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Abstract

Decision-making is often hierarchical and approximate in na-
ture: decisions are not being made based on actual observa-
tions, but on intermediate variables that themselves have to
be inferred. Recently, we showed that during sequential per-
ceptual decision-making, those conditions induce characteris-
tic temporal biases that depend on the balance of sensory and
category information present in the stimulus. Here, we show
that the same model makes predictions for when observers will
be over-confident and when they will be under-confident with
respect to a Bayesian observer. We tested these predictions by
collecting new data in a dual-report decision-making task. We
found that for most participants the bias in confidence judg-
ments changed in the predicted direction for stimulus changes
that led them from over-weighting early evidence to equal
weighting of evidence or over-weighting of late evidence. Our
results suggest that approximate hierarchical inference might
provide the computational basis for biases beyond low-level
perceptual decision-making, including those affecting higher
level cognitive functions like confidence judgements.
Keywords: perceptual decision-making; approximate infer-
ence; feedback; choice bias; confidence judgements

Introduction
Humans make decisions by integrating information over time.
Previous work has identified temporal biases during percep-
tual decision-making in which participants’ decisions are in-
fluenced more by early evidence (primacy effect; (Kiani,
Hanks, & Shadlen, 2008; Nienborg & Cumming, 2009)), later
evidence (recency effect; (Drugowitsch, Wyart, Devauchelle,
& Koechlin, 2016)), or weighted equally across the trial (op-
timality; (Wyart, De Gardelle, Scholl, & Summerfield, 2012;
Brunton, Botvinick, & Brody, 2013)) in situations when op-
timal decision-making demands equal weight given to all
pieces of evidence (Figure 1A).

In a recent study, we proposed a new theory for these bi-
ases (Lange, Chattoraj, Beck, Yates, & Haefner, 2020). The
theory first acknowledges that the brain does not use sensory
observations (e.g. activity in the retina) directly to make deci-
sions, but instead bases them on intermediate sensory features
(e.g. in visual cortex). This implies a partition on the infor-
mation each stimulus holds about the correct choice. “Sen-
sory information” represents the amount of information be-
tween stimulus and intermediate feature. “Category informa-
tion” represents the information between feature and correct
choice. For sequential tasks, consisting of multiple stimu-
lus frames, category information typically corresponds to the
proportion of frames which are consistent with the correct
choice. In the approximate hierarchical inference model of

our previous work (Lange et al., 2020), the temporal bias
depends on the balance of sensory and category information
such that the primacy effect is seen when category informa-
tion dominates while the recency effect and optimal weighing
are seen when sensory information dominates (Figure 1A) –
in agreement with prior empirical studies (Figure 1C).

In this study, we investigated whether sensory informa-
tion and category information also affects another commonly
studied concept: confidence. Confidence is usually defined as
the belief of a participant that their choice in a task was cor-
rect (Pouget, Drugowitsch, & Kepecs, 2016; Grimaldi, Lau,
& Basso, 2015; Meyniel, Sigman, & Mainen, 2015; Li &
Ma, 2020). Confidence judgements are known to be sys-
tematically influenced by certain stimulus statistics including
volatility, whose effect has been linked to evidence integra-
tion (Zylberberg, Fetsch, & Shadlen, 2016; Castañón et al.,
2019). In these studies, increasing volatility of the stimulus
made participants more confident despite similar accuracy.

Investigating our hierarchical approximate inference model
from previous work, we found that high category informa-
tion should not just entail a primacy bias but also over-
confidence, whereas low category information leading to an
optimal weighting of evidence or the presence of a recency
bias should make an observer as confident as a Bayesian ob-
server, or under-confident, respectively. We next tested these
predictions by collecting new data from a dual report per-
ceptual discrimination and confidence judgment task. We
both qualitatively replicated our previous results on temporal
weighting biases, and found that stimulus conditions which
induced a primacy bias in participants also made them over-
confident, compared to stimulus conditions that induced flat
weighting.

Hierarchical Approximate Inference
We follow (Lange et al., 2020) in implementing a sampling-
based approximate inference model of the visual discrimina-
tion task in Figure 1D-E (see also Visual Discrimination Task
section). In this task, participants determine whether a se-
ries of noisy oriented stimuli had more frames tilted left or
right. The ideal observer chooses the most probable choice
C ∈ {−1,+1} by integrating the sensory evidence e f in each
frame f over F independent frames according to Bayes rule:

p(C|e1, . . . ,eF) ∝ p(C)
F

∏
f=1

p(e f |C)
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Figure 1: Model and task to test confidence judgements (A) Examples of temporal weighting profiles, showing primacy
effect (red), optimal weighting (violet), and recency effect (blue). (B) Model proposed in (Lange et al., 2020) for LSHC and
HSLC conditions. Evidence in frame e f is used to infer sensory representation x f , which is used to update posterior for choice
C. LSHC: low sensory information means posterior update will be dominated by prior, which is posterior after last frame,
inducing confirmation bias (thick red arrow from C to x f and back, shown in left figure). HSLC: high sensory information
means likelihood dominates update, thwarting confirmatory feedback (thick blue arrow from e f to x f , shown in right figure).
(C) Task space proposed by (Lange et al., 2020) measuring category (y-axis) and sensory (x-axis) information. Red zone
(LSHC) indicates tasks that show primacy effect; blue area (HSLC) indicates tasks that show optimal or recency effect in
weighting profile. Our results will show differences in confidence judgements along the same stimulus dimensions (D-E)
Two conditions of experimental task. Participant sees 10 frames of filtered noise oriented ±45deg and reports the majority
orientation. They report their confidence before receiving feedback. (D) LSHC stimulus contains low sensory (orientation
hard to detect) but high category (each frame consistent with answer) information. (E) HSLC stimulus contains high sensory
(orientation easy to detect) information but low category information (contains inconsistent frames). (A), (B) and (C) have been
adapted from (Lange et al., 2020).

This can be done according to the Sequential Probability Ra-
tio Test (Gold & Shadlen, 2007), wherein a running estimate
of the log posterior odds LPO f is updated every frame. Since
decision-making areas in the brain do not have access to pe-
ripheral sensory observations, the inferred intermediate sen-
sory representation x needs to be integrated out (see Figure
1B):

log
p f (C =+1)
p f (C =−1)︸ ︷︷ ︸

LPO f

≡ log
p(C =+1|e1, . . . ,e f )

p(C =−1|e1, . . . ,e f )

= log
p f−1(C =+1)
p f−1(C =−1)

+ log
p(e f |C =+1)
p(e f |C =−1)

= log
p f−1(C =+1)
p f−1(C =−1)︸ ︷︷ ︸

LPOf−1

+ log
∫

x p(e f |x)p(x|C =+1)dx∫
x p(e f |x)p(x|C =−1)dx︸ ︷︷ ︸

ˆLLO f

(1)

= LPO f−1 + ˆLLO f (2)

where ˆLLO f is the estimate of the log-likelihood ratio im-
plied by evidence e f via sensory intermediate x and LPO f−1
is the log posterior odds up to the previous evidence frame
f − 1. LPO f−1 acts as prior for the current frame f causing
early evidence to influence the interpretation of evidence later
in the trial. Since the strength of the prior is directly related
to category information, this leads to a primacy bias when
category information is high (Figure 2F).

Importantly, exact inference in this model produces an
equal weighting of evidence (see Figure 2F). The temporal
bias arises under the assumptions that (1) the intermediate
sensory representation x does not encode the choice likeli-
hood for that frame, but the posterior, and therefore is modu-
lated by top-down feedback which acts as a prior on x, incor-
porating current beliefs about stimulus category (Figure 1B)
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Figure 2: Model simulations for confidence and temporal bias for approximate and ideal observers (A-D) Simulation
traces show LPO (y-axis) over 10 frames (x-axis) of LSHC stimulus (A,C) and HSLC stimulus (B,D) for approximate in-
ference (A,B) and exact inference /ideal observer (C,D). Absolute LPO at the final frame is taken as a proxy to confidence
judgements, whose distribution is shown to the right. (E) Average absolute LPO shown for approximate observers with and
without leak/forgetting and ideal observers for both stimulus conditions. Note LSHC for approximate observer shows much
larger confidence, corresponding to the larger LPO spread in (A). Also, HSLC for approximate observer is equal to HSLC for
ideal observer without leak/forgetting but becomes slightly less when a small leak/forgetting term is considered. (F) Normal-
ized temporal weights for the same simulations. Note ideal observer shows flat, or optimal weighing profile (purple dashed
line), while approximate observer (Approx. Inf model) shows primacy effect for LSHC (dark red) and optimal effect for HSLC
(dark blue). Thus the model predicts increased confidence to co-occur with primacy bias. ‘Approx. Inf model with leak’
simulates a forgetting term that attempts to reduce the effect of “double counting” of evidence, thereby reducing the strength of
primacy bias, i.e, LPO f = (1− γ)LPO f−1 + ˆLLO f . γ = 1 would make primacy disappear. For ‘Approx. Inf model’ γ = 0.0, for
‘Approx. Inf model with leak’ γ = 0.05, causing primacy to slightly decrease as expected (compare dark and light red lines) in
LSHC condition and optimal become slight recency (compare dark and light blue lines) in HSLC condition. Increasing γ would
increase this shift. More details in (Lange et al., 2020)

and (2) inference in the model is approximate (see (Lange et
al., 2020) for more details). The degree to which the prior’s
influence on the intermediate representation is over- or under-
corrected during online processing determines the temporal
weighting within a trial. Specifically, under-correcting for
the influence of the prior (across frames) leads to an effec-
tive double-counting of beliefs about the correct choice for a
trial and hence primacy effect, whereas as over-correcting for
the prior effectively leads to forgetting, or leaky integration,
and a subsequent recency effect (compare red lines, dark blue
line and light blue line respectively in Figure 2 F). Impor-
tantly, the strength of the prior’s influence is determined by
the amount of category information in the stimulus (Figure
1B+C, (Lange et al., 2020) for more details). We will there-
fore compare two stimulus conditions in our work: Low Sen-
sory & High Category (LSHC) information, and High Sen-
sory & Low Category (HSLC) information — both matched
for overall (threshold) performance on the task. In the context

of a orientation discrimination task, Figure 1D+E shows the
corresponding stimuli.

Log posterior odds as proxy for confidence
Our model assumes that reported confidence is monotonically
related to the strength of evidence collected throughout a trial,
so we use the absolute value of the log posterior odds after the
final frame, |LPOF | as a proxy for confidence. The model’s
choice is determined by the sign of LPOF , while the confi-
dence by its magnitude.

Feedback between decision area and sensory area
causes primacy and high confidence
Using identical model parameters to (Lange et al., 2020),
we first confirmed that our hierarchical inference model pro-
duced the same temporal biases during approximate, but not
exact inference, as previously reported (Figure 2F). We next
investigated the confidence judgements implied by the ap-
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proximate model and found that they indeed differed between
the two stimulus conditions: for the LSHC condition, the fi-
nal absolute LPO were substantially larger on average than in
the HSLC condition. Furthermore, in the LSHC condition,
confidence was higher than for an ideal observer (exact in-
ference), and in the HSLC condition it was equal to that of
an ideal observer, and lower in the presence of an additional
forgetting term (Figure 2E). The reason for this is intuitive:
the same confirmatory (positive feedback) dynamics between
the decision-making representation and the sensory represen-
tation that lead to an overweighting of early evidence, pull
the accumulated log odds away from 0, such that their final
distribution at the end of the trial is wider than without those
feedback dynamics. As a result, the average LPO at the end
of the trial is larger than for the ideal observer (Figure 2A). In
the absence of this confirmation bias dynamic, the final LPO
will agree with those of an ideal observer, and match it in its
confidence judgements. When we introduce a small leak (for-
getting) term in our model then the final LPO for HSLC stim-
uli becomes slightly less than the ideal observer. This small
leak/forgetting term allows us to account for subjects showing
recency bias as in (Lange et al., 2020). This leak/forgetting
term pulls LPOs towards zero, and hence a smaller average
confidence than the ideal observer (Figure 2B). Figures 2C-F
confirm that confidence is matched and temporal biases are
absent for the ideal observer.

Finally, we characterized the predicted confidence judge-
ments (mean final |LPO|) for a wide range of sensory and
category information values (Figure 3). As expected, sim-
ulations of the ideal model, representing a control, show
unbiased confidence values that depend equally on sensory
and category information (Figure 3B). For the approximate
model, on the other hand, confidence values more strongly
depend on category information (Figure 3A). This is consis-
tent with the dynamic described in (Lange et al., 2020), that
strong beliefs about the category of a trial reinforce them-
selves by biasing intermediate sensory representations when
those beliefs are indeed predictive of future sensory inputs
within a trial (high category information). The region of
high confidence in the upper part of the plot is the same re-
gion where the primacy bias in the weighting of evidence is
the strongest (compare equivalent bias plots in (Lange et al.,
2020)).

Visual Discrimination Task
Rationale
We next collected new data using a dual-report discrimination
and confidence judgement report task (Figure 1D,E). This
allowed us to test our new predictions for how confidence
judgements should depend on the stimulus statistics at the
same time as replicating our earlier findings on changes in
temporal biases. Ten frames of filtered noise with orientation
energy at ±45 degrees were presented to each participant, af-
ter which they reported the dominant orientation as well as
the confidence.
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Figure 3: Expected confidence as a function of sensory and
category information (A) Simulations for approximate in-
ference model show confidence grows primarily with cate-
gory information. (B) Simulations for ideal observer show
confidence is equally affected by category and sensory infor-
mation.

Participants
Ten students at the University of Rochester (all naive to the
goals to the study) participated in this study. All participants
were compensated for their time. All experiments were per-
formed by following the guidelines and methods approved by
the Research participants Review Board.

Stimulus
The stimulus was a band-pass filtered noise masked by a soft-
edged annulus (Beaudot & Mullen, 2006; Nienborg & Cum-
ming, 2014; Bondy, Haefner, & Cumming, 2018). The annu-
lus contained a small white cross in the center, on which par-
ticipants were instructed to fixate. Each stimulus subtended
2.08 degrees of visual angle around the fixation point (see
Figure 1D,E). The mean spatial frequency was = 6.90 cycles
per degree, the spread of spatial frequency was = 3.45 cycles
per degree, the (inverse) spread of orientation energy denoted
by κ ranges from 0.0 to 0.8 (sensory information), the image
luminance was 127± 22 and the width of the central annu-
lus cutout was 0.43◦. The number of frames that matched
the correct answer for a trial, pmatch, ranged from 0.5 to 1.0
(category information). We generated the stimuli using Mat-
lab and Psychtoolbox and presented them on a 1920x1080px
120 Hz monitor with gamma-corrected luminance (Brainard,
1997). Participants kept a constant viewing distance of 105
cm using a chin-rest.

The design of the stimulus minimized the effects of small
fixational eye movements. The range of spatial frequencies
was kept constant for all participants (same as in (Lange et
al., 2020)).

Procedure
In the LSHC condition, following (Lange et al., 2020), we
run a 2:1 staircase on κ (starting from 0.8) which controls
the amount of orientation energy in each frame of stimulus,
and hence determines difficulty of detecting the orientation of
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reports (A) Psychometric curves for LSHC condition. Thin
lines denote individual participants and thick line indicates
their mean. (x-axis) Positive valued κ denotes energy in fa-
vor of +45 degrees; negative values for -45. (B) Psychomet-
ric curves for HSLC condition. (x-axis) 0 corresponds to all
stimulus frames consistent with -45 degrees; 1.0 means all
stimulus frames consistent with +45 degrees. (C-D) Individ-
ual participant accuracy as a function of reported confidence
for LSHC and HSLC conditions, respectively. All error bars
are 1 std dev.

a single stimulus frame. We keep pmatch fixed to 0.9 across
all trials. Similarly for the HSLC condition, we run a 2:1
staircase on pmatch (starting from 0.9) while keeping κ fixed
to 0.8 such that the orientation in each frame of stimulus is
clearly visible to participants.

Each trial starts by presenting a white cross in the center of
a gray screen and a black circle outline for 200 ms, indicating
the location where a series of stimuli will appear. Then 10
stimulus frames are presented around the cross, each lasting
for 83 ms (12 frames per second). After the 10th frame, a
noise mask with no orientation information is presented to
prevent any after-images. Participants make a decision by
pressing a button, indicating whether the majority of stimulus
frames were oriented +45 or -45 degrees, and then report their
confidence by pressing 1, 2, or 3 (1 is least confident, 3 is
most) within the next 1 sec. Finally, auditory feedback was
played at the end of each trial (see Figure 1D,E).

Participants learned the task using 50 trials of each condi-
tion. After that participants completed between 1500 to 2100
trials in the LSHC condition and 1000 to 1500 trials in HSLC
condition. Trials were run in blocks of 100 trials, after which
participants could take a small break.

Analysis
We calculate psychometric curves with respect to signal κ for
LSHC and pmatch for HSLC. We take the dot product of the
Fourier-domain energy of each stimulus with a difference of
Fourier-domain kernels at ±45◦ to compute signed signal κ.
The signal is a scalar value that is positive if the stimulus
contains more +45◦ energy and negative if it contains more
−45◦ energy. Accuracy is determined by simply taking the
average for all trials in which participants reported a given
confidence values (Figure4).

Temporal weights of frames are computed for trials below
the threshold performance (70%) for each participant. We
fit the weights using regularized logistic regression and then
normalized them to have a mean of one. We also compute a
slope for the weights by fitting an exponential curve (Figure
5).

Findings
First, we replicated our previous findings (Lange et al., 2020):
we confirmed that participants were able to perform the task
as shown by psychometric curves (Figure 4A,B) and that the
temporal weight profiles indeed showed a primacy effect for
the LSHC condition and an optimal weighting or slight re-
cency effect for the HSLC condition (Figure 5A). We deter-
mined the change in temporal bias for each participant by
comparing the slope of their weighing profiles (Figure 5B)
and confirmed that most participants increased their slope
from primacy in the direction of optimality/recency in the
HSLC condition.

We next confirmed the validity of the participants’ reported
confidence for both conditions (Figure 4C,D), by showing
their that reported confidence, on average, tracked their ac-
curacy.

Finally, we compared participants’ confidence reports be-
tween the two conditions using trials at or below threshold
performance (70%) (see Figure 5). We found that all but two
participants were more confident in the LSHC condition, con-
firming our model predictions. Interestingly, the two partic-
ipants who showed similar confidence in each trial (points
overlapping the identity line) also showed small or negative
effects with respect to changes in their temporal weighing
slopes (dashed lines in Figure 5). However, a statistical test
for a linear correlation between the difference in slope and
the difference in confidence judgements was not significant
across our 10 subjects.

Discussion
Replicating and building on our previous work (Lange et al.,
2020), we found that approximate hierarchical inference in-
duces biases in explicit confidence judgements that are related
to temporal weighting biases in predictable ways. Model sim-
ulations and new experimental evidence show that overconfi-
dence co-occurs with the primacy effect when sensory infor-
mation is low and category information is high.

This work suggests that approximate hierarchical infer-
ence may provide a computational basis for the emergence
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of biases beyond low-level perceptual decision-making. This
model explains how biases in confidence, a higher-level cog-
nitive faculty, can emerge due to a positive feedback loop be-
tween decision-making areas and sensory representations that
depend on stimulus statistics in a systematic way.

Interestingly, the effect on confidence we found here dif-
fers with previous studies which examined the effect of stim-
ulus volatility on confidence, showing that higher volatility
can increase confidence (Zylberberg et al., 2016; Castañón et
al., 2019). A key difference between our study and that by
Castañón et al. lies in the fact that in our experiments the evi-
dence frames were presented sequentially, while in (Castañón
et al., 2019) they were all presented on the screen at the same
time. Since the confirmation bias in our model is fundamen-
tally a temporal effect, our model would not predict a depen-
dence of confidence on volatility on its own, but would need
to be combined with the integration-noise-blindness hypoth-
esis proposed by Castañón et al..

More generally, the bias due to feedback to sensory areas
will combine with other biases induced by different sources
of suboptimal inference. (Kiani et al., 2008) suggested that
observers stop integrating evidence after they reach an in-
ternal decision-bound even in fixed stimulus duration tasks
like ours. Indeed, it is this bound that (Zylberberg et al.,

2016) shows to be able to explain the dependency of confi-
dence judgements on stimulus volatility in their experiments.
A quantitative model fit to 12 subjects in our task in our previ-
ous study revealed that their internal bounds were so high that
they did not substantially change evidence integration (Lange
et al., 2020). This suggests difference in the observer’s inter-
nal bounds as a cause of the difference between Zylberberg et
al. and our results which might not be surprising since theirs
was an explicit reaction time task.

In turn, the presence of over-confidence when subjects
show a primacy bias in evidence weighting constitutes evi-
dence against a change in internal bound being the reason for
different temporal biases in LSHC and HSLC conditions. In
principle, a low internal bound in the LSHC condition could
explain the primacy bias there, and a higher bound the opti-
mal weighting in the HSLC condition. However, in that case
confidence judgements should be lower in the LSHC than the
HSLC condition which is the opposite of what we found.

Finally, we speculate that the described dynamics and
biases in confidence generalize from perceptual decision-
making to the cognitive domain, with the key elements be-
ing temporal consistency of the evidence (category informa-
tion) and the approximate nature of the brain’s inference al-
gorithms (Griffiths, Lieder, & Goodman, 2015).
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