to equation 2.1 by (1) replacing the ML and Co-ML in

the earlier DSML equation with ML∗ and Co-ML∗ here, respectively, (2) replacing the

“Domain Knowledge” with the “IEA + Human Knowledge”, and (3) interpreting the “∣”

as “calling the oracle” rather than “conditioning on” as that before. In the analogy shown

in Figure 3.21, the “IEA + Human Knowledge” is analogous to solving a problem in PH,

e.g. an optimization problem. Figure 3.21 shows the problem asked in one step of the

optimization throughout a Choose-and-Bound search. This optimization problem is as

follows: given a set of hypothesis space assumptions H, what is the minimal-complexity

assumption that contains a just-fit answer (or model)? Note that in DSML context

mentioned in this thesis, the implementation of this search for the minimal-complexity

125

Journey to IEA - The 2nd Decade Chapter 3

assumption may not be automatic and can involve human-in-the-loop.

3.12.3 ML vs DSML revisited

In view of the analogy in Figure 3.21, we can say that ML is to solve an optimization

problem directly. DSML is to solve an optimization problem by making calls to an

oracle for solving the decision version of the problem. The former resembles building an

optimizer directly for solving the MaxSAT problem, while the latter involves relying on

an oracle machine and solving the MaxSAT problem by devising a search algorithm that

calls the oracle machine, e.g. using a SAT solver as its underlying engine. And the main

reason that DSML takes the latter route to solve an optimization problem is due to the

existence of a data wall.

In view of a DSML oracle machine, a key aspect for IEA, from the verifier’s perspec-

tive, is to check the certificates for the answers provided by the oracle machine. In IEA

2018, this checking is supposed to be done by the concept recognition component (see

Figure 3.20). To achieve DSML optimization, a search is also needed. In IEA 2018, this

search is carried out by the executable workflow component. Later, it was realized that

carrying out this search automatically at the data level was practically infeasible and

hence, the human-in-the-loop aspect is included to achieve a Choose-and-Bound search.

Note that the oracle-verifier view is crucial for the design of IEA in general and this view

will be elaborated more in Chapter 8.

126

Chapter 4

Wafermap Analytics

愿乘泠風去，直出浮雲間。 舉手可近月，前行若無山。

Wish to ride the cool breeze, through clouds I shall be free, like the

moon is in my grasp, if no more mountain in front.

— 《登太白峰》 李白， A poem from Tang Dynasty

Earlier in Section 1.1.1, we mentioned the problem of yield optimization. Yield is an

essential metric closely tied to the profitability of a product line. Hence, yield optimiza-

tion is a crucial consideration for a production line, during the early ramp-up stage and

through out the entire mass production stage. Early in a production, yield optimization

can include changes in the design, manufacturing process, and/or test. Later in the pro-

duction, yield optimization concerns more on changing the test content, i.e. becoming

part of the test optimization.

From the perspective of test data analytics, there can be two types of yield optimiza-

tion: one to find correlations of a failure type to E-test parameters and the other to find

a systematic wafermap pattern. The yield optimization story reviewed in Section 1.1.2

belongs to the first type. In this chapter, we will discuss the second type.

127

Wafermap Analytics Chapter 4

4.1 Yield Excursion

Semiconductor manufacturing is a complex process with many sources of variations,

ranging from equipment to operation of the production line. The complex interactions

among all these factors can significantly impact the yield. Therefore, even after initial

efforts to stabilize the yield, through out the production the yield needs to be constantly

monitored to ensure that it consistently stays above a desired level. When the yield

deviates “significantly” from an expected norm, it is called a yield excursion [115]. A

yield excursion may happen on individual wafers or lots, and during a period.

Yield is observed through testing. Wafer probe is the first testing stage to observe

the yield. There is a time elapsed between a wafer being fabricated and the wafer being

tested in wafer probe, and also a time elapsed between a yield excursion being observed

and the excursion being escalated in an organization for investigation and action (if that

happens). As a result, it is possible that when the severity of an excursion is confirmed,

the underlying cause of the excursion have already impacted a large number of wafers.

To shorten the time elapse, it is desirable to monitor the yield closely and as early as

possible, to detect a yield excursion and confirm its severity.

While detecting a yield excursion is important, it is not always feasible to thoroughly

investigate and correct every yield excursion. In practice, resources can be prioritized for

excursions that have more significant impact, specifically those systematically affecting

a large number of wafers. Practically, early detection of a yield excursion can mean

detecting those excursions that are worth the investigation effort.

Determining if a yield excursion is worth investigating, similar to many problems

we mentioned in this thesis, involves judgment calls. For example, yield excursions can

either occur suddenly or develop gradually over time, and the amount of yield loss due to

these excursions can vary significantly. Generally speaking, excursions characterized by

128

Wafermap Analytics Chapter 4

substantial and persistent yield loss are likely to be readily noticeable and prioritized for

investigation resource allocation. Those excursions that are less significant or less persis-

tent might go unnoticed initially, yet some of them could evolve and become significant

over time. Hence, determining what constitutes a meaningful (“significant” and “persis-

tent”) yield excursion can be a subjective judgment call that requires passing through

the communication chain, rather than being solely characterized by a standalone metric.

One common approach to detect a yield excursion is by checking if there is a formation

of a failure pattern on the wafer. A failure pattern is a region of failing dies that form a

particular pattern on a wafer, such as a cluster, a line, or an arc etc. Wafers exhibiting

a similar failure pattern can be considered as having the potential same cause for yield

excursion. Hence, analyzing failure patterns shown on the wafers can indicate signatures

for helping engineers to categorize a yield excursion.

For example, a concentrated failing region shown in the center of a large number of

consecutive wafers can be caused by an misaligned step in the manufacturing process. A

common way to analyze such patterns is to visualize the failure patterns on wafermaps,

a graphical representation of some statistics based on the wafer shape, usually used to

display various properties or characteristics of the chips fabricated or tested on the wafer.

For example, wafermaps can be used to display the distribution of passing and failing

dies in colors. This type of analytics is referred to as wafermap analytics.

In this chapter, we will begin by using a real yield excursion example to elucidate

several important practical considerations in the problem space. While some of these

have been discussed in previous chapters, we reiterate these points within the context of

wafermap analytics. In Section 4.3, we will delve into the problem of wafermap pattern

recognition (WMPR) and review the machine learning (ML) techniques used to address

this problem. Then, we will identify and summarize the gaps between the capabilities

offered by common existing ML technologies and the practical needs in wafermap an-

129

Wafermap Analytics Chapter 4

alytics in Section 4.4. To close the gaps, Section 4.6 will introduce the perspective of

learning a concept recognizer and propose a novel one-shot learning approach for training

a recognizer, which we refer to as the Minions model. Finally, Section 4.7 will describe

the novel graph-based approach for wafermap analytics, enabled by the Minions model,

and demonstrate its practical capabilities.

While the above discussion uses the term “failure pattern” and “similar failure pat-

tern” to explain the ideas, it is important to note that the two essential questions in

wafermap analytics are:

� What is the definition of a failure pattern?

� What does it mean by saying that two wafermaps are similar?

The usefulness of a tool to assist wafermap analytics largely depends on the answers

to these two essential questions.

4.2 A Yield Excursion Example

Figure 4.1: (a) Show the failure pattern constituting a yield excursion; (b) Show the
number of impacted wafers over weeks of the production [13]

130

Wafermap Analytics Chapter 4

The work [13] reported a systematic yield event on a single product at NXP Semi-

conductors in 2016, as shown in Figure 4.1. Wafers affected by this issue contained a

failure pattern as a cluster along the wafer edge at the 5 and/or 11 o’clock directions, as

seen in Figure 4.1 (a). Note that the plot was obtained by stacking multiple wafermaps.

On a single wafermap, the two failure clusters might not be as pronounced as what was

shown on this plot.

In Figure 4.1 (b), the numbers of wafers that contained either the 5 o’clock cluster

or the 11 o’clock cluster or both, are shown. The x-axis shows the week number when

those wafers were manufactured. It can be observed that before week 19, this excursion

occurred infrequently with multiple weeks spanning between occurrences. As a result,

the first two occurrences were noticed but decided as one-off events due to the small

number of affected wafers and the scattered locations of the clusters. The excursion was

not escalated until week 19, when an entire wafer lot was affected.

There was a 14-week delay from the first occurrence to the escalation of the excursion

for further investigation. During this time, the production line continued to produce

wafers and the yield on those wafers might have been impacted. Further, those wafers

could have an unknown quality risk due to the underlying yield issue. Identifying the

issue earlier could have led to a corrective action in place earlier, thereby reducing the

yield loss and the risk to product quality.

4.2.1 Industrial methods for detecting yield excursion

Detecting abnormal yield occurrences is common in semiconductor manufacturing.

Statistical Bin Limits (SBL) [116] and Below Minimum Yield (BMY) are two widely

adopted methods to identify wafers with abnormal yield. While BMY is a coarse anomaly

detection method, SBL considers yield from individual test bins. Hence, SBL provides

131

Wafermap Analytics Chapter 4

additional resolution to detect yield abnormalities that may be missed by BMY.

There are also methods used to identify anomalies at a die level. Wafer spatial

cluster detection algorithms such as Good Die in a Bad Neighborhood (GDBN) [117]

and Unit Level Predictive Yield (ULPY) [118][119], are methods commonly employed in

post processing of wafer level test data. GDBN evaluates the health of a die based on

the failing statistics of its neighbors. On the other hand, ULPY also incorporates the

neighbors’ failing statistics but uses additionally distance information between dies to

weigh the influence of neighbors, i.e. a failing die in close proximity has more influence

than those located at a greater distance.

Image processing techniques have also been proposed for wafer spatial pattern detec-

tion. In [120], the Hough Transform was used to detect scratch patterns. The authors

in [121] proposed transforming wafer maps into so-called spatial correlograms to aid in

detection and classification of failure patterns such as clusters, circles and others. A

method was proposed for identifying similar patterns by comparing the correlograms of

future wafers against a reference set of patterns.

Overall, we can see that historically there are three common perspectives to check for

an abnormal yield occurrence:

1. Checking some statistics of the yield

2. Checking the density of failures

3. Checking failure patterns

The first two are more commonly adopted in practice because their results are easier

to be visualized and comprehended. As we mentioned, understanding the significance of

a yield abnormality is important for making a decision to escalate the issue. Compared

to the first two types of methods, understanding and deciding on the significance of a

132

Wafermap Analytics Chapter 4

failure pattern can be more complicated and remains an active area of research. Thus,

the discussion in the rest of this chapter will focus on the problem of analyzing failure

patterns, i.e. wafermap analytics.

4.2.2 2016 work on failure pattern detection

For the yield excursion shown in Figure 4.1, the authors in [13] proposed a method-

ology capable of grouping wafers that exhibit a cluster failure pattern. The methodology

involved two main steps: (1) A density estimation method such as kernel density estima-

tion (KDE) [122] was used to convert a wafermap into a density map. From the density

map, a threshold was used to identify a failure cluster region on the wafer. (2) Some

features were used to describe the location and direction of the cluster and possibly some

other attributes, e.g. its size, total number of failures, and number of failures from each

test bin, etc. Then, a clustering tool [123] was applied to classify wafers into groups.

Note that clustering is a very common problem formulation in ML [123]. In this sense,

the overall methodology might be seen as a ML-supported methodology.

As reported in [13], the methodology was evaluated based on 30 weeks of production

data from 15 high-volume products manufactured with an analog circuit technology.

These products were designed for a variety of applications. In total, around 40,000

wafers of various die sizes were analyzed.

One noticeable result from the methodology evaluation is summarized in Figure 4.2

(a), which shows a plot similar to that shown in Figure 4.1 before. The difference is that

Figure 4.1 is based on one product and Figure 4.2 is based on all 15 products.

The result shows that identifying failure patterns across multiple products increased

the visibility of a systematic issue that impacted an entire technology. When the analysis

focused only on one product as that shown in Figure 4.1, during the first 11 weeks only

133

Wafermap Analytics Chapter 4

Figure 4.2: Result after using method in [13] and evidence from Failure Analysis report

9 wafers had the cluster patterns. After including the other 14 products in the analysis,

this number jumped to 55 as shown in Figure 4.2.

In Figure 4.2-(a), during the first 11 weeks, there were 5 wafers with clusters at the

5 o’clock direction (highlighted in blue) and 28 wafers with clusters at the 11 o’clock

direction (highlighted in red). Additionally, there were also 22 wafers with clusters in

both directions (highlighted in green). In contrast to 9 total wafers in Figure 4.1, this

total number of 55 wafers would have been sufficient to trigger an investigation with the

in-house workflow [13].

Implementing the methodology as an automation tool can facilitate analysis of failure

patterns across multiple products, thereby increasing visibility of a yield excursion. In

this case, failure analysis (FA) could have been performed in week 11 or even earlier,

instead of waiting until week 19, if the tool was in place. The FA report that revealed

what had happened in the above example is shown in Figure 4.2-(b) (see [13]).

During the period, process changes were slowly rolled out to improve the de-vail

process prior to via metal deposition. The de-vail process removes extra material that

overhangs a via hole. This small obstruction is called a vail. Vail can partially cover

a via hole, hindering the metal deposition. Although changes to the de-vail process

134

Wafermap Analytics Chapter 4

were thoroughly evaluated and approved, these changes resulted in significant yield loss

whenever the process shifted to a particular corner.

This yield loss occurred very infrequently at first, affecting roughly one lot a week

across the entire technology. Additionally, the severity of the yield loss varied. After the

yield excursion was escalated, FA on failing parts found that the vails were not completely

removed by the new de-vail process, resulting in partial-via defects. A cross section of

one defective via is shown in the Figure 4.2-(b).

To summarize this example of yield excursion, it was initially overlooked due to its

infrequent occurrences and varying severity of yield loss. The location of the cluster

patterns were not consistent during their early occurrences and the issue only appeared

infrequently. On one hand, the perspective of conducting analysis across multiple prod-

ucts had to be considered. On the other hand, an automatic pattern detection tool, such

as the one provided by [13], had to be in place to monitor products throughout the entire

technology and assist engineers in easily observing the excursion. As demonstrated in

[13], a more extensive analysis across 15 products showed that a cross-product pattern

analysis would have substantially enhanced the visibility of the yield excursion during

the early weeks.

It is interesting to note that in the above yield excursion example, if the 11 o’clock

cluster and 5 o’clock cluster were treated as two separate failure patterns as that in

common practice of wafer pattern classification, then the significance of each individual

pattern would be less than the significance of the both combined. Treating both clusters

as one signature increased the significance of the yield excursion. This decision was

hinted by the observation that there were some wafermaps containing both clusters.

This example indicates that the definition of a failure pattern might be dynamic during

an analytic process. Two patterns considered earlier might later be merged into a single

signature (a single pattern) to facilitate the analytics.

135

Wafermap Analytics Chapter 4

4.3 ML View to Wafermap Analytics

The density estimation and clustering methodology utilized in [13] above can be

viewed as applying ML techniques to detect failure patterns on wafermaps. A general

problem, known as the Wafermap Pattern Recognition (WMPR) has been studied for

decades in the field of semiconductor manufacturing [124]. The authors in [124] published

a comprehensive wafermap dataset called WM-811K in 2015 for studying the WMPR

problem. This dataset includes 811,457 wafer maps among which 172,950 are labeled

and the rest are not. The work [124] introduced two ML-related approaches, one for

classifying wafermaps and the other for searching similar wafermaps. The approaches

were based on engineering a set of discriminative features to build a model for pattern

recognition and a model for similarity ranking.

Multiple types of features are used, including those based on Radon transform and

those based on analyzing geometric properties such as failing die counts, region labeling,

line detection, etc. For model building, SVM classification [38] is used. The work reported

94.63% classification accuracy on the dataset, comparing to the deep learning approach

at the time which achieved 89.64% accuracy.

4.3.1 The multi-class classification problem

Figure 4.3: Eight pattern classes and one “None” class in the WM-811K dataset

136

Wafermap Analytics Chapter 4

Using the labeled portion of the WM-811K dataset, it is intuitive to treat the WMPR

as a multi-class classification problem, a supervised learning problem in view of the

general ML. The dataset pre-defines nine classes. Figure 4.3 illustrates eight pattern

classes where the purple color marks the wafer and the yellow pixels indicate the locations

of failing dies on the wafer. In addition to the eight pattern classes, a “None” class is

used to denote wafermaps containing “no pattern”. The size of a wafermap depends on

the manufacturing process. The most common size in the dataset has a width of up to

27 dies and a height of up to 25 dies.

Figure 4.4: Two common ML approaches to solve a multi-class image classification problem

A number of works was published using the WM-811K dataset. These works can be

roughly categorized into two types in view of general ML: (1) Those with a traditional

ML approach, where a set of features were developed and used to convert each sample

(a wafermap image) into a feature vector, followed by a model building method that

operates on the set of feature vectors to learn a model; (2) Those with a deep learning

approach, where the feature extraction step is automated by, for example, layers of a

Convolution Neural Network (CNN), followed by one or more Fully-Connected (FC) lay-

ers for classification decision (corresponding to the model building step in the traditional

ML). Figure 4.4 summarizes these two common ML approaches.

Early works from 2015 to 2017 followed the traditional feature engineering ML ap-

proach. The work [125] adopted the feature-based approach with a slightly different

137

Wafermap Analytics Chapter 4

feature set and aimed to improve the multi-pattern detection accuracy, i.e. a wafer map

containing patterns from two or more pre-defined pattern classess. The work [126] ad-

vocated using more discriminant features based on Linear Discriminant Analysis (LDA)

such that the model building step did not require a sophisticated method such as SVM.

Instead, the work used Fisher discriminant analysis to replace SVM. Using Radon trans-

form features, the work [127] proposed a special Decision Tree based ensemble learning

method. Decision tree models are generally more interpretable than SVM. Note that the

original work [124] also belongs to this category.

From 2018, applications of deep learning on the WM-811K dataset have begun to

emerge. The author in [128] proposed a 2-stage classification: first to classify between

having a pattern and having no pattern (i.e. the “None” class in WM-811K) and if there

is a pattern, to classify which class it belongs to. Note that WM-811K is an extremely

imbalanced dataset where some classes have many more samples than others [124]. This

contributes to the inferior deep learning result reported in [124]. The work in [129]

proposed a special data augmentation method based on Generative Adversarial Network

(GAN) [130]. The network architecture also took the imbalance for learning a class into

account, i.e. some classes are harder to learn than others. Instead of using GAN, the

authors in [131] used an Auto Encoder (AE) [132] for data augmentation. Moreover,

the author found that augmenting the samples with rotation could help. A CNN-based

network was then used for training the classifier. In contrast, the authors in [133] used

pre-determined methods to augment the dataset while using a deeper CNN architecture

for training the classifier. The authors in [134] approached WM-811K dataset from a

different angle. They tried to address the concern that a wafermap to be predicted might

contain a new pattern class or a multi-pattern class not defined with the dataset. On

those cases, the classifier might not be applicable. The work proposed using Selective

Learning to determine an applicability of the model, where the deep learning model

138

Wafermap Analytics Chapter 4

included the choice to abstain from making a prediction, i.e. the neural network has an

integrated option to reject some samples and only make prediction on others.

Recently, a work [135] proposed a semi-supervised learning approach to learn a neural

network model with less amount of labeled data. The model includes an encoder to learn

representations for wafermaps using unsupervised constrastive learning, and a supervised

head for classification. Similar to previous works, a set of transformations was identified

for data augmentation and used to adjust the imbalanced data. This recent result in

[135] showed an average accuracy of 77.90% obtained when using different portion of

labeled data (≤ 50%) in training.

4.3.2 Study of a multi-class neural network classifier

In view of the big picture depicted with Figure 2.22 in Section 2.7, although we did

not believe wafermap analytics should be treated as solving a multi-class classification

problem as all the other works reviewed above, in [14] we did conduct a study on the WM-

811K dataset based on training a neural network classifier. Our motivation was not to

obtain a more accurate model as others did. Rather, we were interested in understanding

the underlying dataset-related barriers causing the model accuracy loss. More generally,

we were interested in showing that training a classifier was not the way to address the

practical needs in wafermap analytics. This was already obviously based on the lessons

learned during our first decade of the journey to IEA (see Section 2.7). Nevertheless,

within the scope of wafermap analytics and in view of other WMPR, we would like to

gather more evidences to strengthen our DSML view.

The classifier employed in our work [14] was based on the popular VGG-16 architec-

ture [136]. The study selected two wafer sizes which have the largest number of wafermaps

in the dataset. Table 4.1 summarizes the selected set of labeled samples from the eight

139

Wafermap Analytics Chapter 4

pattern classes for the experiment. In total, there were 967 wafer maps considered and

they were called the “in-class” samples. In addition, there were 22,115 wafer maps be-

longing to the “None” class. These labeled wafermaps were used as the training set.

From the unlabeled set, there were 19,086 wafermaps with the two wafer sizes. These

unlabeled wafermaps were used as the test set to evaluate the classifier.

Table 4.1: Labeled wafer maps from the WM-811K dataset, used in [14]

Center Donut Edge-L Edge-R Loc N-Full Random Scratch
81 10 402 9 345 16 28 76

Following a similar strategy as in [128] to tackle the imbalanced data problem, our

work [14] also trained two models where one was a binary classifier for separating “in-

class” wafermaps from ‘None‘ wafermaps and the other was a multi-class classifier for

separating the eight pattern classes. A simple data augmentation strategy involving

image rotation was used to generate additional wafermaps for underrepresented classes,

such as the “Donut” class and “Edge-Ring” class, as shown in Table 4.1. In our study, to

make the dataset balanced across all eight pattern classes, rotated samples were added to

make every class comparable to the largest number, i.e. the number of the “Edge-Local”

class, 402 in Table 4.1.

Common cross-validation approach was used to train the classifiers. In our study, we

obtained a multi-class model with validation accuracy of 92.5%. Then, this classifier was

applied to the original 967 “in-class” samples used in training. The resulting confusion

matrix is shown in Table 4.2.

In total, there were 64 mistakes reported in Table 4.2. We then manually inspected

these mistakes to determine the sources of difficulties in predicting the class labels of

these wafermaps. These sources can be categorized into three types:

� Label Ambiguity: Two very similar wafermaps have two different labels in the

140

Wafermap Analytics Chapter 4

Table 4.2: Confusion Matrix (On All 967 Wafer Maps):⇒: Given Label, ⇓: Predicted Label

Center Donut Edge-L Edge-R Loc. N-Full Random Scratch
Center 71 0 0 0 3 0 0 0
Donut 0 10 0 0 1 0 1 2
Edge-L 0 0 387 0 16 0 1 1
Edge-R 0 0 5 9 0 0 0 1
Loc. 10 0 7 0 319 0 0 7
N-Full 0 0 1 0 0 16 0 0
Random 0 0 1 0 1 0 26 0
Scratch 0 0 1 0 5 0 0 65

Total Mistakes 10 0 15 0 26 0 2 11

training dataset.

� Under-specification: The wafermap contains a unique pattern, which is quite

different from those wafermaps included in the training dataset.

� Model Deficiency: Other mistakes that are not due to the above two reasons.

Figure 4.5: Examples of mistakes in Table 4.2

The number of mistakes in each category is shown in Figure 4.5. If we consider the

33 cases in the first two categories as problems with the dataset itself, over half of the

mistakes was due to this dataset deficiency.

141

Wafermap Analytics Chapter 4

The right-hand-side of Figure 4.5 shows several mistakes from the label ambiguity

category. Additional examples can be found in [14]. For each case, two wafermaps are

shown. Note that for each wafermap in this category, we found a wafermap with a similar

pattern labeled as the predicted class to justify the prediction. For example, if a wafer

map was predicted by the model as “Local” but was labeled as “Center” (first case), we

considered this as label ambiguity if we could find another similar-looking wafer map in

the “Local” class to justify the prediction (second case). In other words, we cannot blame

the model for the mistake because two very similar-looking wafermaps were assigned with

two different class labels to begin with.

The left-hand-side of Figure 4.5 shows three mistakes in the under-specification cate-

gory. Each of these patterns appeared only on one wafermap. If the wafermap were not

in the training set, the model would never see the pattern. Hence, it is understandable

that the model would have mistaken on them.

The same VGG architecture was used to train a binary classifier model to differentiate

the “in-class” wafermaps from the “None” wafermaps [14]. The same image rotation

strategy was used to make the training dataset more balanced. The training dataset

comprised all 967 original “in-class” wafermaps and their rotated images. It also included

9K randomly-selected “None” wafer maps. The test dataset comprised the rest of the

“None” wafermaps without any “in-class” wafermaps. The test dataset is used to evaluate

how many wafermaps can be filtered out by the model. Ideally, we would like the model

to filter out all wafermaps in the test dataset. Our work in [14] reported a binary classifier

model with training accuracy of 95.25%. This model filtered out 99.33% of the “None”

samples in the test dataset. However, it also filtered out 249 of the “in-class” wafermaps.

The binary classifier and the 8-class classifier were then applied to the 19086 unlabeled

wafer maps in sequence, as illustrated in Figure 4.6. After the first step, only 741

wafer maps were left (they were supposed to have an “obvious” in-class pattern). Their

142

Wafermap Analytics Chapter 4

Figure 4.6: Two-step classification employed by the two trained VGG models [14]

classification result is shown in Table 4.3. After manually reviewing the result, those

“questionable” were identified (see [14]). The number of questionable samples are also

shown in the table and we consider them as potential mistakes.

Table 4.3: Classification on the 741 unlabeled wafer maps
Class Center Donut Edge-L Edge-R Loc N-Full Random Scratch

Classifier’s Result 114 37 211 44 233 9 34 59
Potential Mistakes 2 24 4 10 37 0 10 49

Figure 4.7: Examples of questionable classification (the shown labels were reported
by the model and were considered questionable in the manual review) [14]

Figure 4.7 shows some examples of those potential mistakes. Additional examples

can be found in [14]. An interesting aspect observed was that although the 8-class VGG

classifier previously achieved a high validation accuracy of 92.25% on the labeled dataset,

its performance on the set of 741 unlabeled wafer maps was considerably worse. In a

sense, the earlier 92.25% accuracy result for the model might be somewhat misleading

when considered from a practical application standpoint. Additionally, it was noted that

the classifier’s performance on different classes varied significantly.

The two classifiers reported in [14] were by no means optimal. However, optimizing

model’s classification accuracy was not the goal of the study. The study focused on

143

Wafermap Analytics Chapter 4

understanding the sources of the mistakes and suggested that for dealing with some

mistakes, it might not be effective to look at the problem from the perspective of model

optimization. This was because many mistakes were due to some issues in the dataset to

begin with.

4.3.3 Bypassing the training dataset issues in ML

Based on our study in [14], if we were following a ML view to approach wafermap

analytics, a logical conclusion would be to improve the quality of the training dataset.

Indeed, this is a common ML thinking, beginning with defining the general problem using

the training dataset, followed by two focuses of optimization: the quality of the dataset

and the accuracy of the ML model. Hence, if the accuracy loss is due to the quality of

the dataset, a logical action is to improve the dataset.

For all the other works reviewed in Section 4.3.1 above, their focus was on the model

accuracy. Although some tried to address the issue of data sufficiency through data

augmentation or using less training samples, they never questioned the validity of the

WM-811K dataset to begin with. In contrast, we did in our work [14].

The validity can be questioned at two levels. At the dataset level, it had issues

from label ambiguity and under-specification. At the problem definition level, the eight-

class classification, in some cases, seemed quite arbitrary. In other words, the initial

specification of the general problem might be questionable.

Our approach to resolve these two levels of questions is to bypass them entirely under

our DSML view, as depicted in Figure 4.8. Instead of starting with a general problem

definition, each step in the DSML view starts with a dataset associated with a local

question on the dataset. This local “(dataset, question)” pair is sent to a DSML oracle

(see discussion in Section 3.12.2) which either provides an answer to the question or

144

Wafermap Analytics Chapter 4

Figure 4.8: ML view vs. DSML view to approach wafermap analytics

decides that no answer can be found on the given dataset. To develop a wafermap

analytics tool with the DSML view (i.e. to serve as the DSML oracle in the wafermap

analytics context), the main concern is on the types of the questions to be supported by

the tool. This is a key consideration for the development of the Minions approach and

will be elaborated in detail in the following.

4.4 Types of Analytic Questions

For the application contexts reviewed in Chapter 2, there are many contexts where the

analytic questions focus on one sample. For example, in speedpath analysis (Section 2.3),

we are asking the question regarding the cause of a path. In functional coverage improve-

ment (Section 2.4.2), we are asking the question regarding how to hit a coverage point.

In customer return analysis (Section 2.5), we are asking the question how to project a

known failing chip as an outlier.

In wafermap analytics, one can also ask a question based on one particular wafermap,

e.g. find me all wafer lots containing the pattern shown on the wafermap. In addition,

one can ask a variety of other types of questions. In wafermap analytics, we can consider

analytic questions in two categories: pattern based and lot based.

145

Wafermap Analytics Chapter 4

Pattern based This category of questions asks the DSML oracle to analyze the data

based on patterns, and what constitutes a “pattern” can be unspecified and left to

the DSML oracle to decide. There can be three types of questions:

Existence type For example, the question can be “What patterns are in the

dataset?”. Underlying this question is a more basic decision question: “Do

you see a pattern in the dataset?”.

Search type The question is formed by a pair of “(dataset, wafermap)”, asking

to find all wafers from the dataset, which contain the pattern shown on the

given wafermap. Again, the decision version of the question is that “Do you

see other wafers containing the pattern shown on this wafermap?”

Attention type This type of question is to ask the oracle to point out where

in the data needs more attention. For example, the question can be “What

patterns do I need to pay attention?” The decision version of the question

can be that “Is there a pattern that I need to pay attention this week?”

Lot based Pattern-based questions above can also be asked from the lot perspective.

Lot-based questions ask the DSML oracle to analyze the data based on wafer lots.

Lot-based questions are different from pattern-based questions mainly because the

definition of the word “pattern” can change.

Existence For example, the question can be “Which lots contain a significant

pattern?”. Underlying this question is a more basic decision question: “Do

you see a lot containing a significant pattern?”.

Search type The question is formed by a pair of “(dataset, lot)” to ask the oracle

to find all lots “similar” to the given lot. Again, the decision version of the

question is that “Do you see other lots similar to this lot?” The scenario might

146

Wafermap Analytics Chapter 4

be that a person has decided that one particular lot is reflecting a yield issue

and desires to find all lots possibly exhibiting the same yield issue.

Attention type This type of question is to ask the oracle to point out which lots

need more attention. For example, the question can be “Which lots do I need

to pay attention?” The decision version of the question can be that “Is there

a lot that I need to pay attention this week?”

4.5 From ML Classifier to DSML Oracle

In view of the types of analytic questions listed above, it is obvious that a multi-

class wafermap classifier trained with a pre-defined set of pattern classes is insufficient

for answering those questions. Rather, answering those questions necessitates a DSML

oracle as shown in Figure 4.8

4.5.1 Definition of pattern classes

A dataset like WM-811K [124] is based on pre-defined pattern classes. This definition

is subjective in view of an intended application context. With a fixed class definition, it

is assumed that in an application, there is no need to differentiate wafer maps beyond

those defined classes. This is not true in view of the analytic questions above.

Figure 4.9: Within-class pattern variations seen in WM-811K dataset

147

Wafermap Analytics Chapter 4

The pattern classes defined in WM-811K can be a rather limited way to differentiate

wafer maps. For example, Figure 4.9 shows six examples from each of the two classes,

“Edge-Local” and “Local”. As seen, the six wafer maps in each set do not look similar. In

one context, it might make sense to consider them as a single class. In another, it might

make sense to separate them into different classes. In other words, the class definition

should depend on the application context.

Deciding in advance a pre-defined set of pattern classes that makes sense universally in

all contexts can be an unrealistic thinking. For example, Figure 4.10 shows six consecutive

wafermaps from one single lot in the WM-811K unlabeled dataset. These six wafers

clearly show a systematic trend. However, based on the WM-811K’s class definition, the

1st, 3rd, and 5th wafers might be called a “Local” pattern. The 2nd and the 4th might be

a “Donut”. The rightmost one might be called a “Center” pattern or a “Local” pattern

(subject to label ambiguity). From the pattern class definition, they are not the same.

However, by the fact that they are consecutive wafers within the same lot, the systematic

trend is clear. Hence, from the lot perspective all these wafermaps belong to a “single

pattern” that they are likely caused by the same issue.

Figure 4.10: An example of pattern class varying within a single lot in WM-811K dataset

Example shown in Figure 4.10 illustrates why we earlier separate the analytic ques-

tions into two categories. The definitions for a pattern with and without taking the lot

perspective, can be different. Thus, the DSML view in Figure 4.8 allows patterns to be

defined based on the given question. To emphasize this point, we state three postulates,

and in the rest of the chapter we will discuss how to achieve a DSML oracle in view of

148

Wafermap Analytics Chapter 4

these postulates.

1. Pattern class definition depends on the analytic question.

2. Pattern class definition depends on the dataset associated with the question.

3. A user can assert a pattern class definition with one wafermap.

4.5.2 (Dataset, Question) pair with pattern class constraints

Given a “(Dataset, Question)” pair, it is desired that a DSML oracle uses a pattern

class definition that is most appropriate in view of the question. Therefore, it is important

to note that on the same dataset, different questions may lead to different pattern class

definitions. Similarly, on the same question, different datasets may lead to different

pattern class definitions.

In practice, a pattern class definition derived by the DSML oracle on its own might

not completely meet the need of a user. Hence, the DSML oracle should allow the user

to enforce a pattern class. For example, the user can provide one or more wafermaps and

enforce they being treated as a pattern class.

4.6 Concept Recognition

Section 3.10 briefly introduces the concept recognition component with Figure 3.20.

In [84], the term “concept” is explained through several examples without a formal

definition. In this section, we provide a more formal definition of the term “concept”.

4.6.1 What is a “concept”

In view of a DSML oracle discussed in Section 3.12, a concept C is a description used

to phrase a decision problem given to the DSML oracle. The problem statement is an

149

Wafermap Analytics Chapter 4

existence question in the following form:

With the given dataset, does C exist?

The following shows some C examples in different contexts.

� A correlation ≥ 0.65 between an E-test and a failure type.

� A test space where the given failing chip is an outlier.

� A monomial with length ≤ 3 to explain a speedpath.

� A wafermap that has the same pattern shown on a given wafermap.

In each case, the existence of C in the given dataset is decided by the DSML oracle. If

C exists, then the DSML oracle reports a set of instances to show its existence. Otherwise,

the DSML oracle reports the non-existence of C in the dataset.

A concept C can be more complex than those shown above. For example, C can be

called “a systematic trend” and “a problematic lot” in the wafermap analytics context.

Regardless how a concept is called and defined, the important aspect is that a concept

must be associated with a decision procedure in the DSML oracle to decide its existence

in a given dataset. In other words, we define concept as the following.

A concept is something whose existence in a dataset

can be decided by one or more DSML oracles.

In other words, if IEA contains n DSML oracles, the system can support no more

than 2n−1 concepts. For each concept Ci, the corresponding DSML oracle Di is to decide

its existence or not. If a question asking for the simultaneous existence of Ci,Cj,Ck, then

it is equivalent to asking the existence of a higher level concept Ci,j,l = Cj ∧Cj ∧Ck.

150

Wafermap Analytics Chapter 4

Figure 4.11: A DSML oracle provides decision support at the concept level

4.6.2 Decision support by a DSML oracle

Earlier in Section 2.7.4 we define DSML as decision-support ML in view of the big

picture Figure 2.22. The term “decision-support” can be seen as supporting the decisions

through the decision chain (see Section 2.7.3). Based on the discussion in this section,

we see that there is a more basic level of decision support, provided by a DSML oracle.

This is illustrated in Figure 4.11. In essence, to support decision making through the

decision chain, we incorporate decision support starting at the basic concept level. This

thinking is fundamental to the design of IEA, that analytic result for making a higher level

decision should be recursively supported by decisions made at a lower level. Note that

this thinking is in parallel to assembling concept hierarchically, wherein more complex

concepts are constructed based on simpler ones..

4.6.3 Graph-based concepts in wafermap analytics

To enable answering the types of analytic questions discussed in Section 4.4 above,

in the following we define a list of wafermap concepts. These concepts are defined based

on two symmetric binary relations: semi-equivalent and similar, denoted as ≊ and ⋍,

respectively.

⋍ Given two wafermaps wp1,wp2, a DSML oracle decides if they are similar to each other.

If they do, their relation are denoted as wp1 ⋍ wp2.

≊ Given a group of wafermaps E = {wp1, . . . ,wpk}, for k ≥ 3, we say that they are

151

Wafermap Analytics Chapter 4

semi-equivalent if ∀i, j, 1 ≤ i, j ≤ k, we have wpi ⋍ wpj. In this case, we say that

wpi ≊ wpj ∀wpi,wpj in the group.

With the two binary relations, we can think of concepts defined in this section as

graph-based concepts. With the similarity relation ⋍, a set of wafermaps can be converted

into a wafermap graph where there is an edge between any two wafermaps wp1,wp2 in

the set if wp1 ⋍ wp2 holds. Then, the establishment of the semi-equivalent relation among

a group of wafermaps means that the group forms a clique in the wafermap graph.

Note that the basis for deciding the two relations is to decide the similarity between

two wafermaps. This similarity decision can depend on the implementation of the DSML

oracle. Later in Section 4.7, we will discuss the Minions approach for implementing this

similarity decision.

With the two wafermap relations defined, we can use them to define several pattern

concepts used to support wafermap analytics.

Anchor Pattern Given a set of wafermaps, an anchor pattern is represented by a

maximal group of semi-equivalent wafermaps A = {wp1, . . . ,wpk} s.t. ∀wp /∈ A,

∃wpi ∈ A, wp and wpi are not similar, i.e. A is a maximal clique in the correspond-

ing wafermap graph.

Primitive Pattern A primitive pattern is represented by a group of anchor patterns

A1, . . . ,Al for l ≥ 1 s.t. for any pair Ai,Aj, there exists a wp ∈ Ai and wp ∈ Aj, i.e.

the two cliques share the same wafermap wp.

Lot Pattern A lot pattern is a collection of primitive patterns appearing in the same

lot. In this case, they are treated as a single pattern.

Pattern A pattern is dynamically decided based on a fixed and computable rule that is

stated in terms of the pattern concepts and relations defined above.

152

Wafermap Analytics Chapter 4

With the two relations and the pattern concepts, the DSML oracle can further defines

other relations and measurements to support the analytics.

i-Hop Relation i.e. ⋍i,∀i ≥ 0. We say that there is an i-hop relation between two

wafermaps wpa and wpb, denoted as wpa ⋍i wpb, when there exists a sequence of

wafermaps wp1, . . . ,wpi s.t. wpa ⋍ wp1 ⋍ wp2 ⋍ ⋯ ⋍ wpi ⋍ wpb. We let ⋍0 to be the

same as ⋍.

Distance Given two wafermaps wpa,wpb, their distance, denoted as dist(wpa,wpb) is

i+1 iff wa ⋍i wb holds. If wpa,wpb have no similarity relation between them for any

i, then the distance is ∞.

Group Similarity Strength Given a group of wafermaps wp1, . . . ,wpn, we can mea-

sure a similarity strength for the entire group based on the distance concept defined

above. For example, this strength can be measured as 1
nΣ∀i,j

1
dist(wpi,wpj)2

.

Group-to-Wafer Similarity Strength Given a wafermap wp, and a group of wafermaps

wp1, . . . ,wpn, we can also measure a group similarity strength with respect to wp.

For example, this strength can be measured as Σ∀i
1

dist(wp,wpi)2
.

4.6.4 Answering wafermap questions

Wafermap concepts in the previous sections can be readily defined once the relation

⋍ is implemented in the DSML oracle (equivalently, once a wafermap graph based on ⋍

is constructed). In Section 4.7 below we will discuss an implementation of the similarity

relation ⋍. Before getting to the implementation, in this section we provide a few exam-

ples to illustrate how those wafermap concepts can be used to answer questions discussed

in Section 4.4 before.

153

Wafermap Analytics Chapter 4

Pattern based Below shows the three types of pattern-based questions discussed in

Section 4.4 and examples for how to answer them.

Existence question “What patterns are in the dataset?”

The DSML oracle can output the primitive patterns if they exist. If no prim-

itive pattern exists, the oracle simply says there is no pattern.

Search question “Are there other wafermaps in the dataset, containing the pat-

tern shown on wp?”

The question can be answered in two steps. For example, the first step is

to determine if the pattern on wp can be deemed as a primitive pattern or

close enough to a primitive pattern, say within a distance i for some i. If not,

then the answer is “no pattern seen on wp”. This is a required step to verify

that wp indeed has a pattern from the oracle’s perspective. If the first step

passes and it is determined that wp has some pattern on it, then the search

can be carried out by finding all wafermaps whose distances are ≤ i for some

pre-fixed i. In addition, the oracle can allow the user to specify a different i

as an additional constraint to the question.

Attention question “Is there a pattern causing more than 0.5% of yield loss?”

This question can be answered by two steps. The first step is to define the

pattern with a collection of wafermaps, followed by the second step to compute

the average yield loss on those wafers. The collection of wafermaps can be

selected, for example, by starting with a primitive pattern P and including all

wafermap wp s.t. dist(wp,wpi) = 1 for some wi ∈ P .

Lot based Below shows the three types of lot-based questions discussed in Section 4.4

and how to answer them.

154

Wafermap Analytics Chapter 4

Existence question “Which lots contain a significant pattern?”

The significance of a pattern can be based on the average yield loss across a

group of wafermaps containing the pattern. Then, with a given threshold, a

pattern can be called significant or insignificant. If a pattern is deemed signif-

icant, those lots with the wafermaps containing the pattern can be reported.

Again, the oracle might calculate a yield loss threshold by itself or take a

user-defined threshold as the constraint to determine significance.

Search type Question: “Which lots contain wafermaps similar to this wp?”

Answering this question is similar to answering the pattern-based search ques-

tion above. The lot name of the found wafermaps are reported. In addition,

the lots can be ranked based on their group-to-wafer similarity strength to wp.

Attention type Question: “Is there a lot with a pattern that causes more than

0.5% of yield loss?”

Answering this question is similar to answering the pattern-based attention

question above. In addition, the lots can be ranked based on their group

similarity strength.

4.7 The MINIONs Approach

The above discussion shows that in practical wafermap analytics, one can ask a variety

of analytic questions. To answer those questions, we need to define a variety of different

concepts. To achieve the required flexibility, at the most basic level we need a definition

for the similarity relation ⋍. Once the similarity relation is there, we can use it to

construct a wafermap graph. Then, based on a given wafermap graphs, various concepts

can be defined to answer various analytic questions. To be clear, the following provides

the problem statement fundamental to the wafermap analytics discussed so far.

155

Wafermap Analytics Chapter 4

What we need is a decision procedure that given two wafermaps decides

if they are similar or not.

4.7.1 Previous works on learning a concept recognizer

The idea of concept recognition in test data analytics was first proposed in [84] from

our lab and the work in [85] tried to implement concept recognition where concepts were

represented as plots. In the context of wafermap analytics, the starting point is that a

user provides a small set of wafermaps to represent a pattern class of their own. The

user would like to have a model to recognize just the particular pattern class. In this

scenario, the concept is represented by the set of wafermaps.

The works in [85] and its follow-up work [137] were both based on this perspective. In

the first work [85], the approach was based on Generative Adversarial Networks (GANs)

[130] for learning a concept recognizer. GANs are methods to learn a generative model.

Given a dataset, a generative model synthesizes new samples similar to the training

samples. A GAN’s architecture consists of two neural networks. The generator network

G is trained to generate samples. The discriminator network D is trained to differentiate

the training samples from the generated samples.

In [137], the discriminator was a simple CNN with one convolution layer and one

fully-connected (FC) layer. The generator network basically had a reverse-CNN archi-

tecture with more convolution layers and FC layers. The design in [137] used a simple

discriminator and a more complex generator because generation of samples was harder

than classification of samples. In other words, the generator was given with more capacity

than the discriminator.

The implementation was inspired by the regularization ideas proposed in [138][139].

Note that in typical GANs training, the goal is to learn a good generator. The goal was

156

Wafermap Analytics Chapter 4

different in [137]. After learning, the discriminator was used as the concept recognizer.

Hence, the training focused on the quality of the discriminator rather than the quality

of the generator.

To train a discriminator as the concept recognizer, the experiments in [85] showed

that a minimum requirement of five training samples. It should be noted that this

minimum requirement depended on the pattern class to be learned. In [85], the five

wafermaps used in the experiments were very similar. If we were to learning a recognizer

for a pattern where within-pattern variation is large (e.g. those in Figure 4.9), then five

training samples would not be enough.

For training GANs, attention is required to ensure two aspects: the output quality

of both neural networks and the convergence of the training iteration. The work in [140]

suggests several guidelines to improve the quality.

The work in [85] found that the performance of the CNNs were sensitive to whether

or not (1) Batchnorm was used in both generator and discriminator CNNs, and (2)

the Leaky ReLU activation function was used for all perceptrons. Implementation of

a Dropout strategy was also found to be crucial [141]. For convergence, the feature

matching technique [142] was crucial. Furthermore, in the discriminator network the

Sigmoid function was used to convert the output of the last perceptron into a value

between 0 and 1. In the generator network, the Hyperbolic Tangent function was used for

adjusting the output value. The CNNs in [85] were implemented with Google TensorFlow

[143]. The ADAM optimizer [144] was used for the training.

Lessons from previous works on learning a concept recognizer

The conclusion from [85][137] was that training GANs for building a concept rec-

ognizer could be quite tricky [140][142] because balancing the convergence between the

generator and the discriminator could be challenging. An additional tricky aspect is de-

157

Wafermap Analytics Chapter 4

ciding when to stop the training. This aspect was studied in detail in [137]. If the goal

was to obtain a good generator, the training could proceed until the discriminator failed

to separate the training samples from the generated samples. This strategy would not

work if the goal was to obtain a discriminator as the recognizer. In [137], deciding when

to stop the training was based on so-called separability, a measure how well the in-class

and out-of-class samples were separated by the discriminator.

Because of all the subtleties in training a GANs-based concept recognizer, it would be

difficult to guarantee the performance of a concept recognizer. The robustness concern

motivated the use of another method to check the performance of a concept recognizer

[145]. A tensor computation based method was developed and refined through a sequence

of works [146][147][148]. Initially, the method was for implementing an online checker

for a concept recognizer. In [137], it was further extended as a way to extract training

samples for training a GANs-based recognizer.

Because training a GANs model is complicated, the robustness of a GANs-based

recognizer can be a concern. While the tensor-based containment check was proposed to

mitigate the concern, it did not completely address all the challenges (see [137]). The

flow presented in [137] was comprehensive. Nevertheless, its use was still limited to the

application scope of multi-class classification. In other words, its output is still a set of

“best-determined” pattern classes and the set of wafer maps identified in each class.

In view of the three postulates discussed in Section 4.5.1 above, the early works for

concept recognition were not sufficient to address all the needs. All the challenges were

addressed after the MINIONs approach was invented [15][14].

158

Wafermap Analytics Chapter 4

4.7.2 Learning a concept recognizer for one wafermap

The MINIONs approach enables a reliable implementation for realizing the similarity

relation ⋍ defined above. It started by finding a way to learning a concept recognizer for

just one wafermap [15]. The MINIONs approach was presented in [14], which was based

on the manifestation learning approach presented in [15]. MINIONs stand for MINiture

Interactive Offset Networks. Figure 4.12 illustrates the high-level idea of the MINIONs

approach.

Figure 4.12: High-level idea of the MMINIONs approach

With the approach, a neural network (NN) model is independently learned for each

wafermap. This NN model serves as a concept recognizer dedicated for the wafermap.

In this sense, each wafermap by itself represents a concept at the most basic level. In

[14], each recognizer is a neural network model called a MINION. The wafermap used

to train a MINION is called its anchor. With one MINION for every wafermap, we can

then perform mutual recognition on pairs of wafermaps, which will result in a recognition

graph. In this graph, every node is a wafermap. Two nodes have an edge connecting

them if their recognizer recognizes each other (i.e. mutual recognition). Therefore, in

the MINIONs approach the similarity relation ⋍ is decided by the mutual recognition.

Given a recognition graph, we can analyze wafer maps using well-known operations

on graphs. For example, clusters of wafermaps can be attained by finding all Connected

Components (CC) where each CC is treated as a separate cluster. Figure 4.13 shows

a CC example based on wafermaps from the WM-811K dataset. It is interesting to

159

Wafermap Analytics Chapter 4

Figure 4.13: An example connected component extracted from a MINIONs recognition graph

notice that while two wafermaps with a direct connection have a similar pattern, not all

wafermaps in the CC have a similar pattern. This is because each MINION can recognize

a wafermap with certain variations from its anchor. In addition, in the implementation

an input wafermap is rotated with ±x○ to generate additional input wafermaps such that

if any of them is recognized by a MINION, the original input wafermap is considered as

recognized. The setting used to generate Figure 4.13 is ±10○. Because each MINIONs can

recognize small variations of the pattern shown on its anchor, as a result, in a CC when

two wafermaps are connected through more edges, they tend to become more dissimilar.

In other words, along a path of multiple edges in a CC it is possible to observe amorphism

across the patterns shown on the wafermaps.

One major advantage of the MINIONs approach is that it turns a traditional analysis

such as clustering from statistical to graph-based. After a mutual recognition graph is

constructed, all analyses can be done with graph-based operations, which can improve

160

Wafermap Analytics Chapter 4

traceability and robustness of the analyses.

4.7.3 MINIONs’ one-shot learning

A MINION is trained with one sample. Training with one sample is generally re-

ferred as one-shot learning [149][150]. In Machine Learning, three approaches have been

proposed to tackle one-shot learning, as illustrated in Figure 4.14.

Figure 4.14: Different ways to attain one-shot learning

Two domains are shown, a source domain A on the left and the target wafermap

domain on the right. Domain A has many training samples. Wafermap domain has

only 1 sample. The idea of data augmentation is to learn from samples in domain A to

generate more samples and augment the dataset in the wafermap domain [151][152][153].

In feature augmentation (e.g. [153][154][155][156]), generated samples are in the feature

space rather than in the input space.

In feature transfer [157], neural network weights learned from the source domain

are transferred to the wafermap domain. Domain adaptation [158][159] is a specialized

approach where the transfer is between two domains for performing the same task and

hence might not be applicable here. In meta-learning [160], a learning strategy learned

in the source domain is transferred into the target domain. A recent study [161], though,

shows that meta-learning is not as effective as people had claimed on a variety of tasks.

161

Wafermap Analytics Chapter 4

For learning a MINION model with one wafermap in the target domain, the work

in [14] did not find the three approaches effective. Instead, a fourth approach called

manifestation learning [15] was adopted. From the perspective of transferring between

two domains, this approach transfers an “output vector space” (an embedding space)

from domain A to the wafermap domain [15]. In work [14], a two-part training scheme

was used based on a variant of the Triplet Loss Siamese Network [162].

Figure 4.15: The idea of manifestation learning presented in [15]

Figure 4.15 explains the idea of manifestation learning presented in [15] and further

improved in [14]. The training has two phases. In the preparation phase, popular hand-

writing digit classification dataset MNIST [163] is used. The MNIST dataset contains

5000 images for each digit, 0 to 9. In manifestation learning, this dataset is used first

to train a Variational Auto-Encoder (VAE) model [164]. A VAE model comprises a

CNN encoder and a CNN decoder. The CNN encoder maps each MNIST image onto a

distribution of embedding vectors in the latent space. Then, the CNN decoder maps an

embedding vector back to an image. In [15], the training is based on InfoVAE [165].

After the InfoVAE training to obtain the latent space with embedding vectors, on its

latent space we build an SVM one-class model to capture a concept region for a selected

class. The class used in [14] was the class of digit “1”. The SVM model is built in such

162

Wafermap Analytics Chapter 4

a way that it tries to capture all embedded vectors of digit “1” and no vector from any

other digit. Hence, it is a conservative model.

Refer back to Figure 4.15. In the application phase, the training takes place in the

wafermap domain with the purpose to train an encoder without the decoder. The latent

space with embedded vectors from the MNIST training is transferred to serve as the

target for the encoder. The same SVM model is reused for training a recognizer for every

wafermap. The idea in this training is to map the wafermap to the center of the concept

region defined by the SVM model. Detail will be explained in Section 4.7.4 below.

After the training, the CNN encoder is our recognizer (MINION) for one given

wafermap. Then, for a wafermap given as input to the recognizer, it will be mapped

to an embedding vector. If this vector falls inside the concept region as determined by

the SVM model, it is recognized. Otherwise, it is unrecognized.

4.7.4 MINION’s training detail

While the initial works described some of the MINION’s training details [15, 14], our

implementation has been enhanced over time with the development of IEA. Here, we

consolidate the most updated training setup of the MINION models as follows.

As discussed in Section 4.7.3, the first phrase of training a MINION model is to pre-

pare the latent space by training an InfoVAE model with MNIST dataset. A wafermap

image was encoded with values 1 and -1, indicating the failing and passing dies, respec-

tively. The digit images from MNIST dataset were normalized to use the same encoding

scheme as the wafermap images.

An InfoVAE includes a encoder and a decoder. For our implementation, the encoder

contained Convolutional Neural Network (CNN) layers and a dense layer that outputs

a set of parameters for specifying the latent distribution. Specifically, two parameters

163

Wafermap Analytics Chapter 4

called the “mean” and “variance” were learned, each was specified as a 16-dimensional

vector. Then, the reparameterization trick was applied to generate a latent sample for

the decoder [164, 165]. The decoder contained several dense layers which takes the latent

sample as input and transpose convolutional layers to reconstruct the original input

image. The activation function used in the training was Leaky ReLU and an learning

rate of 5e-4 was adopted for Adam optimizer.

InfoVAE uses the Maximum Mean Discrepancy (MMD) as the loss function, instead

of the traditional evidence lower bound (ELBO) used in VAEs. In this way, the latent

distribution has to match the prior only in expectation, rather than for every input, thus

enabling more meaningful latent representation [165]. This property is preferred in the

manifestation learning because our goal was to obtain a latent space of embedded vectors

which maintains class information. The original VAE is designed to learn a powerful de-

coder as the generator. Thus, the ELBO criterion can become overly restrictive, mapping

every class of input distribution onto the same Gaussian distribution, i.e. random noise.

This can result in the loss of information in the latent space.

Figure 4.16: Visualization of latent space learned with MNIST samples in [15]

164

Wafermap Analytics Chapter 4

The learned encoder essentially transforms an input image into a 16-dimensional

latent vector using the reparameterization trick. We refer to the collection of these latent

vectors obtained from each digit image as the latent space. The left plot in Figure 4.16

shows a visualization of the learned latent space by projecting it into a 2D plot with

TSNE [166]. 100 samples are shown for each digit. As seen, samples from the same digit

class are grouped together.

Then, a SVM one-class model was used to define the concept region by fitting the

distribution of digit class “1” in an unsupervised learning setting. An SVM parameter, ν,

which sets an upper bound on the fraction of samples classified as outliers, was specified

to a minimal value of 0.01 to fit samples in the “1” class as many as possible. The right

plot in Figure 4.16 shows the sorted SVM scores obtained by applying the learned SVM

model on each digit class. The obtained one-class SVM model has a decision threshold

set at 0.705. Based on the threshold, the number of in-class samples obtained was 4863

and there were only 59 samples from other classes, i.e. false positives. The digit “1”

was selected because the SVM model learned with it contained the most in-class samples

and the least false positives. These in-class samples were used to represent the so-called

concept region. As seen in the 2D projection plot, the cluster of digit “1” is also the

farthest away from other clusters.

The learned latent space along with the SVM model are transferred to be used in

the MINION’s training. Figure 4.17 shows the training data including the original one

wafermap and some augmented samples used to train the MINION model. The training

essentially learns an encoder to encode the anchor image into the latent vector with

the highest SVM score in the concept region. Denote this latent vector as t1. Note

that the anchor used is a special wafermap transformed from the original wafermap

by extracting the top large connected components (LCCs) from the original wafermap

based on a heuristic. A connected component (CC) is defined based on the 8-neighbor

165

Wafermap Analytics Chapter 4

Figure 4.17: Codebook mapping in MINION training with augmented training data.

connectivity in image processing, i.e. each failing die (pixel with value 1) in a CC either

shares an edge or a vertex with at least one other failing die in the same CC. The heuristic

first extracts up to top 10 largest CCs where each contains at least 8 failing dies. The

number 8 is the lower bound on the size of CC and is set to fit the WM-811K dataset

so that most of the wafermaps with a “pattern” are covered. In practice, this number

can be increased to 12 or 16 for a more reasonable threshold. Through experiments, we

found that most of the wafermaps under our study contained a single LCC after applying

the heuristic. Only few contained two or more LCCs.

Note that the LCC-based approach has its limitation. For example, for a gird-like

pattern the approach would not work because a grid-like pattern contains failling dies

that are not neighbors to each other (in any direction). Therefore, for special cases like

this, we need to implement a custom script, on top of LCC, to take care of them.

In addition to the anchor, two types of generic training samples were created artifi-

cially. The first was referred to as the in-class training samples, which include the origi-

166

Wafermap Analytics Chapter 4

nal wafermap and additional wafermaps generated by transforming the original wafermap

with data augmentation techniques such as rotation. Note that the anchor wafermap was

also treated as in-class. The second was referred to as the out-of-class training samples,

comprising of an “all-pass” wafermap, a “all-fail” wafermap, a special wafermap which

contains failing dies from the original wafermap excluding the ones in the anchor (LCC),

denoted as “¬ LCC”, and wafermaps randomly generated with the count of failing dies

comparable to that of the original wafermap.

Figure 4.18: The neural network architecture of a MINION model.

All training data are resized to 64x64 images (with continuous values in the range

[−1,1]) and serve as input to a MINION model. Figure 4.18 shows the neural network

layers used in the MINION model. The MINION model functions similarly to the encoder

part of an InfoVAE model where the input image is encoded by two CNN layers along

with a Max Pooling layer, and then transformed into a 16-dimensional embedding vector

v by a dense layer. In addition, the SVM score of v with respect to the latent space

can be calculated by applying the scoring function of the one-class SVM model. In the

scoring function, K is the rbf kernel, xi is a support vector, αi is the coefficient of support

vectors [38].

167

Wafermap Analytics Chapter 4

Figure 4.19: The two parts in loss function for training a MINION model.

The high-level training objective aims at aligning the output embedding vectors based

on the concept region in the latent space. Specifically, we desire the embedding vectors

labeled as in-class to align with the concept region as closely as possible, while the

embedding vectors labeled as out-of-class should be positioned away from the concept

region as farthest as possible. To achieve this objective, the loss function used in the

MINION training contains two parts as shown in Figure 4.19.

The first part is the codebook mapping as illustrated in Figure 4.17. The detail is

described in equation 4.1 where f() represents applying the MINION model to get an

embedding vector from an image, e.g. the anchor, all-pass, or all-fail wafermap. The

codebook loss is described as three Euclidean distances between an output embedding

vector and a predefined target latent vector in the latent space learned with MNIST data.

As mentioned before, t1 is the target latent vector with the highest SVM score in digit

“1” class. We chose the latent vectors with the median SVM score in digit “0” class and

with the median SVM score in digit “7” class as the target latent vectors for mapping the

out-of-class samples, all-pass and all-fail, respectively. Denote these two target vectors

as t0 and t7, respectively. The reason is that the distributions of class “0” and “7” are

the two farthest from class “1”, i.e. the concept region. Minimizing the codebook loss

forces the model to generate the three embedding vectors that align closely with their

corresponding target vectors.

Lcodebook = ∣∣f(anchor) − t1∣∣2 + ∣∣f(allPass) − t0∣∣2 + ∣∣f(allFail) − t7∣∣2 (4.1)

168

Wafermap Analytics Chapter 4

The second part of the loss function is a variant of the Triplet Loss [162]. Equation

4.2 describes the implemented triplet loss where ϕ() represents applying the SVM scoring

function on an output embedding vector corresponding to an image from the in-class or

out-of-class samples. Tin is the in-class threshold, which is a constant set to allow a slight

margin from the target vector of the anchor, i.e. Tin = ϕ(t1) − 0.05. Tout is the out-of-

class threshold, calculated as Tout = ϕ(t0) + 0.2. Minimizing the triplet loss penalizes the

in-class samples that fall below Tin and the out-of-class samples that exceed Tout. The

minimum value of the triplet loss is zero.

Ltriplet =max(Tin − ϕ(inClass),0) +max(ϕ(outOfClass) − Tout),0) (4.2)

The final loss is the sum of Lcodebook and Ltriplet. During training, the standard mini-

batch stochastic optimization is employed to minimize the loss. Specifically, an Adam

optimizer is used with a learning rate of 0.001 and batch size of 10. Model selection is

based on selecting the model that obtains a loss value no more than 0.02 and has the

lowest loss value among all models trained over a total of 300 epochs.

To apply a trained MINION model during inference, given a wafermap, its SVM score

is calculated as shown in Figure 4.18 and compared with the SVM decision threshold.

Wafermaps with a score greater than the SVM threshold are classified as in-class and

therefore recognized. Otherwise, they are deemed unrecognized. Since MINION follows

one-shot learning, the recognition of a wafermap is based on the single training sample

used to train the MINION model.

In addition to the hyperparameter selections typically involved in standard neural

network training, MINION’s training includes consideration of several other important

parameter choices. For example, the number of augmented in-class and out-of-class sam-

ples is a user-specified parameter. The image transformation of a wafermap can involve

169

Wafermap Analytics Chapter 4

more complicated settings than simple rotation. The random wafermap generation can

be based on a fixed or a range of yield values. The heuristic used to extract the LCC

wafermap involves several parameters such as the size of the CC and the number of CCs

to retain in a wafermap etc. The parameters used in our MINION training were deter-

mined empirically through extensive experiments, based on performance observed on the

public WM-811K dataset and private test datasets from three production lines.

4.8 Experiment Results

In this section, we use two experiment results to demonstrate the benefits of our

MINIONs approach. The MINIONs approach has been implemented as part of our IEA-

Plot AI Assistant [35]. More results will be shown with the IEA-Plot in Chapter 6.

The two results shown below were based on the WM-811K dataset where 306 lots of

wafermaps (both labeled and unlabeled) were used in the experiments by selecting one

particular die count (518, represented in WM-811K as the expected number of dies on a

given wafer) and one particular wafer shape (the 27 × 25 shape in the WM-811K dataset).

Figure 4.20: An example of finding a problematic lot

Earlier in Section 4.6.3, we define the concept of group similarity strength. The left of

170

Wafermap Analytics Chapter 4

Figure 4.20 shows a plot where each dot is a lot. Every lot is positioned with its similarity

strength (the group is the set of wafers in the lot) and average yield loss. A large similarity

strength means the lot contains a more systematic pattern. There is one lot circled in

the plot, which has a large strength and high yield loss. The wafermaps from the lot are

shown on the right of Figure 4.20, as part of the MINIONs recognition graph. We can see

that the wafermaps exhibit a clear systematic trend. There is a “path” highlighted on the

graph. Along the path we can observe morphism of wafermap patterns. The morphism

path shows that those wafermap patterns are related, even though they do not all look

the same. And because all these wafers appear in the same lot, it is likely that those

wafermap patterns are caused by the same underlying issue in the manufacturing process.

With the MINIONs graph, we can clearly observe a systematic trend on a group of wafers

even though they contain “different patterns”. This is one of the capabilities which is

challenging if implemented with a traditional multi-class classification approach.

Earlier in Section 4.6.4, one of the questions is: “Which lots contain wafermaps similar

to this wp?”. Figure 4.21 shows the answer for a particular wafermap “lot45254-23”. The

figure shows one lot which has the highest wafer-to-group similarity strength as defined

in Section 4.6.3 above. The wafermaps from this lot are shown as part of the MINIONs

graph. This lot happens to be the lot shown in Figure 4.20 above.

171

Wafermap Analytics Chapter 4

Figure 4.21: An example of searching for a similar lot based on a given wafermap

172

Chapter 5

Problem-Solution Dual View

因有故成無，因無故成有;　 微塵分析事，不起色分別。

Because there is, there is not; Because there is not, there is; Analyzing

everything to the end, There is nothing to discern.

— 《楞伽經》 Lankāvatāra Sūtra

In the previous chapter, we see that having a DSML oracle is fundamental to enable

solving DSML problems such as wafermap analytics. A DSML oracle is built upon a

decision procedure and is for solving a decision problem, i.e. with a binary answer. A

DSML problem is considered always as solving a decision problem at its core. We can

say that from the description perspective, each concept corresponds to a DSML oracle.

Then, to solve a problem based on a problem description involving a number of concepts,

essentially is to apply the corresponding DSML oracles. A DSML oracle can be built

upon other DSML oracles at the lower level, corresponding to that a concept can be built

upon other more primitive concepts.

In this section, we consolidate all these ideas in DSML, which have been gradually

developed throughout the previous chapters, into a fundamental thinking called Problem

173

Problem-Solution Dual View Chapter 5

and Solution Dual View (referred to as “Dual View” in the following sections). From

there, we will elaborate on the motivation behind language-driven analytics and present

its initial implementation in 2022.

5.1 Dual View of DSML

Figure 5.1: Problem and solution dual view in DSML

Figure 5.1 summarizes the Dual View seen when designing our DSML oracles. At

the high level, the Dual View means that the Problem (P) and Solution (S) have to be

considered together as a pair when solving a problem for domain-specific analytics.

In traditional ML, one starts with a problem formulation defined with a benchmark

dataset. The problem is assumed well-defined. The focus is on solving the problem,

i.e. obtaining an optimized learning model. In most of the ML applications today in

the semiconductor industry, one goes in the reverse direction. Given a ML tool, a ML

model, or a ML technology, one tries to apply the tool, the model or the technology

174

Problem-Solution Dual View Chapter 5

by formulating a given description of the analytic problem to fit the tool, the model or

the technology. In other words, all those practices might be seen as following the law-

of-the-instrument1 An example of the law-of-the-instrument practice is described in the

previous chapter, where all other researches deal with wafermap analytics by formulating

it as a multi-class classification problem (because of the available benchmark WM-811K).

As explained before, solving a multi-class classification problem does not address the

practical needs appropriately, leaving a gap between the solution provided and the actual

problem people care about solving in the first place.

It should be noted that law-of-the-instrument practices are visible everywhere in the

semiconductor industry. Within a company, we can see the outcome of “applying ML”

as a collection of so-called “ML tools”. Each tool generates a specific type of plot for

visualization. There can be a large number of such tools made available to engineers. In

reality, an engineer can see a large number of “interesting plots” but often in order to

obtain an evidence to convince others to take an action, they need to do their own scripts

and conduct the analytics manually. The underlying issue behind this phenomenon is

that the tool providers make tools by assuming every problem in practice is like a ML

problem but in reality, they are not — their are DSML problem which is fundamentally

different from ML problem, as explained extensively in this thesis.

Therefore, our Dual View intends to emphasize the importance that defining the

Problem is an integral part for solving an analytic problem. In Figure 5.1, we emphasize

that between P and S, one should not think in either direction (P to S or S to P).

Rather, think P and S as a pair. One of the reasons to justify this thinking is that an

analytic problem is usually described by a domain expert, using words without a precise

definition. We have seen in the previous chapter that a person might be interested in

1It is a concept due Abraham Harold Maslow, an American psychologist who created the famous
Maslow’s hierarchy of needs, and it can be stated as the following: “If the only tool you have is a
hammer, it is tempting to treat everything as if it were a nail.”

175

Problem-Solution Dual View Chapter 5

seeing a “systematic pattern”. Defining the meaning of this term is an integral part of

the analytic problem.

While wafermap analytics described in the previous chapter exemplifies our Dual

View thinking, if we go back to other application contexts reviewed earlier we can see

that the Dual View also applies. For example, from the very beginning when we describe

the yield optimization example in the introductory chapter in Section 1.2, we emphasize

that key to success was due to taking a correct perspective for formulating the problem.

The essence of the Choose-and-Bound search lies in searching for the problem formulation

that’s most likely to render the satisfactory answer.

Then, DSML was formalized throughout Chapter 2 and Chapter 3. In equation 3.1,

the “IEA + Human Knowledge” includes the domain knowledge used to provide problem

formulation. Under the dual view, Equation 3.1 can be stated as the following:

DSML includes a DSML oracle, called by IEA, to formulate and solve

a decision problem with ML* and Co-ML* capabilities.

Although IEA provides precise definitions to interpret concepts, each interpreted with

a DSML oracle, it is human who decides a specific problem formulation based on selected

concepts and gives the problem to the IEA to solve. Therefore, it is not hard to see that

IEA as a system, provide a language for its user to specify a problem to solve.

Specifically, the P in Figure 5.1 at the highest level, comprises a pair of inputs:

“(dataset, question)”. In the Dual View, this entry-level P is formulated as an analytic

question along with a dataset intended for the analysis. For example, in yield optimiza-

tion (Section 1.1.1), the question can be: “Do you see a high correlation between a failure

type and an E-test parameter?” and the question can be asked on a particular dataset.

In that example, if the dataset contains the X4 failure type, the answer would be “Yes”.

If not, the answer should be “No”. The concept is “high correlation” and there should

176

Problem-Solution Dual View Chapter 5

be a DSML oracle to decide what that means. In the yield optimization example, most

of the Choose-and-Bound search steps ask the same question on different datasets.

As mentioned in Section 4.5.2, in wafermap analyics, a DSML oracle takes a “(dataset,

question)” pair as input and solves a decision problem, e.g. deciding if the given dataset

contains some pattern class. In contrast to pre-defining the pattern classes with a gen-

eral dataset as in traditional ML view, the pattern class definition is dynamically derived

based on a local question and its associated dataset. One primary reason for this dis-

tinction is due to the data wall (see Figure 2.22). Section 2.7 illustrated two realistic

constraints, namely the data wall and the decision chain, which underscore the impor-

tance of searching for a dataset across the three dimensions within the Choose-and-Bound

search space in DSML. The fundamental thinking behind this perspective also traces back

to the Dual View.

Figure 5.1 further shows that the “question” can be broken down into a pair of

“(concepts, constraints)”. We consider constraints as those used to select samples from

the dataset, i.e. they are data point selectors. For example, “yield ≥ 0.5%” is a constraint.

“The last three months” is a constraint. “Failing tests in test bin X” is a constraint.

On the other hand, “showing a donut pattern” is not a constraint even though the

result is also a selected subset of wafermaps. This is because this phrase involves the

concept “donut” that requires an interpretation through a DSML oracle. In other words,

while both concepts and constraints both may result in selecting a subset of samples, a

constraint does not involve a term that requires a DSML oracle to interpret its meaning.

The meaning of words or terms used to describe a constraint is well defined, or at least

universally agreeable in the given application context.

As mentioned in Section 4.6, the question used to query the DSML oracle can be

stated as asking whether a concept exists in the given dataset, e.g. a correlation, an

outlier, or a pattern etc. While an IEA system with DSML oracles can automatically

177

Problem-Solution Dual View Chapter 5

establish the concept definition, a user-imposed input constraint can enforce the concept

to be applied on a selected scope of the provided dataset.

Note that while a DSML oracle always deals with a decision problem, not every

decision problem in IEA should be seen as solving a DSML problem. We refer to DSML

problems as those follow the formulation in Equation 3.1 where ML* and Co-ML* are

involved. For example, making decision based on a simple threshold is not considered

as solving a DSML problem. However, if the threshold is ensured consistent based on

the data, i.e. to decide if a consistent threshold exists or not, then it is solving a DSML

problem.

Referring back to Figure 3.18 and 3.19, the learning in DSML can be formally stated

as searching for the hypothesis space assumption that can justify a just-fitting hypothesis

(answer). From the “question” perspective, this translates to searching for hypothesis

space assumption with respect to which the concept definition can be interpreted. This

aspect is further shown in Figure 5.1.

To determine the existence of a concept, a DSML oracle essentially functions as a

concept recognizer in practice. In the context of wafermap analytics, various concepts

can be defined based on the similarity relationship in the so-called MINIONs graph.

Thus, the corresponding “(ML*, Co-ML*)” capabilities are implemented in terms of the

various graph operations.

The dual view taken by our IEA design differs significantly from both ML perspective

and common “applying ML” perspective. Interestingly, the Dual View is not just at the

high level. The view is recursively applicable to all levels in our IEA design where at each

level of problem solving, the Dual View manifests as a pair of entities. The Dual View

is the fundamental thinking in IEA, evident throughout the entire IEA system, from the

basic level of concept recognition to the outermost layer of language-driven analytics.

178

Problem-Solution Dual View Chapter 5

5.2 Language-Driven Analytics

Figure 5.2: Search flow driven by user inputs to achieve a high-level analytic goal

In DSML, the Choose-and-Bound search space can be viewed as a space of (P,S)

pairs, where a decision answer is determined for each pair by a DSML oracle. Figure 5.2

illustrates the search space. This is also the detailed view of the space of problem

formulations as depicted in Figure 1.10 earlier. Given a high-level analytic goal, such

as solving a yield issue, the search moves from one (P,S) to another sequentially until an

acceptable answer is found. While the Co-ML capability helps bound unnecessary search

branches, it is ultimately the user who drives the overall flow of the search process.

At the search flow level, the user determines the next step to investigate by posing an

analytic question. For example, in yield optimization, one might start with analyzing the

yield plot, followed by multiple correlation analysis between various test categories. The

DSML oracle formulates the problem by interpreting the analytic question and provides

the decision answer. To support the user-driven search, it is natural to take in user inputs

by enabling them to specify their input in natural language.

As mentioned in Section 4.6.3, various concepts can be defined, each described as an

English term. Multiple terms can be used to describe a higher-level concept. Since an

analytic question involves concepts, it is natural to enable description of concepts and

questions with natural language processing (NLP) techniques. Hence, we refer to the

179

Problem-Solution Dual View Chapter 5

theme of using NLP to facilitate user-driven search flow as the language-driven analytics.

5.2.1 Language-driven is a necessity

The adoption of NLP techniques in IEA originated in 2018 (IEA 2018), as mentioned

in Section 3.10.1. At the time, the NLP interface was only used for facilitating information

retrieval, thus it was not considered a necessity; however, in view the redesigned IEA in

2022 (IEA-2022) [96][111], we argue that language-driven analytics is now indispensable

for the following reasons.

In Section 3.10.2, we discussed that IEA 2018 attempted to model “all domain knowl-

edge” as a comprehensive analytic workflow. If realized, a user could directly query the

high-level analytic goal, with the IEA system generating the results internally, and NLP

interface used to retrieve the analytic results, such as those stored in a PowerPoint pre-

sentation. However, after three years of efforts trying to commercialize IEA within a

partner company, by 2022, we concluded that it is impractical to assume IEA could have

all the knowledge pre-stored in its system. The most important reason for reaching the

above conclusion goes back to the Dual View.

In view of Figure 5.2, the scope of domain knowledge can be seen as enumerating

the (P,S) pairs in the search space. IEA 2018 attempted to exhaustively incorporate

all problem formulations and their solutions in a rule-based autonomous system and

automatically conducted the search flow. Earlier in Section 1.2, we mention that this

exhaustive enumeration is infeasible. This is because the search space can be enormous

and complex, and engineers in the field usually have diverse ideas for conducting a search,

i.e. how to explore the space or what part of the space is more important than others.

We hope this point has become intuitive, as we dedicated a substantial portion of the

first four chapters detailing various problem contexts in design and test.

180

Problem-Solution Dual View Chapter 5

The complexity of the search can be explained again from perspective of the Dual

View. While a practitioner has a set of tools available to use, there is usually no well-

defined problem formulation to begin with when dealing with a practical problem. For

example, a practical problem can be stated as: “Do you see a yield issue this week?”

followed by “If you see a yield issue, provide an explanation why it happens.” Conse-

quently, there might be a follow-up problem: “Do we need to call TSMC?” As seen, none

of these practical problems are well defined to begin with.

Due to the data wall, defining the problem with a benchmark dataset is usually not

a feasible option. As a result, one can invent their own ideas to interpret the original

problem statement and come out with diverse problem formulations to solve the original

problem, leading to a variety of different search flows. To achieve an AI Assistant that

can effectively assist a practitioner, the ability to articulate vaguely defined problem

statements must be inherent in its intelligence. Essentially, the communication between

an AI Assistant and its user should be standardized with a set of well-defined terms for

the Assistant to know precisely what the user wants and provide the results that meet

the user’s need. It is for this articulation that NLP becomes a necessary component in

IEA-2022.

For the sake of argument, one can say that NLP is not necessary and can be replaced

by defining a new formal language, say L∗IEA, like a new type of scripting language to

interact with IEA. This might be true. However, this means that a user needs to learn the

new language L∗IEA in order to use IEA. If the IEA can allow its user to use English, it is

questionable why in our IEA design, we desire to take away that option and ask a user to

learn a new formal language L∗IEA. To a certain extent, the L∗IEA counter argument to our

claim that NLP is necessary, is almost like saying that English interface is not necessary

in IEA because a Chinese (a different language) interface is possible. At any rate, when

we say that NLP is a necessity, we are emphasizing the “language process” aspect more

181

Problem-Solution Dual View Chapter 5

than the “natural” aspect. This is why we call our approach Language-Driven Analytics,

instead of “Natural Language Driven Analytics”.

5.2.2 IEA redesigned in 2022

Figure 5.3: NLP is a necessary component for interpreting the analytic question

Starting from 2022, the IEA design leaves the “knowledge to drive the search” out

of the system and lets user dictate the search flow. In this way, the NLP is used to

interpret the analytic questions as specified by the user in each search step. Figure 5.3

illustrates the usage of NLP in the IEA-2022 design. The interpretation is based on

domain knowledge and the intelligence for achieving this interpretation is retained in

the IEA system. Although exhaustive enumeration of the scope for interpretation is

infeasible, with NLP in place, modeling this domain knowledge can be accomplished

through grammatical modeling. Just as in the English language, although enumeration

of all possible sentences is infinite, we can define a English grammar to capture what

might possibly form a proper sentence within the scope of the language.

In view of Figure 5.3, the scope for interpreting the questions is a set of problem

formulations, such that they are sufficient for answering each of the analytic questions.

Note that the mapping from analytic question to problem formulation is not necessarily

one-to-one. When defining this problem space, we need to simultaneously consider the

solution space, which contains existing solutions and those achievable with the state-of-

182

Problem-Solution Dual View Chapter 5

the-art technologies. From the solution to the problem, we need to formulate solvable

problems constrained by the existing solutions. From the problem to the solution, we

need to implement new solution achievable by current ML technologies. This is again

seen with our Dual View, where it is this entanglement of dealing with both P and S

simultaneously that poses the challenges in developing AI solutions in design and test.

5.3 IEA 2022

Figure 5.4: Overview of IEA 2022

The first implementation of the IEA based on the language-driven analytic approach

was realized in 2022 (IEA-2022) [96][111]. Figure 5.4 shows the fundamental design

thinking of IEA 2022 as incorporating three types of domain knowledge. With the dual

view, IEA needs to have the knowledge of the problem space (P) for interpreting the

analytics questions and the knowledge of solution space (S) such as the DSML oracles.

Then, in-between, IEA needs the knowledge to connect the P to S. Figure 5.4 points

out that the connection is realized by a technique called semantic parsing. The semantic

problem existed because we used LLM as the frontend and the backend comprised an API

of analytics software scripts. To connect the two, we formulated the connection problem

as solving a semantic parsing problem. With the MINION’s approach as the backend

solution for wafermap failure analytics, in the following sections, we describe how IEA

183

Problem-Solution Dual View Chapter 5

2022 was implemented to assist yield engineers in accomplishing the jobs described in

Section 4.1.

5.4 Connecting LLM via Semantic Parsing

Semantic parsing is the process to assign real-world meanings to linguistic inputs [167]

(e.g. words). Specifically, in computational semantics, formal structures called mean-

ing representations are used to link the non-linguistic knowledge (e.g. data stored in

database, API function calls, etc.) to linguistic elements such as English words. Seman-

tic parsing is a wide field of study. In machine learning, most works to achieve semantic

parsing centered on using supervised learning with large amounts of human-created se-

mantic parses [167][168]. Such an approach is hard to be duplicated in a specialized

domain like ours, because we lack the resources to create large amounts of training data.

Figure 5.5: A semantic parser interfacing with natural language queries

Consequently, we do not take a supervised learning approach to implement our se-

mantic parser. Instead, we adopt the approach called semantic parsing via paraphrasing

[169]. The approach makes use of triples (natural query q, canonical utterance c, meaning

representation m), where the parser maps q → c → m. It was observed in [169] that

mapping c → m and vice-versa could be achieved by fixed rules, which make it more

feasible in our application context.

Figure 5.5 depicts the idea in our context. IEA-2022 supports two types of queries2:

2Throughout the history of IEA development, we call the inputs to IEA with various names: “queries”,

184

Problem-Solution Dual View Chapter 5

wafer set query and plotting query. Then, the semantic parser translates queries into

canonical utterances which are based on a restricted language whose lexicon is custom-

defined by us. These utterances are interpreted with a meaning representation which

defines the corresponding actions to be performed by the backend analytics component.

In this flow, the “c → m” mapping are implemented with fixed rules. The “q → c”

mapping are handled by the parser.

Figure 5.6: The workflow from queries to a summary plot

Realizing Figure 5.5 requires us to define a feasible meaning representation as the

target for the parser. We can start by developing a grammar that defines the lexicon of

the canonical utterances. After the lexicon and the meaning representation are defined,

we can choose a way to implement the parser. In IEA-2022, the parser is implemented

with constrained semantic parsing powered by a pretrained language model [170]. The

subsequent Section 5.4.2 introduces the grammar and meaning representation and Sec-

“instructions”, “questions”, etc. One should not be confused with those names. Overall, they are simply
used to refer to the inputs to IEA. In one context, the word “query” may be more understandable and in
another, the word “instruction” may be more appropriate. When we describe the DSML oracle before,
we use the word “question” “problem”, or “problem statement” to refer to the inputs to an AI Assistant
in a DSML application context.

185

Problem-Solution Dual View Chapter 5

Table 5.1: A snapshot of the wafermap database table
Wafer Meta Attr. NLI Attribites Minions Attr.

stage ... id shape region direction ... group id ...

wafer
probe

...
1 arc edge 12 ...

1 ...2 cluster center lower right ...
...

wafer
probe

...
1 arc edge 12 ...

1 ...2 cluster center upper left ...
...

wafer
probe

...
1 arc edge 2–7 ...

2
...

tion 5.4.3 discusses the detail of constrained semantic parsing.

Figure 5.6 shows the workflow from user queries to a summary plot [111]. When

parsing a wafer set query, the corresponding meaning representation contains instruc-

tions in the backend for retrieving a set of wafers from the wafermap database. The

wafermap database is developed in work [96] based on the MINION module and the

Natural Language Interpreter (NLI) module and will be elaborated in Section 5.5.

Table 5.1 shows a snapshot of a wafermap database table. Essentially, wafermaps

are each associated with one or more pattern descriptions (each comprising multiple NLI

attributes, e.g. shape, region etc.), then grouped based on similarities and pre-stored in

the database. For a wafermap pattern, the concatenation of its NLI attributes forms a

canonical utterance describing the pattern concept. For example, a query might request

to retrieve all wafer maps from wafer probe that have “arc along edge at 12 o’clock”.

The first two wafer maps in Table 5.1 will be included in the return. The “group id”

attribute is provided by the MINION’s approach [14]. The wafer maps annotated by the

same group id generally exhibit a very similar pattern [96]. If the query requests “group

1”, the result will also include the first two wafer maps.

The software scripts executing the wafermap database search are implemented in the

186

Problem-Solution Dual View Chapter 5

search engine module. In addition, there are instructions for generating a certain type

of plot and assigning plot attributes based on the retrieved data. The corresponding

software scripts are implemented in the plotting engine module.

5.4.1 Example parsing and result

The work [111] considers an application context where in addition to knowing that

a set of wafermaps all exhibiting some kind of pattern (as descried in Chapter 4), a

practitioner might also desire to know if some action can be taken based on the pattern.

For example, the practitioner would like to query if there is some correlation to the final

test result.

Consider what type of summary plot might be used to answer the request, Table 5.2

below shows an example. The example includes the wafer set query and the plotting

query, their parsed canonical utterances, and the meaning representations, used for gen-

erating the result plot. Note that the canonical utterances are essentially paraphrases

of the input queries with their wordings restricted by a pre-defined grammar (see Sec-

tion 5.4.2). A meaning representation contains instructions, each corresponding to a step

that calls a function in the backend API and returns some result.

It should be noted that the utterance “something left along edge” describes a certain

type of wafer map pattern the query is looking for. The set of wafer maps with such a

pattern will be retrieved from the wafermap database. Specifically, a pattern description

such as “something left along edge”, once parsed into its canonical utterance, will match

to a group of corresponding wafermaps by directly querying the wafermap database [96].

In the generated plot, the wafer maps used in this example were from a recent produc-

tion line. The wafers were stamped with days in four months (from October to January).

The four months had 211, 1501, 1337, and 3251 wafers, respectively.

187

Problem-Solution Dual View Chapter 5

Table 5.2: Example queries, their parses and the generated plot
Wafer Set Query

Select wafer maps from wafer probe from bin Z with component yield
loss greater than or equal to 5% from Oct to Jan, where all wafer maps
exhibit something left along the edge

(((((wafer maps) from wafer probe) from bin Z) with component
yield loss greater than or equal to 5%) from Oct to Jan)
which have something left along edge

A.1. Return wafer maps
A.2. Return A.1 from wafer probe
A.3. Return A.2 from bin Z
A.4. Return A.3 with component yield loss greater than or equal to 5%
A.5. Return A.4 from Oct to Jan
A.6. Return A.5 which have something left along edge

Plotting Query

Show a bar chart where x-axis is group ids, y-axis is the number of
wafers in each group. For each bar, also show a sub plot of two wafer
maps where the left is wafer probe heatmap, the right is final test heatmap

(((bar chart) where x-axis is (group id of wafer maps)) where y-axis
is (the number of wafer maps for each (group id of wafer maps)))
with (((wafermap subplot for each bar) where left figure is
wafer probe heatmap) right figure is final test heatmap)

B.1. Return bar chart
B.2. Return group id of A.1
B.3. Return the number of A.1 for each B.2
B.4. Return B.1 where x-axis is B.2
B.5. Return B.4 where y-axis is B.3
B.6. Return B.5 with wafer map subplot for each bar
B.7. Return B.6 where left is wafer probe heatmap
B.8. Return B.7 where right is final test heatmap

Generated Plot (Same as in Figure 5.6)

188

Problem-Solution Dual View Chapter 5

In this example, the plotting query specifies the plot type as a bar chart. The bar

chart shows that in January, IEA found four groups of wafers with group id as assigned

in the wafermap database. The bar height shows the number of wafers in each group.

For each group, two wafer images are shown. The left image is obtained by stacking

wafer maps in the group where those wafer maps are based on wafer probe test. The

right image is by stacking wafer maps where they are based on final test. Each stacked

image shows a region including 60% of the density, i.e. the highlighted region including

roughly 60% of the fails in the group.

The correlation between wafer probe and final test can be inspected in this summary

plot. It can be observed that the failing pattern forms a “thick ring”. Fails from wafer

probe concentrate on the left-side of the ring. Then, fails from final test tends to “com-

plete” the ring. From the data, this observation occurred in November and affected more

wafers in December.

5.4.2 Grammar Model

With the wafermap database, the semantic parser’s job is primarily centered on pars-

ing the queries into canonical utterances that are related to data/concept retrieving and

plotting operations. For this purpose, we define the following: (1) A grammar that

captures data/concept retrieving and plotting operations in the backend. (2) From the

grammar, we obtain the lexicon for defining the canonical utterance and meaning repre-

sentation.

The grammar for describing the wafermap pattern concepts are developed in work

[96] (see Section 5.5.3). For defining the grammar for data selection and plotting, we

follow an approach similar to that used in [96]. We define a context-free grammar that

describes the process for generating a plot. For example, the left-hand side of Table 5.3

189

Problem-Solution Dual View Chapter 5

Table 5.3: A snippet of the grammar and lexicon
Grammar Rules

(i) S → Plot
(ii) Plot → Bar ∣ Scatter

∣ Wafermap ∣ ...
(iii) Bar → DescrBar TypeBar
(iv) DescrBar → axis1 axis2 Title

...

Lexicon

TypeBar → bar chart
Title → title ∣ null
axis1 → x-axis
axis2 → y-axis

...

shows a snippet of the grammar, which consists of a set of production rules. Rule (i)

starts the process to get a plot. Rule (ii) provides several plot options including Bar,

Scatter, or Wafermap etc. In Rule (iii), each plot option defines the plot type and a

descriptor for the specific type. For bar chart, the descriptor specifies three attributes:

axis1, axis2, and Title.

Production rules which derive words as the terminal values are called the lexicon.

A snippet of the lexicon is shown on the right-hand side of Table 5.3. The left part of

a lexicon rule has a type or attribute that can be processed internally by the backend.

For example, TypeBar corresponds to a script in the plotting engine to define a bar plot

object. The lexicon rules provide the words that can be used in the utterances and in

the meaning representation. For example, the plotting query in Figure 5.6 uses words

“bar chart”, “x-axis”, and “y-axis”. Note that the lexicon related to wafer set queries is

developed in the work [96]

The meaning representation uses words provided by the lexicon rules. In addition,

it has words that express operations. For example, to generate the plot in Table 5.2,

the query can use the word “select” to request a set of wafer maps from the database.

Then, a separate query uses the word “show” to request a plot object. Table 5.4 shows

a snippet of these so-called operators. For each operator, the natural language template

used to express the operator is shown. The parameters denoted by “[]” are from the

lexicon. The words outside are called functional words which indicate what functions to

190

Problem-Solution Dual View Chapter 5

Table 5.4: A snippet of operators and their expressions
OperatorTemplate Meaning Representation

Select Return [TypeData] 1. Return wafer maps

Filter Return [ref] from [condition]
1. Return wafer maps
2. Return #1 from Jul to Sep

Aggregate Return [aggregate] of [ref]
1. Return wafer maps
2. Return the number of #1

Show Return [TypePlot] 1. Return bar chart

Group
Return [aggregate] [ref1]
for each [ref2]

1. Return wafer maps
2. Return group ids of #1
3. Return the number of #1 for
each #2

Specify
Return [ref1] where
[plot attribute] is [ref2]

1. Return bar chart
2. Return wafer maps.
3. Return group ids of #2
4. Return #1 where x-axis is #3

...

be performed on the parameters. The corresponding meaning representation exemplifies

these functions.

This meaning representation is called Question Decomposition Meaning Representa-

tion (QDMR) [171], chosen for our current implementation. QDMR contains natural

utterances, which is easier to understand than complex logic forms used in [168]. Using

QDMR facilitates data preparation for us to bootstrap a semantic parser.

In general, QDMR constitutes an ordered list of steps, each corresponds to an oper-

ator. In our case, each operator can be executed by some backend scripts. The steps

all together accomplish the task specified in the user query. The lexicon defined by our

grammar restricts the scope of meaning representations to those supported by the back-

end. A valid meaning representation should contain words only from the pre-defined

lexicon, the functional words used in the operator template such as “for each”, and pos-

sibly a reference token that refers to the result of a previous step. In this way, we make

sure that any step in the meaning representation can be mapped into a valid execution

flow with the backend scripts. Moreover, some operators can be merged to a high level

191

Problem-Solution Dual View Chapter 5

QDMR [171] to reduce the total number of steps involved. The detailed definition of

QDMR and more types of operators can be found in [171].

5.4.3 Constrained parsing with GPT-3

With the meaning representation defined, the semantic parser’s job is to parse a user

query into its corresponding canonical utterance. We adopted the approach proposed in

[170], illustrated in Figure 5.7. The method leverages a pretrained language model (LM)

for parsing input queries into canonical utterances. With a LM, we can use few-shot

learning to teach the LM about our specific utterances.

Figure 5.7: Constrained parsing from user query to meaning representations with LM

Following [170], we use the state-of-the-art language model GPT-3 [172] that has 175

billion parameters as the natural language interface. The GPT-3 handles the variation

of wordings in the spoken language. Moreover, by utilizing GPT-3’s powerful in-context

learning, we finetune the GPT-3 to learn the translation from the input natural query to

its corresponding canonical utterance with only 20 demonstrating examples (i.e. few-shot

learning). The translation is essentially a many-to-one mapping function that generates

a single unique interpretation of various sayings.

As shown in Figure 5.7, the constrained parsing restricts the output space of GPT-3

by a set of allowed tokens, i.e. words that should be generated by GPT-3 based on the

192

Problem-Solution Dual View Chapter 5

input query. The allowed tokens include: (i) words or their inflections that appear in the

query (words from the lexicon), (ii) a pre-defined set of functional words (words used in

operator’s template), (iii) opening and closing parentheses.

Given a natural query as input, GPT-3 will search through all valid tokens that belong

to one of these three categories and output the token that has the highest probability

conditioned on the tokens already been generated. In addition, the parser will ensure

any parentheses used in the output string are balanced. The generated string by GPT-3

becomes our canonical utterance for the query.

Then, it is straightforward to convert a canonical utterance into a meaning representa-

tion in QDMR format. For example, a converting function f(c) →m can be implemented

by: for each utterance in the parentheses, replacing the return in inner parentheses with

reference token, removing all the parentheses, and adding the word “return” to the front

and new line to the end. Each meaning representation entails an executable flow in our

backend to generate a plot.

5.4.4 More parsing and analytic results

Figure 5.8: Merged summary plot of Table 5.2 and Table 5.5

In work [111], IEA 2022 with the constrained parsing approach was used to analyze

193

Problem-Solution Dual View Chapter 5

Table 5.5: Second result
Wafer Set Query

Get wafer maps from bin Z of wafer probe with yield greater than or
equal to 5% from Oct to Jan, which all have something right along the edge

(((((wafer maps) from wafer probe) from bin Z) with component
yield loss greater than or equal to 5%) from Oct to Jan)
which have something right along edge

Plotting Query

Plot a bar chart such that x-axis is group ids, y-axis is the number of
wafers in each group. Also show a sub plot of two wafer maps for each
bar, where the left is wafer probe heatmap, the right is final test heatmap

(((bar chart) where x-axis is (group id of wafer maps)) where y-axis
is (the number of wafer maps for each (group id of wafer maps)))
with (((wafermap subplot for each bar) where left figure
is wafer probe heatmap) right figure is final test heatmap)

Generated Plot

four months of wafer maps from a recent production line. This “analysis” was essentially a

query-driven search process. Each time, we provided a query and inspected the resulting

plot. In the process, we collected the plots that indicated us a potentially interesting

finding.

Note that in addition to using all-fail, the work [111] conducted the search with

wafermaps based on fails from individual test bins in the analytic backend, Hence, in our

analytic backend, each wafer has multiple wafermaps defined, based on total fails and

based on a set of test bins. In the search, all these wafer maps are analyzed together.

For example, two wafermaps showing a “grid pattern” could be from two different test

bins. Nevertheless, when a user requests a “grid pattern”, they both can be put into a

194

Problem-Solution Dual View Chapter 5

Table 5.6: Third result
Wafer Set Query

Fetch wafer maps from wafer probe with component yield loss greater than
or equal to 5% from Oct to Jan, which all demonstrate a grid pattern

((((wafer maps) from wafer probe) with component
yield loss greater than or equal to 5%) from Oct to Jan) which have grid

Plotting Query

Generate a bar chart where y-axis is the number of wafers in each group,
x-axis is group ids. And near each bar, also draw a sub plot of two wafer
maps the right is final test heatmap, the left is wafer probe heatmap.

(((bar chart) where x-axis is (group id of wafer maps)) where y-axis
is (the number of wafer maps for each (group id of wafer maps)))
with (((wafermap subplot for each bar) where left figure
is wafer probe heatmap) right figure is final test heatmap)

Generated Plot

single set.

Continuing the result shown in Section 5.4.1, Table 5.5 shows a result that also

indicates a “thick ring” fail pattern. Noticing those density maps from wafer probe

data (left figure), the patterns are on the right side (in contrast to left side in figure in

Table 5.2). However, when we look at both from wafer probe and final test data, we can

see, together all pairs tend to form a “thick ring” pattern.

Then, we combine the two plots with another finding which has only 1 wafer group,

to produce a final summary plot shown in Figure 5.8. The figure shows that the “thick

ring” fail pattern affected many wafers at both wafer probe and final test and lasted from

November to Janurary.

Table 5.6 shows another interesting finding we discovered on the dataset, by searching

195

Problem-Solution Dual View Chapter 5

for a “grid pattern”. The plot shows that many wafers were affected (with this pattern)

at wafer probe stage, lasting from October to Janurary. However, there is no apparent

correlation to the final test. This indicates that the issue might be with the tester, rather

than with the manufacturing process.

5.5 Implementation of Backend API

In Figure 5.6, the analytics backend comprises two components: the MINION’s an-

alytic module and the Natural Language interpreter (NLI) analytic module. The im-

plementation of these two modules in IEA 2022 was described in work [96]. Behind the

MINION’s analytic module is the MINION approach detailed in Chapter 4. As explained

in the following, the NLI analytic module further attaches natural language descriptions

to the groups of patterns to enable language interactions with the wafermap data.

5.5.1 Describable set based on MINION’s graph

Figure 5.9: An example of Minions’ recognition graph on wafer maps

Groups of wafermap patterns can be defined on a MINION graph (see Section 4.7 for

detail). The work [96] was based on a simple graph operation of finding maximal cliques.

196

Problem-Solution Dual View Chapter 5

Figure 5.9 highlighted two maximal cliques on the corresponding MINION graph. In

work [96], a maximal clique is called a cluster core. The two cliques are shown as “Core

A” and “Core B”. Notice that within each clique, the wafer maps look very similar.

In the backend of IEA 2022, a cluster core is treated as a primitive pattern. A pattern

class can be specified and extended from a primitive pattern. Each extension is through

a language interpretation based on one primitive pattern, and the interpretation result

is captured in a describable set.

For example, given a description: “more fails spread from 6 o’clock to 9 o’clock along

edge”, suppose the NLI finds Core A in Figure 5.9 satisfying this description, and then

extends from the core to find all other wafer maps also satisfying this description. The

Describable Set is highlighted in the figure, which includes Core B and 7 other wafer

maps. These 15 wafer maps are those shown in Figure 5.9 before.

In our analytics backend, a describable set corresponds to a primitive pattern and

satisfies three conditions: (1) It includes the maximal clique of the primitive pattern; (2)

Within itself, all wafers are connected; (3) It is describable through our natural language

interpreter (NLI).

Figure 5.10: Attaining describable sets through NLI

Figure 5.10 illustrates the analytics performed in the backend. Given a set of wafer

maps, first we obtain their MINION graph. From the graph, we extract connected

components, and each becomes a cluster. Then, from each cluster we extract maximal

197

Problem-Solution Dual View Chapter 5

cliques as the cluster cores. Based on a core, the NLI interprets a wafer map by assigning

values to a set of wafer attributes. These wafer attributes are to be selected by an

utterance that describes a group of wafer maps. For simplicity, in this work we rely on

utterance as input query to extract the wafer group for a plotting request (as shown in

Section 5.4.1). Given an utterance describing a pattern, the utterance is broken down

into a list of constraints on the attribute values. Then, a describable set is the set of the

wafers whose attribute values are based on the same core and satisfy all the constraints.

The search space comprises all describable sets which are extended from the primitive

patterns. In a try, one or more describable sets can be selected based on the query. Also,

a selected group can be further refined with other pattern-independent constraints, such

as a yield constraint or a selected period. For example, the user can request using wafer

maps only from July, with yield loss greater than 30%.

Details of describing a cluster core

Figure 5.11 provides an example to explain more detail of the flow shown in Fig-

ure 5.10. Figure 5.11 shows a cluster, i.e. a connected component. One of the cluster

cores (i.e. the maximal clique) has four wafer maps. A salient region analysis is applied

to these four maps. This analysis can be based on the techniques reported in [124].

The goal is to extract an attention region on each map. Then, the four salient maps

are stacked to create an attention mask. This mask can be obtained using a density

estimation technique [13] and a threshold to include, say 80% of the density mass.

For a wafer map, values of its wafer attributes depend on the attention mask in use.

Since a CC can contain multiple cluster cores, each with a different attention mask, a

wafer map in the CC can receive multiple interpretations from the NLI. Note that wafers

in one describable set are based on one interpretation. For an input query, all satisfying

describable sets are included in the group of wafer maps.

198

Problem-Solution Dual View Chapter 5

Figure 5.11: An example of cluster and cluster core

Consider the four wafer maps in the cluster core shown in Figure 5.11. Suppose the

focus is on the top-left sub-region. For the four wafer maps, the NLI may interpret them

as an “arc at x o’clock along edge” where x could be 11, 12, 10.5, and 12, respectively,

depending on where the center of the arc pattern is located. These four wafer maps can

all be captured in a less-constrained utterance like: “arc at 11 o’clock to 12 o’clock along

edge”.

For the middle sub-region, the four descriptions may all be: “big cluster at the

center”. Then, the capturing utterance would be the same. Furthermore, to describe the

entire wafer, the NLI needs to decide a phrase that connects these two sub-regions. For

example, the NLI can use a phrase like “extend to”, i.e. the “arc” “extend to” the “big

cluster”.

5.5.2 The Natural Language Interpreter (NLI)

In the example above, we see that the NLI needs to support utterances using those

descriptive terms such as “arc”, “along edge”, “11 o’clock”, “cluster”, “big”, “at the

center” and “extend to”. Such vocabulary determines the scope of possible utterances

that can be interpreted by the NLI. For building our NLI, we follow a grammatical

199

Problem-Solution Dual View Chapter 5

approach [167]: (1) We use a grammar to define the scope of all possible utterances; (2)

For each descriptive term, we use a software script to check for its existence on a given

wafer map (i.e. setting the value of the wafer attribute).

The grammar includes the capability to support describing patterns at two levels,

at individual wafer level and at multi-wafer level. Earlier we see an example where

different numerical values for a descriptive term can be merged into a value range to

form a less-constrained utterance. When combining two utterances that have different

pattern descriptions, we can use a high-level descriptive term. For example, suppose one

utterance describes an “arc at 11 o’clock along edge” and another utterance describes a

“cluster at 11 o’clock along edge”. In this case, we may use a high-level term “something”

to capture both “arc” and “cluster”. Hence, both wafer maps can be described with the

utterance “something at 11 o’clock along edge”.

To illustrate how the NLI follows a grammar to interpret a given wafer map, Figure

5.12 depicts the parsing tree for one wafer map (the 2nd map in the cluster core in

Figure 5.11). For the core, there are two sub-regions. Therefore, in the parsing tree the

wafer map is first partitioned into two components: Comp1 and Comp2. The detailed

tree for the Comp1 is shown in Figure 5.12 .

Below Comp1, there are two nodes: Comp andRelation. The Comp is for describing

the component. The Relation is for describing the relationship to Comp2.

The Comp node has two child nodes: CheckArc and DescrLocation. The CheckArc

checks the type of the pattern to determine if it is an “arc”. If it is, then DescrArc

is used to describe what kind of “arc”. The DescrLocation describes the location of the

pattern. Three attributes are used: Direction, Spread, Region, and additional two

are for associated Preposition (PP).

The value of an attribute is determined by its corresponding software script. For

example, the value of the Length can be: short ∣ long ∣ null. The value of the

200

Problem-Solution Dual View Chapter 5

Figure 5.12: The parsing tree for one wafer map in Figure 5.11. The wafer map is
described as: ”Null length thin thickness arc type at 12 o’clock direction
null spread along edge extend to ...”, and at high level (using the high-level
descriptor “something”), can be captured as: ”something at 12 o’clock direction
null spread along edge extend to ...”

Thickness can be: thin ∣ thick ∣ null. The attributes and their possible values are

part of the lexicon in the grammar, as that exemplified in Table 5.7.

Sub-tree below the CheckArc node is highlighted with a shaded box. This is to indicate

that the box can be replaced by a high-level descriptor called “something”. With the

high-level descriptor, detail of the pattern shape is ignored and the focus is on its other

attributes.

In the parsing tree, the leaf nodes are values of the attributes. A canonical utterance

can be obtained by concatenating the leaf node values and for some, their attribute

names from left to right. The utterance is shown in the caption of the figure. A high-

level utterance can also be constructed using the high-level descriptor “something”.

201

Problem-Solution Dual View Chapter 5

5.5.3 NLI’s grammar for describing patterns

Our NLI uses a context-free grammar (CFG) [167] to define a formal language L0,

which essentially models the interpretation process. A CFG is formally specified by 4-

tuple (V,Σ,R,S) where V is a set of non-terminal symbols, Σ is a set of terminal symbols,

R = {V × (Σ ∪ V)∗} is a set of rules, and S is the starting symbol. A CFG includes a

list of production rules that expand a non-terminal v ∈ V into a string which can contain

both non-terminals and terminals. The subset of rules that turns non-terminals into

terminals, is called the lexicon of the grammar.

Table 5.7: The lexicon for the formal language L0
TypeArc→ arc
TypeRing→ ring
TypeLine→ line

TypeDonut→ donut
TypeCluster→ cluster
TypeMajor→ something
TypeMinor→minor component

Relation→ and ∣ and extend to
Direction→ x o’clock ∣ left ∣ right ∣ upward ∣ downward

∣ lower left ∣ upper left ∣ lower right ∣ upper right
Length→ short ∣ long ∣ null

Thickness→ thin ∣ thick ∣ null
Waviness→ straight ∣ wavy ∣ null

Size→ small ∣ big ∣ huge ∣ massive ∣ null
Density→ solid ∣ somewhat solid ∣ more fails ∣ some fails

Preposition→ at ∣ near ∣ from ∣ to ∣ along ∣ around ∣ touch ∣ on
Region→ center ∣ edge ∣ in-between
Spread→wide ∣ null

Connectivity→ broken ∣ null
Completeness→ half ∣ full ∣ null
Significance→ not obvious

Subset→ only exhibit on some wafers

Table 5.7 shows our current lexicon for L0, which can be extended as needed. Each

rule is of the form: Attribute→ {value1 ∣ value2 ∣ . . .} (i.e. wafer attributes and values).

Note that a null value means that there is no description for the attribute and thus can

202

Problem-Solution Dual View Chapter 5

be omitted from the utterance. To use this grammar as an interpreter, a software script is

implemented for each lexicon rule. The script determines which value should be selected

for the wafer attribute.

Table 5.8 shows our current grammar rules for L0. The grammar rules can be used

to generate various strings by recursively expanding non-terminals starting from S until

every non-terminal is rewritten into a terminal according to the lexicon. All the non-

terminals that trigger a rule in the lexicon (Table 5.7) are presented in small capital

font.

The grammar rules represent the working logic in the interpretation workflow imple-

mented in our NLI. For example, the first rule (G0) expresses the fact that a wafer map

can consist of up to two major components (C1 for one and C2 for two components)

and some minor components (C∗). (G5) to (G7) are for a minor component without

detailed description of its shape. (P0) captures the generic procedure for describing

a major component. A major component can be described in terms of its shape and

location descriptors along with other optional descriptions. Specifically, each type of

shape is associated with a dedicated “check” function for its determination, and every

shape is associated with its unique attributes, as stated in (A), (R), (L), (D) and (C),

respectively.

In addition, the internal logic of NLI ensures that patterns like an arc or line will be

checked first before proceeding to a more general shape like a cluster. (P1) indicates the

rule for describing the location. (P2) provides other options for describing the component

such as its pattern significance relative to the rest of the wafer, and if it only exhibits on

a subset of wafer maps in the group.

203

Problem-Solution Dual View Chapter 5

Table 5.8: The Grammar for L0.
Grammar Rules

(G0) S → {C1∣C2}C
∗

(G1) C1 → Comp
(G2) C2 → Comp1 Comp2
(G3) Comp1 → Comp Relation
(G4) Comp2 → Comp
(G5) C∗ → null ∣ Relation C
(G6) C → MinorComp C∗

(G7) MinorComp → TypeMinor DescrLocation ⟨opt⟩
(P0) Comp → {CheckArc∣CheckRing ∣CheckLine∣CheckDonut∣...

...∣CheckCluster}DescrLocation ⟨opt⟩
∣ TypeMajor DescrLocation ⟨opt⟩

(P1) DescrLocation → Spread {Preposition Direction}...
...{Preposition Region}

(P2) < option > → Significance
∣ Subset

(A0) CheckArc → DescrArc TypeArc
(A1) DescrArc → Length Thickness
(R0) CheckRing → DescrRing TypeLine
(R1) DescrRing → Thickness Connectivity Completeness
(L0) CheckLine → DescrLine TypeLine
(L1) DescrLine → Waviness Length Thickness
(D0) CheckDonut → DescrDonut TypeDonut
(D1) DescrDonut → Size Thickness Density Completeness
(C0) CheckCluster → DescrCluster TypeCluster
(C1) DescrCluster → Size Density

Descriptions of above grammar rules

(G0) A pattern can have one or two major components and some minor ones
(G1) The case where there is a single major component
(G2) The case where there are two major components
(G3) The first major component and its relationship to the second one
(G4) The second major component
(G5) The case where there is or is not other minor component and their relationship if any
(G6) Minor components can be one or many
(G7) A minor component is described only by its location
(P0) The component is described by its shape and location with other options.
(P1) Location is defined by the component’s spread, direction and region
(P2) How obvious the component is compared to the original wafer map
(A0) An arc is defined by its length and thickness
(R0) A ring is defined by its thickness, connectivity, and completeness
(L0) A line is defined by its waviness, length, and thickness
(D0) A donut is defined by its size, thickness, density, and completeness
(C0) A cluster can be defined by its size and density

204

Problem-Solution Dual View Chapter 5

5.5.4 Implementing the grammar with software scripts

If we view the grammar as an interpretation workflow, it is not hard to see that we

need two sets of software scripts to enable the interpretation. One is already mentioned

above that we need a script for every lexicon rule. Another set of scripts are needed to

implement other grammar rules in Table 5.8. For example, the attention mask can be

used to decide how many sub-regions to focus on. This determination can be based on

finding density peaks in the attention mask (which can be made as a contour plot). This

can be a way to implement the (G0) rule in grammar, i.e. to decide whether we should

follow C1 or C2 and whether C∗ should be activated.

Figure 5.13: The definition of Region on the wafer map

To simplify presentation, in this section we use two examples to illustrate how the

scripts can be implemented. Recall in Figure 5.13, two sub-regions (i.e. two density

peaks) are identified from the attention mask. To determine the location name of a

sub-region, a wafer is divided into three areas: “edge”, “in-between”, and “center”. An

area checker finds which area the sub-region is in. This determination is by transforming

a map into polar coordinates and dividing its radius into three areas as shown in Fig-

ure 5.13. The area from the wafer map center to R1, i.e, (ρ, θ) = (R1,2π) is called the

”center”, the next (R2 − R1,2π) is the ”in-between”, and the last (R3 − R2,2π) is the

”edge”.

Suppose the density peak falls in the “edge” sub-region, then the component might be

205

Problem-Solution Dual View Chapter 5

an “arc”. To check if it is actually an “arc”, we implement an arc type checker depicted

in Algorithm 5.1. The input includes a threshold T1 to determine if the component is

an “arc”. First, a component must have its density peak fall inside the edge region in

order to be called an “arc”. Then, we calculate two density estimates r, x within the

component’s angular spread in the edge region. The ratio (xr) of these density estimates

is compared to the threshold T1 to determine if it is an “arc”. Notice that the arc type

checker relies on a fixed threshold.

One may raise the concern regarding the robustness of using a specific threshold,

i.e. a person may see a pattern as an “arc” but the NLI fails to interpret it as an

“arc”. Note that our NLI does not aim to optimize with respective to such an accuracy

objective. Instead, it aims to find a describable set, and as stated in Section ?? this set

has to satisfy two conditions on the Minions’ recognition graph. In this sense, the two

conditions provide a check for the NLI’s result.

Algorithm 5.1: An arc type checker
Input: Threshold: T1, R2, R3

Output: Is it an Arc: True/False
Data: Wafer Map Matrix of the Component

1 edge region ← (ρ, θ) = (R3 −R2,2π) ; // Global

2 T1 = 66% ; // Default

3 Assert the density peak is in edge region
4 Find the angular spread
5 r ← the density sum within the angular spread in edge region

6 R∗ ← the region (ρ, θ) = (R3,2π) − (R2 +
R3−R2

2 ,2π)
7 x ← the density sum within the angular spread in R∗

8 if x
r < T1 then

9 return False ; // It is not an arc

10 end
11 return True ; // It is an arc

206

Problem-Solution Dual View Chapter 5

5.5.5 Examples of canonical utterances for describing patterns

Table 5.9 shows the canonical utterances generated by the NLI. Each row shows the

salient wafer maps from two cores and their attention masks. The utterances interpreted

by the NLI are listed (1: top-left, 2: top-right, 3: bottom-left, 4: bottom-right map).

Notice that wafer maps in the same cluster core can have slightly different utterances.

The high-level utterances for the two cluster cores are shown in Table 5.10. The table

shows two stacked heatmaps for each core. The first is by stacking the four maps in the

core. The second is by stacking the four maps and all the neighboring wafer maps in the

describable set. A neighboring wafer map is directly connected to at least one wafer map

in the core. This is one way we can use the MINION graph to further select a subgroup

of wafers from a describable set.

The high-level descriptor “something” can be used to capture a set without detailed

description of the pattern shape. For location, wafer maps in Table 5.9 include a variety

of descriptions all related to the center region. Hence, they can be captured with another

high-level descriptor “around”.

For the first core, the first component can be at either 11 or 12 o’clock directions. To

capture all four wafer maps, the high-level description can become “11 to 12” o’clock.

Note that a ”wide spread” range of two clock values can be converted into a single

clock value by taking their average. In this way, the first wafer map is included in the

describable set (which is a requirement).

Another consideration for a high-level utterance is that, not all wafer maps in a set

have the same number of components (This is captured in (P2) grammar rule). The

second cluster core in Table 5.9 exhibits this situation. In this case, an optional phrase

“only exhibit on some wafers” is appended to the utterance to indicate the fact that

the utterance of the second component only applies to some but not all wafers in the

207

Problem-Solution Dual View Chapter 5

Table 5.9: Salient wafer maps from a cluster core and their canonical utterances
Sali. Wafer
Maps (Core)

Atten.
Mask

Canonical Utterance
(1: top-left, 2: top-right, 3: bot-left, 4: bot-right)

1. null size more fails density cluster type wide spread
from 9 o’clock direction to 1 o’clock direction along edge
and extend to big size somewhat solid density cluster
type upward direction at center.
2. null length thin thickness arc type at 12 o’clock
direction null spread along edge and extend to big size
some-what solid density cluster type upper right direction
at center.
3. null length thin thickness arc type at 11 o’clock direction
null spread along edge and extend to huge size more fails
density cluster type upper left direction at center.
4. null length thin thickness arc type at 12 o’clock direction
null spread along edge and extend to big size somewhat
solid density cluster type upward direction at center.

1. null size more fails density cluster type wide spread
from 9 o’clock direction to 12 o’clock direction along edge and
small size cluster type upward direction at center not obvious.
2. null size some fails density cluster type wide spread from 9
o’clock direction to 1 o’clock direction on edge and small
size cluster type left direction at center region not obvious.
3. null size more fails density cluster type wide spread from 9
o’clock to 1 o’clock touch edge.
4. null size more fails density cluster type wide spread from 9
o’clock direction to 2 o’clock direction on edge.

given set. In general, after individual canonical utterances are interpreted for wafer maps,

incompatible phrases from individual wafers can be abstracted out to satisfy a given high-

level utterance (e.g. “something” at the CheckArc and CheckCluster nodes to replace an

“arc” phrase and a “cluster” phrase.). Note that while a high-level utterance can be used

to describe a set of wafers, we make sure that a describable set always includes all wafers

from the corresponding cluster core.

208

Problem-Solution Dual View Chapter 5

Table 5.10: Examples of wafer grouping
Cluster
Core

Stacked

Subgroup
Stacked

Canonical Utterance

Something at 11 to 12 o’clock direction along
edge extend to something around center.

Something at 11 o’clock direction wide spread
along edge and something around center
only exhibit on some wafers.

5.5.6 Paraphrasing with GPT-3

The work [96] also considers converting a canonical utterance into a natural language

description. This functionality can be useful when a user asks IEA to provide a sum-

mary report of the wafermap data, for example in answering questions such as “What

patterns are in the dataset” as mentioned in Section 4.4. This is in contrast to the work

presented in [111] where the goal is to translate a natural language query into an internal

representation.

In work [96], we can leverage the capability provided by a state-of-the-art language

model, specifically, the GPT-3 model [173] by the time of 2022. We take advantage of

the in-context learning capability provided by GPT-3 to achieve few-shot learning.

In the few-shot learning, we guided the GPT-3 by designing the input and output to

follow two prefix words: “Sentence:” and “Paraphrase:”, respectively. The stop word is

the same as the output prefix, so that the model will stop generating once it completes

one paraphrase. The temperature parameter is set to be 0.9 which allows more flexibility

to paraphrase a given utterance.

To demonstrate the paraphrasing capability, Table 5.11 shows some examples. For

each example, two maps are shown: the original wafer map and its salient region map.

In each case, a canonical utterance from the NLI is shown, followed by one paraphrase

given by GPT-3.

209

Problem-Solution Dual View Chapter 5

Table 5.11: Examples of wafer pattern interpretation
Original

/ Salient

Canonical Utterance Interpreted by the Grammar /
GPT-3 Paraphrasing Output

Utterance: null length thin thickness arc type at 12 o’clock
direction null spread along edge and extend to big size some-
what solid density cluster type upper right direction at center.
GPT-3: There is a thin arc at 12 o’clock along the edge
and extended to a somewhat solid big cluster located upper right
at the center.

Utterance: thick thickness broken connectivity half complete-
ness ring type wide spread from 3 o’clock direction to 12 o’
clock direction on edge.
GPT-3: There shows a thick half-ring, which is not fully
connected, widespread from 3 o’clock to 12 o’clock
on the edge.

Utterance: null size more fails density cluster type wide
spread from 9 o’clock direction to 12 o’clock direction along
edge and small size cluster type upward direction at center
not obvious.
GPT-3: There exists a cluster with more fails
wide spread from 9 o’clock to 12 o’clock along the edge
and a small cluster located upward at the center,
which is not an obvious pattern.

Utterance: small size cluster type at 10 o’clock direction
along edge and extend to small size cluster type upper left
direction near center.
GPT-3: There exists a small cluster at 10 o’clock along the
edge, which extends into a small cluster located upper left
near the center.

Utterance: small size cluster type at 10 o’clock direction
on edge and extend to small size cluster type upper left
direction near center, and minor component at 6 o’clock
direction along edge.
GPT-3: There is a small cluster at 10 o’clock along the edge
which extends into a small cluster located upper left near
the center, and there is also a minor component located
at 6 o’clock along the edge.

210

Problem-Solution Dual View Chapter 5

5.5.7 NLI’s application results

In work [96], the NLI was applied to help analyze test data collected from a recent

product line. The wafers were stamped with days in three months (call them Period

1,2,3). The three periods have 1448, 1383, and 74 wafers, respectively.

Figure 5.14 illustrates the flow of investigating a correlation between wafer probe and

final test in [96]. From the MINION graphs, we obtain a set of cluster cores. Based on

each core, results from the NLI are stored in a database table. Each row in the table

corresponds to a wafer map containing the wafer attribute values determined by the NLI.

Figure 5.14: Flow to investigate a correlation between wafer probe and final test where
each try starts with a simple query to find a group of wafers.

In a try, a query is specified to extract a group of wafers. With a query, the de-

scribable sets are extracted as the group of wafers for plotting. In plotting, we consider

arranging the wafers in subgroups based on primitive patterns in the group (see discussion

of Table 5.10 before). For each subgroup, two maps are shown. The first is the attention

mask from the primitive pattern. The second is the heatmap from final test fails based

on all wafers in the subgroup.

Figure 5.15 shows a summary result arranged by subgroups along the x-axis. Each

bar shows the number of wafers in the subgroup (corresponding to a primitive pattern).

Through the attention masks, we can see a pattern trend evolving over the three periods.

211

Problem-Solution Dual View Chapter 5

Figure 5.15: Finding of a pattern trend lasting over three periods

Then, the correlation to the final test can be seen by comparing each attention mask to

the corresponding final test failing heatmap.

The work [96] also demonstrated the results from searching for a correlation between

the described pattern class (from wafer probe) and an E-Test parameter. Each plot is

based on two sites of an E-test parameter. To facilitate visualization, the plots are ranked

according to their “bias” value, calculated as the distance between the average position

of the selected wafers and the average position of the rest of the wafers. Note that in

each case, we show one of the top-ranked plots. Figure 5.16 shows one finding. The 1st

and 2nd sites are at the two closest locations to the pattern.

Figure 5.16: E-test correlation plot based on wafer maps describable by “cluster fails
at direction from 11 o’clock to 12 o’clock along edge”

212

Problem-Solution Dual View Chapter 5

More application results can be found in work [96]. It is important to note that the

final results represented in the work [96] were obtained through multiple iterations of

querying IEA, visualizing the plots, refining the next search step accordingly, and finally

reaching an interesting finding. In summary, IEA 2022, enabled by the MINION and

NLI modules, was the first time the Language-driven analytics was realized to efficiently

navigate the exploration in a Choose-and-Bound search space.

213

Chapter 6

IEA 2023

行路難！行路難！多岐路，今安在？

長風破浪會有時，直掛雲帆濟滄海。

(The road is hard! The road is hard! So many turnings, And now where

am I?) So when a breeze breaks waves, bringing fair weather, I set a

cloud for sails, cross the blue oceans!

— 《行路難》 李白， A poem from Tang Dynasty

6.1 Introduction

The emergence of large Language Models (LLM) [174][173][175][176][19] changed our

view for implementing a domain-specific AI Assistant like IEA in 2023. Among them,

ChatGPT [19] has demonstrated remarkable performance for engaging in dialog on a

wide variety of topics, including answering questions and generating code.

Figure 6.1 shows an example dialog with ChatGPT regarding how to correlate wafer

map pattern to E-test parameter. The first question asks a how-to question, followed by

a question asking to list the relevant statistical methods. The third question asks for a

214

IEA 2023 Chapter 6

Figure 6.1: Dialog with ChatGPT (03/26/2023) based on questions for how to corre-
late wafer map patterns to E-test parameters

list of steps to perform the correlation. It can be seen from the responses that ChatGPT

presents a very good general understanding of the topic.

Figure 6.2: Overview of IEA 2023

In contrast to a general dialog like that shown in Figure 6.1, our use of an LLM is

more specific. Figure 6.2 illustrates the grounding problem faced in IEA 2023, comparing

to the semantic parsing problem faced in IEA-2022 depicted in Figure 5.4. In IEA 2023,

we desire the LLM to generate code according to our question or instruction. Instead of

generating unconstrained code, we desire the LLM to generate code that calls our specific

API supported by the backend software to answer the question or to complete the task

specified by our instruction.

215

IEA 2023 Chapter 6

Figure 6.3: Task grounding problem: How to confine model responses within the scope
of an embodiment with admissible actions {a1, a2, . . . , an}?

Abstractly, we formulate the problem and call it the task grounding problem. Fig-

ure 6.3 illustrates the task grounding problem. First there is a given embodiment for

performing the tasks. In our application, the embodiment is based on a software API

which defines a set of admissible actions {a1, . . . , an}. While a model response has to be

a list of steps, each step has to be realizable by a subset of the admissible actions.

6.1.1 The task grounding problem

Task grounding means that one desires to use an LLM to act in a specific environment

[177][178]. Given an LLM learned with rich world knowledge, the goal is to ground high-

level instructions expressed in natural language to a defined set of actions admissible for

a given embodiment. Simply put, we desire to constrain the responses from the LM to

be within the capability of the given embodiment.

Consider the response of question 3 in Figure 6.1. Step 4 suggests Pearson’s corre-

lation and Spearman’s rank correlation. In our specific context, “correlation” can have

a different meaning. For example, the “correlate” in “correlate a wafer map pattern to

E-test parameter” means to find an E-test parameter whose values can be used to indi-

cate the possible occurrence of the wafer map pattern during wafer sort (i.e. this is called

“failure pattern feedback” in [96]). By grounding an LLM with this domain knowledge,

we desire the LLM to interpret the term “correlation” as how we would interpret it (not

how a common person would).

216

IEA 2023 Chapter 6

Steps like those listed with the question 3 also need to be specific enough to enable

automatic mapping to some API calls for their realization. By grounding an LLM with a

set of admissible actions, we ensure each step in LLM’s responses to be always realizable.

6.1.2 Approaches for solving a task grounding problem

One popular way to constrain LLM’s responses with a specific response structure

is through prompt engineering [173][176]. Prompt engineering provides input-output

examples with a task specifier (the “prompt”) for the model to emulate the desired

response structure. However, as pointed out in [178], prompt engineering alone is not

sufficient to fully constrain a LM to a set of admissible actions.

In addition to prompt engineering, there are two usual approaches to constrain LLM’s

responses. One is to use reinforcement learning to align the responses to the desired

outputs [177]. Another way is by treating it as a constrained semantic parsing problem

[170] (as we did in [96]) and implementing a way to adjust/select responses such that

only admissible actions are allowed [178]. It can be implemented as a postprocessing

component separated from the LM, e.g. to rank/score responses from LLM and only

admit those acceptable ones.

6.1.3 Feasibility of the common approaches

Prompt engineering would be effective if we can be sure that the LLM has the desired

knowledge or skills in the model, and we just need to be more expressive in our queries

so that the model knows to respond accordingly. However, verifying that a given LM

indeed has the knowledge and skills we desire, by itself, can be a challenging research

problem.

For example, we might desire the correlation task to start with our MINIONs analysis

217

IEA 2023 Chapter 6

method [14]. We are not sure to what extent a given LLM “understands” the proposed

method (even though the LLM may have “read” the paper).

As proven in [176] and also in [177] for task grounding, reinforcement learning can

be an effective approach to align an LLM to respond in a specific domain. However,

reinforcement learning requires training data. In our application, if we have a way to

generate a large dataset of acceptable user queries to the IEA, then we might consider

reinforcement learning. To get to that point we need to first define what user queries are

acceptable and develop a formal model that defines the scope of acceptable queries. If

this is done, then the model can be used as a query generator.

Our prior work [179], as described in the previous chapter, follows the constrained

semantic parsing approach [170]. However, comparing to the task grounding problem in

Figure 6.3, the formulation in [179] is more restricted. In [179], the grounding is achieved

through a grammatical model that limits the responses to be a set of canonical utterances.

The approach enables implementation of a constrained parser using prompt engineering

with GPT-3. However, the parser does not consider scenarios where one query might be

contextually related to the next query. In other words, each query to IEA-2022 is treated

independently.

Solving the connection problem between the LLM and backend API as constrained

parsing was largely due to the limited capabilities of GPT-3. With GPT3.5, we no longer

need a grammatical model to define a set of canonical utterances. Rather, we can use

a knowledge graph (KG) as the target for the grounding. As it will be explained below,

what made this new approach possible was in the dramatically-improved capability of

GPT3.5 for paraphrasing, comparing to GPT-3. The paraphrasing capability of GPT-

3, while it was there, was much less reliable than that of GPT3.5. Because GPT3.5

could do paraphrasing much more reliably, it enabled us to introduce a KG into IEA

and redesigned IEA-2023 into the current IEA called IEA-Plot in 2023. The use of a KG

218

IEA 2023 Chapter 6

then enabled IEA-Plot to implement ways to deal with the problem of tracking contextual

information of a dialog containing a sequence of instructions/questions.

6.1.4 The KG-based approach implemented in IEA-Plot

Figure 6.4: Using a knowledge graph to connect LLM and admissible actions

IEA-Plot implemented an innovative approach for solving the task grounding problem

described above. Figure 6.4 depicts the main idea. The approach uses a knowledge graph

(KG) [180] to connect an LLM and those admissible actions. For each action ai, it has

a set of acceptable options. Hence, for each user instruction, the responses are confined

within the set of actions and their options. The KG serves three purposes:

� From the perspective of the LLM, the KG is used to constrain the LLM’s responses.

Each response is represented as a subgraph of the KG.

� From the perspective of backend API, the KG captures our analytic knowledge on

how to utilize API function calls to accomplish an analytic task.

� From the perspective of IEA implementation, the KG is a model to enable data

management for keeping track of the current tool’s state during its execution.

The importance of domain knowledge in domain-specific machine learning has been

emphasized in two previous theses from our lab [181][182]. Throughout our research,

domain knowledge had been emphasized from the very beginning. For example, Sec-

tion 1.4.8 in the Introduction chapter, emphasizes that domain knowledge is essential

219

IEA 2023 Chapter 6

for learning from data in general in our domain-specific application contexts. In view of

the DSML big picture depicted in Figure 2.22, domain knowledge is essential to drive

the Choose-and-Bound search for data exploration. Two of the four essential questions

in DSML, highlighted in Section 2.7.4 concern about domain knowledge and then, the

DSML equation highlights the necessity of domain knowledge (equation 2.1 first ex-

plained in Section 2.7.4 and later refined into equation 3.1 in Section 3.12.2 after the

lessons learned with the Knowledge-Driven View discussed in Section 3.1). While we

had all these discussions on the importance of domain knowledge, it was not until IEA-

Plot 1 that we could finally point to a tangible place, i.e. the KG, and refer to it as the

“domain knowledge”.

6.2 Use of Knowledge Graph

Our decision to utilize a KG to connect LLM and backend API was partly in-

spired by a recent trend in natural language research where LLM and KG are com-

bined to improve natural language inference (NLI) and question-answer (QA), e.g. see

[183][184][185][186][187]. A KG, such as ConceptNet [188], provides structural knowledge

that can be used to ground the reasoning process through an LLM [185]. A KG represents

knowledge in a symbolic space while an LLM represents knowledge in a vector semantic

space. The major challenge in their work is how to effectively fuse the two representations

in a unified manner [186][187], mostly by end-to-end training.

In our IEA design, we mean to use KG in a different way though. As illustrated

in Figure 6.5, the KG provides a target output space for the frontend semantic parser.

The parser’s job is to map a query to a subgraph of KG. This mapping is based on two

aspects of the query: its intent and the implied steps required for the task.

1A promotion video introducing IEA-Plot at the 2023 IEEE International Test Conference can be
found through this link to YouTube.

220

https://youtu.be/2yK6vK7NL28?si=HqsDdOPYn6EVLOqm

IEA 2023 Chapter 6

Figure 6.5: A user query corresponds to a subgraph in the KG

The use of KG was motivated by another objective. We desire to use KG as a central

place to store domain knowledge and as discussed in Section 6.1.4 above, this domain

knowledge has three perspectives:

1. The LLM perspective (knowledge about the steps involved in an analytic process)

2. The API perspective (knowledge about the analytic tools and their use)

3. The IEA tool perspective (knowledge about the IEA implementation itself)

This domain knowledge is expressively represented in the KG and sharing of the

knowledge can be achieved by sharing the KG. Ideally, we also want to design the KG

such that future scaling of the IEA tool’s capability (e.g. adding a new function or

option) can be done by adding nodes and edges to the KG.

We postpone the detailed discussion of our KG design to Chapter 7. Below we will

explain the capabilities of IEA-Plot, followed by explaining how IEA-Plot solves the task

grounding problem mentioned at the beginning of this chapter.

6.3 Wafermap Analytics in IEA-Plot

IEA-Plot is designed to support wafermap analytics. The backend API of IEA-Plot

is built upon the MINIONs approach presented in Chapter 4 (and published before in

[115][96][14]). This section highlights some specific capabilities implemented in IEA-Plot.

221

IEA 2023 Chapter 6

Figure 6.6: Identifying a pattern group satisfying a pattern Concept

As shown in Figure 6.6, IEA-Plot (the specific version along with the publication of

[35]) included seven pattern concepts: Arc, Ring, Donut, Center, Cluster, NearFull,

and Grid. Each pattern concept is modeled as a separate resource domain in our KG (see

discussion in Section 7.1 for more detail about the domain partition in our KG design).

IEA-Plot’s backend supports various preprocessing steps to obtain a wafermap, e.g.

salient map, masking, resizing, etc. In our KG, those options are modeled in the

WaferMapConstruct resource domain. On a wafermap, the value of a die can also be

determined in various ways. For example, it can be based on stacking wafers from

the same lot, or based on a particular test bin. Those options are modeled in the

WaferMapsRepresentation resource domain.

Given a set of wafermaps, each is checked to see if it satisfies a pattern concept. This

check is based on hard-coded feature-based rules. For the features in use, we experimented

and selected features reported from prior works (e.g. [124]) and implemented some of

our own [96]. Suppose we want to check if a wafermap contains an Arc pattern, in our

current approach we first apply the rule-based script for the Arc concept. Our rules are

designed to be conservative so that if the script considers a wafermap as an Arc, the

pattern would be obvious from our visual point of view. From the wafermaps picked

by a rule, we can then expand the wafermap group based on the concepts and relations

operated on the MINIONs graph, as explained in Section 4.6.3 before.

Figure 6.6 provides an example to show that after running a script, three nodes

222

IEA 2023 Chapter 6

are selected in the NINIONs graph. At this point, the three nodes are separated in

two groups. Based on the MINIONs graph, we can extend the set of selected nodes in

different ways. First, we extend the selection by including all nodes that belong to a

clique based on an already-selected node. The result is shown in the second graph in

Figure 6.6 (after the clique extension). The selected nodes still form two groups. The

first group is a clique of size 4 and the second is a clique of size 3.

The next extension is based on including all nodes that have a direct connection with

the current selected nodes. We call this operation the 1-hop extension. Those newly-

included nodes are marked as green. Then, repeating the idea of 1-hop extension, we can

have 2-hop extension which includes two additional nodes marked as blue.

6.3.1 Pattern group

In IEA-Plot, 1-hop extension is the current default to obtain a pattern group. For

example, Figure 6.7 shows the IEA-Plot result based on the query to see the Center

pattern. The display comprises three levels: after the rules, after the clique extension,

and after the 1-hop extension.

Figure 6.7: Results based on the Center pattern concept

223

IEA 2023 Chapter 6

When the next query “Correlate” is given, the pattern group is transferred from the

wafer sort domain to the E-test correlation domain. IEA-plot generates correlation plots

like the one shown in Figure 6.7. The plot shows 10 Center wafers from 3 lots. The two

axes are two sites from the same E-test parameter where the two sites are closest to the

pattern. Each dot shows the E-test values of the two sites. Red dots are those 10 wafers.

E-test correlation can result in multiple plots reported. A bias score is assigned to

each plot and plots are ranked accordingly. For generating a correlation plot, IEA-plot

searches for the subset of wafers from the pattern group, one lot at a time, which give

the largest bias score. For detail of this E-test correlation method, please see [96].

Figure 6.8: IEA-Plot outputs based on the two consecutive queries

Figure 6.7 shows a scenario where the user already knows what pattern to request.

Initially, the user might want to see what patterns are available in the data and what

options might be available for a particular pattern.

In Figure 6.8, Q4 gives a list of available patterns. For the Arc pattern, Q5 gives

a list of available options. These results are generated based on the rule-based scripts

with no extension. Result of Q5 shows that the Arc pattern can point to five different

224

IEA 2023 Chapter 6

directions, have three length types, and two thickness types. The number of wafermaps

satisfying each option is shown. From here, a user can select options to define a pattern

group. If no option from a category is selected in a query, the default is “all”.

6.4 Analytics Driven by a Dialog

Figure 6.9 shows a dialog example. IEA-Plot’s output screenshots for those queries

are shown in Figure 6.10 (except for Q4 and Q5 which are already shown in Figure 6.8

above). The dialog includes an intent switching at Q4 and a domain switching at Q12.

These two types of context switching have been discussed in detail above.

Figure 6.9: A dialog example and IEA-Plot’s outputs shown in Figure 6.10

Q2 and Q8 are two examples where the data scope is narrowed. In IEA-Plot, the

data scope is inherited into the next query by default unless (1) the next query selects a

new scope, (2) the next query is an intent switching or a domain switching. To restore

to the previous data scope, a special query “Go Back” is used. For example, Q9 resets

the data scope back to Q7 which has the same data scope of Q6.

Q10 asks to see a different pattern from Q6. This creates a new data scope, i.e.

the set of wafers having the Donut pattern. Q11 then resets the data scope back to the

225

IEA 2023 Chapter 6

Figure 6.10: IEA-Plot output screenshots for queries listed in Figure 6.9, screenshots
for Q4 and Q5 displayed in Figure 6.8 previously

previous scope which is the scope of Q6. Then, the Arc pattern group is transferred to

the E-test domain when processing Q12, generating the correlation plot as shown.

6.5 Frontend Parser for Task Grounding

Our parser implementation is fundamentally different from that reported in [179] (and

explained in the previous chapter). With the availability of GPT3.5 [16], we leverage its

power by taking a generative approach. Figure 6.11 illustrates the approach. As shown

in the figure, the capability of GPT3.5 we leverage is the paraphrasing capability, as

discussed above in the last paragraph in Section 6.1.3.

By traversing the KG, we can extract a list of acceptable configurations (see Sec-

tion 7.1 for detail about the KG). A configuration corresponds to a subgraph in the KG.

For a configuration, we can generate a list of concatenated phrases (i.e. a sequence of

226

IEA 2023 Chapter 6

Figure 6.11: Generating acceptable queries using a GPT model [16]

phrases separated by comma) by enumerating combinations of phrases associated with

those activated nodes (see Figure 6.12 for an example). For each concatenated phrase,

we ask GPT [16] to make it a full English sentence. Then, we ask GPT to repeatedly

paraphrase the sentence to obtain semantically-equivalent sentences. At the end, for each

concatenated phrase we obtain a list of acceptable queries.

Figure 6.12: An example to obtain a list of acceptable queries

6.5.1 Intent capture

Parsing of a query is divided into two stages: intent capture and phrase matching

(see Section 7.1.3 for more detailed discussion in view of activating a subgraph in the

KG). Intent capture determines if the given query requires a switch of context. Our KG

supports two types of context switching: intent switching and domain switching (e.g.

Figure 6.9). In addition, intent capture determines the current scope of the intent, i.e.

the set of allowable nodes in the KG. Under an intent, those nodes are considered for

phrase matching.

227

IEA 2023 Chapter 6

For intent capture, we use a sentence-BERT (SBERT) model [189]. Figure 6.13

illustrates our approach. First, we sample a set of acceptable queries where each option

is covered at least once. The sampling is done in two phases. First, we sample acceptable

configurations. In our experiment, we started with over 250K configurations. Then, we

sample a subset of them for generating acceptable queries.

Figure 6.13: Intent capture by comparing pairwise SBERT embeddings

Given a query, we use SBERT to obtain an embedding, a 384-dimension vector.

Given a list of n acceptable queries, we obtain a table of n embeddings (E1, . . . ,En in

Figure 6.13). When a query is entered to IEA-Plot, SBERT generates an embedding E

for the query. Then, this E is compared with E1, . . . ,En using cosine similarity. The

most similar Ei is used to indicate the intent of the query.

While the approach is simple, it is important to note that its performance can largely

depend on the set of acceptable queries stored in the table, i.e. the coverage of the set.

This coverage depends on the paraphrasing power of the GPT model. IEA-Plot leverages

such power provided by the model to simplify the parser implementation.

SBERT was trained to decide semantic similarity between two sentences [189]. While

the original SBERT model performed reasonably well in our intent capture, we also found

fine-tuning the model could improve the result.

Figure 6.14 shows a 2D projection (using t-SNE) of the embeddings based on 3623

acceptable queries we sample. The purple markers are queries with no context switching.

The other three colors each represents switching to the particular intent. As seen, fine-

tuning the model makes separation among different groups of queries more clear.

228

IEA 2023 Chapter 6

Figure 6.14: Fine-tuning SBERT improves our intent capture

Our fine-tuning follows the retrofitting idea suggested in [190]. Among the 3623

queries, we sample 382 to fine-tune the SBERT (following Figure 6.13, this means that

n = 382 in En). Then, we test the model on the remaining 3241 queries and find only 1

query whose intent is captured wrong. The cause for the mistake is actually due to the

fact that paraphrasing can generate a query that looks quite different from its original

query. In Figure 6.13, this means that we have to include this one query into the set of

acceptable queries on the right to cover the special case.

6.5.2 Phrase matching

Our approach to phrase matching also relies on checking the cosine similarity between

two embeddings. The difference is that in phrase matching, the two embeddings are from

two phrases (instead of two sentences). And instead of using SBERT, we use the original

BERT model [191].

Figure 6.15 illustrates the approach. Similar to Figure 6.13, we first build a table of

phrase embeddings q1, . . . , qm. Each qj is labeled with the corresponding node name in

the KG. The starting point is also a set of acceptable queries.

Given a query, we need to extract phrases stated in the query. We use the core-NLP

229

IEA 2023 Chapter 6

Figure 6.15: Phrase matching by comparing pairwise BERT embeddings

API [192] to obtain a constituency parsing tree. We then applied custom rules to extract

potential phrases. If the query is the original query generated by sentence completion,

the label of a phrase can be determined easily by checking the phrases stored with the

nodes in the KG. If the query is obtained by paraphrasing, then the label is determined

by matching its BERT embedding with the BERT embeddings of those phrases from the

original query.

In the implementation we have grown the table to contain over 13K embeddings

categorized with 116 labels. We have verified the performance with over 5K paraphrased

queries and found no mistakes.

Given a user query, the process to obtain embeddings e1, . . . , ei in Figure 6.15 is

similar. First we use core-NLP API and rules to obtain phrases p1, . . . , pi. Then, we

apply BERT to get the embeddings. After that, for each ei we search (using cosine

similarity again) the embedding table to find the best-matched qj and then we activate

the corresponding node in the KG.

Figure 6.16 uses two query examples with two different intents to illustrate the parsing

process. Note that these two queries each contains several phrases to make the parsing

more difficult. In practice, most queries might be much simpler, involving simple action

with one or no option (e.g. the dialog example in Figure 6.9).

230

IEA 2023 Chapter 6

Figure 6.16: Examples of parsing a query into a KG configuration

6.5.3 Dialog representation of an analytic process

In typical ML, a given type of analysis (e.g. classification, clustering, etc.) is applied

on a dataset to obtain a result. In contrast, we consider DSML as an iterative exploration

process as depicted with Figure 2.22 before. Under our DSML view, in each step the

user explores the data from a perspective. With IEA-Plot, this perspective corresponds

to the configurations implied by the user queries.

Figure 6.17: LLM enables data exploration through dialog

Figure 6.17 depicts this view. Each exploration process is represented through a

dialog. Which analytic results (plots) are meaningful to a user is up to the user to

231

IEA 2023 Chapter 6

decide. The job of IEA-Plot is to facilitate the exploration process. LLMs bring two

major benefits: (1) enabling dialog representation of an analytic process; (2) improving

the efficiency of the exploration.

In IEA-Plot, the KG provides a specification for how a particular analytic tool is

used within the application scope. For example, in our KG the concept of a pattern

recognition is captured with a high-level Concept node called WaferPatternFilter (see

Section 7.1). It involves the seven pattern concepts mentioned above. A rule-based script

is associated with each pattern concept to filter-in wafermaps as a starting point to form

a pattern group. These scripts can be replaced with better scripts later. The recognition

relies on a MINIONs graph constructed based on our MINIONs-based wafer-to-wafer

similarity measure. Others can add new implementations with their own similarity mea-

sures. Overall, the KG separates the API implementation from its usage and provides a

clear contextual definition for how an analytic tool is used in the application domain.

In other words, the KG in IEA-Plot can be seen as providing a formal functional

specification for each analytic tool in the backend, and the KG makes sure that once a

tool satisfies the functional specification, the tool can be used in a meaningful way within

the application scope defined by the KG.

6.6 A Remark about IEA-Plot

IEA-Plot is designed to enable analytics driven by a dialog. Inputs to IEA-Plot are

queries forming a dialog. Outputs are plots. The essential idea for implementing IEA-

Plot is the development and use of a KG. The main contribution of IEA-Plot is showing

how the KG can be constructed, which captures the domain knowledge in the specific

application domain. Our KG together with the front-end parser can be shared with

others, providing a platform for customizing their own IEA tool by adding their own

232

IEA 2023 Chapter 6

backend API.

The performance of our frontend parser depends on the paraphrasing power of the

LLM. How to make an LLM better understand the terms used in our domain and improve

such power is a separate research issue. While the current parser is implemented as a

constrained parser, as we collect more query examples over usage, it will become feasible

to consider other approaches, such as reinforcement learning [178] or joint LLM+KG

reasoning [185][186]. Those can be interesting future research directions.

Although IEA-Plot is designed for user to interact with the tool through a dialog, it

is possible to add a separate GUI to also enable using the tool’s functions through mouse

clicks. In this case, the focus might not be on enabling dialog-driven analytics. Instead,

it can be for automatic translation of a usage session (i.e. a sequence of mouse clicks) into

a natural language description (e.g. a workflow description). In IEA-Plot, each analytic

step is represented as a subgraph of the KG and with the generative approach, can be

converted into a natural language description. Such automatic workflow capture can be

an interesting future add-on feature spanned from our current IEA-Plot design.

233

Chapter 7

Knowledge Graph

盪胸生曾雲，決眥入歸鳥。 會當凌絕頂，一覽衆山小。

Swelling clouds sweep by. Returning birds ruin my eyes vanishing. One

day soon, at the summit, the other mountains will be small enough to

hold, all in a single glance.

— 《望嶽》 杜甫， A poem from Tang Dynasty

As discussed in the previous chapter, the use of knowledge graph (KG) is the central

idea to enable the implementation of IEA-Plot in 2023. This chapter provides more detail

of the KG design in IEA-Plot. 1 The initial development of the KG was manual. In

Chapter 8, we will then describe the initial work aiming to automate the KG construction

process.

1The KG design is specific for the IEA-Plot version published with the IEA-Plot paper [35] in 2023.
Since the publication of the IEA-Plot, the software continues to evolve and be improved over time. The
current KG has been enhanced from the original version. Hence, what is being described in this chapter
was about the ideas in the original KG design in 2023. The first version of KG is essential to demonstrate
the end-to-end capabilities of IEA-Plot. While the KG might not be optimal, it marks a milestone that
for the first time, there is a formal representation of domain knowledge.

234

Knowledge Graph Chapter 7

7.1 Development of the KG in IEA-Plot

As pointed out in [180], the term “knowledge graph” can have various meanings,

and the announcement of the Google KG [193] separates its modern views from the

historical views. KG is a rich field. Terms (e.g. the term “ontology”) used in the field

can sometimes be confusing [180].

In our view, the field includes two distinct uses of KG. One is for representing and

organizing the knowledge from vast amounts of data such as data available from the

Internet. RDF [194] (for data representation), and RDF Schema (RDFS) and OWL [195]

(the ontology languages) are standards for this purpose. The other is for representing

and organizing people’s knowledge. ConceptNet [188] is a popular example. ConceptNet

does not use a complicated ontology (like OWL). It includes 35 well-defined relations to

connect common sense “concepts”. ConceptNet is suitable for representing the graph

nodes with distributional vector embeddings, making it suitable for use with an LLM to

perform joint reasoning [185][186][187].

Given our multiple purposes to use KG from the three perspectives described in

Section 6.1.4, we need a hybrid model somewhat between RDF/OWL and ConceptNet.

On one hand, we need a KG capable of modeling the data in our tool. On the other

hand, we need the KG simple enough to enable LLM+KG joint reasoning in the future.

7.1.1 The KG design

To avoid confusion, Figure 7.1 clarifies the formalism of our KG design and the

terminology in use. A graph is a collection of triples (source, predicate, target). The

KG comprises two separate graphs: the domain graph and the data graph. When we

refer to the term ontology, we mean the domain graph. The domain graph provides

our interpretation to process the data graph, and this processing includes the three

235

Knowledge Graph Chapter 7

perspectives mentioned before (Section 6.1.4).

Figure 7.1: Hierarchy in our knowledge graph design

In the domain graph, sources and targets are called entities. Predictates are called

relations, which are always directional. In the data graph, sources and targets are nodes

and predicates are edges. A node is an instance of an entity and an edge is an instance

of a relation. These usages of the terms are consistent with those described in [180].

A node can have a list of data items. There are two types of data items stored with a

node. The first is to store data objects relevant to the execution of the tool. The second

is to store example phrases/sentences that represent the semantic meaning of the node.

7.1.2 The ontology

In the field of KG, an ontology is a concrete, formal representation of what terms

means in the given domain [180]. Figure 7.2 depicts our ontology as axioms in the domain

graph. A triple (Entity1,Relationa,Entity2) means that a node of Entity1 and a node

of Entity2 can have an edge of Relationa. If a triple (Entity1,Relationb,Entity2) is not

present in this graph, then it means the two nodes cannot have an edge of Relationb.

Hence, the graph provide the axioms that triples in the data graph have to satisfy.

The semantics of the domain graph can be explained as the following. We divide nodes

236

Knowledge Graph Chapter 7

Figure 7.2: Axioms in the domain graph, representing the ontology we use

into four domains: Manager, Action, Intent, and Resource. These four entities are

all subclasses of the parent entity Domain. Inside the resource domain, there are two

types of nodes: Concept and Option. In addition, there is a special type of node

called Constraint which is used to capture constraints between concept-concept and

concept-option pairs, whenever needed. In total, our ontology defines 8 entities (types of

nodes).

The ontology further defines eight types of relations. Below we use the term “activate”

to mean that during subgraph extraction, a node is included in the current subgraph.

1. (source, require, target): When the source is activated, the target is required to

be activated.

2. (source, default, target): When the source is activated and no option node is

activated by the user query, the target is the default and is activated.

3. (source, option, target): The target can be activated as an option when the source

is activated.

237

Knowledge Graph Chapter 7

4. (source, reset, target): When the source is activated by the user query, all previously-

activated options from the target are reset.

5. (source, disable, target): When the source is activated, the target is deactivated.

This can be used to model mutually-exclusive activations among nodes.

The sixth relation is called contextto. Its usage is specific to the form (Action,

contextto, Domain). This is used to model domain switching in a dialog. For example,

when the analytic context switches from the context of analyzing wafer sort data to the

context of correlating between wafer sort data and E-test data, it involves a domain

switching.

The last two relations are invoke and exclude, specific for the use to model node-

node constraints. (Concept, invoke, Constraint) means activation of the concept node

will invoke the constraint. (Constraint, exclude, node) means the constraint excludes

the activation of the node which can only be a node of either Concept or Option.

7.1.3 Key ideas for constructing the data graph

Figure 7.3 uses a conceptual example to illustrate the key ideas for constructing

the data graph2. Each box in Figure 7.3 represents a resource domain that contains a

subgraph. There are two types of edges shown in the figure. A solid edge is a require

edge. A dash edge is not a require edge. There are three example queries where for each,

the activated subgraph is illustrated.

Consider the first query “Show me the yield loss”. This query activates the Show

action node. It is determined (intent determination will be discussed later) that the

intent is to inspect the data from the “yield loss” perspective. This inspection requires

2The data graph is evolving. Our current data graph contains 243 nodes with 1147 edges, which can
be accessed from our IEA project page: https://iea.ece.ucsb.edu/iea/project

238

https://iea.ece.ucsb.edu/iea/project

Knowledge Graph Chapter 7

Figure 7.3: A conceptual example to illustrate our graph construction

performing two tasks: (1) Select the data scope to inspect. This is represented by the

require edge pointing to the DataObjectScope resource domain. (2) Select a plot type

for the display. This is represented by the require edge pointing to the Plots resource

domain.

The data selection task further requires resources from two domains: TimeScope and

YieldScope, where the first allows selecting a time interval based on month or week,

while the second allows selecting data based on a yield threshold (not shown in the

figure). Because the query does not specify a time scope, the default is All which is

pointed by the TimeScope through a default edge.

Similarly, Plots domain contains a list of plot types and may include a default (e.g.

Type1). Defaults and options are modeled in the subgraph of the Plots domain.

The second query requires an additional resource, WaferMapConstruct, used to deter-

mine how the wafer maps are constructed (e.g. a pass/fail wafermap, a stacked wafermap,

a wafermap after some filter, etc.). The second query also requires all resources required

by the first query. As a result, all data and options collected from the first query is

239

Knowledge Graph Chapter 7

inherited by the second query as its starting point.

The third query asks to switch context from data inspection to do some wafermap

pattern analysis. Context switching in our design means to switch from one intent to

another. The third query requires one additional resource PatternFilter (Examples of

using this resource domain have been discussed in Section 6.3 before in the context of

wafermap analytics). Because the query asks to see specifically the “Arc” pattern, this

triggers the option to request the ARC resource.

The API perspective

From the API perspective, Action nodes correspond to the steps in the “main”

program. Each resource domain corresponds to a portion of the API functionality. For

example, the API support various ways to select the data. How to call those functions

with what options are organized in the knowledge subgraph within the DataObjectScope

domain. In our KG, each node in a resource domain (Concept orOption) corresponds to

an available function in the API. Their dependency structure is modeled in the knowledge

subgraph in the domain.

The KG manager perspective

The KG manager is responsible for managing the extracted subgraphs from one query

to the next. An extracted subgraph corresponds to a configuration telling how to call the

backend API.

A configuration contains a list of admissible actions with their options as shown in

Figure 6.4. An action can be thought of as a function call. From the API perspective,

function calls are organized in hierarchy (e.g. calling a function ai may involve calling

other functions ai1 , ai2 , . . .). This hierarchy is reflected in the subgraph. In other words,

our KG contains the knowledge of the API organization.

240

Knowledge Graph Chapter 7

From the KG manager’s perspective, the three relations, require, default, option,

are essential for modeling the functional dependency structure. The three relations,

reset, disable, contextto, are used for managing the change of subgraph from one query

to the next. Their semantic meanings are illustrated through examples in Figure 7.4.

Figure 7.4: Semantic meanings of the six relations for subgraph management

Example (1) in Figure 7.4 illustrates that a node in an extracted subgraph in general

can have two parts of child nodes: the OR part and the AND part. Edges in the OR

parts are of option type where one of them is default. Edges in the AND part are

of require type. For example, to execute the function represented by the parent, it

requires certain specific resources and can have the various options. In this case, we can

use default/option to model the options and use require to model the resources.

Examples (2)-(4) then illustrate how the KG manager handles subgraph change from

one query to the next.

In example (2), the first query asks to see “wafermap”. This corresponds to the

intent of “wafermap inspection”. Suppose node “1” models this intent. After that, there

are other queries within the scope of this intent. Then the last query asks to see “Arc

pattern”, triggering a new intent “pattern analytics”. Suppose node “2” models this

intent.

241

Knowledge Graph Chapter 7

Activation of node “2” triggers a switch of intent. This is modeled through a reset

relation from node “2” to its parent. The parent previously maintains the current con-

figuration resulting from queries before the intent switching. The activation of node “2”

therefore resets the configuration of its parent, telling it to compute a new one from

scratch.

Consider the green node in example (2). It is a shared resource between the two

intents. Within the scope of the first intent, those queries may have set the available

options under the green node (not shown). Without a reset, a subsequent query would

inherit those options. The reset notifies the manager to restores everything back to its

default. For the KG manager, options choices are handled cumulatively from one query

to the next, until it encounters a reset.

Example (3) shows a situation where a previously-selected option is replaced with a

newly-selected option. The first query asks to see “Arc pattern” but does not specify a

direction. Hence, the default is to include all directions. This default is the green node in

example (3). The second query then provides a specific direction “at 11 o’clock”. This

option replaces the previous option, and is modeled as a disable relation. In general,

the disable relation can be used to model a set of mutually-exclusive options.

Example (4) shows an example of domain switching. The first query is in one domain,

operating on one dataset, the wafer sort dataset. The second query involves E-test data.

In our KG, we consider the two queries belonging to two separate domains. The second

query triggers a switch from one-dataset analytics to cross-dataset analytics.

Domain switching is modeled through a contextto relation. For example, theAction

node in the wafer sort domain is labeled as the Show action. When the correlation action

is recognized, it invokes switching to the E-test correlation domain that contains the

action node Correlate.

The contextto relation tells the manager to (1) bring in the E-test dataset and (2)

242

Knowledge Graph Chapter 7

transfer the current analytic result (e.g. pattern groups) from the wafer sort domain to

the correlation domain. As discussed in [96], our interpretation of E-test correlation is

based on a given set of pattern groups.

The query perspective

Figure 7.5 shows a sketch of the subgraph for the first query in example (4). As

discussed in Section 7.1.1, example phrases can be attached to a node. Figure 7.5 shows

four such nodes.

Figure 7.5: Subgraph for “Show me the Arc pattern at 11 o’clock direction”

Given the query, the parser’s job is to determine that these four nodes should be

activated. Then, the KG manager can extend from the activated nodes to obtain a

subgraph (by following the require edges).

In a simple way, we might think that the four nodes can be activated by matching

texts in the query to the phrases attached with those nodes. For example, Show in

the query matches “show” in the Show node. The text at 11 o’clock matches the “at x

o’clock” in the Clock node. While text matching can be used, it can substantially limit

the scope of the acceptable queries to our tool.

243

Knowledge Graph Chapter 7

Figure 7.6: Intent Capture and Phrase Matching for parsing a query

Detail about intent capture and phrase matching

Figure 7.6 shows that the parser’s job includes two aspects: intent capture and phrase

matching. Consider again the first query in example (4) in Figure 7.5. For intent capture,

the parser needs to know to activate the Pattern node. This might be doable by matching

the word pattern to the text “pattern” in the PatternFilter node. However, consider

the four queries shown in Figure 7.6. Those queries imply to see failing patterns as well,

but none of them mentions the word “pattern” or “arc”.

Furthermore, the four queries imply looking for a pattern along the wafer edge. If

our tool is smart enough, it should know that this includes the Arc pattern as we have

defined it in our KG. This means that we need to match “arc” with phrases like wafer

edge, boundary of the wafer, perimeter of the wafer, etc. We call it the phrase matching

problem.

As discussed in Section 6.5 already, intent capture and phrase matching are the two

problems where we leverage the power of LLMs [173][19][191] for tackling the problems.

The constraint graph

In our KG, a separate constraint graph is maintained using Constraint nodes and

invoke/exclude relations. Figure 7.7 illustrates their use.

In the KG, each resource domain comprises three types of nodes. An Entry node is

an instance of the Resource entity. Inside a domain, an Option node is a node with an

244

Knowledge Graph Chapter 7

Figure 7.7: A constraint graph is separately maintained in our KG

incoming option edge and without any outgoing option edge. Other nodes in a domain

are instances of the Concept entity.

Suppose resource A is shared by both B and C. This is modeled by the two require

edges from the Entry node of B and from the Entry node of C, both to the entry node

of A. Domain A contains two concepts, A1 and A2, where A1 can have two options,

Option1 and Option2. Suppose in our backend API, B1 can be used with A1, but when

that happens, cannot have Option1. Also, C1 cannot be with A2 (if we think C1 and A2

as two functions, they cannot be called together due to our API design).

To model such constraints, we create constraint nodes with constraint edges as shown

in the figure. The red circles are instances of the Constraint entity. Each red edge

comprises an invoke and an exclude relation.

For example, domain A can be resources for making plots. Domain B is for inspecting

patterns on wafermaps. Domain C is for inspecting wafermaps in general. A1 and A2 are

two plot types. While A1 can be used to display wafermaps, Option1 is not valid when

the wafermaps are given as pattern groups. Also A2 is a plot that can only be used when

wafermaps have already had a pattern group label assigned. To model this knowledge

about the API usage structure, we put in the two constraints.

245

Knowledge Graph Chapter 7

Comments on the scalability concern

An important consideration in our KG design is scalability. Figure 7.8 shows that

extending the tool’s functionality can be achieved by adding nodes (and edges) to the

KG. This extension can be considered at three levels: Option, Concept, andResource.

Figure 7.8: Extending tool functionality by adding nodes in KG

For example, suppose for a particular type of plot we desire to add a new option.

With our IEA tool design, we can simply add the option to our API. Then, we add a

node OptionX to represent this option, and we add a list of example phrases for activation

of this option node.

Similarly, if we desire to add a new plot type, we can add a new Concept node, say

TypeY (and its available options as Option nodes) in the Plots domain, with a list of

example phrases for activation of the concept node.

In our KG design, the Pattern intent node requires resources from the PatternFilter

domain. For pattern analytics, our current implementation looks for systematic patterns.

Suppose we desire to include a new way that checks for “outlier” patterns, i.e. a pattern

that is both significant and unique. We can add this functionality into the API. On the

KG, we can create a new resource domain, say PatternOutlierFilter. Then, we can

make the PatternFilter domain as default and PatternOutlierFilter as an option.

As seen in the above examples, extending the capabilities supported by IEA-Plot can

be done by working within a focused scope of the KG. This locality feature provides a

246

Knowledge Graph Chapter 7

major benefit which facilitates scaling of IEA-Plot’s capabilities over time.

7.2 The Importance of Having the First KG

The KG construction in the development of IEA-Plot is manual. As explained in

Section 6.2 and in Sections 7.1.3 to 7.1.3 above, our KG is supposed to capture the

knowledge from three perspective: the LLM (or query) perspective, the backend API

perspective, and the perspective for managing the KG itself. The KG described above

might look like a result from extensive engineering efforts. This was indeed the case. The

development process took several months and went through many iterations to adjust

the KG design (i.e. deciding on the ontology, the node types, the edge types). It was a

tedious process that demanded much domain knowledge.

It should be noted that the manual process for developing the KG in IEA-Plot was

a necessary step. Without seeing a first version of KG that was sufficient to enable a

complete product like IEA-Plot, we had no reference to the scope of the KG construction

problem. It would have been meaningless to consider automation of the KG construction

when we did not even know what an acceptable KG should look like. Hence, while the KG

described in Section 7.1 might look somewhat “ad hoc”, its contribution to the overall

research is not. The KG not only enables the completion of IEA-Plot but also serves as

the stepping stone for the next phase of the IEA development.

Once we have the first KG, we can then ask two follow-on questions:

1. From a formal language point of view, what type of domain knowledge is supposed

to be captured in our KG?

2. It we are going to build a tool to alleviate the KG construction process, what should

the tool look like?

247

Knowledge Graph Chapter 7

The first question asks for a formalism regarding the domain knowledge that is sup-

posed to be captured in our KG. The formalism provides clarity on the scope of the

knowledge and helps make the KG development process become more formal. The sec-

ond question asks for a tool that can provide assistance to the KG construction process.

To develop such a tool, we need to understand what aspects the tool should be designed

to assist on and on those aspects, to what extent the assistance should be offered.

7.3 A Formalism Regarding the KG in IEA

Abstractly, a KG in IEA comprises a collection of concepts. Each concept has a

corresponding DSML oracle to decide on its existence. Formally, we can say that a

concept is a Boolean variable and its DSML oracle makes an assignment of 0 or 1 to this

Boolean variable based on a given input dataset. Figure 7.9 depicts this abstract view.

Figure 7.9: An DSML oracle decides on the value of a Boolean concept x

With this view, we can then think that our KG represents a collection of knowledge

statements, where each statement can be stated as a Boolean formula based on k Boolean

variables. Each variable corresponds to a concept. Note that in practice, k would not

be a large number and hence, we can generally treat k as a constant. Once we use

a Boolean formula to represent a knowledge statement, the the underlying question is,

does this formula involve quantifiers (∃,∀) or not? If we do not allow quantifiers, then

the Boolean formula essentially represents a statement in propositional logic. If we do

allow quantifiers, then we basically allow our knowledge statements to be stated based

on a language structurally similar to the language of polynomial hierarchy (PH) (see

discussion in Section 3.12.1).

248

Knowledge Graph Chapter 7

In Section 3.12.2 before, we have discussed that the analytic problem solved by IEA

can be considered as the problem class O(poly(n))DSML, in view of the △P
2 ∶= PNP

optimization problem class. Note that the O(poly(n))DSML problem class is defined from

the solving perspective. The O(poly(n)) is to denote that the number of search steps is

bounded by O(poly(n)). This is reasonable as in practice, i.e. the number of search steps

will not be exponential. And if consider each search step is based on a selected dataset

and a question (which corresponds to a knowledge statement generated from the KG),

then we are saying that the number of (dataset, question) pairs is not exponential in one

Choose-and-Bound search session.

From the representation perspective, the O(poly(n))DSML class seems to limit the

knowledge statement from using quantifier. However, as explained below this is not the

case and we can allow a language similar to the PH (Section 3.12.1) to describe knowledge

statements.

Analogous to the optimization hierarchy △P
i+1 ∶= NPΣP

i discussed in Section 3.12.1, we

can therefore define the DSML hierarchy (DSML-H) as ▽P
i+1 ∶= PΞP

i (we use the symbol

Ξ as analogous to the symbol Σ in the PH definition), where ΞP
i+1 ∶= PΞP

i , i.e. ΞP
i+1 has

access to an ΞP
i oracle and with that access, the complexity from the verifier’s perspective

remains P (instead of NP as that in PH). We have PΞP
2 to be O(poly(n))DSML which is

the IEA problem class originally defined (DSML oracle includes ML∗ and Co-ML∗, see

equation 3.1 in Section 3.12.2).

Figure 7.10: The DSML hierarchy where k can be treated as a constant

From the representation point of view, we are saying that a knowledge statement is a

249

Knowledge Graph Chapter 7

Boolean formula f(x1, . . . , xk) with k concepts where k is a constant (and without loss of

generality, assume that k is an even number). Hence, we can consider 2k as a constant.

The evaluation of f can be based on a number of alternating quantifiers, as exemplified

in Figure 7.10. The assignment of each variable xi is based on its corresponding DSML

oracle and the given dataset. In other words, the overall problem statement can be stated

as: Find the dataset that satisfies f .

Because k is a constant, given the corresponding DSML oracles and a search space

of a polynomial number (i.e. O(poly(n))) of possible choices for the dataset, deciding

if f() = 1 is at the complexity level PΞP
2 when no quantifier is involved. Then, adding

the quantifiers bring up the complexity into the DSML-P, which even though is more

complex, is still O(poly(n))DSML because at each level of hierarchy we have ΞP
i+1 ∶= PΞP

i .

The DSML-H class can be seen as a formal language that limits the complexity of

knowledge statements that can be derived from a KG in IEA. In practice, a KG can be

designed to limit the knowledge statements in a lower class in DSML-H, e.g. allowing no

∀ quantifier or allowing only one ∀ quantifier. Also in a KG design, one can even limit

the Boolean formula to a certain type, e.g. no negation, no disjunction, or limiting to

monomials only. These are two sets of orthogonal choices to consider when developing

a KG in IEA (i.e. one on the quantifiers and the other on the Boolean formula itself).

Regardless of the choices, the KG design would not consider knowledge statements beyond

DSML-H and from the solving perspective, the complexity is O(poly(n))DSML.

To summarize Figure 7.10, the only places we need to deal with the “exponential”

complexity are inside those DSML oracles. The knowledge statement is represented as

a Boolean formula. And because the formula has a constant size, regardless of using

quantifiers or not, it adds a constant (could be a large constant) complexity to the

solving. The search space has a polynomial complexity, i.e. a polynomial number of

choices for selecting a dataset. Therefore, the overall solving complexity remains to

250

Knowledge Graph Chapter 7

be O(poly(n))DSML, regardless of the complexity of the Boolean formula. And if we

consider the DSML complexity as a constant (because they are treated as oracles), then

the overall complexity from the checker perspective is O(poly(n)). This is an important

observation because if this is true, then it provides a hope for later pursuing a generative

AI approach where we can then ingest the knowledge stored in KG into an LLM and

train the LLM to become our solver.

The formalism provided in this section is not trying to provide a definition for the

language to construct a KG in IEA. Rather, we provide the formalism as a way of

thinking about the KG in IEA. To construct a KG in IEA, we need to think about the

knowledge statements intended to be supported by IEA and develop the concepts and

the corresponding DSML oracles accordingly. Most importantly, as discussed above the

KG specification language can be complex (in DSML-H) and yet, because each formula is

bounded by using a constant number of concepts, the specification complexity does not

make solving complexity more complex from a theoretical complexity sense. Hence, the

language for KG can be more flexibly defined without affecting the solving complexity

which will remain to be O(poly(n))DSML.

The discussion also shows that the complexity that really matters for solving an

analytic problem, is inside those DSML oracles and in a sense, those DSML oracles

“hide” the real complexity from the rest of the solving process. With those DSML

oracles in place, since the rest of the solving has a polynomial complexity we have hope

to train an LLM as the solver (because this solver only needs to deal with polynomial

complexity). From this angle, we see that in order to train an LLM to be the solver

for solving an analytic problem, we need to define the set of concepts and their DSML

oracles to begin with. In other words, we need to provide an assigned interpretation for

all the domain-specific terms used in an input statement to an LLM, in order for the

LLM to solve the problem.

251

Knowledge Graph Chapter 7

7.4 Toward Automating KG Construction

In this section, we describe an experiment trying to use GPT3.5 for automatic knowl-

edge graph construction. The study was documented in an arXiv paper [196]. We used

RISC-V unprivileged ISA specification (“RISC-V Spec”) [197] as an example. We tried

to study how GPT3.5 performed in the specific KG construction task. Most of the anal-

yses were done manually. In this study, our goal was to understand the problem, rather

than proposing a way to solve the problem.

Figure 7.11: An example of KGC using a prompt to GPT3.5. The input is a paragraph
from the RISC-V Spec and the output is in RDF TTL format.

252

Knowledge Graph Chapter 7

7.4.1 The experiment setup

We consider KG Construction (KGC) as the following: Given an ordered sequence

of text items T1, . . . , Tn, KGC processes one Ti at a time from 1 to n and generates an

individual knowledge graph (KG): gi = KGC(Ti). Let Gi−1 be the KG after merging all

g1, . . . , gi−1. We obtain Gi =MERGE(Gi−1, gi). From the RISC-V Spec, we consider each

paragraph as a text item. We choose GPT3.5 [16] as our LLM to use. For implementing

the KGC step, we rely only on prompting to the LLM.

Figure 7.11 shows an example of the KGC. The KG is represented in the Turtle Terse

RDF Triple language (RDF TTL) [198]. The specific prompt in use is shown in the figure.

The input paragraph can be seen in two parts: (1) definition of the SLTI instruction,

and (2) definition of the SLTIU instruction.

Notice that the second sentence starts with “SLTIU is similar” by referencing to

the first sentence. The RDF output is shown as four “Facts”. The most interest-

ing aspect of the result is shown in “Fact 2” for SLTIU where the RDF duplicates

all the predicates used in “Fact 1”, i.e. compareAgainst, comparesSignedNumbers,

comparesUnsignedNumbers, and comparesWith. This indicates that the LLM does un-

derstand the phrase “is similar” and reflects its understanding in copying the RDF rep-

resentation of SLTI.

Terminology

We will use several terms in this section to help the discussion. Refer back to Fig-

ure 7.11. An RDF output is given as multiple rdf blocks. We call each rdf block a

Fact. Each Fact starts with a subject entity. For example, SLTI, SLTIU, Immediate,

and Register, are subject entities. A Fact represents a set of triples each in the form

(subject, predicate, object). An object entity is the one that appears as the object of

253

Knowledge Graph Chapter 7

a triple and is not a subject entity. We also differentiate two types of predicate. For

a triple, if both of its subject and object are subject entities, we call the predicate a

relation. Otherwise, we call it a feature. For example, in Figure 7.11 compareAgainst is

a relation and comparesSignedNumbers is a feature.

For simplicity, we use the term “RDF” to refer to the RDF output given by GPT3.5.

Background facts (BFs)

While Figure 7.11 shows some encouraging result, we notice that the RDF misses

some detail in the original paragraph. For example, it does not differentiate the usages

of the two registers “rd” and “rs1”, i.e. which is the source and which is the destination.

Figure 7.12: Improved RDF by repeating the example in Figure 7.11 and supplying
the background facts (BFs).

Figure 7.12 shows another RDF by using a different prompt. This prompt adds a

list of background facts (BFs) we manually created. The RDF shows an improvement.

In particular, the RDF shows that the instructions compares register “rs1” with the

signExtendedImmediate, and placesValuein “rd”. It even includes the detail that the

comparison is “<” (less than).

254

Knowledge Graph Chapter 7

Focus of the study

The examples above show that GPT3.5 alone can be used for KGC and produce rea-

sonably good result. Adding BFs can help improve the result further. It looks promising.

However, it turned out that without adding BFs, the example was one of the few easy

cases we encountered. Others were not as easy. Without BFs, an output RDF could be

unsatisfactory due to two reasons: (1) the RDF failed the syntactic check, and (2) the

RDF passed the syntactic check but either got some fact(s) wrong or entirely missed the

main fact(s) described in the paragraph. In our study, we observed at least 70% of the

cases were in these two categories.

Figure 7.12 shows that adding BFs can influence the behavior of GPT3.5 for KGC.

Then, it is interesting to see whether we can rely solely on adding BFs to reach a satis-

factory RDF for every paragraph or not. Ideally, we would like to turn the KGC process

for every hard case into an easy case (like Figure 7.12).

It is important to note that, in our study we did not concern where those BFs come

from or what BFs to use. The study focused on one question: If GPT3.5 could not

produce a satisfactory KGC result for a text item, does there exist a list of BFs to be

added in the prompt such that the KGC result would become satisfactory?

7.4.2 Main finding from the study

Based on the paragraphs from the RISV-V Spec, we concluded from our study that

the simple approach of adding BFs would be sufficient to enable GPT3.5 to produce

satisfactory KGC result for every paragraph we had tried. This finding essentially implies

that the core of the KGC problem is the problem of finding and applying the proper BFs

for a given paragraph.

255

Knowledge Graph Chapter 7

7.4.3 Related works in KGC

As far as we know, we are the first to tackle the problem of KGC for unstructured

text data in the semiconductor chip design domain. Documents in a semiconductor

company often use terminologies not known to the outside world. Hence, it is intuitive

to think that KGC for those texts requires a domain person to provide some background

knowledge to at least cover those terminologies. This thinking motivated us to take the

view of supplying BFs.

Knowledge graph construction is a rich field with many techniques having been pro-

posed to solve the problem [199, 200]. Conventional methods to constructing knowledge

graphs follow a pipeline of NLP sub-tasks [201] such as entity recognition [202], entity

linking [203], relation extraction [204], and coreference resolution [205] etc. Among the

various tasks, named entity recognition (NER) provides a fundamental first step for do-

main knowledge acquisition. Standard off-the-shelf toolkits for NER [206, 207, 208, 209]

combines machine learning models and rule-based components to label entities. Recent

works solve the problem in an end-to-end fashion using deep learning models [210, 211,

200]. However, pre-trained models often incur low accuracy since training data from

general public domain rarely covers our domain specific patterns. It is hard to iteratively

ingest domain experts’ knowledge to further improve the accuracy without dedicated

retraining. Finetuning or retraining is often not a desirable option for many hardware

companies because of the tremendous efforts required to create curated databases for

the training tasks. Another potential route to our KGC problem is to implement cus-

tomized rule-based extractors with features provided by existing constituency and/or

dependency parsers [212, 213]. However, to our experience the set of rules can quickly

grow overly-complicated and it is difficult for the approach to scale.

Restricting the output of a generative LM into a formal representation is related to the

256

Knowledge Graph Chapter 7

problem of constrained semantic parsing [214, 215]. A structured meaning representation

is often chosen as the output format [216]. However, converting the meaning represen-

tation into a KG can be another potential barrier. In summary, prompting an LLM to

directly generate an RDF, if practical, can bypass all the complications mentioned above.

This would not be feasible without the latest developments of the LLMs.

Despite that automatic knowledge graph construction in specific domain still remains

an open challenge problem [199], a major difference of our work (and our objective) is

that we are not trying to propose another KGC solver. Rather, we focus on verifying the

result given by such a solver, in our case the GPT3.5. In other words, our work is not

about being a technology provider as those surveyed in [199, 200]. Instead, we take the

perspective of being a technology consumer.

If we look at it from the computational complexity perspective discussed in Sec-

tion 3.12.1, specifically the perspective of the oracle machine [114], basically we treat

GPT3.5 as an oracle for KGC. However, this oracle is not perfect. Hence, given the ora-

cle, we are interested in knowing what can we do to make the oracle generate satisfactory

results for us. And our answer is that, we need to provide the oracle with the proper

BFs in order for it to do the job.

7.4.4 Taking an oracle-checker view

Our Oracle-Checker (OC) view was inspired by the theoretical model of Interactive

Proofs (IP) [217]. An IP system comprises a prover and a verifier. The prover is assumed

to be an all-powerful Turning machine. The verifier is a probabilistic Turning machine,

with limited power like a solver in P (polynomial time). The IP approach was developed

to characterize computational complexity classes.

In an IP system, the verifier interrogates the prover through a sequence of commu-

257

Knowledge Graph Chapter 7

nications. At the end the verifier either is convinced that the answer provided by the

prover is correct or reject it. An important aspect in the communications is to keep the

prover honest. Because verifier’s computational power is limited, it is mostly prover’s job

to make the verification task as easy as possible.

Figure 7.13: The KGC study is based on the oracle-checker view

Our OC view is different from the IP approach though. This is because what we

consider the oracle (corresponding to the prover) has a limited power in practice. In

addition, our oracle is probabilistic. On the other hand, our checker still needs a way to

keep the oracle “honest”, i.e. a way to verify the answer provided by the oracle. However,

because the oracle is not all powerful, we can no longer expect the oracle to give a form

of answer that is always easily verifiable. This makes the verification harder than that

in the theoretical IP model.

Figure 7.13 depicts our OC scheme used in this initial study. In our scheme we

introduce a human verifier because we do not know yet how to make an automatic

checker. Our “verifier” comprises two parts: the simple checker and the human verifier.

The ultimate decision to accept or reject an answer (RDF) stays with the human verifier.

The job of the simple checker is to analyze the answer and provide feedback to help the

human verifier.

In this initial study, we keep the checker as simple as possible. Hence, much of the

verification job is done by the human verifier, e.g. manually. Our goal for the study is

to gain a good picture for what does it take for the verifier to complete the job. After

getting this picture, we can then think about how to automate the work performed by the

258

Knowledge Graph Chapter 7

human verifier as much as possible. This aspect will be discussed in detail in Chapter 8.

Instead of asking the oracle to make the verification task easier for the verifier, if

needed we require the verifier to make the task easier for the oracle. In our OC scheme,

there are only two ways the verifier can do this: (1) by providing BFs and (2) occasionally

by splitting a paragraph into multiple sub-paragraphs.

Note that making the KGC task easier is opposite to that in the theoretical IP model

where the task is made easier for the verifier. Therefore, we can think that in our OC

scheme, the oracle is powerful but not all powerful, and some of the power still resides

with the verifier.

7.4.5 When an LLM can be used as an oracle

We impose two requirements for an LLM to be used as an oracle in our OC scheme.

First, the LLM needs to have the ability to support the performance of some validity

check on the answer it provides. In this initial study, we simply ask the LLM to perform

the check entirely. Later in Chapter 8, we will show how a checker can construct “more

intelligent” questions and use the LLM to perform a check.

For each RDF Fact, our simple checker asks the LLM to perform an entailment check,

asking whether or not the Fact can be logically entailed from the paragraph (and if BFs

are provided, with the BFs as well). If this check passes for every Fact in the RDF, the

checker accepts. Otherwise, it rejects. Then, the checker reports the result to the human

verifier for review.

The second requirement is straightforward, asking for a consistent answer. The oracle

must be able to demonstrate a consistent behavior in N repeated runs of a prompt.

Because of the probabilistic nature of an LLM, it is possible that in repeated runs,

no two answers are exactly the same. In this case, we consider the LLM failing the

259

Knowledge Graph Chapter 7

consistency requirement. In our experiment, if the LLM could produce at least two exact

same answers in 10 repeated runs, we consider it satisfying the consistency requirement

for the given KGC task.

7.4.6 Consistency check

We focus our discussion with paragraphs from the first two chapters of the RISC-V

Spec. The first chapter provides a general introduction. The second chapter provides

specification of the instructions from the RV32I integer instruction set. The rest of

the chapters are similar to the second chapter, providing specification for a particular

instruction set defined in RISC-V. The example in Figure 7.11 is from chapter 2 of the

RISC-V Spec. Because the descriptions from chapter 1 are more high-level, we expected

that KGC would be more difficult for those paragraphs. However, as our analysis will

show later, we find no significant difference on the GPT3.5’s performance for paragraphs

from the two chapters.

For checking the consistency requirement, included in our simple checker is a consis-

tency check. We repeat the same prompt 10 times and check to see if at least two RDFs

are exactly the same. Before checking consistency, we also implement an RDF syntactic

check using a publicly-available RDF parser [218]. If an RDF fails the syntactic check,

it is excluded for the consistency check.

For paragraphs in the two chapters, Figure 7.14 shows the results of consistency check

as two bar charts, for chapters 1 and 2 respectively. These results were obtained without

BFs. The result of each paragraph may comprise multiple colored bars. Each color

represents a group of RDFs that are exactly the same. A dark bar (∎) shows those runs

failing the syntactic check. Each orange bar (∎) denotes the largest group of RDFs that

are exactly the same (i.e. the most consistent group).

260

Knowledge Graph Chapter 7

Figure 7.14: Results of consistency check without BFs provided; ∎: Show the most
consistent group in 10 repeated runs; ∎: # of runs that failed

Below some of the bars, there are text notes. Each note means that for the original

paragraph, multiple KGC trials failed in all 10 runs. Then, we split the paragraph

into multiple sub-paragraphs to be processed separately. For example the first note is

“P10(3)” indicating that paragraph 10 was split into 3 sub-paragraphs in the experiment.

We will discuss this splitting strategy later. However, notice that some of the sub-

paragraphs still fail the syntactic check even after the splitting.

Figure 7.14 demonstrates that in general GPT3.5 does have a systematic behavior for

KGC. For those failing cases, we then rely on using BFs to resolve them. It is important

to note that this consistency check says nothing about the quality of the resulting RDFs.

This assessment is done afterwards.

7.4.7 The effect of using BFs

Figure 7.15 then shows the result of consistency check after BFs are provided. Note

that in each case, the BFs were manually selected. In some cases, it took us many trials

to find the proper BFs. However, once we found the proper BFs, as shown in the figure

261

Knowledge Graph Chapter 7

Figure 7.15: Results of consistency check with BFs provided; ∎: Show the most
consistent group in 10 repeated runs; ∎: # of runs that failed

we could make the result much better.

For the two chapters, we had used in total 204 BFs. In Figure 7.15, there is no

paragraph with a complete fail any more. In the worst case, we obtained two RDFs

that are exactly the same. Based on the results, we can choose the RDF from the most

consistent group (the ∎ group) to perform the entailment check.

7.4.8 Entailment check

Each entailment check is carried out with two prompts. The first prompt (Prompt

A in Figure 7.16) asks GPT3.5 to convert a Fact into a sentence. The second prompt

(Prompt B) then asks GPT3.5 whether or not the given paragraph (and background facts

if available) logically entails the statement of fact. In Figure 7.16, Prompt B is combined

with query 1 or query 2 to form two different prompts, one without BFs and the other

with BFs. It should be noted that given an RDF, the entailment check is applied to each

Fact individually. Recall that a Fact is an RDF block that may include multiple triples.

Figure 7.17 summarizes the entailment check results for paragraphs from the two

262

Knowledge Graph Chapter 7

Figure 7.16: Two prompts used in the entailment check

chapters separately. The vertical axis shows the entailment score, a value between 0 and

1: Assuming an RDF contains N Facts. The ratio between the number of passing Facts

and N is used as the score.

Each bar in Figure 7.17 corresponds to the result from one paragraph and can include

three colors. The ∎ color bars are based on the RDFs obtained without BFs. If a bar

has only this color, it means that adding BFs is not necessary for passing the check. We

may consider them as the “easy” cases.

For those cases where the ∎ color bars do not reach the score 1.0, we then rely on

BFs for bringing the entailment check score to 1.0. For those that do not show up with

a ∎ color bar at all, they are the “hard” cases. Without BFs, there is no Fact passing

the entailment check.

The ∎ bars then correspond to the entailment scores based on the RDFs obtained

with BFs provided. Note that these bars are shown behind the ∎ bars. Consequently, if

an original ∎ color bar already reaches the score 1.0 or if the ∎ bar is shorter than the ∎

bar, then the ∎ bar cannot be seen.

263

Knowledge Graph Chapter 7

Figure 7.17: Results of entailment check for the two chapters of paragraphs; Each
chart shows overlapping of two results from the runs without and with BFs provided;
∎: showing % of RDF Facts passing the check where those Facts are obtained with no
BFs provided; ∎: showing % of RDF Facts passing with BFs provided; ∎: With BFs
provided, some Facts fail the check (mostly because of including the auxiliary entities
not given in the paragraph) and are bypassed after manual review.

For some paragraphs, we need the ∎ bars to bring the score to 1.0. They represent

Facts reported by the simple checker as failing the entailment check after BFs are pro-

vided. However, after manual review these failures are bypassed. Those failures can be

divided into three categories where the first one happens most frequently and the third

happens only on very few cases.

The first category is the creation and use of auxiliary entities in the RDF. An auxil-

iary entity is the one that does not appear in the paragraph (nor the BFs) and is created

to facilitate describing other entities. In a sense, we can consider those auxiliary enti-

ties as BFs automatically supplied by GPT3.5. Because they are not mentioned in the

paragraph and the BFs, Facts involving them would fail the entailment check. However,

the GPT3.5’s ability to add auxiliary entities (i.e. its own BFs) can be quite desirable,

because it helps provide BFs possibly missed by our manual preparation of BFs.

The second category involves an entity or a predicate that has nothing wrong by itself.

264

Knowledge Graph Chapter 7

However, in the RDF the entity/predicate is specified within a particular namespace (e.g.

“riscv:”, “rdf”). Because the original paragraph (and the BFs) do not explicitly state

their use in the namespace, this can cause the entailment check to fail.

The third category, happening only on few cases, involves the use of namespaces other

than rdf or risvc namespaces. In the Spec, there are some descriptions about other ISA

architectures (MIPS, SPARC, etc.). Those descriptions may result in the creation of their

respective namespaces. In an RDF, entities from two namespaces might be connected

through a predicate. This can cause a problem for the entailment check as the original

paragraph (and the BFs) simply considers those terms as entities rather than different

namespaces.

7.4.9 Summary of the study

In summary, Figures 7.14-7.17 shows that it is feasible to use GPT3.5 as an oracle.

Further, providing BFs can improve consistency and also help reach a satisfactory RDF

for every paragraph.

Figure 7.18: No correlation between the size of largest group from consistency check
and the entailment check score

It should be noted that more consistency does not mean more likely to pass the

entailment check. Figure 7.18 illustrates this point. The x-axis is the size of largest

consistent group. The y-axis is the entailment score. Every dot is a paragraph. The

265

Knowledge Graph Chapter 7

RDF is the one obtained without BFs provided (i.e. Figure 7.15). As seen, the results

of consistency check and of entailment check have no obvious correlation.

With the consistency check and entailment check, we were able to obtain satisfactory

KG for about 200 paragraphs in the first two chapters from RISC-V Spec. With BFs, a

total of 597 and 577 subject entities were extracted for chapters 1 and 2, respectively.

To show how many paragraphs can be connected through the subject entities, we

first used a simple method to group subject entities into high-level subject concepts. If

subject entities shared the same suffix word, we grouped them together. For example,

“CSRInstruction” and “StoreInstruction” were grouped with the high-level concept “In-

struction”. Suffix can be easily split from the entity phrase since RDF already formated

the phrases into Camel or Snake case. We further used a stemming tool [219] to remove

morphological affixes from the suffix words so that words with the same stem would be

grouped together. For example, “encodings” and “encodes” belonged to the same group.

For chapter 1, we collected a total of 168 and 178 subject concepts from BFϕ and

BFA, respectively. These subject concepts provided in total 421 connections for BFϕ

and 557 connections for BFA, respectively, to all the paragraphs.

Figure 7.19 shows a bipartite graph between subject concepts and paragraphs. An

edge means the subject concept appears in the paragraph. Only those subject concepts

that connect at least two paragraphs are shown in the graphs. The graph has 75 subject

concepts with 454 edges.

For chapter 2, we collected a total of 191 subject concepts with BFs injected. These

subject concepts provided in total 497 connections to all the paragraphs. Figure 7.20

shows a similar bipartite graph. The graph has 82 subject concepts with 388 edges.

More results on the study can be found in [196].

266

Knowledge Graph Chapter 7

Figure 7.19: Chapter 1 (With BFs): there are 75 concepts shared by at least two
paragraph and the total number of edges is 454; In the bipartite graph, the bottom
dots each represents a paragraph from chapter 1 and the upper squares each represents
a subject concept. More transparent the color indicates more edges are connected
between the concepts and paragraphs.

Figure 7.20: Chapter 2 (With BFs): there are 82 concepts shared by at least two
paragraph and the total number of edges is 388; In the bipartite graph, the bottom
dots each represents a paragraph from chapter 2 and the upper squares each represents
a subject concept.

267

Chapter 8

Oracle-Checker Scheme

泉眼無聲惜細流，樹陰照水愛晴柔。

小荷才露尖尖角，早有蜻蜓立上頭。

The flow from the mouth of the fountain is quiet and delicate. The tree’s

shade creates a gentle light. In the early morning only the angled tip of

a small lotus flower is revealed, and a dragonfly sits on the head.

— 《小池》 楊萬里， A poem from Song Dynasty

The initial study for knowledge graph construction (KGC) (Section 7.4) provides

several lessons for us to move onto the next stage of the research:

� While an LLM (GPT3.5) can be treated as an oracle for a complex task like KGC,

there is a need to implement a checker for checking the LLM’s responses. The

checking has to be on a per-sample basis that on each sample, decides whether the

particular response should be accepted or not.

� To process a domain-specific document, background knowledge is important. The

LLM might already have some background knowledge on the domain. However, it

268

Oracle-Checker Scheme Chapter 8

is important to supply proper background knowledge in the prompts to guide (or

constrain) the LLM to provide the desirable responses.

� While GPT3.5 seems to be able to perform KGC well to an extent, its responses

for a given sample can still vary significantly. Hence, to pursue a methodology

for automatic checking, KGC might not be the most appropriate problem to start.

We need to look for other simpler tasks as the focus for the automatic checker

development.

� Two fundamental NLP tasks seem to be highly related to KGC: entity extraction

and checking for semantic equivalence (paraphrase decision). KGC includes the

extraction of nodes and then the determination of their relations. Extraction of

the nodes can be seen as the process of entity extraction. Entailment check is to

determine if one sentence sa entails the a fact f . If we treat sb = sa +f , then entail-

ment check can be seen as the problem for determining the semantic equivalence

between sa and sb.

Based on the above lessons learned, we therefore decided to focus on entity extraction

and paraphrase decision as the two NLP tasks in the pursuit to develop an automatic

Oracle-Checker (OC) scheme. The initial effort is reported in this chapter.

8.1 Per-Sample Examination of LLM’s Responses

Named entity recognition and paraphrase detection are two basic NLP tasks that

are considered as textbook topics by now [167]. Given that LLMs have demonstrated

remarkable success across a variety of much more complex NLP tasks [220, 221, 222, 223],

it is anticipated that their performance on such basic tasks should be generally acceptable.

For example, given the query to an LLM “Please perform entity recognition for entities in

269

Oracle-Checker Scheme Chapter 8

the following sentence: ‘{text}’” or the query “Decide whether the following two sentences

are semantically equivalent: ‘{sentence1}’, ’{sentence2}’ ”, we expect the LLM to be able

to provide acceptable responses on most of the queries.

Depending on the application context, acceptable performance in general can mean

that we still need a way to locate individual queries with unacceptable responses. For

example, within a semiconductor chip design company one desires to use an LLM to

perform the two basic tasks on a design document or a technical note. Entity extraction

might be used to extract a list of hardware entities and paraphrase might be used to

re-write a document to make it more readable. In this context, it is desirable to have an

automatic way that can examine the LLM’s responses on a per-sample basis, accepting

some responses and rejecting others. Even if only 50% of the responses are trustworthy,

knowing which 50% can still render the LLM quite useful, as one is certain it has already

completed half of the job.

In this chapter, we introduce a novel per-sample examination strategy called oracle-

checker (OC) scheme to address the needs in practice when per-sample acceptance is a

crucial concern. In an OC scheme, the LLM works off-the-self and the scheme requires

no human interaction. A checker is designed to interact with the LLM instead. To check

a response, the checker asks the LLM with additional queries and based on the answers,

decide if the response should be accepted or rejected.

Under our OC scheme, the LLM is treated as an oracle for the task. The idea of oracle

has existed for a long time in theoretical studies of computational complexity [224, 225].

In interactive proofs (IP), the interaction is between a prover and a verifier. The prover

(i.e. the oracle) is assumed to have unlimited power with respective to computing a given

function f() and the verifier (i.e. the checker), on an instance x, interacts with the prover

to decide if its answer f(x) is acceptable or not.

Two earliest theoretical ideas are drawn upon for this work. The first is about checking

270

Oracle-Checker Scheme Chapter 8

for group homomorphism (GH-check) [226] and the second is about checking for graph

isomorphism (GI-check) [227]. The GH-check is also called a linearity check [226] which

is checking how far a given f() is from being a homomorphism. In theory, the GI-check

is divided into two parts. When the answer is “yes” (isomorphic), the checker asks the

oracle for an efficiently-verifiable proof and accepts the answer after the proof is checked.

When the answer is “no” (non-isomorphic), the checker verifies the claim probabilistically

by asking the oracle a sequence of carefully-constructed graph isomorphism questions.

Then, depending on the answers the checker decides to accept the “no” answer or not.

Figure 8.1: Realizing the two theoretical checks in practice by treating GPT-3.5 as an oracle.

Figure 8.1 summarizes the work. For entity extraction, we apply the idea of GH-

check. In this case, the f() mentioned above can be considered as the unknown LLM’s

entity extraction process. We are interested in checking how far f(x) is from a “linear”

extraction process for each sentence instance x. For paraphrase decision, we apply the

idea of GI-check. The f(sa, sb) corresponds to LLM’s internal process to decide if the two

sentences sa and sb are semantically equivalent or not. Instead of checking a property of

f(), the check is about the acceptance of the yes/no response. The check is split into two

parts, one for “yes” answer (equivalent) and the other for “no” answer (non-equivalent).

The main challenge for realizing the GH-check in the context of entity extraction is

that we need to find a way to reduce the problem of checking the extracted entities to

the problem of checking the homomorphism between two algebraic groups. Devising the

two algebraic groups in the context of entity extraction is the key to enable a practical

implementation of the GH-check idea.

271

Oracle-Checker Scheme Chapter 8

The main challenge for realizing the GI-check in the context of paraphrase decision

includes two aspects. While an efficiently-computational proof for isomorphism of two

graphs is simply a permutation, it is not obvious what such a proof for semantically

equivalence should be. While a sequence of isomorphism questions can be intuitively

constructed in the graph context [227], it is not obvious how such questions can be

constructed in the sentence context.

In this work, we therefore devise novel techniques to overcome these challenges and

achieve practical realization of the ideas from both GH-check and GI-check in entity

extraction and paraphrase decision, respectively. It is important to emphasize that due

to the interactive nature of our OC scheme, the check is not based on the assumption that

there is a correct answer for the question to LLM. The focus is on the acceptability of an

LLM’s answer, not on its correctness. Consequently, most experiment results reported

in this work are relative to the checkers. Hence, when we say that an LLM’s answer can

be trusted, this trust is established with respective to the particular checker. Although

a checker cannot assert the correctness of an answer, it can be used to separate LLM’s

responses into two categories: trustable and untrustable. Hence, a checker can be used

as a characterization tool to perform per-sample examination on a given dataset.

The main contributions of the work includes the following: (1) We propose the novel

techniques for realizing the OC scheme in practice by treating GPT3.5 [16] as an or-

acle. (2) We demonstrate how the theoretical ideas of GH-check and GI-check can be

implemented in the two NLP tasks. (3) With our checker, by comparing results from

RISC-V ISA Spec [197] and from the DOCRED dataset [228], for the first time we have

a way to quantify the following intuition—extracting hardware entities from a hardware

design document is harder than extracting named entities as commonly studied in NLP

research. (4) Also for the first time, we have a way to quantify individual label ambiguity

in the MSR Paraphrase corpus (MSRP) [229].

272

Oracle-Checker Scheme Chapter 8

The limitation of this work is that our techniques are specific to realizing the two

checks on the two NLP tasks. Extending to other task-check combinations might require

a different technique. However, given a rich set of theoretical checks already there [226]

and a variety of NLP tasks to explore [167], this work can provide a guide for further

studies to realize other task-check combinations.

8.2 Realizing GH-check In Entity Extraction

For detail of the GH-check, please refer to [226]. Given two groups G1 ∶ (S1, ○) and

G2 ∶ (S2,+) where S1, S2 are closed under the two binary operations ○, +, respectively.

Let h be a function h ∶ S1 → S2. h is a homomorphism if ∀x, z ∈ S1, h(x○z) = h(x)+h(z).

Assume h is a homomorphism and call it a reference function. To check if another

function f ∶ S1 → S2 is also a homomorphism, the GH-check consists of running n tests,

each by uniformly sampling x, z from S1 and checking if f(x ○ z) = f(x) + f(z) holds.

Passing each test increases our confidence that f is close to h. This closeness is

measured by a distance between f and h as δ(f, h) = Prx[f(x) ≠ h(x)] for an x uniformly

sampled from S1. We say f is ϵ-far from h if δ(f, g) > ϵ. In theory [226], if f is ϵ-far from

h, then the test would fail with a probability at least 3ϵ − 6ϵ2 when ϵ ≤ 1
4 , and at least

2
9 otherwise. In Section 8.2.3, we provide more detailed discussion on this theoretical

bound in view of our practical GH-check implementation.

8.2.1 Constructing the reference function h

Given a sentence s, let g be the entity extraction and g(s) produces an entity set:

Es = {e1, . . . , em}. To realize GH-check, we take two steps: (1) define the reference

function h by defining the two groups G1,G2, (2) define the corresponding function f

under check where f is based on g.

273

Oracle-Checker Scheme Chapter 8

Let 2Es denote the power set of Es. 2Es can be represented by 2m bit vectors (denoted

as Bm), each element as (b1, . . . , bm) where bi = 0 or 1. To define h, we let G1 = (S1,⊕)

and G2 = (S2,⊖) where ⊕,⊖ are bit-wise XOR and XNOR, respectively, and h,S1, S2 are

formulated as follows:

h ∶ S1 → S2, h(x) = x, where S1 = {x∣x ∈ Bm} and S2 = {y∣y ∈ Bm} (8.1)

It is easy to verify that h is a homomorphism because ∀x, z we have h(x ⊕ z) =

x⊕ z = x⊖z = h(x)⊖h(z). In fact, h is a isomorphism because it is a bijective/invertible

homomorphism.

8.2.2 Homomorphism test in entity extraction

Next, we define the function-under-check f . Given h, f must be also a mapping

from S1 to S2. Further, f also needs to involve g, the entity extraction. To define f , we

assume that there exists another entity set E′s = {e′1, . . . , e′m} where each e′i is a synonym

of the ei in the original set Es.

For a vector x = (b1, . . . , bm) ∈ S1, f takes x as input and first does the following:

For each bi = 1, f replaces ei in the original sentence s with e′i. This step produces a

modified sentence sx. Then, f calls the entity extraction g on sx to obtain the entity

set Lx = g(sx). Then, Lx is vectorized into a bit vector (c1, . . . , cm) in S2, which is the

output f(x), where ci = 1 means the original entity ei is extracted and ci = 0 means the

synonym entity e′j is extracted. Since our reference function is h(x) = x, ideally, we desire

f(x) = x, i.e. ∀i, ci = bi. Figure 8.2 illustrates the mapping of f .

To run a test, two vectors x, z are sampled from S1. A third vector x⊕z is calculated.

With the synonym replacements, they result in three modified sentences: sx, sz, sx⊕z.

Applying entity extraction g on them obtains three entity sets: Lx, Lz, Lx⊕z. They are

274

Oracle-Checker Scheme Chapter 8

Figure 8.2: Illustration of the reference function h, the entity extraction g, and the
function-under-check f , with an example starting with Es containing four extracted
entities from original sentence s

then vectorized to obtain the corresponding bit vectors in S2 as described above. The

test is then to check if f(x) ⊖ f(z) = f(x ⊕ z). In Figure 8.2, an example starting with

four entities {e1, e2, e3, e4} is provided to illustrate this process.

To understand the meaning of our GH-check in entity extraction, assume we are able

to exhaustively check that f(x) = h(x),∀x ∈ S1. This means that for a given entity ei,

its extraction is independent of replacing any combination of other entities with their

synonyms. It is important to note two points: (1) For a large m, exhaustive check can be

costly. Hence, we use a few homomorphism tests to check if f = h. (2) Each GH-check is

applied to the entity extraction on a given sentence s. Acceptance is decided on s, not

on individual entities. Hence, the check is about entity extraction on each s as a whole.

In our check, we do not accept any individual entities if s fails.

To run the GH-check on an s, we need to obtain the synonym set E′s. Later in

Sections 8.4.2, we will discuss how to do this by querying the oracle, i.e. GPT3.5. With

our GH-check, the acceptance of an entity extraction response depends on the E′s in use.

Hence, a more precise way to interpret an accepted response on s is that: From the

perspective of E′s, entity extraction on s is more trustable than on other sentences that

are rejected. As mentioned before, we use the checker for characterization of per-sample

responses, not for verifying their correctness by assuming there are correct answers.

275

Oracle-Checker Scheme Chapter 8

8.2.3 A remark on the theoretical GH-check

In property testing [226], checking if function f (mapping from one group to another)

has a property P is based on the idea of measuring a distance between f and a reference

set of functions F . All functions in F is assumed to have the same domain as f and have

the property P .

The distance between two functions f and g is defined as δ(f, g) = Prx[f(x) ≠ g(x)]

where the random x is drawn uniformly from the domain. Then, the distance between f

and F , denoted as δ(f,F), can be defined as ming∈F{δ(f, g)}. f is said to be ϵ-close to

F if δ(f,F) ≤ ϵ and equivalently, f is ϵ-far if δ(f,F) > ϵ.

Suppose we desire to check group homomorphism on f ∶ S1 → S2 for two groups

G1 = (S1, ○) and G2 = (S2,+). In this case, the group homomorphism is our property P .

We apply n tests where each test is simple: Uniformly sample x and z from S1 and verify

that f(x ○ z) = f(x) + f(z) holds.

The theoretical question centers on the value of each test brings. To characterize

this value, we hypothesize F containing functions that have the property P . Then, the

theoretical question can be stated as: How one test can bound the distance from f to F

(how close f is to be a homomorphism if the test passes)? The main theoretical result

can be summarized as the following theorem.

Theorem 8.2.1 A group homomorphism test provides the following result: If f is a

homomorphism, the test will pass with probability 1. If f is ϵ-far from F , then the test

will fail with a probability at least 3ϵ − 6ϵ2 when ϵ ≤ 1
4 and at least 2

9 otherwise.

Note that the “1
4” is picked arbitrarily here (see [226] for more detail). For example,

suppose f is not a homomorphism and f is 0.2-far from F (from being a homomorphism).

Because 0.2 < 1
4 , running one test has at least 3 ∗ 0.2 − 6 ∗ (0.2)2 = 0.36 probability to

reveal that f is not a homomorphism.

276

Oracle-Checker Scheme Chapter 8

To see the theoretical bound, 3ϵ − 6ϵ2, assume that h ∈ F , h is the homomorphism

closest to f and we have Prx∈S1(f(x) ≠ h(x)) > ϵ, i.e. f is ϵ-far from h. Then, the

rejection probability Prx,z∈S1(f(x) + f(z) ≠ f(x ○ z)) for a test, is lower-bounded by the

following [226]:

Prx,z∈S1[f(x) ≠ h(x) ∧ f(z) = h(z) ∧ f(x ○ z) = h(x ○ z)]

+Prx,z∈S1[f(x) = h(x) ∧ f(z) ≠ h(z) ∧ f(x ○ z) = h(x ○ z)]

+Prx,z∈S1[f(x) = h(x) ∧ f(z) = h(z) ∧ f(x ○ z) ≠ h(x ○ z)]

(8.2)

It is a lower bound because the test requires f(x) + f(z) = f(x ○ z), whereas between

f and h on x, z, x○ z, the reason for this equality not holding can be due to one disagree-

ment (disagree on one point only) and possibly due to more disagreements as well, and

Equation 8.2 ignores the events where f and h have more than one disagreements. The

three events are disjoint and hence, each of the three probability terms can be lower-

bounded by ϵ − 2ϵ2, resulting in the overall lower bound 3ϵ − 6ϵ2. To see this, consider

the first term in equation 8.2:

Prx,z∈S1[f(x) ≠ h(x) ∧ f(z) = h(z) ∧ f(x ○ z) = h(x ○ z)]

= Prx,z∈S1[f(x) ≠ h(x)] −Prx,z∈S1[f(x) ≠ h(x) ∨ (f(z) ≠ h(z) ∧ f(x ○ z) ≠ h(x ○ z))]

≥ ϵ − (Prx,z∈S1[f(x) ≠ h(x) ∧ f(z) ≠ h(z)] +Prx,z∈S1[f(x) ≠ h(x) ∧ f(x ○ z) ≠ h(x ○ z)])

= ϵ − 2ϵ2

(8.3)

It should be noted that our practical GH-check as discussed in Section 8.2.1 is a sim-

plified version of the theoretical GH-check because our GH-check does not test against

the assumed F . Instead, we define one specific reference function h in our GH-check,

277

Oracle-Checker Scheme Chapter 8

which is a bijective/invertible homomorphism, i.e. an isomorphism. And we are in-

terested in checking how close f is to the particular h. In our GH-check, to verify

f(x○z) = f(x)+f(z) the checker proceeds by first verifying f(x) = h(x) and f(z) = h(z),

as h is fixed. If any of them fails, the test is considered failed, i.e. f(x ○ z) ≠ f(x)+ f(z).

If both passes, then the checker further verifies f(x ○ z) = f(x) + f(z).

Hence, the rejection probability of the first step is bounded by:

Prx,z∈S1(f(x) ≠ h(x) ∨ f(z) ≠ h(z))

= Prx∈S1[f(x) ≠ h(x)] +Prz∈S1[f(z) ≠ h(z)] −Prx,z∈S1[f(x) ≠ h(x) ∧ f(z) ≠ h(z)]

= 2ϵ − ϵ2

(8.4)

And the rejection probability of the second step is bounded by (this is the third term

in Equation 8.2)

Prx,z∈S1[f(x) = h(x) ∧ f(z) = h(z) ∧ f(x ○ z) ≠ h(x ○ z)]

= ϵ − 2ϵ2
(8.5)

The two events are disjoint. Hence, the total rejection probability of our GH-check

implementation is lower bounded by 3ϵ−3ϵ2 which is larger than the 3ϵ−6ϵ2 as stated in

Theorem 8.2.1. Therefore, our practical GH-check draws upon the idea of the theoretical

GH-check, but is different from the theoretical GH-check. The theoretical idea inspired

us to define the reference function h and devised the f to be checked in view of h. In our

restricted setting, we can check the homomorphism f(x○z) = f(x)+f(z) in two separate

steps with a larger lower bound on the rejection probability.

In our current implementation, the interpretation of the bit vectors in G2 is that

for each bit ci, ci = 1 means the original entity ei is extracted, and ci = 0 means the

synonym entity e′j is extracted (Section 8.2.2). Based on this interpretation, the checker

278

Oracle-Checker Scheme Chapter 8

also checks the extraction of the synonym entities. Alternatively, the checker can be

modified to bypass checking on the synonym entities, i.e. ci = 0 means the extraction of

the particular entity can be ignored. This relaxation can potentially make more sentences

pass the GH-check because the check only cares about the original set of entities. In the

current work, we desire to show the more stringent version of the GH-check so we can

observe a lower bound on the passing rate, comparing to the more relaxed version.

8.3 Realizing GI-check In Paraphrase Decision

Similar to the GH-check above, in paraphrase decision our OC scheme also requires

the checker to interact with the LLM. This interaction is separated in two: “yes” case

when the response is semantically equivalence and “no” case when the response is non-

equivalence. These two cases correspond to the two cases in theoretical GI-check [227]—

verifying graph isomorphism and non-isomorphism, respectively. Figure 8.3 illustrates

the high-level ideas of our GI-check.

Figure 8.3: Two ways for realizing GI-check (yes and no claims separately) in para-
phrase decision

Given two graphs Ga,Gb and asking the oracle if they are isomorphic, when the answer

is “yes” (isomorphic), the theoretical check simply asks the oracle for a proof. The proof

is a permutation of nodes that maps Ga to Gb. With such a proof, the checker can

easily verify the correctness of the proof [224]. The challenge to translate this idea into

the paraphrase context is that, our checker cannot simply asks the LLM for an “easily

279

Oracle-Checker Scheme Chapter 8

verifiable” proof. As a result, the proof is constructed by the checker by asking the LLM

more questions. The trick is in what questions to ask (see Section 8.3.2).

When the answer is “no” (non-isomorphic), the theoretical check is probablistic. The

checker asks a series of n questions as shown in Figure 8.3. Each of G1, . . . ,Gn is based

on randomly picking either Ga or Gb and randomly picking a permutation π to transform

the selected graph. These two random selections ensure that the oracle can answer those

questions correctly only when its claim Ga /≅ Gb is true to begin with. If the truth was

Ga ≅ Gb, then the oracle would not be able to correctly answer those questions other than

random guessing on each question. In this case, the probability of the oracle answering

all n questions correctly would be only 1
2n . As a result, asking n such questions allows

the checker to accept the Ga /≅ Gb claim with confidence (1 − 1
2n) [224]. The trick to

translate this probablistic check into a check in the paraphrase context is also in the

series of questions to ask, where the questions are about the semantic equivalence of

two sentences sa, sb to each constructed si. In our GI-check, the two random selections

correspond to (1) randomly selecting either sa or sb, and (2) asking the LLM to generate

a set of paraphrases for the selected sentence and pick one of them as the si in the ith

question. Then, the checker accepts the original “no” claim only if the LLM can correctly

answer all the questions. Section 8.3.3 explains how to pick the paraphrase si.

8.3.1 A remark on the theoretical GI-check

Given two graphs g1, g2 of N vertices labeled by {1, . . . ,N}. The two graphs is

isomorphic if there exists a permutation π on the labels such that π transforms g1 into

g2, i.e. π ∶ g1 → g2.

Suppose an oracle claims that g1, g2 are isomorphic. In theory, checking this “yes”

answer is straightforward by asking the oracle to provide a permutation π that transforms

280

Oracle-Checker Scheme Chapter 8

g1 into g2. This π serves as a proof that g1, g2 are isomorphic.

In contrast, when the oracle’s answer is that the g1, g2 are not isomorphic, this means

that there does not exist any π that can transform g1 into g2. Then, getting a straight-

forward proof is difficult because a proof needs to show that for all permutations, the

two graphs cannot be isomorphic. Therefore, checking for non-isomorphism requires a

different strategy.

The strategy [224] involves two random choices as illustrated in Figure 8.4. The first

is to randomly choose between g1 and g2. Let this result be h. The second is to randomly

choose a permutation πi and apply it to h. Let the resulting graph be denoted as πi(h).

The checker then asks the oracle from which of the g1, g2 is the graph πi(h) generated.

If g1, g2 are indeed non-isomorphic, the oracle will be able to answer a series of such

questions correctly. Otherwise, if g1 is actually isomorphic to g2, then the oracle can only

guess the answer randomly and if n such tests are run, the probability that the oracle

correctly guesses the answers for all n questions is only 1
2n .

Figure 8.4: Probabilistic check by querying the oracle: πi(h) = g1 or πi(h) = g2 ?

Note that the essence of checking for graph isomorphism is based on a proof for the

isomorphism. Our implementation of the GI-check is therefore to construct a proof in the

context of semantic equivalence. The essence of checking for graph non-isomorphism is

based on finding an indifferentiable graph πi(h), indifferentiable in the sense that if g1, g2

are actually isomorphic, then the oracle cannot differentiate where πi(h) comes from.

Our implementation of the GI-check on the semantic non-equivalence therefore focuses

on capturing this idea of indifferentiability and applying the idea to find a so-called

281

Oracle-Checker Scheme Chapter 8

“indifferentiable” paraphrase in the semantic non-equivalence context (Section 8.3.3).

8.3.2 Establishing a proof for semantic equivalence

In this work, we use the term phrase to mean ≥ 2 consecutive words in a sentence

and not the sentence itself. We use letters µ and ν to denote phrases. Given a sentence

s, a decomposition of s is a set of phrases {µ1, . . . , µk} such that their union covers every

word in s (except prepositions).

Our proof scheme is inspired by the idea of compositional phrase alignment (CPA)

[230, 231]. Given two sentences sa, sb deemed as semantically equivalent (denoted as “≡”)

by LLM, a weak proof WPsa→sb is established by finding a decomposition U = {µ1, . . . , µk}

of sa and a set of phrases V = {ν1, . . . , νk} of sb such that for all 1 ≤ i ≤ k, we have µi ≡ νi,

i.e. sentence-level semantic equivalence is proved by a decomposition with two or more

phrase-level semantic equivalences. Note that for two sentences sa, sb, a week proof can

be in either “sa → sb” or “sb → sa” direction. Hence, we also define a strong proof (SP)

as containing weak proofs in both directions.

Figure 8.5: Finding candidates (U,V). µ1 to µ4 form a decomposition of sa, and
(µi → νi, i = 1 . . .4) are the matching pairs, so the checker can ask the LLM the four
questions: if µi ≡ νi, i = 1 . . .4.

In the OC scheme, the checker’s job is to find potential candidates for (U,V) and if a

candidate, say (U1, V1) is found, the checker then asks the LLM the corresponding phrase-

level questions (e.g. “∀ pair µi ∈ U1, νi ∈ V1, µi ≡ νi?”) to establish a weak proof. To find

282

Oracle-Checker Scheme Chapter 8

(U,V) candidates, we implement a method summarized in Algorithm 8.1. Figure 8.5

uses an example to illustrate this method.

Algorithm 8.1: Find candidates: (U,V), U ∋ µ as a decomposition of sa and
V ∋ ν, s.t. (µ→ ν).

Input: Two sentences sa, sb
Ta ← parse tree(sa); Tb ← parse tree(sb); SU ← ϕ; D ← ϕ
for each node xi in Ta do

D ←D ∪ (xi → yj), where yj ∈ Tb is the most similar node to xi
for each leaf node l in Ta do

while (l → l′) ∈D and l ≠ root and l′ ≠ root do
temp← (l → l′)
if (l is a leaf or children(l) > 1): l ← parent(l); l′ ← parent(l′)

if (temp is not at the leaf level): SU ← SU ∪ temp;
(U,V) ← output(SU , sa)

Given sa, sb, the method first uses the core-NLP API [232] to find their constituency

parsing trees, Ta, Tb where every node corresponds to a word or a phrase (see Figure 8.5).

Then, the central idea is by finding a collection of matching paths in Ta. A matching

path starts from a leaf in Ta toward its root but excluding the root. It also has to move

beyond the leaf level. Every node on a matching path in Ta has a matching node in Tb.

For a node in Ta (as phrase µ), its matching node in Tb (as phrase ν) is the most similar

phrase to µ. This is denoted as a matching pair (µ → ν). The similarity score between

two words/phrases can be calculated using the word/phrase embeddings provided by a

language model like BERT [233]. In Algorithm 8.1, only the last matching pair (recorded

by temp) is used to represent a matching path in SU , which corresponds to a phrase in

sa and a phrase in sb.

In Algorithm 8.1, the first for-loop collects the the matching pairs into D. The sec-

ond for-loop then relies on D to find matching paths. Suppose it finds SU = {(l1 →

l′1), . . . , (ln → l′n)}, n > 1. Each li (l′i) corresponds to a phrase µi (νi) in sa (sb). Then,

the output() step is to check if collectively {µ1, . . . , µn} cover the entire sa (i.e. a decom-

283

Oracle-Checker Scheme Chapter 8

position). If it does, then Algorithm 8.1 returns U = {µ1, . . . , µn} and V = {ν1, . . . , νn}.

Based on (U,V), the checker generates n questions, i.e. “µi ≡ νi?” for every i, and asks

the LLM those questions. Without loss of generality, suppose LLM confirms that indeed

µj ≡ νj for 1 ≤ j ≤ k ≤ n. Then, the checker verifies again if {µ1, . . . , µk} cover the entire

sa. If it does, then {(µ1 ≡ ν1), . . . , (µn ≡ νk)} becomes a weak proof WPsa→sb .

Recall that a weak proof can be in either direction: “sa → sb” (WPsa→sb) or “sb → sa”

(WPsb→sa). Algorithm 8.1 is shown to find candidates for establishing WPsa→sb . To find

candidates for WPsb→sa , we can simply swap the two inputs. In addition, the last step

output is default to verify coverage of sa, and as an alternative, this can be changed to

verify coverage of sb. Doing so provides a second chance to find candidates for WPsb→sa .

It is important to note that Algorithm 8.1 is only for finding potential (U,V) candidates,

i.e. each as a collection of phrase pairs, and our checker only reports a proof after the

LLM confirms the semantic equivalence of enough individual phrase pairs.

8.3.3 Picking a paraphrase in GI-check for a “no” claim

When the LLM says that sa /≡ sb, as explained with Figure 8.3 before, the checker

needs to find an si and asks the LLM if “si ≡ sa?” and if “si ≡ sb?”. In our checker, si is

a paraphrase of the sentence s randomly chosen from sa or sb. Without loss of generality,

let sa be the chosen s and hence, the checker already expects si ≡ sa because of the

paraphrasing. Then, the really interesting question is “si ≡ sb?”. If LLM’s answer is

“yes”, then the original claim “sa /≡ sb” can be rejected based on the triangular evidence:

(sa /≡ sb, si ≡ sb, si ≡ sa) which forms a contradiction.

Hence, for a “no” claim, the checker is looking for such a triangular evidence. To

improve checker’s chance to find a triangular evidence, the paraphrase to be selected as

the si can be a factor. Our checker gives priority to an si such that a weak or strong proof

284

Oracle-Checker Scheme Chapter 8

can be found between si and sb. In this case, we call si an indifferentiable paraphrase,

i.e. from the checker’s point of view, si is indifferentiable from both sa and sb. Later

in Section 8.4.3, experimentally we will show that for up to 46.8% (= 858
1832) of the “no”

claims, such an indifferentiable paraphrase can be found (Table 8.7).

8.4 Experiments

For entity extraction, the findings are based on 5000 sentences randomly sampled

from the DOCRED dataset [228]. In addition, we use 500 sentences randomly sampled

from the RISC-V unprivileged ISA specification [197] for comparison. For paraphrase

decision, the experiments are based on 5000 samples from the MSR Paraphrase corpus

[229]. In all experiments, we treat GPT3.5 [16] as our oracle.

8.4.1 Prompts

Prompts for GH-check

In our work, we did not focus on optimizing the prompts to GPT3.5. Prompt engi-

neering was only pursued to the point of getting enough consistent and valid responses.

To follow common convention in NER, our prompt also asks GPT3.5 to provide a class

(or type) for each entity. Classes in the DOCRED dataset includes such as “people”, “lo-

cation”, “organization”, and so on. As a contrasting example, the chemical NER dataset

CHEMDNER [234] (which we did not use), includes classes of “abbreviation”, “family”,

and “formula” (of chemicals), and so on. It might typically be expected that an entity

is formed only by consecutive words from the text. However, we did not enforce this

constraint. For example, consider that for the phrase “William and Annie Washington”.

GPT3.5 would extract both “William Washington” and “Annie Washington” as entities.

285

Oracle-Checker Scheme Chapter 8

In contrast, the DOCRED labels only have “William” for the first entity.

Prompts are used for two purposes: to perform the entity extraction task and to help

obtain the synonym entity set E′s discussed in section 8.2.2.

Prompt 8.2 shows the prompt for entity extraction. We gave an example entity list as

the output in the prompt, but we did not provide an example input nor explicitly define

classes. This is because we did not want to over-constrain the responses, even though

adding a full in-context example might increase the number of valid responses.

Prompts 8.3, 8.4, and 8.5 are used for obtaining the synonym entity set E′s. Prompt

8.3 is a decision-making prompt to determine if an extracted entity is name based.

Prompts 8.4 and 8.5 are generation prompts, and produce the actual text to replace

entities in our sentence transformations. For these prompts we include a suggestion for

formatting.

Algorithm 8.2: Entity extraction

1 Please perform entity recognition for all entities in the following

sentence: "{text}"
2 Present the result as a strictly formatted numbered list e.g.

3 "1. movie: Wizard of Oz

4 2. animal: tiger"

Algorithm 8.3: Named/non-named classification

1 Is the entity "{entity}" in the sentence "{text}" a "named entity"

or a "normal entity"? Please explain in 20 words or less, and

then place your answer in double brackets [[]]

286

Oracle-Checker Scheme Chapter 8

Algorithm 8.4: Replacement of named entity

1 Please list five random entities (type: "{entity type}") that

could replace "{entity}" in the sentence "{text}".

2 Format your answer with a numbered list of the synonyms. e.g.

3 "1. Synonym1

4 2. Synonym2"

Algorithm 8.5: Synonym list of non-named entity

1 Please list synonyms for "{entity}" in the sentence "{text}".

2 Format your answer with a numbered list of the synonyms. e.g.

3 "1. Synonym1

4 2. Synonym2"

Prompts for GI-check

The experiments involve three prompts. Prompt 8.6 shows the main prompt which

queries GPT3.5 for the semantic equivalence on a pair of sentences. The “System Mes-

sage” and “Human Message” are not part of the prompt. They are for indicating the

different portions of the prompt.

Algorithm 8.6: Query for sentence-level semantic equivalence: yes or no

1 System Message:
2 "You are a helpful assistant that decides if two sentences are

paraphrases designed to output JSON."

3 Human Message:
4 "Decide whether the following two sentences are semantically

equivalent:

5 1. ’{sentence1}’ 2. ’{sentence2}’
6 Answer yes or no and provide a short explanation. Output with keys

’answer’ and ’explanation’. "

Like that in the entity extraction experiments, we did not focus on optimization of

287

Oracle-Checker Scheme Chapter 8

the prompts. As discussed with the Algorithm 8.1 before, our GI-check involves asking

the oracle whether two candidate sets of phrases (set of matching pairs) are semantically

equivalent or not. Prompt 8.7 shows the prompt used for this purpose. The “text1”

and “text2” in the prompt refer to the two phrases in a matching pair found by the

algorithm. Furthermore, our GI-check requires the capability of generating paraphrases

from a sentence. Prompt 8.8 shows the prompt for this purpose.

Note that for the checker to check on a GPT3.5’s “Yes” claim, the number of queries

depend on the number of matching pairs found. This number is usually not large and on

the order of 10. To check on a GPT3.5’s “No” claim, in addition to the queried used to

find a proof, the checker needs to ask 3 questions to GPT3.5, two for generating the 5

paraphrases for each sentence and one for asking the semantic equivalence between the

selected paraphrase and one of the original sentences. In our experiments, the efficiency

is mostly dominated by the response time from GPT3.5.

Algorithm 8.7: Query for phrase-level semantic equivalence: yes or no

1 System Message:
2 "You are a helpful assistant that decides if two texts could be

paraphrases designed to output JSON."

3 Human Message:
4 "Decide whether the following two texts could be considered

semantically equivalent:

5 1. ’{text1}’ 2. ’{text2}’
6 Answer yes or no and provide a short explanation. Output with keys

’answer’ and ’explanation’. "

Algorithm 8.8: Query for generating paraphrases

1 System Message:
2 "You are a helpful paraphrases generator designed to output JSON."

3 Human Message:
4 "Generate five paraphrases that are semantically equivalent to the

following sentence: ’{sentence}’
5 Output with key ’paraphrases’."

288

Oracle-Checker Scheme Chapter 8

8.4.2 Results on entity extraction

To perform GH-check, five tests are run for a given sentence s. Initially, the entity

set Es is obtained by repeating the entity extraction request 11 times and taking the

most consistent entity set as the answer. Then, to perform each test, 3 modified sen-

tences (corresponding to the x, z and x⊕z) are obtained with the synonym replacements

(see Section 8.2.2). This modification relies on the set of synonym E′s obtained also by

querying GPT3.5. To check f(x)⊖f(z) = f(x⊕ z), the entity extraction requests on the

three modified sentences each is also repeated 11 times. Hence, the checker generates

33 queries to GPT3.5 for one test. If any of the 113 answer combinations passes the

GH-check, the checker considers the test passed. If all five tests pass, the checker accepts

the answer, i.e. accepts the entity set as a whole and otherwise, rejects it.

Table 8.1 summarizes our findings by showing three main results: (1) the accept/reject

% on the 5000 DOCRED sentences, (2) the accept/reject % on the 500 RISC-V sentences,

and (3) the correlations across a measure on the in-sample acceptance rate (Arate), a

measure on the in-sample consistency of GPT3.5 response (Cono, Conrs), and the # of

entities under each GH-check (∣Es∣ = ∣E′s∣ =m).

Table 8.1: (1) GH-check on RISC-V sentences fails more than DOCRED sentences
(51.6% vs. 20.46%). (2) GPT3.5 extracted about 70% (= 8830+2349

15931) of the human-la-
beled entities and also extracted 7457 not labeled as entities in DOCRED.

% Accept Reject

DOCRED 79.54 20.46
RISC-V 48.4 51.6

of labeled entities in the GPT3.5’s
extracted set (4752 not extracted)

∈ Accept ∈ Reject
Labeled 8830 2349

Specifically, an in-sample consistency is measured as a % based on the number of

289

Oracle-Checker Scheme Chapter 8

Table 8.2: (1) In-sample acceptance rate (Arate) is correlated to the in-sample consis-
tency measure (Conrs), and not as correlated to ∣Es∣. (2) Cross-sample correlations:
Cono is the % of consistency on the original sentence. Conrs is the % of smallest
consistency on the 15 modified sentences. Arate is the % of passing out of the 113

combinations.

DOCRED
Cono Conrs ∣Es∣/RISC-V

Arate 0.80/0.65 0.86/0.72 -0.41/-0.65
#E -0.26/-0.43 -0.30/-0.45 —

consistent responses in 11 repeated requests. Cono is based on the original s when re-

questing GPT3.5 for obtaining Es. Conrs is the smallest such measure across 15 modified

sentences during the five tests. While we consider passing any of the 113 combinations

as passed, Arate measures the number of 113 combinations passing the GH-check as a %.

Since Arate, Cono, Conrs, and ∣Es∣ are measured on each sentence, across a collection of

sentences we can therefore calculate the Spearman correlation between any pair of them.

The result is shown in the Table 8.1.

From the experiment results, we summarize three points: (1) Entity extractions on

sentences from RISC-V are much less trustable (31% less) than entity extraction on

sentences from DOCRED. This result quantifies our intuition that extracting domain-

specific entities (e.g. “hardware entities”) is different from and can be harder than entity

recognition as commonly studied in NLP research. (2) Even for entity extraction on

DOCRED, GPT3.5 can disagree with human labels on a significant number of sentences,

indicating that it is difficult, if not impossible, to define a so-called correct answer for

every entity extraction per sample. (3) The high correlations between Arate and Conrs

reveal that for per-sample examination, our GH-check is somewhat similar to and yet not

the same as measuring the consistency from repeated runs. Interestingly, this correlation

is lower for RISC-V sentences, indicating again the GPT3.5’s behavior on them is different

from that on the DOCRED sentences.

290

Oracle-Checker Scheme Chapter 8

8.4.3 Results on paraphrase decision

As noted in the MSR Paraphrase (MSRP) corpus dataset [229], “semantic equiva-

lence” can really mean “semantic near-equivalence” that a pair of sentences ideally entail

each other but often might have some minor mismatches in their content. Deciding

whether or not the difference in content is significant enough to make two sentences not

semantically equivalent, can be a personal judgment call. In MSRP corpus, the label

annotators made these judgment calls. When we ask GPT3.5 with paraphrase decisions

on sentence pairs from MSRP, the GPT3.5 makes its own judgment calls.

Finding proofs for “Yes” (semantic equivalence) claims

The MSRP dataset contains sentence pairs (sa, sb) with a label to indicate if they are

semantically equivalent. Below, we use “Yes” to denote semantic equivalence and “No”

to denote non-equivalence. 5000 MSRP sentence pairs are given to GPT3.5 to ask the

semantic equivalence question. Each pair has two results: the “Yes/No” result by the

label and the “Yes/No” answer by GPT3.5. We ran our checker according to the answers

given by GPT3.5.

The 5000 pairs are divided into two categories, those answered “Yes” and those an-

swered “No” by GPT3.5. As mentioned before, they are treated differently by our checker.

In this section, we focus on those “Yes” pairs. Table 8.3 summarizes the experiment re-

sults.

The first result compares GPT3.5’s answers to the given labels. Overall, GPT3.5

disagrees on 25.16% of the labels. This was our initial evidence to confirm that indeed, for

a significant number of pairs there might not be a clear judgment to decide their semantic

equivalence. As a result, we anticipated that it might be difficult for our checker’s

acceptance rate on GPT3.5’s answers to surpass 75%, because for at least 25% of the

291

Oracle-Checker Scheme Chapter 8

pairs there might not be a correct answer. Then, when we apply our checker on those

3168 “Yes” cases given by GPT3.5, we found that the checker was able to find weak proof

(WP) on 57% of them and strong proof (SP) on 32.7% of them.

Table 8.3: GPT3.5 claims compared with MSRP labels. * indicates GPT disagree-
ments with the labels. GPT3.5 disagrees on 25.16% of the human labels in MSRP.

Label GPT %

Yes (3454)
Yes 77.7
No* 22.4

No (1546)
Yes* 31.4
No 68.6

Table 8.4: % of provable “Yes” cases is up to 57%.

WP (%) SP (%)

GPT
57.0 32.7

(3168)
Label

54.0 31.8
(3454)

Table 8.5: On 500 GPT3.5’s own generated paraphrases, GPT3.5 answers “Yes” on
495 and their provable % is shown below.

WP (%) SP (%)
62.5 45.3

Out of curiosity, we were also interested in seeing on how many labeled “Yes” pairs

for which our checker could also find a proof. The result is that 54% has a WP and 31.8%

has a SP, as shown in Table 8.4. These two numbers are comparable to the previous two

numbers reported on GPT3.5. This shows that the GI-check used by our checker has its

own judgment on semantic equivalence, which is somewhat independent from both the

human annotators’ and GPT3.5’s judgment.

292

Oracle-Checker Scheme Chapter 8

Then, instead of using pairs from MSRP, we were interested in assessing GPT3.5

based on its own generated-paraphrases. Hence, we randomly selected 500 sentences

from MSRP and asked GPT3.5 to generate a paraphrase for each to make a pair. On

these 500 pairs, GPT3.5 answers “Yes” on 495. On those 495 pairs, our checker has

a better chance to find a proof: WP for 62.5% and SP for 45.34%, as shown in the

Table 8.5.

Note that in the above experiments, we only asked GPT3.5 with each question once

and took the answer as it. There were no repeated runs as that in Section 8.4.2. How-

ever, we did a sanity check by repeating the semantic equivalence question five times

on 500 randomly sampled pairs from MSRP. We found that for only 59 pairs, there is

an inconsistency in the five answers. If we did this for the 500 pairs of GPT3.5 own

paraphrases, the inconsistency is observed on only four pairs. We see that checking for

consistency is different from our GI-check as they produce very different outcomes.

Checking “No” (semantic non-equivalence) claims

Table 8.6: Show % of those “No” cases, where our checker found a proof for their
semantic equivalence.

WP (%) SP (%)

GPT
24.5 11.2

(1832)
Label

25.9 9.7
(1546)

Following the results in Table 8.3, in this section we consider those “No” cases. There

are two categories: “No” from the GPT3.5 and “No” from the label. Out of 5000 pairs,

there are 1832 GPT3.5 “No” cases and 1546 label “No” cases, shown in Table 8.6. First,

for a sentence pair (sa, sb), we tried our checker to find a proof to see if showing sa ≡ sb

is possible. The results are reported in Table 8.6 for both categories. Notice that in

293

Oracle-Checker Scheme Chapter 8

Table 8.7: On 1832 GPT3.5 claimed “No” cases, show % rejected by the checker in
two scenarios: with (“w/”) or without (“w/o”) using an indifferentiable paraphrase p
(using WP or SP)

using WP using SP

w/ (858) w/o (974) w/ (385) w/o (1447)

61.5% 18.8% 70.4% 30.3%
Total rejects: 711 Total rejects: 709

both categories, our checker can find a WP to show sa ≡ sb for about 25% of the cases,

indicating many “No” cases might not be trustable.

Then, we applied our checker on the 1832 GPT3.5’s “No” cases. On each case, we

focus on finding an indifferentiable paraphrase p (see Section 8.3.3). Given a pair sa, sb,

the checker first asks GPT3.5 to generate 5 paraphrases for sa (or sb) and then for

each paraphrase p tries to prove p ≡ sb (or p ≡ sa). This proof can be a WP or a SP. If

succeeded, p is an indifferentiable paraphrase. In the checking, our checker gave priority

to pick an indifferentiable paraphrase p if it could be found. Otherwise, the paraphrase

p was randomly picked from the 10 paraphrases generated.

Suppose p is a paraphrase of sa, when GPT3.5 answers “Yes” to the question “p ≡ sb?”,

the checker obtains the triangular evidence (sa, sb, p) to reject the original “sa /≡ sb”

claim. Table 8.7 reports the % of those rejected cases. We see that by using a WP, an

indifferentiable p can be found for 858 out of 1832 cases (i.e. 46.8%). Then, by using

one paraphrase (i.e. n = 1 in Figure 8.3), if it is an indifferentiable p, the checker has

higher chance (61.5%, 70.4%) to reject the original “No” claim than that using a random

p (18.8%, 30.3%). This shows that using an indifferentiable p indeed has a significantly

better chance to to make GPT3.5 come back with a contradictory answer. Note that

overall, from the checker’s perspective, about 40% (= (3454∗(1−0.54)+1546∗0.259)5000) of the MSRP

labels can be ambiguous, when combining results from Tables 8.4 and 8.6.

294

Oracle-Checker Scheme Chapter 8

8.5 Related Work

There are many works on characterization and trustworthiness of LLMs. They can

be viewed in three contexts: (1) Fine tuning and evaluating on a collection of datasets

is a popular approach for improving LLMs performance [235, 236, 237, 238]. Example

benchmarks include those to evaluate human-GPT differences, broadly [239] and specifi-

cally in education [240, 241] and those on overall hallucination tendencies [242, 243, 244].

(2) There are works by curating a dataset specifically for the purpose of improving the

models in the context of enabling preference or ranking to the output results or flagging

potentially harmful results. Often the product is an auxiliary model, for example, as

mathematical reward models [245], for improvement on code vulnerability [246], and for

enhancement on illegal topic detection [247]. (3) Self-consistency can be an important

method for evaluating a LLM. A recent work uses self-consistency [248] to improve per-

formance, where a followup expands into a universal consistency check [249]. Auxiliary

models can also be reintroduced to self-consistency as alternatives to voting [250]. In

addition to the above works, there is also work focusing on the effect of the prompts by

evaluating if the prompts are at fault for failure cases [251].

Our work takes a direction different from all those reviewed above, and focuses on

per-sample examination. To verify an LLM’s response, our checker interacts with the

LLM by asking more questions to collect evidences from the LLM to support an accept

or reject decision of the response. This interactive checking does not require a benchmark

to define correct answers to begin with.

295

Oracle-Checker Scheme Chapter 8

8.6 Limitations

For entity extraction, our GH-check is limited to checking how the extraction of each

entity depends on the extraction of others in the same sentence. Hence, it does not

address the aspect that extraction of an entity can depend on the semantic meaning of

the entire sentence. Also, GH-check depends on the synonym set E′s and optimizing this

set is a separate issue. For paraphrase decision, GI-check relies on phrase-level semantic

equivalence to find a proof. Algorithm 8.1 is to find candidate phrase pairs for GPT3.5

to verify their semantic equivalence. Our implementation is limited in two aspects: (1)

There can exist a pair not found by Algorithm 8.1, which can lead to a proof; (2) It is

possible that the sentence-level equivalence claim cannot be shown at the phrase level.

In both cases, our GI-check will not find a proof even though the GPT3.5’s “Yes” claim

is not incorrect.

8.7 Summary

The work summarized in this chapter demonstrates how the ideas of two theoretical

checks, GH-check and GI-check, can be implemented in practical setting of entity ex-

traction and paraphrase decision, respectively, by treating an LLM as the oracle. Our

OC scheme mimics the essential idea of Interactive Proofs, where the checker relies on

the oracle to be convinced that an answer is acceptable. This work only scratches the

surface of the rich results from the theoretical field [226]. Exploring the possibilities to

apply other theoretical checks in different NLP tasks can be an interesting future research

direction.

296

Chapter 9

Journey from IEA - The Next

Decade

浩浩乎如慿虛御風，而不知其所止；

飄飄乎如遺世獨立，羽化而登僊。

Vast and grand, like a dragon soaring amidst the wind, Yet unaware of

its final destination, it is pinned. Drifting and floating, like a solitary fig-

ure beyond earthly bounds, Transforming into celestial beings, ascends

beyond mortal mounds.

— 《前赤壁賦》 蘇軾， A poem from Song Dynasty

In Chapter 2 to Chapter 7, we have described the two-decade journey to IEA and

presented IEA-Plot as our answer to the initial question regarding “applying ML and

AI in design and test” brought up at the beginning of Chapter 1. IEA-Plot presented

in Chapter 6 marks the end of the current IEA journey and also the beginning of a new

one. In particular, the Knowledge Graph (KG) view discussed in Chapter 7 and the

Oracle-Checker (OC) scheme discussed in Chapter 8 open the door for the next decade

297

Journey from IEA - The Next Decade Chapter 9

of the IEA journey. The KG view is the start to pursue a Generative AI (GAI) version of

IEA. The OC scheme is the start to pursue a version of checker-based IEA that treats an

LLM as an oracle. In this chapter, we will present our ideas on these two future versions

of IEA and a list of important questions to be answered in the next decade.

9.1 The Generative AI View

As shown in Figure 2.1 in Section 2, our journey to IEA ends with the Generative AI

(GAI) view. After the completion of the IEA-Plot in 2023, we began to see that IEA-Plot

can be a stepping stone to attain GAI in the semiconductor domain.

With the growing popularity of the GPT models [176][19][16] and the stable diffusion

model [252], GAI has become a mainstream trend of AI. The IEA-Plot design discussed

in Chapter 6 and Chapter 7 relies on the manual construction of a KG. With the KG in

place, the implementation of IEA-Plot solves a task grounding problem (Section 6.1.1),

which is similar to the constrained parsing problem discussed in Section 5.4.3. It seems

that our current use of the GPT model is limited to “parsing” rather than “generating”.

And the next natural question to ask is: Can we design an IEA that utilizes the code

generation power of an LLM?

9.1.1 IEA-Plot as a query generator

To answer this question, we should start by noting that the frontend parser for solving

the task grounding problem already followed a generative approach, as discussed with

Figure 6.11 in Section 6.5. From the KG, a large number of (canonical) acceptable user

inputs (queries) are generated. Then, by leveraging the paraphrasing power of GPT3.5,

this initial query set can be expanded into a larger set.

Figure 9.1 depicts this view by seeing IEA-Plot as a query generator. Essentially,

298

Journey from IEA - The Next Decade Chapter 9

Figure 9.1: IEA-Plot is a query generator

IEA-Plot is capable of generating a very large query table where each entry in this table

is a 3-tuple, containing the query, the API calls to the backend for executing the query,

and the actual Python script. This query table can then be used as the training dataset

to retrain an LLM (e.g. fine-tuning).

For example, each training sample can be the query followed by the sequence of the

API calls represented as a sequence of symbolic steps. The the trained LLM will be able

to take a user query as input and generate a sequence of steps which can be used to call

the backend API. This LLM is still grounded by the backend API.

As another example, each training sample can be the query followed by the Python

code. Then, the trained LLM will be able to behave like a code generator where a

user provides an instruction for the LLM to generate directly a piece of Python code

according to the instruction. The difference between this LLM and the current LLM like

the GPT model is that with our domain specific KG in place, such an LLM will be able to

truly understand domain-specific terms and generate code specific to the domain-specific

application.

9.1.2 Toward a wafermap generator

On a smaller scale, a GAI approach can also be implemented within the scope of

wafermap analytics. Using a Natural Language Interpreter (NLI) such as the one pre-

sented in Section 5.5.2, we have shown a way to treat the MINIONs+NLI as a separate

299

Journey from IEA - The Next Decade Chapter 9

component for generating a wafermap database. An example of a table in such a database

is already presented in Table 5.11 in Section 5.5.

Figure 9.2: MINIONs with a Natural Language Interpreter (NLI) as a wafermap generator

Figure 9.2 presents the idea, in parallel to the idea present in Figure 9.1 above.

Each sample in the wafermap table is a 2-tuple, containing a wafermap image and a

description of the wafermap. With such a dataset available, we can then train a diffusion

model [252] as a wafermap generator. This model should have the capability that on a

user description, it will be able to generate a very large number of wafermaps according

to a user description.

Figure 9.3: With a wafermap generator, retrieval of wafermaps according to a user
description can be made simpler — similarity search achieved (and simplified) by a
generative approach

Suppose such a wafermap generator is there. Then, Figure 9.3 shows that essentially

the generator can replace our current MINIONs based approach for wafermap analyt-

ics. Given a user description of what pattern to look for, the generator can produce a

very large number of wafermaps W = W1, . . . ,WM . These generated wafermaps can be

compared to the wafermaps in the database and find those wafermaps very close to the

generated ones. This similarity search can be made simple, e.g. just based on the cosine

similarity between two images, as long as M is large enough. In a sense, with a wafermap

300

Journey from IEA - The Next Decade Chapter 9

generator in place we no longer require to use a MINIONs graph to determine the simi-

larity between a pair of wafermaps. The similarity between two wafermaps Wa and Wb

in the database can be determined through their closeness to wafermaps in the group W.

If Wa is very close to Wi ∈ W and Wb is very close to Wj ∈ W , then Wa is similar Wb

(they belong to the same pattern group) in view of the given user description. Note this

retrieval base on cosine similarity is akin to what we proposed in Section 6.5.1 and 6.5.2,

where the former is based on image similarity and the latter on text embeddings.

9.1.3 Questions to be answered in the next decade

If the future journey of IEA takes on the GAI path as described above, then there

will be several fundamental questions to be answered. Figure 9.4 depicts one of the

fundamental questions.

Figure 9.4: Does a retrained LLM provide generalization from A to B?

In the current IEA, KG is a formal representation of the domain knowledge. The KG

implies a set of canonical queries acceptable by IEA. The variations of these queries come

from the paraphrasing power of the LLM. In a sense, the set of acceptable queries is fixed

by the KG. If we train an LLM following the GAI approach discussed in Section 9.1.1

above, essentially this LLM is mimicking the behavior of IEA-Plot. In a sense, the

domain knowledge in the KG is assimilated into the LLM and after that, the set of

acceptable queries is no longer fixed. Given the current fixed acceptable query set A and

the future unfixed acceptable query set B, the fundamental question is to ask about the

relationship between these two sets. In other words, we will be interested in knowing

301

Journey from IEA - The Next Decade Chapter 9

what generalization the LLM can provide to go beyond the current acceptable set A.

In view of the possible generalization through retraining an LLM, below we list a

number of fundamental questions to drive the IEA journey in the next decade.

� Can the LLM generalize well when its responses are limited within the scope of

API calls? In other words, can the LLM find a novel way to utilize our backend

API to accomplish an analytic task?

� Can the LLM generalize well when its responses are Python codes? In other words,

can the LLM write new Python code beyond the scope of our backend API to

accomplish an analytic task?

� For the LLM, how much benefit can prompt engineering bring? In other words, to

what extent does prompts have a effect on the quality of the responses?

� With the LLM, do we still require some sort of grounding on its responses? In other

words, with the LLM can we forget about the KG and constrained parsing entirely

when building the GAI version of the IEA?

� Suppose in the new IEA, we no longer need to solve a grounding problem. With a

proper prompt, there is a way to get to a response (a sequence of API calls or a piece

of code) that can be acceptable for a given analytic task. Then, this means that the

new IEA only needs to be based on a set of checkers to verify the trustworthiness

of the generated responses. Then, the fundamental question is: What types of

checkers are needed to make an IEA?

In bringing up the last question, we are essentially seeking the direction of shifting

the focus of IEA from one based on the GAI paradigm into a checker version of IEA

based on the oracle-checker scheme presented in Chapter 8.

302

Journey from IEA - The Next Decade Chapter 9

9.2 The Oracle-Checker View

Property testing [226] and Interactive Proofs [224] are two rich fields in theoretical

computer science. Our OC scheme presented in Chapter 8 makes the first step that draws

upon those theoretical ideas and bring them into practical realization (in the context of

per-sample examination of LLM’s responses by treating the LLM as an oracle). Our OC

scheme starts two new research areas along the IEA journey:

� How to apply the OC scheme to assist in the IEA development.

� How to make a checker version of IEA in the future by treating an LLM as a

domain-specific oracle.

In view of these two new research areas, we can then list a number of fundamental

questions to be answered in the next decade.

9.2.1 Questions to be answered in the next decade

In our initial work presented in Chapter 8, two basic NLP tasks are selected: entity

extraction and paraphrase decision. This is not by accident. We selected them not only

because they are relevant to our objective in view of achieving automatic KG construc-

tion, but also because the LLM has already shown reliable performance on those tasks

in general. In other words, the LLM can be treated as an oracle for the tasks.

The assumption to apply our OC scheme is that the LLM can be treated as an oracle.

This means that the LLM has to generally show good performance on the given task to

begin with and on top of that, has the ability to support a session of interactive checking

on its response. If the LLM’s responses are not above a certain quality level to begin

with, then it will put too much burden on the checker to verify the responses. As a

303

Journey from IEA - The Next Decade Chapter 9

result, the checker can become rather complex, violating the original goal of keeping the

checker simple and efficient.

If the LLM is less reliable on a given task, the checker needs to do more work on

the checking. There is a tradeoff between the two. At a certain point, the checker can

become too complex to be practical. In view of this LLM-checker relationship, we can

then ask a number of fundamental questions as below.

� On what criteria can an LLM be used as an oracle on a task?

� On what criteria can an LLM be used as a domain-specific oracle on a domain-

specific task?

� Given a rich set of property testers covered in [226], is it possible to realize other

testers in some other tasks relevant to IEA?

� On what criteria should an LLM not be used as an oracle on a task?

� On what criteria should an LLM not be used as a domain-specific oracle on a

domain-specific task?

Note that the last two questions are different from the first two and can be harder

questions to answer. The first two ask for criteria for the acceptance of an LLM as

an oracle. The last two ask for criteria for the rejection of an LLM as an oracle. The

rejection kind of the questions can be more difficult to find a solution. From a research

point of view, most of the proposed works always prefers a positive result than a negative

one. Nevertheless, negative results are crucial because they can guide us to avoid the

realm of no solution and prevent us from being trapped in the world of no-free-lunch.

304

Chapter 10

Conclusion

飛來峰上千尋塔，聞說雞鳴見日升。

不畏浮雲遮望眼，只緣身在最高層。

Upon the peak, a tower stands tall, a thousand feet it soars. They say

the cock crow heralds the sunrise, seen from its lofty floors. Unafraid of

clouds that may obscure the sight. For only from the highest perch, the

truest view alights.

— 《登飛來峰》 王安石， A poem from Song Dynasty

Figure 2.1 in Chapter 2 depicts the evolution of views through the two-decade jour-

ney of IEA. This thesis provides detail on this evolution and Figure 10.1 is a recap of

Figure 2.1. The OC scheme presented in Chapter 8 is a detour on the journey. While it

is closely related to the IEA development, the work presented in Chapter 8 can be seen

as the start for a new research area by itself.

305

Conclusion Chapter 10

Figure 10.1: Evoluation of views along the journey to IEA

10.1 Takeaways

Data-Driven View Figure 2.22 in Section 2.7 is a summary of the lessons learned during

the first decade. It was due to the studies carried out in the first decade that we learned

the implications of the data wall (Section 2.7.1, Section 2.7.2). One of the implications

is that domain-specific ML means Decision-Support ML (DSML) (Section 2.7.4) which

demands solving a Co-ML problem (Section 2.7.4). It was also during the first decade

of studies that the necessity of domain knowledge in domain-specific learning became

apparent.

Knowledge-Driven View Lessons learned from this period include the following: (1)

In an attempt to model domain knowledge, it was realized that the end results of analyt-

ics could be thought of as plots. This led to the idea of plot-based analytics (Section 3.3).

(2) In view of constructing a plot, the domain knowledge could be modeled as a sequence

of primitive steps. The idea of primitive step motivated the later idea of concept recog-

nition in the Autonomous System view (Section 3.10). (3) It was the three challenges

(Section 3.5) faced in this period motivated the later idea of language-driven analytics

emerging under the Problem-Solution Dual view (Chapter 5).

306

Conclusion Chapter 10

It was also during this period of studies that the idea of local no-free-lunch (L-

NFL) was formed (Section 3.9), the meaning of Occam learning in DSML became clear

(Section 3.9.3), and the essence of DSML was uncovered (Section 3.12) where a DSML

oracle was supposed to solve a decision problem rather than an optimization problem.

Autonomous-System View This view enabled the construction of the first IEA in

2018 (Section 3.10). The most important discovery from the development of IEA 2018

was that domain knowledge was modeled in terms of concepts. At the time, DSML

oracles were thought to be concept recognizers. The most important lesson learned from

IEA 2018 was the in infeasibility to capture all domain knowledge in an AI Assistant.

Some domain knowledge was hard to capture and should be left outside of IEA. The

lesson turned the use of the NLP interface from the purpose of information retrieval to

the purpose of driving the analytics (and hence, became language-drive analytics).

Problem-Solution Dual view The MINIONs approach discussed in Chapter 4 provides

a concrete example for the Problem-Solution Dual view discussed in Chapter 5. Realizing

the Problem-Solution Dual view was the most important turning point of the entire IEA

journey. It substantialized the idea of language-driven analytics (Section 5.2) and led to

the implementation of IEA 2022 (Section 5.2.2).

Knowledge Graph view The completion of IEA-Plot in 2023 marks the end of the

two-decade journey and also the beginning of a new journey. IEA-Plot (Section 6)

demonstrates how to leverage the power of a latest LLM to build an AI Assistant in

a domain-specific application. At the core, it solves a task grounding problem (Sec-

tion 6.1.1). And in IEA-Plot, task grounding is achieved through a knowledge graph

(Chapter 7).

The manual construction of KG in IEA-Plot was necessary, even though it was tedious.

The KG view enabled us to see the difference between problem formulation and problem

solving (Section 7.3) in IEA, where in practice a complex problem statement described

307

Conclusion Chapter 10

with a language in polynomial hierarchy does not mean solving the problem requires the

same level of complexity. This is an important observation leading to the hope to pursue

a Generative AI approach for implementing a future IEA.

Generative AI view In IEA-Plot, the task grounding problem was solved by taking

a generative approach (Section 6.5). Section 9.1 therefore discusses the next step to

achieve a Generative AI (GAI) version of IEA and posts several fundamental questions

to be answered in the next decade of the IEA journey. The core question is on how much

generalization a GAI version of IEA can achieve based on learning from a KG version of

IEA (e.g. IEA-Plot), or if there is any meaningful generalization at all (Section 9.1.3).

The Oracle-Checker (OC) scheme (Chapter 8) is novel and yet, leaves several fun-

damental questions unanswered. In an OC scheme, the checker is supposed to be much

simpler than the oracle, in view of the complexity for completing a task. The checker

relies on interactions with the oracle to verify oracle’s responses. Our work presented in

Chapter 8 opens the door to start a new direction of research. And the most essential

question to be answered through the research is (Section 9.2.1): On what criteria can an

LLM be treated as an oracle?

10.2 Ten Questions And Their Answer

The two-decade journey provides answers to some of the important questions arising

from the original motivation to apply ML in semiconductor chip design and test. Below

we summarize ten such questions that can be useful for practitioners to consider when

trying to apply ML in their applications. Based on the materials presented in this thesis,

we provide a short answer to each question.

Q: I have many ML-based analytic tools already in place in my company.

Which one is the best for my application?

308

Conclusion Chapter 10

A: According to the Problem-Solution Dual View, that is the wrong question

to ask.

Q: I heard the new ML model (or technology) XYZ published last month?

Should I take a look? Maybe it can help solve my problem.

A: Unlikely, especially if you have not fully understood the essence of your

problem yet.

Q: Then, how can I apply ML in semiconductor chip design and test?

A: Build an IEA.

Q: What is the difference between ML and domain-specific ML?

A: Domain-specific ML means Decision-Support ML (DSML). In DSML, a

solver solves a decision problem. In ML, a solver (a model) solves an opti-

mization problem.

Q: What is domain knowledge?

A: It is a collection of statements that involve domain-specific concepts whose

interpretation is subject to the domain expert.

Q: How to incorporate my domain knowledge into analytics?

A: Build a knowledge graph in IEA.

Q: How to leverage the power of LLM in semiconductor chip design and test?

A: Build a knowledge graph and solve a task grounding problem as the first

step.

Q: How to build a KG?

A: Start with a document of descriptions for what you desire to be represented

in the KG and use an LLM under the OC scheme to generate a draft of KG.

309

Q: If I help build an IEA, will IEA replace my job?

A: No. Some of your domain knowledge is left with you. IEA is only your

assistant.

Q: Can I train an LLM to do what I want in my application?

A: Yes, but you need to build a KG version of IEA first before you can get

to a GAI version of IEA.

10.3 Philosophical Remarks

This thesis is concluded with the following philosophical remarks.

When solving a problem,

think about the problem and solution as a pair.

If you believe in free lunch, apply ML.

If you concern about no-free-lunch, apply DSML.

If trying to be an oracle is too hard, try to be an effective checker.

The fastest way to get to a destination is

to know giving up on a difficult route and see an alternative,

even though at the time the alternative might look like a big detour.

In practice, there is no real difficulty in a problem,

only difficulty in yourself.

310

Bibliography

[1] L.-C. Wang, “Data learning based diagnosis,” ACM/IEEE ASP Design Automation
Conference, pp. 247–254, 2010.

[2] L.-C. Wang, “Experience of data analytics in EDA and test - principles, promises,
and challenges,” IEEE Transactions on CAD, vol. 36, no. 6, pp. 885–898, 2017.

[3] L.-C. Wang, “Data mining in functional test content optimization,” ACM/IEEE
Asian South Pacific Design Automation Conference, 2015.

[4] W. Chen, L.-C. Wang, and J. Bhadra, “Simulation knowledge extraction and reuse
in constrained random processor verification,” ACM/IEEE Design Automation
Conference, pp. 1–6, 2013.

[5] K.-K. Hsieh, W. Chen, L.-C. Wang, and J. Bhadra, “On application of data mining
in functional debug,” IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 670–675, 2014.

[6] N. Sumikawa, J. Tikkanen, L.-C. Wang, L. Winemberg, and M. S. Abadir, “Screen-
ing customer returns with multivariate test analysis,” IEEE International Test
Conference, 2012.

[7] jeff Tikkanen, N. Sumikawa, L.-C. Wang, and M. S. Abadir, “Multivariate outlier
modeling for capturing customer returns — how simple it can be,” IEEE 20th
International On-Line Testing Symposium (IOLTS), pp. 164–169, 2014.

[8] S. Siatkowski, L.-C. Wang, N. Sumikawa, and L. Winemberg, “Learning the process
for correlation analysis,” IEEE VLSI Test Symposium, 2017.

[9] J. Tikkanen, S. Siatkowski, N. Sumikawa, L.-C. Wang, and M. S. Abadir, “Yield
optimization using advanced statistical correlation methods,” IEEE International
Test Conference, 2014.

[10] K.-K. Hsieh, L.-C. Wang, W. Chen, and J. Bhadra, “Learning to produce direct
tests for security verification using constrained process discovery,” ACM/IEEE De-
sign Automation Conference, pp. 1–6, 2017.

311

[11] a. e. Sebastian Siatkowski, “Consistency in wafer based outlier screening,” in IEEE
VLSI Test Symposium, 2016.

[12] L.-C. Wang, Learning from Limited Data in VLSI CAD, pp. 375–399. Springer
International Publishing, 2019.

[13] N. Sumikawa, M. Nero, and L.-C. Wang, “Kernel based clustering for quality im-
provement and excursion detection,” IEEE International Test Conference, 2017.

[14] Y. J. Zeng, L.-C. Wang, and C. J. Shan, “Miniature interactive offset networks
(minions) for wafer map classification,” in IEEE International Test Conference,
pp. 190–199, 2021.

[15] Y. J. Zeng, L.-C. Wang, C. J. Shan, and N. Sumikawa, “Learning a wafer feature
with one training sample,” in IEEE International Test Conference, pp. 1–10, 2020.

[16] OpenAI, “Gpt-3.5-turbo,” 2022.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 248–255, 2009.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States (P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, eds.), pp. 1106–1114, 2012.

[19] OpenAI, “Introducing ChatGPT,”

[20] S. Bengesi, H. El-Sayed, M. K. Sarker, Y. Houkpati, J. Irungu, and T. Oladunni,
“Advancements in generative AI: A comprehensive review of gans, gpt, autoen-
coders, diffusion model, and transformers,” IEEE Access, vol. 12, pp. 69812–69837,
2024.

[21] R. Miikkulainen, “Generative AI: an AI paradigm shift in the making?,” AI Mag.,
vol. 45, no. 1, pp. 165–167, 2024.

[22] A. Pandey, “The generative ai boom in 6 charts,” 2024.

[23] N. Scoble-Williams, D. Sinti, and G. Vert, “Generative ai and the future of work,”
2024.

[24] 2024.

[25] N. Arya, “The growth behind llm-based autonomous agents,” 2023.

312

[26] M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben, H. Anand,
S. Banerjee, I. Bayraktaroglu, B. Bhaskaran, B. Catanzaro, A. Chaudhuri, S. Clay,
B. Dally, L. Dang, P. Deshpande, S. Dhodhi, S. Halepete, E. Hill, J. Hu, S. Jain,
A. Jindal, B. Khailany, G. Kokai, K. Kunal, X. Li, C. Lind, H. Liu, S. Oberman,
S. Omar, G. Pasandi, S. Pratty, J. Raiman, A. Sarkar, Z. Shao, H. Sun, P. P.
Suthar, V. Tej, W. Turner, K. Xu, and H. Ren, “Chipnemo: Domain-adapted llms
for chip design,” 2024.

[27] K. HEYMAN, “Eda pushes deeper into ai,” 2023.

[28] F. Persia, “Labview in the age of ai-driven programming,” 2023.

[29] N. Callegari, D. G. Drmanac, L.-C. Wang, and M. S. Abadir, “Classification rule
learning using subgroup discovery of cross-domain attributes responsible for design-
silicon mismatch,” ACM/IEEE Design Automation Conference, pp. 374–379, 2010.

[30] N. Callegari, L.-C. Wang, and P. Bastani, “Speedpath analysis based on hypothesis
pruning and ranking,” ACM/IEEE Design Automation Conference, pp. 346–351,
2009.

[31] L.-C. Wang and et al., “Some considerations on choosing an outlier method for
automotive product lines,” IEEE International Test Conference, 2017.

[32] N. Sumikawa, L.-C. Wang, and M. S. Abadir, “A pattern mining framework for
inter-wafer abnormality analysis,” IEEE International Test Conference, 2013.

[33] D. H. Wolpert, “The lack of a priori distinctions between learning algorithms,”
Neural Compt., vol. 8, no. 7, pp. 1341–1390, 1996.

[34] D. H. Wolpert, “The Relationship Between PAC, the Statistical Physics framework,
the Bayesian framework, and the VC framework,” Technical Report, SFI-TR-03-
123, 2003.

[35] M. Dupree, M. J. Yang, Y. J. Zeng, and L.-C. Wang, “Iea-plot: Conducting wafer-
based data analytics through chat,” in IEEE International Test Conference, IEEE,
2023.

[36] L.-C. Wang, “Regression simulation: applying path-based learning in delay test
and post-silicon validation,” in Proceedings Design, Automation and Test in Europe
Conference, pp. 692 – 693, IEEE, 2004.

[37] L.-C. Wang, T. Mak, K.-T. Cheng, and M. S. Abadir, “On path-based learning
and its applications in delay test and diagnosis,” in Proceedings ACM/IEEE Design
Automation Conference, pp. 492 – 497, ACM/IEEE, 2004.

[38] B. Schölkopf and et al., Learning with Kernels:Support Vector Machines, Regular-
ization, Optimization, and Beyond. MIT Press, 2001.

313

[39] L.-C. Wang, J.-J. Liou, and K.-T. Cheng, “Critical path selection for delay fault
testing based upon a statistical timing model,” IEEE Transactions on CAD, vol. 23,
no. 11, pp. 1550 – 1565, 2004.

[40] L.-C. Wang, P. Bastani, and M. S. Abadir, “Design-silicon timing correlation —
a data mining perspective,” ACM/IEEE Design Automation Conference, pp. 384–
389, 2007.

[41] B. Lee, L.-C. Wang, and M. S. Abadir, “Refined statistical static timing analy-
sis through learning spatial delay correlations,” ACM/IEEE Design Automation
Conference, pp. 149–154, 2006.

[42] P. Bastani, N. Callegari, L.-C. Wang, and M. S. Abadir, “Statistical diagnosis of
unmodeled systematic timing effects,” ACM/IEEE Design Automation Conference,
pp. 355–360, 2008.

[43] P. Bastani, N. Callegari, L.-C. Wang, and M. S. Abadir, “Diagnosis of design-silicon
timing mismatch with feature encoding and importance ranking – the methodology
explained,” IEEE International Test Conference, pp. 1–10, 2008.

[44] N. Callegari, P. Bastani, L.-C. Wang, and M. S. Abadir, “A statistical diagnosis
approach analyzing design-silicon timing mismatch,” IEEE Transactions on CAD,
vol. 28, no. 11, pp. 1728 – 1541, 2009.

[45] P. Bastani, K. Killpack, L.-C. Wang, and E. Chiprout, “Speedpath prediction based
on learning from a small set of examples,” ACM/IEEE Design Automation Con-
ference, pp. 217–222, 2008.

[46] V. Vapnik, The Nature of Statistical Learning Theory. 2000.

[47] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and
Testable Design. 1994.

[48] J. Chen, B. Bolin, L.-C. Wang, J. Zeng, D. G. Drmanac, , and M. Mateja, “Mining
ac delay measurements for understanding speed-limiting paths,” IEEE Interna-
tional Test Conference, 2010.

[49] N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski, “Rule induction for subgroup
discovery with cn2-sd,” Journal of Machine Learning Research, vol. 5, pp. 153–188,
2004.

[50] N. Callegari, L.-C. Wang, and P. Bastani, “Feature based similarity search with
application to speedpath analysis,” IEEE International Test Conference, pp. 1–10,
2009.

314

[51] O. Guzey, L.-C. Wang, J. Levitt, and H. Foster, “Functional test selection based
on unsupervised support vector analysis,” ACM/IEEE Design Automation Con-
ference, pp. 262–267, 2008.

[52] P.-H. Chang, L.-C. Wang, and J. Bhadra, “A kernel-based approach for functional
test program generation,” IEEE International Test Conference, pp. 1–10, 2010.

[53] W. Chen, N. Sumikawa, L.-C. Wang, J. Bhadra, X. Feng, and M. S. Abadir,
“Novel test detection to improve simulation efficiency — a commercial exper-
iment,” IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), pp. 101–108, 2012.

[54] O. Guzey, L.-C. Wang, and J. Bhadra, “Enhancing signal controllability in func-
tional test-benches through automatic constraint extraction,” IEEE International
Test Conference, pp. 1–10, 2007.

[55] O. Guzey, C. Wen, L.-C. Wang, T. Feng, H. Miller, and M. S. Abadir, “Extracting
a simplified view of design functionality based on vector simulation,” in Hardware
and Software, Verification and Testing, pp. 34–49, Springer Berlin Heidelberg, 2007.

[56] M. J. Kearns and U. Vazirani, An Introduction to Computational Learning Theory.
The MIT Press, 1994.

[57] C. Zhang and S. Zhang, “Association rule mining, models and algorithms,” Lecture
Notes in CS, vol. 2307, 2002.

[58] N. Sumikawa, D. G. Drmanac, L.-C. Wang, L. Winemberg, and M. S. Abadir,
“Forward prediction based on wafer sort data — a case study,” IEEE International
Test Conference, 2011.

[59] D. G. Drmanac, L.-C. Wang, and M. Laisne, “Wafer probe test cost reduction of an
rf/a device by automatic testset minimization: A case study,” IEEE International
Test Conference, 2011.

[60] N. Sumikawa, Li-C.Wang, and M. S. Abadir, “An experiment of burn-in time
reduction based on parametric test analysis,” IEEE International Test Conference,
2010.

[61] L.-C. Wang and M. S. Abadir, “Data mining in eda - basic principles, promises,
and constraints,” ACM/IEEE Design Automation Conference, pp. 1–6, 2014.

[62] J. Zeng, M. S. Abadir, G. Vandling, L.-C. Wang, A. Kolhatkar, and J. Abraham,
“On correlating structural tests with functional tests for speed binning of high
performance design,” IEEE International Test Conference, pp. 31 – 37, 2004.

315

[63] J. Chen, L.-C. Wang, P.-H. Chang, J. Zeng, S. Yu, and M. Mateja, “Data learn-
ing techniques and methodology for fmax prediction,” IEEE International Test
Conference, 2009.

[64] J. Chen, J. Zeng, L.-C. Wang, and M. Mateja, “Correlating system test fmax with
structural test fmax and process monitoring measurements,” IEEE ASP Design
Automation Conference, pp. 419–424, 2010.

[65] J. Chen, J. Zeng, L.-C. Wang, M. Mateja, and J. Rearick, “Predicting multi-core
system fmax by data-learning methodology,” IEEE International Symposium on
VLSI Design, Automation and Test, 2010.

[66] T. Hastie and et al., The Elements of Statistical Learning - Date Mining, Inference,
and Prediction. Springer Series in Statistics, 2001.

[67] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.
The MIT Press, 2006.

[68] G. Drmanac, F. Liu, and L.-C. Wang, “Predicting variability in nanoscale lithog-
raphy processes,” ACM/IEEE Design Automation Conference, pp. 545–550, 2009.

[69] D. Ding, J. A. Torres, and D. Z. Pan, “High performance lithography hotspot
detection with successively refined pattern identifications and machine learning,”
IEEE Trans. on CAD, vol. 30, no. 11, pp. 1621–1634, 2011.

[70] B. N. Lee, L.-C. Wang, and M. S. Abadir, “Reducing pattern delay variations
for screening frequency dependent defects,” in 23rd IEEE VLSI Test Symposium
(VTS, pp. 153–160, IEEE Computer Society, 2005.

[71] B. N. Lee, L.-C. Wang, and M. S. Abadir, “Issues on test optimization with known
good dies and known defective dies - A statistical perspective,” in IEEE Interna-
tional Test Conference, pp. 1–10, IEEE Computer Society, 2006.

[72] S. H. Y. Wu, B. N. Lee, L. Wang, and M. S. Abadir, “Statistical analysis and
optimization of parametric delay test,” in IEEE International Test Conference,
pp. 1–10, IEEE Computer Society, 2007.

[73] L. Breiman, “Random forests,” Machine Learning Journal, vol. 45, pp. 5–32, 2001.

[74] S. H. Wu, D. G. Drmanac, and L. Wang, “A study of outlier analysis techniques for
delay testing,” in IEEE International Test Conference, pp. 1–10, IEEE Computer
Society, 2008.

[75] I. Jolliffe, Principal Component Analysis. Springer, 1986.

316

[76] D. G. Drmanac, B. Bolin, L. Wang, and M. S. Abadir, “Minimizing outlier delay
test cost in the presence of systematic variability,” in IEEE International Test
Conference, pp. 1–10, IEEE Computer Society, 2009.

[77] D. G. Drmanac, N. Sumikawa, L. Winemberg, L. Wang, and M. S. Abadir, “Mul-
tidimensional parametric test set optimization of wafer probe data for predicting
in field failures and setting tighter test limits,” in Design, Automation and Test in
Europe, DATE, pp. 794–799, IEEE, 2011.

[78] H. Li, M. Mansour, S. Maturi, and L. Wang, “A new sampling method for ana-
log behavioral modeling,” in International Symposium on Circuits and Systems
(ISCAS, pp. 2908–2911, IEEE, 2010.

[79] H. Li, M. Mansour, S. Maturi, and L. Wang, “Analog behavioral modeling flow
using statistical learning method,” in 11th International Symposium on Quality of
Electronic Design (ISQED, pp. 872–878, IEEE, 2010.

[80] D. G. Drmanac, B. Bolin, and L. Wang, “A non-parametric approach to behavioral
device modeling,” in 11th International Symposium on Quality of Electronic Design
(ISQED, pp. 284–290, IEEE, 2010.

[81] L. Wang and M. Marek-Sadowska, “Machine learning in simulation-based analy-
sis,” in ACM Symposium on International Symposium on Physical Design, ISPD
(A. Davoodi and E. F. Y. Young, eds.), pp. 57–64, ACM, 2015.

[82] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems (F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds.), vol. 25, Curran
Associates, Inc., 2012.

[83] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation analysis;
an overview with application to learning methods,” Neural Computation, pp. 2639–
2664, 2004.

[84] L.-C. Wang, “An autonomous system view to apply machine learning,” in IEEE
International Test Conference, 2018.

[85] M. Nero, J. Shan, L.-C. Wang, and N. Sumikawa, “Concept recognition in produc-
tion yield data analytics,” IEEE International Test Conference, 2018.

[86] L.-C. Wang, “Keynote address: Machine learning in test data analytics,” IEEE
International Test Conference in Asia (ITC-Asia), 2020.

[87] W. van der Aalst, A. Weijters, and L. Maruster, “Workflow mining: discovering
process models from event logs,” IEEE Transactions in Knowledge Data Engineer-
ing, vol. 16, no. 9, pp. 1128–1142, 2004.

317

[88] W. M. Van der Aalst, V. Rubin, H. Verbeek, B. F. van Dongen, E. Kindler, and
C. W. Günther, “Process mining: a two-step approach to balance between under-
fitting and overfitting,” Software & Systems Modeling, vol. 9, no. 1, pp. 87–111,
2010.

[89] F. C. C. (FCC), “Operation of radar services in the 76-81 ghz band,” FCC, 2015.

[90] J. E. Hopcroft, Introduction to Automata Theory, Languages and Computation:
For VTU, 3/e. Pearson Education India, 1979.

[91] C. De La Higuera, “A bibliographical study of grammatical inference,” Pattern
recognition, vol. 38, no. 9, pp. 1332–1348, 2005.

[92] E. M. Gold, “Language identification in the limit,” Information and control, vol. 10,
no. 5, pp. 447–474, 1967.

[93] D. Angluin, “Learning regular sets from queries and counterexamples,” Information
and Computation, vol. 75, pp. 87–106, 1987.

[94] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer Publishing Company, 1st ed., 2011.

[95] Y. S. Mahajan, Z. Fu, and S. Malik, “Zchaff2004: An efficient sat solver,” in Inter-
national Conference on Theory and Applications of Satisfiability Testing, pp. 360–
375, Springer, 2004.

[96] M. J. Yang, Y. J. Zeng, and L.-C. Wang, “Language driven analytics for failure
pattern feedforward and feedback,” in IEEE International Test Conference, 2022.

[97] N. C. Shawe-Taylor, Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

[98] e. a. A. Gretton, “Kernel methods for measuring independence,” Journal of Ma-
chine Learning Research, vol. 6, pp. 2075–2129, 2005.

[99] M. Kuss and T. Graepel, “The geometry of kernel canonical correlation analysis,”
Max Planck Institute for Biological Cybernetics, Technical Report, May, vol. 108,
2003.

[100] A. E. Council, “Guidelines for part average testing,” AEC-Q001 Rev-D, December
9, 2011, 2011.

[101] A. Daniely and S. Shalev-Shwartz, “Complexity theoretic limitations on learning
dnf’s,” in 29th Annual Conference on Learning Theory, vol. 49 of Proceedings of
Machine Learning Research, pp. 815–830, PMLR, 23–26 Jun 2016.

318

[102] R. Motwani and P. Raghavani, “Randomized Algorithms,” Cambridge University
Press, 1995.

[103] D. Haussler, “Quantifying inductive bias: Ai learning algorithms and valiant’s
learning framework,” Artif. Intell., vol. 36, p. 177–221, sep 1988.

[104] K.-K. Hsieh and L.-C. Wang, “A concept learning tool based on calculating version
space cardinality,” Tech. Report, March 23 2018, 2018.

[105] J. Pearl, “On the connection between the complexity and credibility of inferred
models,” International Journal of General Systems, vol. 4, pp. 255–264, 1978.

[106] R. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE
Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[107] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[108] ed. by Azim Eskandarian, “Section 10 fully autonomous driving,” Handbook of
Intelligent Vehicles, 2012.

[109] I. Goodfellow, Y. Benjio, and A. Courville, Deep Learning. The MIT Press, 2016.

[110] L.-C. Wang, “Ai at itc — promotion video,” IEEE International Test Conference
Youtube Channel, 2018.

[111] Y. J. Zeng, M. J. Yang, and L.-C. Wang, “Wafer map pattern analytics driven by
natural language queries,” in IEEE International Test Conferencel in Asia, 2022.

[112] M. W. Krentel, “The complexity of optimization problems,” Journal of Computer
and System Science, vol. 36, pp. 490–509, 1988.

[113] M. W. Krentel, “Completeness in the polynomial-time hierarchy a compendium,”
Technical Report, 2008.

[114] S. Arora and B. Barak, Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

[115] L.-C. Wang and J. Zeng, “Machine learning support for wafer-level pattern ana-
lytics,” Chapter 9 in Machine Learning Support for Fault Diagnosis of System-on-
Chip, Springer Nature, 2023.

[116] S. Illyes and D. Baglee, “Statistical bin limits: an approach to wafer dispositioning
in ic fabrication,” pp. 95–98, 1990.

[117] M. J. Moreno-Lizaranzu and F. Cuesta, “Improving electronic sensor reliability by
robust outlier screening.,” Sensors (Basel, Switzerland), vol. 13, no. 10, pp. 13521–
13542, 2013.

319

http://www.deeplearningbook.org

[118] R. Miller and W. C. Riordan, “Unit level predicted yield: a method of identifying
high defect density die at wafer sort,” International Test Conference, 2001.

[119] W. Riordan, R. Miller, and E. St Pierre, “Reliability improvement and burn in
optimization through the use of die level predictive modeling,” Reliability Physics
Symposium, 2005. Proceedings. 43rd Annual. 2005 IEEE International, pp. 435–
445, 2005.

[120] K. P. White, B. Kundu, and C. M. Mastrangelo, “Classification of defect clusters
on semiconductor wafers via the hough transformation,” IEEE Transactions on
Semiconductor Manufacturing, vol. 21, no. 2, pp. 272–278, 2008.

[121] Y.-S. Jeong, S.-J. Kim, and M. K. Jeong, “Automatic identification of defect pat-
terns in semiconductor wafer maps using spatial correlogram and dynamic time
warping,” IEEE Transactions on Semiconductor manufacturing, vol. 21, no. 4,
pp. 625–637, 2008.

[122] M. Rosenblatt et al., “Remarks on some nonparametric estimates of a density
function,” The Annals of Mathematical Statistics, vol. 27, no. 3, pp. 832–837, 1956.

[123] F. Pedregosa and et al., “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[124] M.-J. Wu, J.-S. R. Jang, and J.-L. Chen, “Wafer map failure pattern recognition
and similarity ranking for large-scale data sets,” IEEE Tran. on Semi. Manufac-
turing, vol. 28, no. 1, pp. 1–12, 2015.

[125] M. Fan, Q. Wang, and B. van der Waal, “Wafer defect patterns recognition based
on optics and multi-label classification,” IEEE Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC), 2016.

[126] J. Yu and X. Lu, “Wafer map defect detection and recognition using joint local
and nonlocal linear discriminant analysis,” IEEE Tran. on Semi. Manufacturing,
vol. 29, no. 1, pp. 33–43, 2016.

[127] a. a. Minghao Piao, “Decision tree ensemble-based wafer map failure pattern recog-
nition based on radon transform-based features,” IEEE Tran. on Semi. Manufac-
turing, vol. 31, no. 2, pp. 250–257, 2018.

[128] N. Yu, Q. Xu, and H. Wang, “Wafer defect pattern recognition and analysis based
on convolutional neural network,” IEEE Transactions on Semiconductor Manufac-
turing, vol. 32, no. 4, pp. 566–573, 2019.

[129] J. Wang, Z. Yang, J. Zhang, Q. Zhang, and W.-T. K. Chien, “Adabalgan: An
improved generative adversarial network with imbalanced learning for wafer de-
fective pattern recognition,” IEEE Transactions on Semiconductor Manufacturing,
vol. 32, no. 3, pp. 310–319, 2019.

320

[130] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and J. Bengio, “Generative adversarial networks,” arXiv:1406.2661,
2014.

[131] T.-H. Tsai and Y.-C. Lee, “A light-weight neural network for wafer map classifi-
cation based on data augmentation,” IEEE Transactions on Semiconductor Man-
ufacturing, vol. 33, no. 4, pp. 663–672, 2020.

[132] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal represen-
tations by error propagation,” Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, vol. 1, pp. 318–362, 1986.

[133] M. Saqlain, Q. Abbas, and J. Y. Lee, “A deep convolutional neural network for
wafer defect identification on an imbalanced dataset in semiconductor manufac-
turing processes,” IEEE Transactions on Semiconductor Manufacturing, vol. 33,
no. 3, pp. 436–444, 2020.

[134] M. B. Alawieh, D. Boning, and D. Z. Pan, “Wafer map defect patterns classification
using deep selective learning,” ACM/IEEE Design Automation Conference, 2020.

[135] H. Hu, C. He, and P. Li, “Semi-supervised wafer map pattern recognition using
domain-specific data augmentation and contrastive learning,” in 2021 IEEE Inter-
national Test Conference (ITC), pp. 113–122, 2021.

[136] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” 2015.

[137] C. Shan, A. Wahba, L.-C. Wang, and N. Sumikawa, “Deploying a machine learning
solution as a surrogate,” in IEEE International Test Conference, pp. 1–10, IEEE,
2019.

[138] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv:1701.07875v3,
2017.

[139] D. Berthelot, T. Schumm, and L. Metz, “Began: Boundary equilibrium generative
adversarial networks,” arXiv:1703.10717v4, 2017.

[140] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” arXiv:1511.06434v2, 2016.

[141] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” J. Mach.
Learn. Res., vol. 15, pp. 1929–1958, Jan. 2014.

[142] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training GANs,” arXiv:1606.03498v1, 2016.

321

[143] M. Abadi and et al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. Software available from tensorflow.org.

[144] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun,
eds.), 2015.

[145] L.-C. Wang, J. Shan, and A. Wahba, “Facilitating deployment of a wafer-based an-
alytic software using tensor methods: Invited paper,” in International Conference
on Computer-Aided Design (ICCAD), IEEE/ACM, 2019.

[146] A. Wahba, L.-C. Wang, Z. Zhang, and N. Sumikawa, “Wafer pattern recognition
using tucker decomposition,” in VLSI Test Symposium (VTS), 2019 IEEE 37th,
pp. 1–6, IEEE, 2019.

[147] A. Wahba, C. Shan, L.-C. Wang, and N. Sumikawa, “Measuring the complexity of
learning in concept recognition,” in Int. Symposium on VLSI Design, Automation
and Test, pp. 1–4, IEEE, 2019.

[148] A. Wahba, J. Shan, L.-C. Wang, and N. Sumikawa, “Wafer plot classification using
neural networks and tensor methods,” in ITC-Asia, pp. 79–84, IEEE, 2019.

[149] F.-F. Li, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594–
611, 2006.

[150] M. Fink, “Object classification from a single example utilizing class relevance met-
rics,” Advances in Neural Information Processing Systems, pp. 449–456, 2005.

[151] E. G. Miller, N. E. Matsakis, and P. A. Viola, “Learning from one example through
shared densities on transforms,” Conference on Computer Vision and Pattern
Recognition, pp. 464–471, 2000.

[152] E. Schwartz, L. Karlinsky, J. Shtok, and e. a. Harary, “Deltaencoder: An effec-
tive sample synthesis method for few-shot object recognition,” Advances in NIPS,
pp. 2850–2860, 2018.

[153] B. Hariharan and R. Girshick, “Low-shot visual recognition by shrinking and hal-
lucinating features,” International Conference on Computer Vision, 2017.

[154] B. Liu, X. Wang, M. Dixit, R. Kwitt, and N. Vasconcelos, “Feature space transfer
for data augmentation,” Conference on Computer Vision and Pattern Recognition,
p. 9090–9098, 2018.

322

[155] e. a. H. Gao, “Low-shot learning via covariance-preserving adversarial augmenta-
tion networks,” Advances in Neural Information Processing Systems, pp. 983–993,
2018.

[156] Z. Cheny, Y. Fuy, Y. Zhang, and e. a. Jiang, “Multi-level semantic feature aug-
mentation for one-shot learning,” IEEE Transactions on Image Processing, vol. 28,
no. 9, pp. 4594–4605, 2019.

[157] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?,” Advances in Neural Information Processing Systems,
vol. 2, pp. 3320–3328, 2014.

[158] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of representa-
tions for domain adaptation,” Advances in Neural Information Processing Systems,
no. 22, pp. 137–144, 2007.

[159] Y. Ganin, E. Ustinova, H. Ajakan, and e. a. Germain, “Domain-adversarial training
of neural networks,” Journal of Machine Learning Research, vol. 17, no. 1, pp. 1–35,
2016.

[160] S. Hochreiter, A. S. Younger, and P. R. Conwell., “Learning to learn using gradient
descent,” International Conference on Artificial Neural Networks, pp. 87–94, 2001.

[161] Y. Guo, N. C. Codella, L. Karlinsky, and e. a. Codella, “A broader study of cross-
domain few-shot learning,” A. Vedaldi et al. (Eds.): ECCV 2020, LNCS, Springer
Nature Switzerland AG 2020, vol. 12372, pp. 124–141, 2020.

[162] X. Dong and J. Shen, “Triplet loss in siamese network for object tracking,” in
European Conference on Computer Vision, Sep 2018.

[163] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[164] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.

[165] S. Zhao, J. Song, and S. Ermon, “Infovae: Information maximizing variational
autoencoders,” 2017.

[166] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Ma-
chine Learning Research, vol. 9, pp. 2579–2605, 2008.

[167] D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
3 draft ed., 2023.

323

[168] Y. Wang and et al., “Building a semantic parser overnight,” in Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), Association for Computational Linguistics, 2015.

[169] J. Berant and P. Liang, “Semantic parsing via paraphrasing,” in Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1415–1425, Association for Computational Linguistics, 2014.

[170] R. Shin and et al., “Constrained language models yield few-shot semantic parsers,”
CoRR, vol. abs/2104.08768, 2021.

[171] T. Wolfson and et al., “Break it down: A question understanding benchmark,”
CoRR, vol. abs/2001.11770, 2020.

[172] T. Brown and et al., “Language models are few-shot learners,” CoRR,
vol. abs/2005.14165, 2020.

[173] T. B. B. et al., “Language models are few-shot learners,” CoRR (also in NeurlPS
Proceedings), vol. abs/2005.14165, 2020.

[174] R. Bommasani and el al., “On the opportunities and risks of foundation models,”
arXiv:2108.07258, 2021.

[175] M. C. et al., “Evaluating large language models trained on code,” CoRR,
vol. abs/2107.03374, 2021.

[176] L. O. et al., “Training language models to follow instructions with human feedback,”
CoRR, vol. abs/2203.02155, 2022.

[177] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents,” CoRR,
vol. abs/2201.07207, 2022.

[178] M. A. et al., “Do as i can, not as i say: Grounding language in robotic affordances,”
CoRR, vol. abs/2204.01691, 2022.

[179] Y. J. Zeng, M. J. Yang, and L.-C. Wang, “Wafer map pattern analytics driven by
natural language queries,” in IEEE International Test Conference in Asia, 2022.

[180] A. H. et al., “Knowledge graphs,” CoRR, vol. abs/2003.02320, 2020.

[181] M. Nero, Domain-Specific Machine Learning - A No-Free-Lunch Perspective. UCSB
PhD Thesis, March 2022.

[182] J. Shan, Domain-Specific Machine Learning - A Human Learning Perspective.
UCSB PhD Thesis, March 2022.

324

[183] D. W. et al., “Dynamic integration of background knowledge in neural nlu systems,”
CoRR, vol. abs/1706.02596, 2017.

[184] B. Y. Lin, X. Chen, J. Chen, and X. Ren, “KagNet: Knowledge-aware graph
networks for commonsense reasoning,” CoRR, 2019.

[185] Y. e. a. Feng, “Scalable multi-hop relational reasoning for knowledge-aware question
answering,” in Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1295–1309, nov 2020.

[186] M. e. a. Yasunaga, “QA-GNN: Reasoning with language models and knowledge
graphs for question answering,” in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 535–546, jun 2021.

[187] X. Z. et al., “GreaseLM: Graph reasoning enhanced language models for question
answering,” CoRR, vol. abs/2201.08860, 2022.

[188] R. Speer, J. Chin, and C. Havasi, “ConceptNet 5.5: An open multilingual graph of
general knowledge,” in AAAI Conference on Artificial Intelligence, pp. 4444–4451,
2017.

[189] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” CoRR (also in EMNLP, 2019.

[190] M. e. a. Faruqui, “Retrofitting word vectors to semantic lexicons,” in Proc NA-
ACL: Human Language Technologies, pp. 1606–1615, 2015.

[191] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep
bidirectional transformers for language understanding,” CoRR, 2018.

[192] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza: A Python
natural language processing toolkit for many human languages,” in Proc. 58th
ACL: System Demonstrations, 2020.

[193] A. Singhal, “Introducing the knowledge graph: things, not strings,” Google Blog,
2012.

[194] G. Klyne, J. J. Carroll, and B. McBridge, “RDF 1.1 Concepts and Abstract Syn-
tax,” W3C, 2014.

[195] P. H. et al., “OWL 2 Web Ontology Language primer (second edition),” W3C,
2012.

[196] Y. Zeng and L.-C. Wang, “Domain knowledge graph construction via a simple
checker,” 2023.

325

[197] A. Waterman and K. Asanovi´c, “The risc-v instruction set manual, volume i:
User-level isa, document version 20191213,” 2019.

[198] D. Beckett and T. Berners-Lee, “Turtle - terse rdf triple language,” 2011.

[199] J. Yan, C. Wang, W. Cheng, M. Gao, and A. Zhou, “A retrospective of knowledge
graphs,” Frontiers of Computer Science, vol. 12, pp. 55–74, 2018.

[200] H. Ye, N. Zhang, H. Chen, and H. Chen, “Generative knowledge graph construction:
A review,” in Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, (Abu Dhabi, United Arab Emirates), pp. 1–17, Association
for Computational Linguistics, Dec. 2022.

[201] Y. Luan, L. He, M. Ostendorf, and H. Hajishirzi, “Multi-task identification of en-
tities, relations, and coreference for scientific knowledge graph construction,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, (Brussels, Belgium), pp. 3219–3232, Association for Computational
Linguistics, Oct.-Nov. 2018.

[202] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition,” in Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142–147,
2003.

[203] D. Milne and I. H. Witten, “Learning to link with wikipedia,” in Proceedings of
the 17th ACM Conference on Information and Knowledge Management, CIKM ’08,
(New York, NY, USA), p. 509–518, Association for Computing Machinery, 2008.

[204] D. Zelenko, C. Aone, and A. Richardella, “Kernel methods for relation extraction,”
in Proceedings of the 2002 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2002), pp. 71–78, Association for Computational Linguistics,
July 2002.

[205] D. Zelenko, C. Aone, and J. Tibbetts, “Coreference resolution for information ex-
traction,” in Proceedings of the Conference on Reference Resolution and Its Appli-
cations, (Barcelona, Spain), pp. 24–31, Association for Computational Linguistics,
July 2004.

[206] S. Bird, “NLTK: The Natural Language Toolkit,” in Proceedings of the COL-
ING/ACL 2006 Interactive Presentation Sessions, (Sydney, Australia), pp. 69–72,
Association for Computational Linguistics, July 2006.

[207] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky,
“The Stanford CoreNLP natural language processing toolkit,” in Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System

326

Demonstrations, (Baltimore, Maryland), pp. 55–60, Association for Computational
Linguistics, June 2014.

[208] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local information
into information extraction systems by Gibbs sampling,” in Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL’05), (Ann
Arbor, Michigan), pp. 363–370, Association for Computational Linguistics, June
2005.

[209] W. Liao and S. Veeramachaneni, “A simple semi-supervised algorithm for named
entity recognition,” in Proceedings of the NAACL HLT 2009 Workshop on Semi-
supervised Learning for Natural Language Processing, (Boulder, Colorado), pp. 58–
65, Association for Computational Linguistics, June 2009.

[210] I. Mondal, Y. Hou, and C. Jochim, “End-to-end construction of NLP knowl-
edge graph,” in Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, (Online), pp. 1885–1895, Association for Computational Linguistics,
Aug. 2021.

[211] A. Harnoune, M. Rhanoui, M. Mikram, S. Yousfi, Z. Elkaimbillah, and B. E. Asri,
“BERT based clinical knowledge extraction for biomedical knowledge graph con-
struction and analysis,” Computer Methods and Programs in Biomedicine Update,
vol. 1, p. 100042, 2021.

[212] D. Chen and C. Manning, “A fast and accurate dependency parser using neural
networks,” in Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), (Doha, Qatar), pp. 740–750, Association for
Computational Linguistics, Oct. 2014.

[213] M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J. Zhu, “Fast and accurate shift-reduce
constituent parsing,” in Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), (Sofia, Bulgaria), pp. 434–
443, Association for Computational Linguistics, Aug. 2013.

[214] R. Shin, C. Lin, S. Thomson, C. Chen, S. Roy, E. A. Platanios, A. Pauls, D. Klein,
J. Eisner, and B. Van Durme, “Constrained language models yield few-shot seman-
tic parsers,” in Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, (Online and Punta Cana, Dominican Republic), pp. 7699–
7715, Association for Computational Linguistics, Nov. 2021.

[215] Y. Lu, H. Lin, J. Xu, X. Han, J. Tang, A. Li, L. Sun, M. Liao, and S. Chen,
“Text2Event: Controllable sequence-to-structure generation for end-to-end event
extraction,” in Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), (Online), pp. 2795–2806, Association
for Computational Linguistics, Aug. 2021.

327

[216] T. Wolfson, M. Geva, A. Gupta, M. Gardner, Y. Goldberg, D. Deutch, and J. Be-
rant, “Break it down: A question understanding benchmark,” Transactions of the
Association for Computational Linguistics, vol. 8, pp. 183–198, 2020.

[217] S. Arora and B. Barak, Chapter 8 Interactive Proofs in Computational Complexity:
A Modern Approach. Cambridge University Press, June 2012.

[218] C. Boettiger, rdflib: A high level wrapper around the redland package for common
rdf applications, 2018.

[219] C. D. Paice, “Another stemmer,” SIGIR Forum, vol. 24, p. 56–61, nov 1990.

[220] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot
learners,” in Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
eds.), 2020.

[221] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko,
J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du,
B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin,
T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra,
K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiri-
donov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai,
M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou,
X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern,
D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with
pathways,” J. Mach. Learn. Res., vol. 24, pp. 240:1–240:113, 2023.

[222] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and
G. Lample, “Llama: Open and efficient foundation language models,” CoRR,
vol. abs/2302.13971, 2023.

[223] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. T.
Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig,
P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer, “OPT: open pre-trained
transformer language models,” CoRR, vol. abs/2205.01068, 2022.

328

[224] S. Arora and B. Barak, Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

[225] O. Goldreich, Computational complexity - a conceptual perspective. Cambridge
University Press, 2008.

[226] O. Goldreich, Introduction to Property Testing. Cambridge University Press, 2017.

[227] M. Blum and S. Kannan, “Designing programs that check their work,” J. ACM,
vol. 42, no. 1, pp. 269–291, 1995.

[228] Y. Yao, D. Ye, P. Li, X. Han, Y. Lin, Z. Liu, Z. Liu, L. Huang, J. Zhou, and
M. Sun, “DocRED: A large-scale document-level relation extraction dataset,” in
Proceedings of the 57th Annual Meeting of the Association for Computational Lin-
guistics, (Florence, Italy), pp. 764–777, Association for Computational Linguistics,
July 2019.

[229] W. B. Dolan and C. Brockett, “Automatically constructing a corpus of sentential
paraphrases,” in Proceedings of the Third International Workshop on Paraphrasing
(IWP2005), 2005.

[230] Y. Arase and J. Tsujii, “Compositional phrase alignment and beyond,” in Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), (Online), pp. 1611–1623, Association for Computational Linguistics,
Nov. 2020.

[231] M. Wang and C. Manning, “Probabilistic tree-edit models with structured latent
variables for textual entailment and question answering,” in Proceedings of the 23rd
International Conference on Computational Linguistics (Coling 2010), (Beijing,
China), pp. 1164–1172, Coling 2010 Organizing Committee, Aug. 2010.

[232] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza: A python
natural language processing toolkit for many human languages,” in Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, ACL 2020, Online, July 5-10, 2020 (A. Celikyilmaz and T. Wen,
eds.), pp. 101–108, Association for Computational Linguistics, 2020.

[233] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
(Minneapolis, Minnesota), pp. 4171–4186, Association for Computational Linguis-
tics, June 2019.

329

[234] M. Krallinger, O. Rabal, F. Leitner, M. Vazquez, D. Salgado, Z. Lu, R. Leaman,
Y. Lu, D. Ji, D. M. Lowe, R. A. Sayle, R. T. Batista-Navarro, R. Rak, T. Huber,
T. Rocktäschel, S. Matos, D. Campos, B. Tang, H. Xu, T. Munkhdalai, K. H. Ryu,
S. V. Ramanan, P. S. Nathan, S. Zitnik, M. Bajec, L. Weber, M. Irmer, S. A.
Akhondi, J. A. Kors, S. Xu, X. An, U. K. Sikdar, A. Ekbal, M. Yoshioka, T. M.
Dieb, M. Choi, K. Verspoor, M. Khabsa, C. L. Giles, H. Liu, R. K. Elayavilli,
A. Lamurias, F. M. Couto, H. Dai, R. T. Tsai, C. Ata, T. Can, A. Usie, R. Alves,
I. Segura-Bedmar, P. Mart́ınez, J. Oyarzabal, and A. Valencia, “The CHEMDNER
corpus of chemicals and drugs and its annotation principles,” J. Cheminformatics,
vol. 7, no. S-1, p. S2, 2015.

[235] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai,
and Q. V. Le, “Finetuned language models are zero-shot learners,” in The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022, OpenReview.net, 2022.

[236] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller,
M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and R. Lowe, “Train-
ing language models to follow instructions with human feedback,” in Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022 (S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, eds.), 2022.

[237] OpenAI, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023.

[238] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov,
S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer, M. Chen,
G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami,
N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez,
M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog,
Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva,
E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X.
Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang,
A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation
and fine-tuned chat models,” CoRR, vol. abs/2307.09288, 2023.

[239] B. Guo, X. Zhang, Z. Wang, M. Jiang, J. Nie, Y. Ding, J. Yue, and Y. Wu, “How
close is chatgpt to human experts? comparison corpus, evaluation, and detection,”
CoRR, vol. abs/2301.07597, 2023.

330

[240] S. Herbold, A. Hautli-Janisz, U. Heuer, Z. Kikteva, and A. Trautsch, “Ai, write an
essay for me: A large-scale comparison of human-written versus chatgpt-generated
essays,” CoRR, vol. abs/2304.14276, 2023.

[241] G. Kortemeyer, “Could an artificial-intelligence agent pass an introductory physics
course?,” Phys. Rev. Phys. Educ. Res., vol. 19, p. 010132, May 2023.

[242] T. R. McIntosh, T. Liu, T. Susnjak, P. Watters, A. Ng, and M. N. Halgamuge, “A
culturally sensitive test to evaluate nuanced gpt hallucination,” IEEE Transactions
on Artificial Intelligence, vol. 1, pp. 1–13, nov 5555.

[243] V. Rawte, S. Chakraborty, A. Pathak, A. Sarkar, S. M. T. I. Tonmoy, A. Chadha,
A. P. Sheth, and A. Das, “The troubling emergence of hallucination in large lan-
guage models - an extensive definition, quantification, and prescriptive remedi-
ations,” in Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, December 6-10, 2023 (H. Bouamor,
J. Pino, and K. Bali, eds.), pp. 2541–2573, Association for Computational Linguis-
tics, 2023.

[244] D. Johnson, R. Goodman, J. Patrinely, C. Stone, E. Zimmerman, R. Donald,
S. Chang, S. Berkowitz, A. Finn, E. Jahangir, E. Scoville, T. Reese, D. Fried-
man, J. Bastarache, Y. van der Heijden, J. Wright, N. Carter, M. Alexander,
J. Choe, C. Chastain, J. Zic, S. Horst, I. Turker, R. Agarwal, E. Osmundson,
K. Idrees, C. Kieman, C. Padmanabhan, C. Bailey, C. Schlegel, L. Chambless,
M. Gibson, T. Osterman, and L. Wheless, “Assessing the accuracy and reliability
of AI-generated medical responses: An evaluation of the chat-GPT model,” Res.
Sq., Feb. 2023.

[245] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike,
J. Schulman, I. Sutskever, and K. Cobbe, “Let’s verify step by step,” CoRR,
vol. abs/2305.20050, 2023.

[246] M. Bhatt, S. Chennabasappa, C. Nikolaidis, S. Wan, I. Evtimov, D. Gabi,
D. Song, F. Ahmad, C. Aschermann, L. Fontana, S. Frolov, R. P. Giri, D. Kapil,
Y. Kozyrakis, D. LeBlanc, J. Milazzo, A. Straumann, G. Synnaeve, V. Vontimitta,
S. Whitman, and J. Saxe, “Purple llama cyberseceval: A secure coding benchmark
for language models,” CoRR, vol. abs/2312.04724, 2023.

[247] H. Inan, K. Upasani, J. Chi, R. Rungta, K. Iyer, Y. Mao, M. Tontchev, Q. Hu,
B. Fuller, D. Testuggine, and M. Khabsa, “Llama guard: Llm-based input-output
safeguard for human-ai conversations,” CoRR, vol. abs/2312.06674, 2023.

[248] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery,
and D. Zhou, “Self-consistency improves chain of thought reasoning in language

331

models,” in The Eleventh International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023, OpenReview.net, 2023.

[249] X. Chen, R. Aksitov, U. Alon, J. Ren, K. Xiao, P. Yin, S. Prakash, C. Sutton,
X. Wang, and D. Zhou, “Universal self-consistency for large language model gen-
eration,” CoRR, vol. abs/2311.17311, 2023.

[250] P. Manakul, A. Liusie, and M. J. F. Gales, “Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models,” in Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023 (H. Bouamor, J. Pino, and K. Bali, eds.),
pp. 9004–9017, Association for Computational Linguistics, 2023.

[251] S. Lin, J. Hilton, and O. Evans, “TruthfulQA: Measuring how models mimic human
falsehoods,” in Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), (Dublin, Ireland), pp. 3214–3252,
Association for Computational Linguistics, May 2022.

[252] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna,
and R. Rombach, “SDXL: improving latent diffusion models for high-resolution
image synthesis,” CoRR, vol. abs/2307.01952, 2023.

332

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	An Example of Engineering Work Content
	The Search Process
	Reflection in Other Contexts
	Ten Points from ML to Our AI Assistant
	Conclusion

	Journey to IEA - The 1st Decade
	Data-Driven View (2004 – 2013)
	Design-Silicon Timing Correlation
	Speedpath Analysis
	RTL Functional Verification
	Customer Return Analysis
	Other Areas to Apply Machine Learning
	Lessons Learned from the First Ten Years
	A Chronological Remark for the First Ten Years

	Journey to IEA - The 2nd Decade
	Knowledge-Driven View (2014 – 2017)
	Modeling domain knowledge with an executable workflow
	Plot-based analytics
	Learning Domain Knowledge in Functional Verification
	Three Challenges Motivating Language-Driven Analytics
	Co-ML Capabilities
	Monomial Learning
	Uniqueness in View of Occam's Learning
	Local No-Free-Lunch (L-NFL)
	Autonomous System View (2018 – 2021)
	The Latest Three Views (2022, 2023, 2024)
	DSML in View of Computational Complexity

	Wafermap Analytics
	Yield Excursion
	A Yield Excursion Example
	ML View to Wafermap Analytics
	Types of Analytic Questions
	From ML Classifier to DSML Oracle
	Concept Recognition
	The MINIONs Approach
	Experiment Results

	Problem-Solution Dual View
	Dual View of DSML
	Language-Driven Analytics
	IEA 2022
	Connecting LLM via Semantic Parsing
	Implementation of Backend API

	IEA 2023
	Introduction
	Use of Knowledge Graph
	Wafermap Analytics in IEA-Plot
	Analytics Driven by a Dialog
	Frontend Parser for Task Grounding
	A Remark about IEA-Plot

	Knowledge Graph
	Development of the KG in IEA-Plot
	The Importance of Having the First KG
	A Formalism Regarding the KG in IEA
	Toward Automating KG Construction

	Oracle-Checker Scheme
	Per-Sample Examination of LLM's Responses
	Realizing GH-check In Entity Extraction
	Realizing GI-check In Paraphrase Decision
	Experiments
	Related Work
	Limitations
	Summary

	Journey from IEA - The Next Decade
	The Generative AI View
	The Oracle-Checker View

	Conclusion
	Takeaways
	Ten Questions And Their Answer
	Philosophical Remarks

	Bibliography

