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Virtual staining of slide-free microscopy 

images with deep learning 
Tanishq Mathew Abraham 

Department of Biomedical Engineering 

Abstract 
 

Histopathology is the study of tissue to look for disease. In the context of clinical medicine, it involves 

the microscopic examination of patient tissue samples. The standard histopathology workflow can take 

several hours or even days, due to the cumbersome tissue processing steps needed. This long timeline 

makes the standard workflow ill-suited for time-sensitive applications such as intraoperative surgical 

guidance. Slide-free microscopy (SFM) techniques allow for imaging of fresh tissue samples without the 

need for time-consuming tissue processing steps, but they often produce images that do not closely 

resemble conventional histology and thus may be harder to interpret by pathologists. Therefore, the 

present work explored the use of deep learning to convert SFM images so as to resemble hematoxylin and 

eosin (H&E) stained slides. This process is referred to as microscopy modality conversion or virtual 

staining. The dissertation focuses on virtual staining applied to three SFM methods: microscopy with 

ultraviolet surface excitation (MUSE), fluorescence-imitating brightfield imaging (FIBI), and quantitative 

oblique back illumination microscopy (qOBM).  

In this work, three unpaired image-to-image translation algorithms were evaluated for MUSE-to-

H&E conversion, and it was concluded that an unpaired image-to image translation algorithm based on 

CycleGAN (cycle-consistent generative adversarial network) proved to be the methodology that 

performed best. FIBI, a novel SFM technique, was shown to have significant advantages when deployed 

for rapid histology. CycleGANs were also developed for FIBI-to-H&E conversion, and we demonstrated 

clinical utility of FIBI-to-H&E conversion in a preliminary dermatopathologist validation study. 

CycleGANs were also applied to provide H&E-like appearance for the monochrome qOBM images; 
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performance was validated using a neural network classifier test and a user study with neuropathologists. 

Overall, the results of this work point to the general effectiveness of CycleGANs for SFM virtual 

staining.  

This work also explored important considerations such as impact of data quality and curation on 

results and usefulness of transfer learning. Current limitations and future directions of virtual staining 

research are also discussed, such as a need for improved evaluation tools of virtual staining methods and 

the development of diagnostic AI with SFM-enabled by virtual staining. The virtual staining techniques 

explored will hopefully enable novel, alternative workflows in histopathology that utilize SFM, 

potentially saving time, labor, and costs in cancer screening, treatment guidance, and more. 
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1. Introduction and Background 

1.1 - Histopathology and its use in intraoperative consultation 

Histopathology is the study of tissue to look for disease. In the context of clinical medicine, it involves 

the microscopic examination of patient tissue samples. Typically, a clinician will collect a tissue biopsy 

sample or surgical resection from a patient. This tissue sample undergoes formalin fixation and paraffin 

embedding (FFPE) [1]. Specifically, the formalin fixation of the tissue ensures the tissue structure and 

morphology remains intact. The paraffin embedding allows for subsequent sectioning of the tissue. Thin 

tissue sections (usually about 4-6 um) are placed on microscope slides and stained with dyes that generate 

optical contrast for distinguishing cell nuclei, cytoplasmic components, extracellular matrix structures, 

and other microscopic features. The slides are primarily imaged with brightfield microscopy, where white 

light is transmitted through specimens that are only a few microns thick, generating contrasts based on the 

absorbance of the specimens. The chemical staining of the tissue specimens modulates the absorbance 

properties to highlight different tissue and cellular components. The most used stains are hematoxylin and 

eosin, which are often employed in combination (H&E). Hematoxylin preferentially stains nuclei 

purplish-blue, while eosin preferentially stains cytoplasm and extracellular matrix pink. This blue/pink 

contrast allows for close inspection of individual cells while also providing a general overview of the 

structure and distribution of cells.  

Apart from the incorporation of digital scanning in some clinical settings, this histology workflow 

has remained the same for over a century, owing to its simplicity and reliability. Note, however, that this 

procedure is neither low cost nor quick. The standard FFPE workflow, from tissue sample to an 

interpreted slide, is often many hours long or longer (days, weeks, or sometimes never, depending on the 

accessibility of histology facilities in low-resource settings). Additionally, the chemical stains can be 

expensive and difficult to procure. 
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One important use-case of histopathology is intraoperative consultation during a surgery [2]. 

Specifically, an on-site surgical pathologist will examine tissue resections collected during the surgery, to 

identify the presence of tumor at the surgical margins and indicate if further tissue should be resected. 

This intraoperative guidance is crucial for surgeons to ensure complete resection of the tumor, and 

ensuring safe and maximally achievable resections is important for improving survival [3], [4]. 

Unfortunately, the standard FFPE histopathology workflow is not suitable for intraoperative 

guidance due to its long timeline. Instead, tissue is prepared via frozen sectioning, resulting in much 

shorter preparation times (~20-60 minutes). However, the frozen section procedure demands considerable 

expertise, produces artifacts that lead to technically unsatisfactory and difficult-to-interpret results, and is 

still fairly time-consuming and disruptive in the context of a surgical procedure [5].  

For this reason, alternative approaches to intraoperative consultation have been developed, but 

they often come with disadvantages that preclude their adoption in the surgery room. Many of these 

technologies are aimed for in situ imaging of the resection site either before or after tissue resection. For 

example, in the context of glioma resection, intraoperative MRI technologies have been developed, but 

can be time-consuming and prevents the use of ferromagnetic equipment and tools in the surgery room 

[6]. Another promising direction is the use of exogenous fluorescence-based intraoperative imaging, but 

success is highly dependent on the properties of the fluorescent dye. For example, 5‐aminolevulinic acid 

as a fluorescent contrast agent for gliomas suffers from poor sensitivity and variability [7], while 

indocyanine green is nonspecific and has poor stability [8]. Autofluorescence techniques that rely on 

endogenous fluorophores (nicotinamide adenine dinucleotide and flavin adenine dinucleotide) suffer from 

low specificity [9]. Additionally, all intraoperative fluorescence-based imaging relies on the use of 

appropriately sensitive optics and sensors. 

Therefore, reimagining of the histopathology workflow may instead be a more promising route. 
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Figure 1.1 – A comparison of histopathology workflows. The standard FFPE workflow is much longer 
than the frozen sectioning workflow, which can be artifact prone. Slide-free microscopy does not require 
time-consuming tissue processing. 

1.2 - Overview of slide-free microscopies 

Slide-free microscopy (SFM) techniques allow for the direct ex vivo examination of fresh, unsectioned 

specimens without time-consuming tissue processing [10] and therefore overcomes the challenges of 

FFPE and frozen section procedures (Figure 1.1). In the context of intraoperative guidance, it allows 

resected specimens to be imaged within a few minutes. There is much diversity in the capabilities and 

functioning of a slide-free microscopy system, with some methods requiring tissue staining or clearing, 

requiring highly sophisticated optical setup, to others that are label-free, can have the potential to image in 

vivo, or utilize low-cost and simple optical setups. A SFM technique should have the following 

properties: 
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1. The ability to obtain relevant optical contrast that highlights diagnostically/clinically relevant 

microstructures. In standard histology, this is provided by the histological stains like H&E. 

2. The ability to image a specific, often very thin, in-focus volume, eliminating other out-of-focus 

contributions. In standard histology, this is provided by physical sectioning. 

3. The ability to image a large field of view (FOV) with a high enough resolution. There is a 

tradeoff between imaging speed and FOV imaged and resolution. In recent years, standard 

histology has relied on whole-slide imaging (WSI) scanners.  

4. Have a high enough depth-of-field to account for the differences in sample surface topology. This 

is not an issue when working with thin tissue on slides. 

A brief overview of existing SFM techniques is provided here. Please refer to Liu et al. [2] and 

Krishnamurthy et al. [11] for a more comprehensive review. 

Confocal microscopy is one of the first microscopy techniques to be explored for slide-free 

histopathology applications [12]. It utilizes a point source of light, usually a laser, to illuminate a small 

focal spot in the specimen, and manages to provide optical sectioning by filtering the collected light 

through a pinhole that rejects out-of-focus light. There are two approaches to confocal microscopy: 

reflectance confocal microscopy (RCM) and fluorescence confocal microscopy (FCM). RCM detects 

light backscattering and obtains its contrast from the intrinsic optical properties of the tissue. FCM 

utilizes fluorophores that stain cellular structures. While confocal microscopy has some disadvantages, 

including slower imaging speed and higher instrumentation costs, able to provide cellular-level resolution 

that is useful for SFM applications. Confocal microscopy has seen significant utility in dermatopathology 

and has been clinically validated for such use-cases [13]. Examination of tissue specimens other than skin 

for histopathology applications are being investigated as well [14].  

Advances in computational microscopy has enabled novel approaches to conduct slide-free 

microscopy. One such approach is structured illumination microscopy (SIM), which projects the 

illumination in user-defined patterns to enable optical sectioning [15] necessary for slide-free imaging. It 
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is able to image large FOVs (multi-centimeter) with submicron-level resolution at high imaging speeds 

(video-rate) [16].  

Some SFM technologies can image tissue in a volumetric manner, enabling novel 3D 

histopathology applications. 3D spatial information is not available in standard histology as it only looks 

at a single thin cross section of a specimen. Therefore, 3D histopathology is an underexplored area, and 

volumetric SFM may enable a more comprehensive and accurate analysis of tissue specimens, especially 

those that are heterogenous [17]. Light-sheet fluorescence microscopy (LSFM) + optical clearing has 

been demonstrated to be a promising technique for 3D histopathology. Optical clearing refers to sample 

preparation techniques that reduce light scattering in a tissue specimen and improve penetration [18]. 

LSFM achieves optical sectioning by illuminating a thin plane with a sheet of light, and orthogonally 

collecting the fluorescence image [19]. By mechanically translating the sample, a 3D image can be 

obtained. As a fluorescence-based technique, the optically-cleared sample is usually labeled with a 

nuclear dye like DRAQ5, and a cytoplasmic dye like eosin. LSFM was originally explored for imaging of 

non-clinical specimens, but recent work has demonstrated significant potential for histopathological 

applications [20], [21]. 

Specialized optical effects can be utilized as well to develop SFM technologies. These include 

multiphoton microscopy (MPM) and Raman scattering. MPM uses multiple photons, typically from the 

near-infrared spectrum, that arrive nearly simultaneously at excitable molecules to induce fluorescence, 

with a potential for less photodamage and deeper tissue observation than is provided by regular one-

photon excitation fluorescence, and even tissue staining. Fluorescence from exogenous labels or 

endogenous biomarkers (autofluorescence) can be utilized. There are several MPM microscopy 

approaches, such as two-photon excitation fluorescence (TPEF), second harmonic generation (SHG), and 

third harmonic generation (THG). MPM techniques unfortunately require expensive high-power ultrafast 

lasers to induce the special optical effects. MPM has been explored for assessing breast pathologies [22], 

brain tumors [23], and more [24], [25].  
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In addition to optical effects, other optically related physical phenomena can be exploited. 

Photoacoustic microscopy (PAM) exploits the phenomenon where the tissue absorbs light and converts 

that energy into heat, which leads thermal expansion, resulting in the release of a wide-band acoustic 

wave [26], [27]. The photoacoustic system utilizes a nanosecond-pulsed laser to elicit this effect and 

produce an image with an ultrasonic transducer. Numerous slide-free microscopy applications have been 

explored, such as for imaging breast tissue [28] and bone tissue [29]. 

In this dissertation, I will focus on three other SFM methods which are described in more detail in 

later sections: microscopy with ultraviolet surface excitation, fluorescence-imitating brightfield imaging, 

and quantitative oblique back illumination microscopy. 

1.3 - Microscopy with ultraviolet surface excitation (MUSE) 

Microscopy with ultraviolet surface excitation, or MUSE, is a recent SFM technique with significant 

promise for applications in histology [30]. This technology relies on the observation that sub-300 nm 

wavelength ultraviolet (UV) light has a short penetration depth in tissue of about a few μm deep, similar 

to the thickness of a standard histology slide. Therefore, the excitation volume is limited to a thin layer 

that corresponds to the optical sectioning of brightfield microscopy, allowing MUSE to achieve high-

contrast sub-cellular-scale imaging with thick tissue specimens. Luckily, common fluorescence dyes such 

as Hoechst, 4',6-diamidino-2-phenylindole (DAPI), and rhodamine can be excited by this sub-300 nm 

light and emit in the visible range. The emission can then be captured using simple-to-operate and 

inexpensive conventional glass-based microscope optics and a standard color camera. 

The optical system is comprised of a UV light-emitting diode (LED) and UV-compatible sample 

stage (Figure 1.2A). As the glass microscope lens is opaque to the sub-300nm light, the specimen is 

illuminated in an oblique manner. The opaqueness of the lens serves as an intrinsic excitation filter. 

Additionally, the oblique illumination can also generate shading across the face of a specimen that 

highlights tissue surface topography. 
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Note that the UV excitation used by MUSE also introduced several design challenges and 

concerns. Since standard glass microscope lenses are opaque in that spectral range, MUSE uses obliquely 

angled illumination that bypasses the objective. This general configuration makes it difficult to use high-

NA, high-magnification lenses with typical short working distances, as it is difficult to get such objectives 

close enough to the tissue without physically blocking excitation. This also requires the sample support or 

viewing window to be composed of quartz or sapphire, rather than less expensive glass. In addition, UV 

excitation intensities that can be generated using the comparatively low-power LEDs currently available 

result in exposure times in the 100's of milliseconds per image, which can lengthen scan times for larger 

specimens.  

MUSE imaging is non-destructive: it does not interfere with subsequent standard FFPE histology 

or any sort of molecular analyses like immunohistochemistry, fluorescence in situ hybridization, 

DNA/RNA expression measurements, etc. 

MUSE images can resemble the contrasts seen in conventional histology, but also differ in 

various ways. For example, the three-dimensional nature of the tissue surface can be appreciated 

(sometimes referred to at 2.5D imaging) in Figure 1.2B. Additionally, there is a greater diversity in 

staining contrasts and colors (Figure 1.2C). These unique contrasts may be useful for diagnostic 

applications and scientific discovery, but the differences from conventional histology may also be a 

hindrance for clinical applications. 

In order to assess its clinical potential, Fereidouni et al. [30] conducted a preliminary validation 

study where 42 cases comprising of both benign and malignant specimens were imaged by MUSE. The 

diagnoses made by one pathologist viewing the MUSE images were compared to the diagnoses made by 

another viewing the H&E images, and a concordance rate of 93% was observed. A similar validation 

study was conducted specifically for dermatopathology by Qorbani et al. [31].  
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Figure 1.2 – A) A schematic diagram of the MUSE optical design. B) Fresh breast tissue with nerve 
coursing over and through a layer of intact adipocytes (rhodamine and Hoechst). C) Side-by-side 
comparison of fixed porcine renal tissue imaged by H&E and MUSE. Stromal features, some identified by 
number, are easier to distinguish in the MUSE image. Scale bars, 100 μm. 

 

Numerous extensions variants of MUSE have been developed in recent years, all relying on the 

basic mechanism of limited UV tissue penetration for optical sectioning. For example, Liu et al. 
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implemented a compact and inexpensive version of MUSE [32], while Yoshitake et al. explored the use 

of water immersion to improve MUSE’s optical sectioning [33].  

1.4 - Fluorescence-imitating brightfield imaging (FIBI) 

Another slide-free microscopy method, known as fluorescence-imitating brightfield imaging (FIBI), has 

been developed recently to allow for cost-effective and rapid imaging of thick tissue specimens 

(Fereidouni et al., manuscript in preparation, described further in Chapter 3). FIBI relies on applying a 

thin layer of absorbing dyes to the surface of the tissue to limit the penetration of illumination light and 

imaging volume to the surface. This allows imaging the tissue using a very simple yet efficient and 

reliable approach by implementing standard epi-fluorescence illumination and imaging the fluorescence 

and absorption contrast to create the image. 

Conveniently, stains extremely familiar to histopathologists, that is, hematoxylin and eosin, 

perform very well in this application (although FIBI is not limited to these stains). Hematoxylin is a 

strongly absorbing, and non-fluorescing dye that binds predominantly to nuclei, but depending on the 

formulation, will also stain other tissue elements to a lesser extent. It usefully signals the presence of 

RNA species in cytoplasm, a phenomenon that often reflects the presence of translationally active cells. 

Experiments indicate that after 30s staining of human kidney with hematoxylin, it only penetrates 10 μm 

inside the tissue. Eosin penetrates deeper and it provides a nice complement, generating a pink tint to the 

overall tissue surface elements, just as it does in conventional slide-based histology. The combination of 

tissue autofluorescence and eosin fluorescence generates a diffuse backlight arising mostly from below 

the surface of the specimen. A portion of this backlighting returns through the surface of the specimen to 

be collected by a conventional microscope objective and transmitted to a standard color camera.  

Like MUSE, FIBI is able to provide subcellular contrast with remarkable clarity. It is also non-

destructive and does not interfere with subsequent standard FFPE histology or molecular analyses. FIBI 

differs from MUSE in that FIBI images more immediately resemble those encountered using standard 

brightfield rather than fluorescence-based microscopy (especially due to its use of similar stains). 
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Moreover, MUSE needs UV-compatible viewing windows but because FIBI operates in the visible 

spectrum, it can be used with regular glass and a standard through-the-objective epifluorescence optical 

path. Bright, visible-range excitation LEDs allow exposure times as short as 5 ms per field, and thanks to 

the epi-illumination design, it is straightforward to deploy a variety of low- and high-magnification 

objectives. The short exposure times required allows for rapid XY scanning and also the acquisition of 

multiple Z-axis images that can be used to achieve extended depth of focus (EDOF) captures necessary to 

accommodate specimens with somewhat irregular (i.e., not completely flat) surfaces. 

Borowsky et al [34] conducted a clinical validation study where 100 surgical specimens were 

imaged with FIBI, then processed by the standard histopathology workflow. The resulting digital images 

from both FIBI and H&E scans were viewed in random order and modality by four reading pathologists. 

After a 30-day washout, the same 100 cases, in random order, were presented in the alternate modality to 

what was first shown, to the same four reading pathologists. The agreement rate, compared the reference 

diagnosis, was 97.0% for the 400 FIBI reads and 98.8% for the 400 H&E reads.  

Chapter 3 provides a more in-depth description of FIBI, its mechanism, demonstration of image 

capabilities, etc. 

1.5 - Quantitative oblique back illumination microscopy (qOBM) 

One disadvantage of many existing SFM techniques is that they often require labeling of the tissue in 

some way. Some SFM technologies may be label-free, such as PAM, MPM, and RCM. However, they 

often rely on expensive and sophisticated optical setups or do not provide adequate resolution and 

contrasts. 

Quantitative oblique back illumination microscopy (qOBM) is a label-free, wide-field, low-cost 

microscopy technique capable of obtaining cellular and sub-cellular resolution quantitative phase images 

of thick, scattering tissue samples via epi-illumination [35], [36]. As a label-free imaging technique, 

qOBM does not require any exogenous stains, and can thus provide images that are free of any staining 
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and processing artifacts. Further, qOBM achieves a level of cellular and subcellular detail in 3D that is 

only rivaled by label-free nonlinear microcopy methods, but with an embodiment that is simple and 

orders of magnitude cheaper (e.g., uses LEDs instead of femto-/pico-second lasers), is faster (wide-field 

vs point scanning), is gentle on tissues and cells, and can be easily modified and miniaturized for in-vivo 

applications.  

The qOBM system consists of a conventional inverted microscope with a modified epi-

illumination scheme. The illumination consists of four LED light sources (720nm) coupled into 1mm 

multimode fiber optics with a 0.5 numerical aperture (NA). The fibers are evenly distributed around the 

microscope objective at a 45-degree angle. LEDs are illuminated sequentially, and for each illumination, 

a raw capture is collected. When light from an LED source is introduced through one of the fibers into a 

thick scattering sample, the light in the specimen undergoes multiple scattering events, causing some 

photons to change trajectory and serve as a virtual light source within the specimen. This is known as 

oblique back-illumination and it allows for the capture of a phase contrast image of the sample. If two 

captures obtained from illuminating with diametrically opposed LEDs are subtracted, we can obtain a 

differential phase contrast (DPC) image. Because out-of-focus contributions from either illumination side 

are essentially the same, the subtraction process rejects out-of-focus content, allowing for tomographic 

sectioning. To reconstruct a qOBM quantitative phase image, two DPC images from orthogonal angles 

are processed and deconvoluted with the system’s optical transfer function which is determined through 

numerical photon transport simulations (see [35], [36] for more details).  

qOBM has been miniaturized into a handheld probe setup, which will enable novel in vivo 

applications of the technology [37]–[39]. Instead of needing to resect a tissue specimen in order to image 

it, the tissue can be directly imaged in vivo during surgery. 

qOBM imaging and related technologies have been explored for several applications, including 

intraoperative guidance for brain glioma resections [37], sickle cell disease progression [40], and 

organoid development [41]. 



12 

 

Note that while MUSE, FIBI, and qOBM may appear to be SFM technologies with distinct 

mechanisms, they share similarities. For example, both FIBI and qOBM rely on a backlight to illuminate 

the surface of the specimen. FIBI obtains that backlight from tissue autofluorescence and eosin 

fluorescence, while qOBM obtains it from scattering. Additionally, both MUSE and qOBM utilize 

oblique illumination. Finally, MUSE, FIBI, and qOBM all are quite easy to implement and inexpensive. 

1.6 - An overview of deep learning for pathology 

This dissertation focuses on the application of deep learning to enhance slide-free microscopies for 

histopathological applications. Therefore, it is worth introducing how deep learning is used in 

histopathology and microscopy. 

1.6.1 What is deep learning? 

Deep learning is a subset of machine learning, which itself is a subset of artificial intelligence. Machine 

learning refers to the training of programs developed by allowing computer to learn from its experience 

and data [42], [43]. This differs from the classical approach to algorithm development that requires 

manual coding of the exact steps to solve a task. There are many tasks where doing so is difficult (what 

are the exact steps for recognizing a cat in an image, accounting for all possible variations?), and this is 

where machine learning shines. Deep learning refers to the use of artificial neural networks to perform 

this learning. 

Deep learning has been applied to virtually every field, from natural language processing 

(answering textual questions, building chatbots, classifying documents, etc.) to computer vision (face 

recognition, image captioning, etc.), image generation (super-resolution, colorization, text-to-image, etc.), 

recommendation systems (product recommendations, social network algorithms, etc.), and so much more 

[43]. Most applications in pathology fall under the class of computer vision, as the data being processed 

are usually whole slide images. 
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Artificial neural networks, at its core, is very simple. A neural network is comprised of multiple 

layers. Each layer takes some input, performs some mathematical operation on it, and then passes the 

result to the next layer. The final layer produces the prediction of the neural network. The mathematical 

operations performed by the layer can be quite simple, usually some sort of linear transformation: 

� = �� + � 

where � is the input of the layer, � is the output of the layer, and �,� are parameters (also called weights) 

of the layer. Note that a neural network some sort of nonlinearities as well, which makes the neural 

network highly flexible: 

� = �(�) 

where � is the input (comes from the previous layer), �(⋅) is the nonlinearity function (example include 

sigmoid, tanh, ReLU, etc.), and � is the output. It can be mathematically proven that the incorporation of 

these nonlinearities enable a neural network to approximate any function (universal approximation 

theorem) [42], [43].  

A neural network can learn from data by adjusting the parameters of each layer based on the 

feedback it receives from a loss function, which measures how well the model is performing. The process 

of adjusting the parameters is called optimization, and many optimization algorithms exist, like stochastic 

gradient descent, Adam, etc. [44]  

1.6.2 Common deep learning tasks in histopathology 

In histopathology, there are several tasks that can be assisted through the application of deep learning 

technologies. Most of these problems fall into four classes: classification, segmentation, image 

translation, and image style transfer. Here, we will briefly define these tasks and explain how problems in 

histopathology can be formulated as common machine learning tasks. In all cases, we focus on image 

tasks, as this is most relevant to histopathology. 
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Image classification refers to the task of assigning a label to an image. Much of the field of 

histopathology is comprised of various classification tasks. This is since histopathology is mainly focused 

on assigning a diagnosis based on review of slide-based microscopy. Automatic classification of tissue 

structures and subtypes can also be extremely useful to augment and improve the histopathology 

workflow. As a central problem in computer vision and machine learning, the methodologies for solving 

classification problems have been broadly explored in both academic and well-funded commercial 

enterprises and considerable progress has been made. The leading algorithms for image classification are 

convolutional neural networks (CNNs), which have demonstrated better-than-human performance on 

various benchmark datasets for both general image classification tasks [45]–[50] and pathology-specific 

tasks [51]–[53], although their real-world performance across novel institutions and differently curated 

collections remains to be determined. 

Image segmentation refers to the task of assigning labels to specific regions of an image. It can 

also be seen as a pixel-level classification task. Segmentation of subcellular structures, such as nuclei and 

cytoplasm and membrane compartments, can be useful for automating common tasks such as cell 

enumeration (via nuclei counting), determination of intracellular locations of molecular markers, and is 

important for analysis of subcellular morphological features such as nuclear size, eccentricity and 

chromatin texture [54]. Automatic segmentation can also be used to help pathologists recognize tissue 

components by delineating different tissue types. Some image microscopy problems can be reformulated 

as segmentation problems. More importantly, the most common deep learning architecture for 

segmentation, U-nets, is often utilized for image enhancement tasks, as we will see later. 

Image-to-image translation refers to the conversion of one image representation to another image 

representation. The goal is to learn the transformation between the input and output images. This can be 

applied to a wide variety of applications, such as converting between night and day images, winter and 

summer images, or more useful tasks like converting satellite images to maps. In computational 

pathology, image-to-image translation has been explored for stain color normalization and for converting 
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between different image modalities (which is the focus of this dissertation). The most common models 

used for image translation tasks are generative adversarial networks or their variants (Section Generative 

adversarial networks and their variants).  

1.6.3 Commonly used deep learning methodologies 

A convolutional neural network (CNN) belongs to a class of deep learning algorithms most commonly 

used for image tasks such as image classification. The building blocks of a CNN are learned 

convolutional kernels [42]. These convolutional kernels are applied to the image and their subsequent 

representations in the neural network in order to extract learned features. The convolutional kernels are 

developed during the training process. A key advantage of convolutional layers is their shift invariance 

[42]. As the convolutional kernel is applied over the entire image, shifts in the input shift the output in an 

equivalent manner. This is an especially useful property for microscopy. The stacking of convolutional 

layers and other layers such as fully connected layers and pooling layers are used to build CNNs. A 

variety of CNN architectures have been developed, but some network architectures are more commonly 

used due to their generalizability and effectiveness over a wide variety of tasks. Some of the most 

common architectures include VGG nets [48], ResNets [49], and Inception nets [50]. For many computer 

vision tasks, there is little data available for successful training of CNNs from scratch. However, the 

knowledge of models trained on larger datasets can be transferred for application to learning cycles 

applied to a smaller, focused dataset [55]. This takes advantage of the fact that many of the convolutional 

layers derived from large-dataset-derived models serve to extract general, low-level features. Therefore, 

only some of the layers of models that were pretrained on larger datasets are subsequently retrained on the 

smaller dataset. This process is known as transfer learning. 

A wide variety of algorithms and deep learning architectures [56], [57] are used for image 

segmentation, but undoubtedly the most common neural network architecture for image segmentation is 

the U-net [58]. Ronneberger et al. originally introduced U-nets specifically for biomedical segmentation, 

but this approach has now been used across a variety of segmentation problems. While U-nets were 
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originally developed for segmentation, they have been used for a variety of image-to-image translation 

tasks such as achieving computational super-resolution [59]. With some 10,000 citations already reported 

in Google Scholar, the U-net architecture is clearly one of the most influential deep learning architectures 

developed to date. 

A generative adversarial network (GAN) is a deep learning method that was pioneered by 

Goodfellow et al. [60] and leverages multiple neural networks working “against” each other to transform 

images of different classes. The basic premise is that one neural network (the “generator”) is trained 

generated synthetic images, for example, generating images of cats. The second neural network (the 

“discriminator”) is trained to discriminate real images of cats from fake images generated by the first 

network. This is done cyclically until the images generated cannot be classified accurately as generated or 

real by the discriminator. The potential for this method has been continually explored and expanded since 

its original description in 2014; it has found many applications, such as in super-resolution [61] and 

artistic endeavors [62]. 

1.7 - An overview of microscopy modality conversion 

Slide-free and label-free microscopies often provide contrasts and visualizations that are unlike standard 

histology and may therefore be harder to interpret, making these techniques more difficult for 

histopathologists to adopt. Therefore, converting novel modalities to resemble H&E-stained slides (or 

vice-versa) may allow for a wider adoption of these modalities. This general process of converting one 

microscopy modality into another (usually brightfield microscopy with H&E stain) is referred to as 

microscopy modality conversion or virtual staining. Virtual staining isn’t limited to slide-free 

microscopy, and slide-based microscopy techniques have also been virtually stained.  

1.7.1 - Physics-based approaches to microscopy modality conversion 

Various techniques have been explored for converting images produced by alternative microscopy 

modalities into H&E-like images to improve visualization. Before the introduction of machine learning 
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algorithms, algorithms based on relevant physical models were developed. For example, Gareau et al. 

assumed that there are separate fluorescence/reflectance channels for nuclear and cytoplasmic signals and 

uses them to weight hematoxylin and eosin colors to form a pseudo-colored image [63]. Similar methods, 

where separate nuclear and cytoplasmic signals were used to re-weight predetermined H&E colors, have 

been used for MPM [22] and stimulated Raman spectroscopy [64]. Giacomelli et al. aimed to develop a 

more physically accurate model in which it is assumed that separate fluorescence signals are weighting 

hematoxylin and eosin colors based on the Beer-Lambert law for rendering final color mixtures [65]. A 

similar model was used in Fereidouni et al. for pseudo-H&E coloring of MUSE images [30]. Here, it is 

assumed that nuclei may not be labeled by a single fluorophore, and the detected nuclear RGB 

“spectrum” can be corrected using available unmixing methods before remixing them into a pseudo-H&E 

image.  

Note that these simple models for microscopy modality conversion only render the color of the 

underlying image to match the stains, and do not affect the morphology in any way.  

1.7.2 - Deep learning for virtual staining – working with pixel-paired data 

Recently, deep learning has been used to develop novel microscopy modality conversion algorithms, with 

often superior results [66]. Here, we describe a subset of the recent developments. 

A pioneering work in virtual staining research is Rivenson et al. [67], which investigated the use 

of deep learning to virtually stain unlabeled tissue-autofluorescence images. They trained neural networks 

on salivary gland tissue stained with H&E, kidney tissue stained with Jones stain, and liver and lung 

stained with Masson’s trichrome. The neural networks were convolutional neural networks (CNNs) of the 

U-net architecture (a standard architecture for any image-to-image task). The networks were trained via 

the generative adversarial network (GAN) framework, an approach that has been quite successful in a 

variety of image synthesis tasks. The GAN-trained neural network performed very well converting the 

images, with considerable detail generated, and accurate histopathological features captured in the virtual 

images. The virtually stained images were also evaluated by pathologists, and no significant difference 
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between the virtually stained and regular brightfield images was observed. This indicates the virtually 

stained images can provide similar diagnostic utility. The variation in the colorization of the virtually 

stained images is lower than that of the histologically stained images. Therefore, intrinsic staining 

standardization is an interesting positive by-product of this approach.  

Quantitative phase imaging (QPI) is a relatively recent class of label-free imaging technique (very 

closely related to qOBM) with lower phototoxicity that can be deployed on various platforms (including 

portable platforms). In order to bridge the gap between QPI and standard histopathology, Rivenson et al. 

[68] again used a GAN-based approach to convert phase-based microscopy images to histological images. 

Three models were trained for H&E for skin tissue, Jones' stain for kidney tissue, and Masson's trichrome 

for liver tissue. The models were then applied to similar images that were not present in the training set. 

They utilize a custom global co-registration method and elastic image registration for local feature 

registration. Similar to [67], U-net architecture is used for the generator, with H&E images converted to 

YCbCr color space passed as the input. With fast inference time, and by removing the need for staining, 

this technology has the potential to reduce labor and time costs. While lens-free holographic microscopy 

was used, this algorithmic approach could be applied to other QPI techniques. 

In certain settings, staining procedures can result in irreversible modifications or damage; this is 

usually regarded as disadvantageous as it can preclude further analysis of the tissue. However, this is 

particularly true in the special case of sperm cell selection for in-vitro fertilization (IVF) due to the 

potential cytotoxicity of staining. Interferometric phase microscopy (IPM) is currently used for sperm 

evaluation, as it is compatible with available medical microscopes which are modified with an additional 

wavefront sensor to allow for holographic microscopy. This combination provides quantitative 

topological maps of the cells without the need for stains. However, morphological evaluation of cells is 

most effectively accomplished using chemical staining of cell organelles. A method, “HoloStain,” was 

therefore developed to convert quantitative phase images and phase gradient images, which are extracted 

from the digital holograms, to virtually stain brightfield images using GANs [69]. For each cell, an 
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ensemble of four images was used to train the model: stain-free quantitative phase image, two stain-free 

phase gradient images, and the target-stained brightfield image. An advantage of HoloStain is that cells 

that were out of focus could be virtually stained and refocused. This is possible since digital 

reconstruction of the holograms can be done such that unfocused cells can be brought into focus. In order 

to demonstrate the usefulness of the algorithm, sperm cells were classified by an embryologist using data 

from brightfield images (no staining), stain-free quantitative phase images, one of the stain-free gradient 

images, and HoloStain images. The HoloStain method had the best performance compared with the 

alternative three methods. 

One important note about the previously described deep learning-based virtual staining methods 

is that they are usually still imaging (often unstained) thin tissue sections. Therefore, the target image can 

be easily obtained by staining the thin tissue section and imaging it (followed by image registration). To 

emphasize, these deep learning-based methods rely on the availability of stained images that are paired 

and pixel-registered to original modality images to use as ground truth. With this level of supervision, the 

neural network is able to be trained easily with an objective that minimizes the difference between the 

neural network-predicted virtually stained image and the ground truth stained image. Tasks that require 

pixel-matched (input ground truth) pairs are referred to as paired image-to-image translation in computer 

vision. This is therefore the paradigm that most virtual staining approaches follow.  

1.7.3 - Deep learning for virtual staining – working with pixel-unpaired data 

Note that in many cases, this level of pixel-wise supervision can be challenging or even impossible to 

obtain for SFM virtual staining applications. For instance, if we take a tissue specimen and image with 

MUSE or FIBI or qOBM, followed by FFPE processing and obtaining an H&E slide, the general features 

are very similar, but the exact structures will not be matched. This is a major challenge that has hindered 

the application of virtual staining to SFM applications.  

In order to address this issue, an unpaired image-to-image translation framework can be utilized. 

This computer vision framework enables the learning of a transformation from images in some input 
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domain A to images in some input domain B from a collection of domain A images and domain B images 

that are not necessarily paired/registered. For SFM virtual staining, domain A would be the SFM images 

and domain B would be the stained images. There are several approaches that have been explored in the 

computer vision and deep learning literature, but the most commonly used unpaired image-to-image 

translation algorithm is the CycleGAN model. 

Combalia et al. converted confocal microscopy images utilizing CycleGANs [70]. The RCM and 

FCM images are linearly combined to form an RGB image, by assigning RCM images an eosin-like 

color, and FCM images a hematoxylin-like color. This naively converted image is then passed into the 

CycleGAN. Importantly, it was demonstrated that deep learning-based despeckling is important for 

successful virtual staining. Without it, the CycleGAN generated unwanted artifacts. 

Similar to [70], Cao et al. explored the use of CycleGANs for photoacoustic microscopy of bone 

tissue [29]. Significant agreement was observed between the virtually stained images and the standard 

H&E images, as determined by statistical analysis of nuclear features and review by three pathologists 

and one orthopedic surgeon. 

1.7.4 - Evaluation of virtual staining methods 

In order to assess the virtual staining methods, various qualitative and quantitative analyses have been 

utilized. When paired input and ground truth images are available, standard image similarity metrics like 

SSIM, PSNR, MS-SSIM, and MSE can be utilized.  

Evaluation is significantly more challenging for unpaired datasets due to the lack of a pixel-

matched ground truth for a given image. Evaluation in these scenarios can be divided into two classes: 

style transfer evaluation and content preservation evaluation. 

Style-transfer metrics will provide information about how well the stain “style” is transferred to 

the SFM images during the conversion process. Reference-free metrics like Frechet Inception Distance 

(FID) or Inception Score (IS) can be used for this purpose. These metrics compare the distribution of 
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image features (provided by a pretrained neural network) extracted from the generated images to the real 

images. Since this metric measure the distribution-level differences, individual ground-truth images are 

not needed. However, these metrics simply measure if the generated images look like a real image (i.e. if 

the staining style is present) and does not appropriately measure if the content of the original image is 

maintained. For example, a model could take SFM images but output random H&E-like images with no 

correspondence to the input and still achieve high performance according to FID and IS. 

Another quantitative evaluation method utilized for virtual staining is to extract (either with 

simple and well-tuned computer vision algorithms or specialized neural networks) histological features 

from the virtually stained images and the actually stained images. Some commonly used features include 

segmented nuclei, glands, tumor vs stroma regions, etc. Distributions of quantities like average nuclear 

count, area, etc. can be then compared between the virtually stained images and ground truth images. 

Once again, these metrics would not indicate if the content of the original image is maintained. A model 

could generate random H&E-like images with similar nuclear size and number of nuclei to the actual 

H&E images, with no regard to the content of the input SFM images. 

While these style transfer metrics are useful, it must also be complemented by an evaluation of 

content preservation. Histological features from the original image must be preserved: it would be 

disastrous if a virtual staining method took features in the SFM image that represent tumor and convert 

them to stroma in the virtually stained image. Additional neural networks can assist in the quantification 

of this content preservation. For example, Ozyoruk et al. evaluated virtual FFPE H&E staining of frozen 

sections by applying FFPE H&E-trained diagnostic subtyping neural networks to the virtual FFPE H&E 

images and evaluating its accuracy [71]. However, there is overall limited use of content preservation 

metrics in the literature. 

While quantitative metrics can provide some insights into the performance and utility of the 

virtual staining model, pathologists and clinicians serve as the end users of any such technology, and 

results from case studies with pathologists likely serve as the best indicator of clinical utility. Several 
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virtual staining studies do indeed utilize pathologist validation studies to demonstrate their potential 

clinical utility [67], [68], [71], [72].  

1.8 - Summary and Objectives 
In this chapter, I discussed what is histopathology and its important use-cases, like intraoperative 

consultation during surgery. I also discussed alternative approaches to histopathology with SFM. Then, an 

overview of deep learning for histopathology is briefly discussed. Finally, the specific task of virtual 

staining is described. 

In this dissertation, the development of deep learning-based virtual staining methods for three 

SFM methods (MUSE, FIBI and qOBM) is detailed. Chapter 2 focuses on the exploration of MUSE-to-

H&E modality conversion. Chapter 3 describes the FIBI technology in further detail, while exploring the 

virtual staining methods. Chapter 4 focuses on FIBI virtual staining for dermatology applications, with a 

dermatopathologist case study. Chapter 5 describes the use of virtual staining of qOBM to potentially 

enable novel clinical applications, as demonstrated by a neuropathologist case study. Finally, Chapter 6 

outlines some potential future directions for this work. 
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2. Slide-free MUSE Microscopy to H&E Histology Modality 

Conversion 

2.1 - Introduction 

Microscopy with ultraviolet surface excitation (MUSE) is a novel non-destructive, slide-free tissue 

imaging modality for histology [73]. Using MUSE instead of conventional histology processing 

eliminates the need for fixing and thin-sectioning the tissue. While MUSE has been evaluated for many 

purposes, the current gold standard in medicine and biological research for tissue sample analysis is still 

based mainly on brightfield imaging of H\&E-stained tissue slides; these dyes color cell nuclei blue and 

cytoplasm pink, respectively. MUSE dyes, on the other hand, typically involve DAPI or Hoechst dyes for 

nuclei, and rhodamine for the other tissue components [73]. The resulting images thematically resemble 

H&E, but the colors generated by the UV excitation light impinging on these dyes are dramatically 

different from the traditional brightfield hues. 

In order to bridge the gap between MUSE imaging and traditional histological examination, it is 

possible to digitally modify the MUSE images to match H&E images. In [73], a spectral unmixing color 

mapping model was used, but it required user input of expected colors and is limited to conversion of 

nuclear and cytoplasm colors, failing to handle cases in which a larger gamut of colors are generated. 

Therefore, we aim to utilize deep learning methodologies in order to learn the appropriate transformation 

for generating visually convincing virtual H&E images that works well on a variety of tissue and cell 

types. 

Deep learning has been used successfully in microscopy modality conversion tasks like the one 

we present here, [74]–[76]. These modality conversion algorithms often use a generative adversarial 

network (GAN) framework [77]. In this case, the generator needs to be trained with the input modality 

image and a corresponding output modality image. Therefore, paired image datasets are required for 

modality-converting GANs. Unfortunately, it is not possible to obtain exact pixel-aligned H&E and 



24 

 

MUSE images. Therefore, we investigated unpaired image-to-image translation methods that eliminate 

the need for precisely paired datasets. 

We propose a framework for training and applying an image-to-image translation GAN-based 

algorithm for successful conversion of MUSE images to virtual H\&E images. We evaluated CycleGAN 

[78], DualGAN [79], and GANILLA [80] for MUSE-to-H&E conversion. We hope that our framework 

will help catalyze the adoption of MUSE and improve the efficiency of the pathologist’s workflow. 

2.2 - Methodology 

We define two image domains, one for MUSE images (�), and one for H&E images (�). We attempt to 

determine the transformation 
: � → �. In our framework, we have two tasks. One task is to learn a 

generator 
�: � → � that maps � ∈ � to � ∈ �. The auxiliary task is to learn a generator 
�: � →  �. 

Additionally, we have the adversarial discriminators �� and ��. �� discriminates between the fake 

outputs of 
� and real images from domain �. Conversely, �� discriminates between the fake outputs of 


� and real images from domain �. These two GANs form the training framework for MUSE-to-H&E 

conversion. CycleGAN, DualGAN, and GANILLA all follow this framework and only differ slightly in 

model architectures, loss functions, and training procedures. 

2.2.1 - CycleGAN 

CycleGAN exploits the cycle-consistency property that 
��
�(�)�  ≈ � and 
��
�(�)� ≈ �. This 

constraint can be expressed as the following loss: 

ℒ�����  (
�, 
�  ) = ��~!"#$#(�) %&
��
�(�)� − �&() + ��~!"#$#(�) %&
��
�(�)� − �&() 

where ‖⋅‖( is the +( norm. 

Additionally, the GANs are trained with the traditional adversarial losses [78]. Finally, for 

regularization, we impose an “identity” constraint: 
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The generator architecture is a ResNet-based fully convolutional network described in [78]. A 70x70 

PatchGAN [81] is used for the discriminator. The same loss function and optimizer as described in the 

original paper [78] was used. The learning rate was fixed at 2e-4 the first 100 epochs and linearly decayed 

to zero in the next 100 epochs, like [78]. 

2.2.2 - DualGAN 

DualGAN [79] also solves the same task as CycleGAN, while using Wasserstein GANs [82]. DualGAN 

also uses a reconstruction loss, which is similar to CycleGAN’s cycle-consistency loss. The generator 

architecture is a U-net [58], and the discriminator is a 70x70 PatchGAN [81]. The model was trained with 

the Adam optimizer for 200 epochs similar to the CycleGAN. 

2.2.3 - GANILLA 

GANILLA [80] is a variant architecture for the CycleGAN model designed to appropriately transfer the 

content to the stylized image. See [80] for generator architecture details. The discriminator is a 70x70 

PatchGAN. The model was trained for 200 epochs in an identical manner as the CycleGAN. 

2.2.4 - Color mapping tool 

As a baseline, we used a color mapping tool using spectral unmixing algorithms, as previously described 

in [73]. 

2.2.5 - Tiled inference 

We performed GAN model inference on overlapping tiles with stride 256. The generator was applied to 

each patch, yielding a 19x19 array of overlapping predicted H&E patches. A 5120x5120 generated H&E 

montage was then constructed, with each pixel intensity value in the montage being a weighted average 

of intensity values from the H&E patches which overlapped at the given pixel location. The pixel 

intensity values from each contributing patch were weighted proportionally to 2�3(−45/2�5) where 4 is 
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the distance from the given pixel location to the center of the contributing patch. The weights in the 

weighted average were normalized to sum to 1. The parameter � was set to 128 pixels. 

2.2.6 - Quantitative evaluation of the models 

An external critic model (70x70 PatchGAN with a fully connected layer) was trained to quantitatively 

evaluate how “real” the outputs of the various models look. We used accuracy and a binary cross-entropy 

loss from the critic as quantitative measures to compare the quality of the generative models. We trained a 

separate critic on the predictions for each model to keep results independent. Each critic were trained for 

20 epochs with a 0.001 learning rate (one-cycle learning rate schedule). Each dataset consisted of “fake” 

H&E images generated from the test set and real H&E images from the train set. It was a balanced dataset 

with an 80/20 dataset split. 

2.2.7 - Datasets and implementation 

The H&E data came from a region in a single whole-slide image of human kidney with urothelial cell 

carcinoma. The MUSE data came from a single surface image of similar tissue. We obtained 512x512 

tiles from the images, resulting in 344 H&E tiles and 136 MUSE tiles. The tiles were randomly cropped 

into 256x256 images when loaded into the model. Code was implemented with PyTorch 1.4.0 [83], and 

fastai [84]. 

2.3 - Results 

2.3.1 - Training on unprocessed MUSE images 

In Figure 2.1, results on the test dataset after training a CycleGAN on MUSE and H&E images are 

shown. With close inspection, it is evident that the generated H&E images do not appropriately transfer 

the content of the original MUSE image. Bright in-focus nuclei are converted to white spaces in the 

virtual H&E image (boxed in red). On the other hand, the darker regions are converted to nuclei in the 

H&E image (boxed in yellow). The overall trend that the CycleGAN followed was converting brighter 

regions to background white spaces, and darker regions to nuclei. We have observed that using color- and 
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intensity-inverted MUSE images greatly improves training and subsequent models were trained on 

inverted MUSE images. 

2.3.2 - MUSE-to-H&E translation 

We trained a CycleGAN, DualGAN, and GANILLA model on the MUSE and H&E image dataset 

(Section 2.2.7), and performed inference on the test dataset, which is a 5120x5120 image. Individual 

512x512 tiles were inputted into the model. 

In Figure 2.2, we can see that the CycleGAN and GANILLA models provided visually 

compelling results that appropriately transfer style and content. The model successfully converted MUSE 

representations of cancer cells, inflammatory cells, and connective tissue to the corresponding H&E 

representations. However, DualGANs performed poorly, with weak transfer of style, and many artifacts. 

Finally, CycleGAN and GANILLA performed better than the traditional color-mapping baseline. 

2.3.3 - Inference 

We have tested inference with a single 5120x5120 image. As the generators are fully convolutional 

networks, variable sizes are allowed for these models (though the scale must remain same). However, the 

full region cannot be inputted into the model due to memory constraints. While the models performed 

well on individual 512x512 patches, we observed (Figure 2.3) that the montage had artifacts near the 

edges of the individual patches (tiling artifacts), and the predictions are inconsistent in color and style 

between tiles. 

In order to resolve these problems, we performed model inference on overlapping tiles with stride 

256 as explained in Section 2.5. Figure 2.3 demonstrates how this blending approach suppressed the 

emergence of tiling artifacts. Figure 2.4 shows that the final generated montages were much more 

consistent in style and color throughout the montage. 
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Figure 2.1. Training CycleGAN on unprocessed MUSE images. 

 

Figure 2.2. Comparison of MUSE-to-H&E translation models. 

2.3.4 - Critic training 

Using the H&E generated results of the CycleGAN, GANILLA and DualGAN models, we trained three 

separate external critics to objectively measure the quality of the generated images. A fourth critic was 

trained on images from the color mapping tool as a baseline comparison. In this experiment, we would 

expect the critic model to fail more often if the model outputs are higher quality, that is, resemble H&E 

images more closely. 
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Figure 2.5 shows the graphs of the validation loss and accuracy while Table 2.1 presents the 

accuracy from critic training. They show that the critic performed more poorly on CycleGAN and 

GANILLA images. The DualGAN was not able to fool the critic because of its poor performance in 

producing a convincing color conversion. Interestingly, DualGAN performed worse than the color 

mapper baseline. Overall, the critic had the hardest time identifying the CycleGAN model as “fake”, 

which seems to suggest this model produced the most realistic images. These results support the 

conclusions from qualitative analysis in Section 2.3.2. 

 

Figure 2.3. Demonstration of tiling artifacts 

 

Figure 2.4. Montages generated from predictions on overlapping 512x512 tiles with stride 256. 
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Figure 2.5. Quantitative evaluation of the models via real/fake H&E critic training 

Table 2.1. Negative Critic Accuracy (%) 

 

2.4 - Discussion 

In this study, MUSE modality conversion using unpaired image-to-image translation techniques was 

performed in order to generate virtual H&E images. We qualitatively observed that the GAN-based 

models studied here produce visually compelling results, with CycleGAN providing the best results. 

For proper training and inference of the models tested here, inverting the MUSE images was 

required. This is likely because the CycleGAN cannot learn the association between brighter nuclei in 

MUSE to darker nuclei in H&E. It assumed all bright objects in MUSE must be background in H&E, 

while dark background objects in MUSE must be tissue in H&E. We found this content preservation 

problem especially prevalent in DualGANs. In future work, additional constraints, such as the saliency 

constraint introduced in [85], may be tested in order to directly convert unprocessed MUSE images to 

virtual H&E images. 
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A major challenge with training unpaired image-to-image translation models is the lack of 

quantitative metrics. Most approaches for quantifying model performance relied on crowdsourcing 

approaches (e.g. Amazon Mechanical Turk) to rate quality of the produced images. However, with 

difficult-to-interpret histological images, this is not an option. Most microscopy modality conversion 

studies [74]–[76] had paired data and therefore quantitatively evaluated via structural and perceptual 

similarity metrics like SSIM and PSNR [86]. However, there are some key structural differences between 

MUSE and H&E images. This would mean that visually compelling virtual H&E images that also 

preserve structural content may not have high perceptual similarity scores. Instead, we relied on an 

independently trained critic model to estimate image quality and perceptual similarity. While we found 

the results to be very consistent with our visual inspection, it is important to note that it is not a perfect 

metric and does not account for GAN “hallucinations” or preservation of content. The best metric is still 

visual inspection by human beings. Future work will quantitatively evaluate image-to-image translation 

models with pathologist ratings and interpretation. 

Another key consideration during the development of these models is model inference. We 

expect users to be able to select regions of interest from a whole image to convert to virtual H&E almost 

instantly. Currently, this is still a challenge that needs to be addressed (CycleGAN on 5120x5120 with 

stride 512 took 12.7 s on NVIDIA TITAN RTX). Future work will analyze how model inference can be 

sped up while minimizing the trade-off regarding montage consistency. 

2.5 Conclusion 

In conclusion, we have tested three unpaired image-to-image translation models for MUSE-to-H&E 

conversion. We observed that color- and intensity-inversion is an essential preprocessing step when 

training with MUSE images. Additionally, we used a semi-quantitative method of evaluating the models 

and determined CycleGANs obtain the best results. We hope our framework can help improve the 

efficiency of the pathologist workflow by bridging the gap between MUSE and traditional histology. 
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3. Fluorescence imitating brightfield imaging (FIBI) for rapid slide-

free histology 

3.1 - Introduction 

Light microscopy of tissue biopsies remains central to the diagnosis and management of solid tissue 

disorders, notably cancers but also other diseases. The brightfield (transmission) optical design of today’s 

clinical microscopes, which reached near-contemporary performance as far back as the 18th century, 

requires optically thin (4-5 micron) slices of tissue mounted onto glass slides. These tissue sections, 

typically stained with hematoxylin and eosin (H&E) are usually prepared following formalin fixation and 

paraffin embedding (FFPE), a technique developed in the 19th century and not essentially changed in the 

interim. FFPE-based histology is a labor- and time-intensive process, on the order of several hours to 

overnight, or even much longer if the specimen is acquired at one site and the processing facility is 

located elsewhere. Moreover, FFPE and subsequent sectioning steps can consume most or all of small 

samples, after which there may be little, or nothing left for downstream analyses. This is an important 

consideration when molecular profiling tools such as immunohistochemistry, DNA/RNA expression or 

epigenetics studies, metabolomics, etc. are becoming standard-of-care for diagnostics and therapy 

guidance. Cryotomy (frozen sectioning) is an alternative to FFPE-based methods and can generate H&E-

stained slides within 20-30 minutes. While often used for rapid interpretation or intraoperative surgical 

guidance, this technique is artifact-prone and demands considerable expertise. Furthermore, and as is the 

case with standard FFPE histology, it is destructive of tissue and can adversely affect the amount of 

sample available for downstream analyses. 

Ideally, a tissue histology approach could generate interpretable cellular-scale images of 

specimens directly from the samples themselves, without requiring the intermediate step of preparation of 

thin sections mounted onto glass slides. A side-benefit of such an approach would be the fact that cellular 

histology features would be directly captured digitally, rather than, as is the case with contemporary 



33 

 

digital pathology methods, requiring a whole-slide scan after the slides themselves are first generated—

which currently represents an extra, laborious, time-consuming and costly additional step.  

Indeed, such alternative microscopy techniques are under development for pathology 

applications. These can directly acquire microscope-scale images from thick, fresh (or fixed) tissue 

specimens. Such approaches include structured illumination [87], conventional reflectance and 

fluorescence confocal microscopy [88], multi-photon microscopy [22], [23], photoacoustic approaches 

[89], among others [2]. While these other techniques have distinct advantages and disadvantages, 

typically they are optically more complex than standard histology microscopes, with commensurate costs 

that would exceed those of instruments conventionally deployed in pathology settings. MUSE 

(microscopy with UV surface excitation) is an alternative approach previously developed in our 

laboratory [73] that addressed many of these issues by providing a potentially lower-cost, less 

complicated solution for tissue imaging.  

 

Figure 1. FIBI is an optically simple, cost-effective, rapid, non-destructive, slide-free microscopy 

technology. a) FIBI image of a thick, fixed, human appendix specimen. b) H&E whole slide image of the 
same human appendix specimen. c) FIBI image of a thick, fixed, human colon specimen. d) H&E whole 
slide image of the same human colon specimen. 

 



34 

 

We now present a novel method for slide-free imaging, fluorescence imitating brightfield 

imaging (FIBI), an optically simple, cost-effective, rapid, non-destructive, slide-free microscopy 

technology (Figure 3.1). It employs an epifluorescence-based optical light path to capture images of 

rapidly-stained, thick (unsectioned) specimens. A variety of stains can be employed, but most of the work 

presented here represents the use of hematoxylin and eosin, a combination that can generate images that 

not surprisingly, can closely resemble those from standard brightfield-based histology. The method 

depends on excitation of tissue autofluorescence, supplemented by eosin fluorescence, to generate a 

diffuse backlight arising mostly from below the surface of the specimen. A portion of this backlighting 

returns back through the surface of the specimen to be collected by a conventional microscope objective 

and transmitted to a standard color camera, as described more fully below. While similar in many 

respects, FIBI differs from MUSE in that FIBI images immediately resemble those encountered using 

standard brightfield rather than fluorescence-based microscopy. Moreover, MUSE needs UV-compatible 

viewing windows while FIBI can be used with regular glass and a standard through-the-objective 

epifluorescence optical path because FIBI operates in the visible spectrum. Bright, visible-range 

excitation LEDs allow exposure times as short as 5 ms per field, and thanks to the epi-illumination 

design, it is straightforward to deploy a variety of low- and high-magnification objectives. The short 

exposure times required allows for rapid XY scanning and also the acquisition of multiple Z-axis images 

that can be used to achieve extended depth of focus (EDOF) captures necessary to accommodate 

specimens with somewhat irregular (i.e., not completely flat) surfaces.  

There are a number of important applications for FIBI (as well as other slide-free techniques). 

Current pathology practice can be extended with FIBI to deliver high-quality diagnosis or resection 

adequacy determinations in intraoperative settings for major surgical resection procedures, improving on 

technically challenging and sometimes inadequate frozen section-based methods. Other uses can include 

improved near-real time core needle biopsy evaluation as an alternative to cytology-based rapid on-site 

evaluation (ROSE) methods. Beyond that, it is possible that FIBI could be used for preclinical research in 
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pharmaceutical and biotechnology settings, for which standard histology procedures may be both money 

and time-sinks. The simplicity and affordability of FIBI also makes it suitable for deployment in global 

and low-resource and/or remote settings, with potentially great impact on health care. 

A recent report described promising results from a validation study comparing FIBI to standard 

H&E slides across 100 specimens, using 4 pathology readers [34]. In addition, we previously described 

the potential utility of FIBI specifically for dermatology specimens [90]. 

Here, we provide a more detailed description of the staining and imaging methodologies, and 

along with technical underpinning of the optics and other image processing steps, including AI tools, and 

show results of FIBI imaging applied to diverse set of tissue specimens. 

3.2 - Materials and Methods 

3.2.1 - Typical processes for sample staining and positioning 

In this study, a variety of specimen types were used, including fresh and formalin-fixed tissue, as well as 

material derived from FFPE tissue blocks. Anonymized excess tissue (obtained via IRB exemption) were 

obtained from the UC Davis Pathology Biorepository and included a number of common specimen types 

typically encountered in anatomic pathology. Specimens were usually medium-to-large sized (up to 2.0 

cm2 x 2.5 cm2), and oriented and hand-cut with a razor blade if necessary to achieve a tissue surface as 

flat as possible but did include some specimens with dimensions typical of core needle biopsies. 

The most common staining procedures involved the use of hematoxylin and eosin, although other 

stains and stain combinations have also shown promise. A typical procedure involves rinsing the surface 

of specimens with PBS (for fresh samples) or diH2O (for fixed samples), prior to staining the surface of 

the tissue with 0.5 mg/ml Mayer’s hematoxylin in diH2O (H3136, MilliporeSigma) by either submerging 

the tissue into the hematoxylin solution or adding the hematoxylin dropwise to the surface of the 

specimen for 30 seconds. The tissue is then briefly rinsed in diH2O and then stained with 0.25% eosin Y 

(E4382, MilliporeSigma) in 79% ethanol for 30 seconds following by another brief rinse with diH2O. 
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After staining, each sample is placed in a custom-designed holder equipped with a front window opening 

that held a glass coverslip. A piece of white filter paper is situated behind each specimen to provide a 

light image background around the sample borders. A thin layer of foam is then placed behind the filter 

paper, and a back panel is screwed into place by hand to gently compress the sample against the flat 

imaging cover slip. The imaging holder was then positioned on an XYZ stage for immediate viewing. 

Time required for sample preparation, staining, positioning and placement onto the microscope can be as 

little as 3 minutes after receipt of the specimen.  

A block-face-imaging variation allows for capture of histology views directly from the face of 

paraffin blocks—use case includes visualization of tissue still in the block in case it is important to verify 

the content or quality of the remaining specimen. Briefly, the face of a previously sectioned block is 

superficially deparaffinized with sequential application via pipette of xylene, followed by 100%, 70% and 

50% ethanol. When wax is removed from about 100 microns of the block surface, the exposed tissue can 

be stained as above, and imaged via standard FIBI techniques.  

After imaging, described below, the specimens can be submitted for standard FFPE processing 

(for long-term storage) with or without preparation of standard H&E-stained slides, if desired.  

3.2.2 - Optical design and components  

An exemplary instrument implementation is described here—other optomechanical components can be 

substituted. Epifluorescence excitation is generated by a 405nm LED (LZ1-00UB00-LED Engin), 

although other wavelengths are also usable, and is directed to the sample via a broadband dichroic (Di03-

R405-t1-25x36, Semrock) and focused on the sample using a 10X objective (Nikon, Plan Apo, 0.3 NA). 

A long-pass emission filter (FF01-430/LP-25, Semrock) is present in front of the camera sensor to reject 

scattered and reflected excitation light when imaging in fluorescence mode. The tissue is positioned on a 

movable stage with a travel range of 25 mm by 50 mm, and a Z positioner is also included to provide 

automated focusing capabilities (Zaber Technologies X-LSM025B, X-LSM025A and XVSR20A). The 

camera used to capture the images shown here was a 9-megapixel scientific-grade CCD color camera 
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(Ximea, MD091CU-SY) accompanied by a 200mm tube lens (Thorlabs ILT 200). Overall gain and color 

balance (specific red, green, and blue channel gains) of the camera can be adjusted as desired for optimal 

visualization. The specimen is scanned field by field using the XYZ stage; the Z axis is used for manual 

focus and for implementing extended depth of field (EDOF) image capture via acquisition of multiple z-

axis images [91]. This EDOF methodology involves synthesis of an in-focus image by selecting best 

focus regions from images taken at multiple depths. Compared to PSF-based approaches, the quality of 

the resulting image does not display computationally introduced noise. Moreover, the range that these 

extended depth of field approaches can cover is limited [92]. If multiple z-stacks are not required, imaging 

can be performed at about 1 cm2/min—higher speeds are possible with upgraded components such as 

brighter LEDs, more rapid stages and cameras with faster capture and download performance. 

  

3.2.3 - Image acquisition and pre-processing  

Image acquisition, stage movement and focusing was performed using control software developed in the 

.NET environment. Individual frames were taken with exposures that usually ranged from 5 ms to 50 ms 

and saved in TIFF or JPEG format. Image processing was performed with open-source ImageJ software 

(http://imagej.nih.gov/ij/) along with open-source GNU Image Manipulation Program image processing 

software (https://www.gimp.org) and was in most cases confined to flat-fielding, adjusting the brightness 

and contrast, color balance and sharpening with an unsharp mask tool, along with occasional use of 

dehazing algorithms. A useful viewing tool was GIMP’s auto white balance command, which 

automatically adjusts the colors by separately stretching the red, green and blue channels. While the 

results are quick and often represent a significant improvement in image appearance, the command can 

generate different results depending on the intensity distribution of the brightest and darkest pixels. More 

explicit manipulations can be used to standardize the display adjustments used across different fields. 

Such processing could include changes in brightness, contrast and gamma applied either to overall value 

(so color-neutral) or separately to individual color channels to achieve desired color balance. Unsharp 
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masking, another tool provided in GIMP, is used to improve sharpness, but has to be applied gently to 

avoid introduction of visible artifacts. Other tools were included in custom FIBI software, such as non-

linear histogram matching, designed to generate color histograms in FIBI images that closely resembled 

the histograms seen in H&E images of similar specimens.  

Either before or after image processing or AI-based conversion (see below), multiple fields of 

view are assembled into a montage by mosaicking either with ImageJ (using the Make Montage function 

after loading the multiple fields of view as an image sequence) or Microsoft Image Composite Editor 

(http://research.microsoft.com/en-us/um/redmond/projects/ice/) with 10% spatial overlap to perform 

subpixel registration and image stitching, or with Microvisioneer. Large image montages can be saved in 

pyramidal TIFF format compatible with third-party whole-slide imaging viewers, such as Aperio Slide 

Scan, Sedeen, QuPath [93], etc.  

 

3.2.4 - AI-based color mapping from FIBI to virtual H&E 

In addition to the traditional image processing steps described above, CNN-based tools were also applied 

to generate virtual H&E images. As it is not possible to obtain pixel-matched FIBI and H&E images of 

the same specimen—since the surface being imaged by FIBI will always be derived from a different 

surface or section of the specimen , it was necessary to deploy unpaired image-to-image translation 

algorithms [94]. Two typical examples, involving canine jejunum and human breast, of training and 

conversion was performed as follows. For the canine specimen, a total of 475 512 x 512-pixel patches 

were taken from a 10X FIBI image along with 600 512 x 512-pixel patches from the corresponding H&E 

whole slide image (WSI, originally acquired at 20X using an Aperio/Leica AT2 scanner). After 

adjustments to normalize pixel dimensions generated by these two different magnifications and capture 

systems, a CycleGAN model was trained and then applied to a separate 5120 x 5120-pixel patch (of 

which a small crop is shown in Figure 3.4) extracted from the same FIBI whole specimen image. For the 

human benign breast, 900 512 x 512-pixel patches were selected from a FIBI image of the whole 
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specimen, and 832 512 x 512-pixel patches from the corresponding H&E WSI for training. The trained 

CycleGAN was then applied to a separate 10,752 x 13,824-pixel patch (of which a small crop is shown in 

Figure 3.4) The two CycleGAN models were trained with the Adam optimizer for a total of 200 epochs. 

The learning rate remained at 3e-4 for the first 100 epochs before linearly decaying to zero for the second 

100 epochs. In both cases, the inference was performed with overlapping patches as described in 

Abraham et al. [94] A custom code pipeline utilizing fastai [84] and PyTorch [83] was used for training 

and inference of the CycleGAN model. 

 

3.2.5 - Effect of FIBI on downstream conventional histology and immunohistochemistry 

In addition to examining downstream slide preparation on fixed tissues that have undergone FIBI 

imaging, a series of tests were performed on fresh specimens. Fresh tissue specimens underwent FIBI 

imaging before fixation, and subsequently were serial sectioned for H&E slide preparation and 

immunohistochemistry staining and fluorescent in-situ hybridization. For these analyses, two freshly 

resected kidney specimens, both afflicted with renal cell carcinomas, were obtained from the UC Davis 

Pathology Biorepository. The specimens were kept on ice upon retrieval and throughout the duration of 

the experiment. Samples that underwent FIBI staining were done using standard protocol described earlier 

with the exception of using 1x phosphate buffered saline (PBS) in place of deionized water for all rinsing 

steps. Control samples were removed from ice and left dry at room temperature while corresponding 

experimental specimens underwent the FIBI process. Upon conclusion of FIBI imaging, fresh specimens 

were placed in 10% neutral buffered formalin for overnight fixation, followed by placement in 70% 

ethanol for submission to the UC Davis Center for Genomic Pathology (CGPL). Each submitted 

specimen was sectioned and stained by the CGPL to yield one H&E slide, two slides for 

immunohistochemistry, two unstained slides and one section for fluorescent in-situ hybridization (FISH). 
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3.3 - Results 

3.3.1 - Imaging and virtual sectioning 

Figure 3.2. The imaging mechanism of FIBI. a) Optical setup for FIBI imaging. b) Image of human 
breast, no stain. c) The same region stained with hematoxylin. d) The same region is then subsequently 
stained with eosin. 
 

FIBI relies on applying a thin layer of absorbing dyes to the surface of the tissue to limit the penetration 

of illumination light and imaging volume to the surface. This allows imaging the tissue using a very 

simple yet efficient and reliable approach by implementing standard epi-fluorescence illumination and 

imaging the fluorescence and absorption contrast to create the image. 

Conveniently, stains extremely familiar to histopathologists, that is, hematoxylin and eosin, 

perform very well in this application. Hematoxylin is a strongly absorbing, and non-fluorescing dye that 

binds predominantly to nuclei, but depending on the formulation, will also stain other tissue elements to a 

lesser extent. It usefully signals the presence of RNA species in cytoplasm, a phenomenon that often 

reflects the presence of translationally active cells. Our initial experiments indicates that after 30s staining 

of human kidney with hematoxylin, it only penetrates 10 μm inside the tissue. Eosin penetrates deeper 

and it provides a nice complement, generating a pink tint to the overall tissue surface elements, just as it 

does in conventional slide-based histology. Figure 3.2a shows a schematic drawing of the setup. The 

illumination is based on epifluorescence and 405 nm illumination. The resulting images, after basic color 
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correction, closely resemble standard bright light transmission histology; the FIBI illumination light 

creates a backlight within the bulk specimen by inducing broad-spectrum autofluorescence. The 

autofluorescence is scattered under the surface of the tissue to create a “virtual backlight”, illuminating 

the stained layer where it is collected by standard objective and transmitted to a standard color camera. 

Figure 3.2b demonstrates an image of human kidney sample without any stain (autofluorescence), 

Figure 3.2c is the same region stained with hematoxylin and Figure 3.2d eosin added afterwards. Clearly, 

desired image contrast is not achieved until we apply the hematoxylin.  

The thickness of the dyed tissue is also a crucial factor in the mechanism of FIBI. As shown in 

Figure 3.3a, a 5 μm-thick tissue slices (similar to that of a traditional H&E slide) demonstrates a 

fluorescence behavior. This is especially exemplified in the holes of the tissue which have no signal. If we 

increase the thickness of the imaged tissue, we observe a tissue backlight, as demonstrated by holes in the 

tissue that are now bright (Figure 3.3b). This backlight (generated by eosin fluorescence) leads to 

hematoxylin absorbance, providing a contrast similar to that seen in traditional H&E. We imaged tissues 

with different optical thicknesses ranging from 5 μm to 400 μm with the same FIBI optical setup and 

observed the transition from standard fluorescence with no backlight (black backgrounds) to standard 

FIBI imaging which occurs at around 100 μm (Supplementary Figure 3.1). Additionally, we note that 

utilizing an eosin backlight (by keeping a paper dipped in eosin behind the tissue during imaging), a 

fluorescence image of a 10 μm tissue section appears more similar to FIBI image of a hand-cut 400 μm 

specimen, with improved subcellular level of detail and clarity (Supplementary Figure 3.2). 
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Figure 3.3 - The same specimen of pancreas was sectioned into different thicknesses and imaged with 

FIBI. a) A microtome was used to obtain a 5 μm thick specimen. b) Finally, hand cutting was used to obtain 
a 400 μm thick specimen. 

 

3.3.2 - Conversion of FIBI images to virtual H&E appearance 

In contrast to typical fluorescence-based methods, FIBI images start out exhibiting substantial 

resemblance to standard brightfield appearance—that is, the nuclei are dark compared to non-nuclear 

tissue components, and the background visible around the specimen or inside tissue holes is relatively 

bright; the raw images are usually quite viewable. That said, FIBI images can benefit from standard 

digital processing tools such as those available with photography-based methods as well as machine-

learning tools to render results that are either easily interpretable or even indistinguishable from standard 

H&E.  

MUSE, as a fluorescence-based technique, has a dark, signal-free background, whereas labeled 

tissue components such as nuclei fluoresce, generating essentially an opposite contrast compared to 

traditional brightfield microscopy. In contrast, FIBI images, more closely resemble conventional H&E-

stained thin sections, allowing for a quick acclimation period. Nevertheless, since pathologists are 

(currently) most comfortable looking at bright-field, we demonstrate virtual H&E conversion for easier 

interpretation of FIBI images by pathologists. 
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There are several approaches for FIBI-to-H&E conversion (Figure 3.4). The current approach 

relies nonlinear histogram matching and provides images that are quite similar to traditional H&E (Figure 

3.4c,d). However, we have recently utilized deep learning-based techniques that provide a superior 

imitation of H&E contrast.  

This approached based on relatively recent AI tools using generative adversarial networks 

(GANs). An early version of GANs deployed for image mode conversion was developed by Isola et al. 

and termed pix2pix [81]. That name reflected the pixel-to-pixel matching between the source and target 

images required by the method. This approach is easily applied for virtually staining label-free slide 

microscopy or other imaging modalities where a ground truth H&E can be obtained. However, since the 

surface being imaged by FIBI will always be derived from a different surface or section of the specimen 

than the subsequently processed FFPE section for the H&E image, it was necessary to deploy unpaired 

image-to-image translation algorithms such as a CycleGAN [78]. 

A CycleGAN neural network was trained and applied to convert FIBI images into virtual H&E. 

On a modern graphics processing unit (GPU), conversions are near-real-time. As exemplified in Figure 

3.4c, the conversion can generate images that are virtually indistinguishable from traditional H&E images 

(Figure 3.4d). When compared to nonlinear histogram matching (Figure 3.4b), which serves as a powerful 

baseline, we see that individual red blood cells and muscle nuclei are more apparent and well-defined. 

Note that this CycleGAN conversion approach can work for a variety of tissue types (Figure 3.5). 
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Figure 3.4. Color-mapping approaches for FIBI. For a FIBI image of dog jejunum (a) we demonstrate 
nonlinear histogram matching (b) and a CycleGAN (c) for FIBI-to-H&E conversion, with comparison to 
standard H&E (d). 

Figure 3.5: CycleGAN AI FIBI-to-H&E conversion can be applied to a variety of tissue specimens. 
a) FIBI image of a benign breast lobule near some adipose tissue. b) FIBI image of a glioblastoma. c-d) 
The corresponding virtual H&E conversion. e-f) Standard H&E for comparison. 
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3.3.3 - Image quality and resolution of FIBI  

FIBI imaging provides subcellular resolution that allows details such as mitotic figures and chromatin 

textures to be appreciated at a level similar to standard FFPE H&E (Figure 3.6). It is worth noting that 

this is without CycleGAN conversion, and such subcellular details may become more apparent after 

virtual H&E conversion. Images shown here are usually acquired with a 10X objective with 0.3 and 0.45 

NA, with the latter being comparable to H&E images obtained with a standard 20x objective. It is also 

possible to obtain improved resolution with FIBI utilizing a 20X magnification, but this comes at a cost of 

a smaller field of view and therefore lower imaging speed. 

 

Figure 3.6 - Subcellular detail observed with FIBI imaging. Mitotic figures and chromatin texture can 
be observed. 

3.3.4 - High-resolution extended field of view imaging  

While individual fields of view have been imaged with FIBI and demonstrated here, it is also possible to 

image arbitrarily large specimens. However, there are a couple of challenges when imaging such large 

regions. For example, the surface of the specimen is not even throughout the entire region, leading to out-

of-focus areas during imaging. Additionally, uneven staining throughout the specimen can leading to 



46 

 

significant variability in the intensity of the signal throughout the image. We collect images at multiple z-

positions merge them into a single image that is in-focus throughout the entire image. Additionally, we 

utilize a simple intensity-leveling algorithm that results in a much more uniform image. With these 

enhancements, we obtain high quality multi-field FIBI and H&E stitched images, as shown in Figure 3.1. 

3.3.5 - Block-face imaging 

As a slide-free imaging technique, FIBI enables of fresh, unprocessed tissue specimens for rapid 

examination, but a technique for imaging paraffin blocks of tissue using FIBI has also been developed. 

Specifically, an FFPE block of tissue is superficially deparaffinized with xylene and ethanol, and the 

deparaffinized face of the block is stained with H&E and imaged with the optical system. These images 

are comparable in quality to FIBI imaging of fresh specimens (Figure 3.7). 

Figure 3.7. FIBI imaging of the superficially de-paraffinized surface of FFPE tissue blocks. a) FFPE 
tissue block of benign human submandibular gland biopsy. b) FFPE tissue block of squamous cell 
carcinoma in human oral cavity biopsy. 

 

3.3.6 - Minimal impact on downstream slide preparation and molecular analysis 

In most use-cases demonstrated here, FIBI imaging of a tissue specimen is followed by FFPE processing 

and H&E slide preparation, and the quality of the H&E slides are comparable to standard H&E slides.  

Molecular characterization of tissue specimens has become essential for diagnoses and therapy 

guidance. Such analyses include protein and DNA profiling, RNA expression measurements, IHC, etc. It 



47 

 

is important that FIBI does not interfere with subsequent molecular analyses. Preliminary experiments 

suggest that prior FIBI does not affect subsequent IHC (Supplementary Figure 3.3).  HER2 FISH 

interpretation indicated no discernible differences compared to tissue not imaged with FIBI, unless 

imaging time was significantly high (250 seconds of LED exposure per field of view). Further work will 

be performed to explore any possible effects of FIBI on subsequent molecular analyses. 

 

3.3.7 - 2.5-dimensional surface profiling and novel contrasts 

As a slide-free microscopy technique, FIBI often provides additional information or information that 

differs from traditional H&E (Figure 3.8). As it is a surface-weighted microscopy technique, the three-

dimensional surface profile information is often apparent in images taken FIBI. Additionally, the 405-nm 

excitation leads to autofluorescence of tissue components that lead to different contrasts. For example, 

collagen is presented as a fluorescent white signal, often with more prominent morphological features. 

Finally, it is important to note that the use of fresh, thick specimens means that many common FFPE-

derived artifacts are not observed with FIBI image.  
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Figure 3.8 – Unique contrasts provided by FIBI. a) A ganglion within this large intestine is more apparent 
in dark blue in the FIBI image compared to its H&E (d). b) FIBI imaging of bladder biopsy (diagnosed with 
urothelial cell carcinoma). FIBI images show significant detail in blood vessels not usually present in H&E 
(e), such as a layer of elastin that is fluorescing. c) FIBI image of ear skin, and its corresponding H&E (f). 
g) Collagen fibers and surrounding cancer is quite delineated in this FIBI image of prostatic 
adenocarcinoma compared to its H&E (i). h) FIBI image of a benign tongue specimen. The three-
dimensional directionality of the muscle fibers can be appreciated here, and not easily perceived in the 5 
μm H&E slice (j).  

 

3.4 - Discussion 

Conventional histopathology has been the gold standard for cancer diagnosis since the foundational work 

of Rudolf Virchow (c. 1855). Not much has changed: formalin-fixation and paraffin-embedding (FFPE) 

tissue processing with microtome sectioning and staining have proven to be the most practical and 

logistically feasible method for handling, preserving, and evaluating tumors. However, as a process that 

takes hours or even days, it postpones diagnoses and contributes to overall health system inefficiencies 

and substantial, avoidable patient anxiety. Additionally, because of fixative-, heat- and solvent- induced 

nucleic acid fragmentation and degradation, FFPE-based processing is sub-optimal for downstream 

molecular assays. 
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In this study, we demonstrate that by exploiting both the fluorescent and absorptive properties of 

specific stains (hematoxylin and eosin studied here), we can observe surface weighting that allows for 

high-resolution imaging of specimens. The overall tissue microarchitecture can be observed, but also 

subcellular features like nuclear chromatin texture and mitotic figures.  

In contrast to the standard histopathology workflow, which can take several hours and requires 

highly-skilled technicians, the FIBI workflow instead takes just a few minutes from specimen to image 

for pathologist review. Specifically, it involves tissue orientation and possible surface preparation via 

manual cutting using a sharp blade, staining the tissue for 30 s, (rinsing for 20 s), placement into the 

cassette, and imaging directly with a simple epifluorescence microscope with 405-nm excitation and a 

standard color camera to acquire the FIBI image. While we use hematoxylin and eosin for staining tissue 

in FIBI imaging, the methodology is not limited to those stains. Other stain combinations will be further 

investigated in subsequent work. The standard clinical pathology workflow is minimally affected for two 

reasons: (1) the H&E staining used by FIBI is also used for standard histology, (2) FIBI can non-

destructively image specimens from any stage of the standard clinical pathology workflow, including 

fresh, fixed, and paraffin-embedded specimens. 

A preliminary validation study was conducted to evaluate the diagnostic suitability of FIBI images 

[34]. In this study, pathologist diagnoses determined from histogram-matched FIBI images and diagnoses 

determined from corresponding H&E images were compared. The study set was comprised of 100 surgical 

pathology specimens imaged with FIBI and subsequently processed, H&E-stained, and digitally imaged. 

The digital FIBI and H&E images were reviewed by 4 board-certified pathologists. Aggregated over all 

readers, the diagnoses made with FIBI reads and H&E reads were essentially identical (no major 

discordance) 98.2% of the time (393 reads). These results indicate FIBI’s potential as a tool for primary 

pathology diagnosis. For widespread clinical adoption, FIBI will require detailed, multi-tissue, multi-

pathology, multi-center validation. 
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As a slide-free microscopy technology that relies on surface weighting, FIBI is quite similar to 

MUSE [73]. There are two underlying mechanisms that enable MUSE: 1) UV light around 280 nm 

penetrates thick tissue specimens to a depth of no more than about 10 microns; and 2) such UV light can 

induce emissions, in the visible range, from a large variety of inexpensive fluorescent stains that can 

mimic the tissue specificity of H&E. With color conversion algorithms, the resulting fluorescent images 

can be processed to resemble those seen with conventional brightfield H&E histology. However, MUSE 

employs relatively short wavelength UV excitation which introduces several challenges and concerns. 

Since standard glass microscope lenses are opaque in that spectral range, MUSE uses obliquely angled 

illumination that bypasses the objective. This general configuration makes it difficult to use high-NA, 

high-magnification lenses with typical short working distances, as it is difficult to get such objectives 

close enough to the tissue without physically blocking excitation. This also requires the sample support or 

viewing window to be composed of quartz or sapphire, rather than less expensive glass. In addition, UV 

excitation intensities that can be generated using the comparatively low-power LEDs currently available 

result in exposure times in the 100's of milliseconds per image, which can lengthen scan times for larger 

specimens.  

In contrast, FIBI uses convenient LED sources in the visible range that are both brighter and 

cheaper which results in faster imaging. Multiple excitation wavelengths can also be deployed with FIBI 

and provide additional spectral contrast. As noted above, it is not necessary to include potentially 

expensive UV-transparent viewing windows or sample stages, which will be helpful when large-sample-

format (15 x 15 cm or larger) FIBI instruments are implemented, or alternatively, disposable imaging 

cassettes are deployed.  

As with MUSE, there are some differences between the contrasts of FIBI and that of traditional 

histology. We highlighted several examples where FIBI provides additional contrast not typically seen in 

H&E. This includes improved contrast of collagen and elastin, fluorescence of Paneth cells. Additionally, 

as an imaging technique that relies on surface weighting, the topography of the tissue is visualized in a 
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2.5D manner. We hope that the additional contrast can be useful both for scientific discovery and research 

and for novel diagnostic use-cases. Additionally, the additional contrast may be beneficial for machine 

learning algorithms to extract more meaningful information from the images. 

FIBI can also be used for evaluating the quality of biopsies, intraoperative surgical guidance (as 

an alternative to frozen sections), Point-of-care histology for dermatology, histology in low-resource 

settings, and veterinary applications.  

Tissues – either fresh or fixed – can be stained and imaged with FIBI within a few minutes, which 

is significantly faster than the hours or days associated with FFPE-based histopathology. Computational 

algorithms (including deep learning-based techniques) can be used to convert FIBI microscopy images to 

mimic traditional H&E-stained brightfield microscopy images. Finally, FIBI is non-destructive, which 

means biopsy specimens can be imaged and submitted for downstream molecular analyses, which is 

especially important in this next-generation era of molecular pathology.  
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3.5 - Supplementary Information 

3.5.1 - Supplementary Figures  

 

Supplementary Figure 3.1 - The effect of tissue thickness on FIBI imaging. Shown are two different 
specimens cut at different thicknesses (with either a vibratome or microtome) and imaged with the FIBI 
optical setup. The top specimen corresponds to benign rectum, and the bottom corresponds to pancreas. 

Supplementary Figure 3.2 – The effect of eosin backlight on FIBI imaging. Shown are different 
images of rectum tissue taken at 10 micron thickness, 10 micron with eosin backlight, and 400 micron 
thickness.  
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Supplementary Figure 3.3 – Prior FIBI imaging does not affect immunohistochemistry. Breast tissue 
was imaged with FIBI and IHC was performed afterwards. Three IHC markers were evaluated: keratin, Ki-
67, and progesterone receptor (PR). There is no discernible difference in IHC quality compared to the 
control (right column). 
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4. Pilot study of FIBI (Fluorescence Imitating Brightfield Imaging) 

for rapid, slide-free dermatopathology 

4.1 - Background 
Conventional histopathologic examination involves tissue fixation with formalin and paraffin or rapid 

freezing, followed by thin sectioning, staining, and examination on slides using a brightfield microscope. 

This process requires expensive laboratory equipment and trained personnel. Novel techniques for slide-

free or ex-vivo microscopy aim to avoid sectioning and extensive processing [11], [95]. Advantages 

include greatly reduced time to image, lower requirements for tissue processing, and the inherently digital 

nature of images that can be rapidly interpreted either on site or remotely. This digital information also 

lends itself well to machine learning. Current slide-free techniques include multiphoton confocal imaging 

[96], full-field optical coherence tomography [97], [98], light sheet microscopy [99], stimulated Raman 

spectroscopy [100], [101], and microscopy using ultraviolet surface excitation (MUSE) [30], [31]. 

However, these technologies are expensive and require complex instrumentation, which has precluded 

widespread adoption of slide-free microscopy in pathology. In contrast, we present a novel slide-free 

microscopy technique that is inexpensive and relies on simple optical instrumentation [102]. Fluorescence 

Imitating Brightfield Imaging (FIBI) uses standard microscope optics and a color camera to detect signals 

from tissue specimens stained with standard hematoxylin and eosin (H&E). Even though an 

epifluorescence light path is used, the resulting FIBI images already resemble traditional H&E-stained 

slides imaged via brightfield; and deep learning mode-matching can be used to further increase the 

resemblance. Our study compares FIBI microscopy with conventional H&E for dermatopathology 

specimens. 

4.2 - Methods 
FIBI is based on standard traditional epi-fluorescence microscopy equipped with a 405-nm LED for 

excitation, a 10X microscope objective, a long-pass emission filter and a color camera (Figure 4.1). 

Alternatively, imaging can be done with a 20X microscope objective with 0.75NA. FIBI exploits eosin 

fluorescence and tissue autofluorescence to provide a virtual backlight within a thick specimen that is 
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remitted to the collection lens. The stained, non-sectioned surface of the tissue absorbs the remitted light 

to generate histologic contrast similar to that of a conventional H&E slide. The microscope is equipped 

with an XY stage for positioning and visualization of larger areas of the tissue. In this study, we simulate 

typical FIBI by imaging the face of paraffin blocks containing skin tissue already used for diagnosis for a 

wider range of pathologies. While the actual use case would be to image fresh or fixed specimens, such 

tissues are not easily obtained from actual patient material prior to submission for standard histology 

processing. 

 

Figure 4.1 – A labeled diagram of the Fluorescence Imitating Brightfield Imaging (FIBI) setup: A light-

emitting diode (LED) emits 405-nm blue light which excites the hematoxylin and eosin (H&E)-stained 

tissue to generate visible emissions that is collected by a 10× objective, focused through the tube lens, 

passed through the emission filter, and collected by a 9 MP camera. 

 

 The surfaces of paraffinized samples from the tissue bank (Institutional Review Board-exempt 

743439-2) were deparaffinized using xylene and ethanol washes, then stained with hematoxylin and 

eosin. Eight initial cases selected by dermatopathologist M.A.F were used to refine the deparaffinization, 

imaging, and color conversion techniques. Cases were selected as common examples encountered in 
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routine practice, identified at the time they were encountered. This “convenience sampling” method was 

used for eleven cases intended for evaluation. Two were excluded based on difficulties with color 

conversion model training from small fields of view available. For comparison to FIBI images, standard 

hematoxylin and eosin slides were prepared from the blocks prior to surface deparaffinization and were 

scanned using a slide scanner (Aperio AT2, Leica Biosystems Imaging, Inc., Vista, California). 

Specimens were re-paraffinized and returned to storage. 

The FIBI images were preprocessed before viewing by dermatopathologists. In order to have the 

same brightness and color density among all images, the color histograms of the FIBI images were 

adjusted using an open-source image editing program (GNU Image Manipulation Program [GIMP]). 

Additionally, the images were gamma-adjusted in GIMP to improve the appearance of otherwise too light 

or dark regions. To improve visual similarity to traditional H&E coloration for ease of interpretation, we 

developed a deep-learning CycleGAN mode-mapping model, similar to the MUSE-to-H&E conversion 

described in Abraham et al. [94] For each case presented, multiple specimens were obtained and imaged 

with FIBI. One of the images is designated as the “test set”, while the other images are used as a “training 

set” for training the CycleGAN to perform color mapping. Each image was divided into 512 x 512-pixel 

patches, and the distribution of tissue components (e.g., epidermis, stroma) was kept approximately 

balanced in the training set. For example, for the case-5 training set (squamous cell carcinoma), most 

patches of a large keratin pearl were removed so as not to overwhelm the training process and introduce 

incorrect biases. For the test set, the model is applied to overlapping patches stitched into a full montage 

as described in Abraham et al. [94] Unless otherwise described, the presented FIBI images were color-

mapped using this CycleGAN model. 

In total, nine FIBI images were selected for dermatopathologist review along with nine 

corresponding H&E images for comparison. Concordance between FIBI and H&E images was 

independently evaluated by two board-certified dermatopathologists (M.A.F. and M.K.). Ten selected 

epidermal and dermal structures (stratum corneum, stratum granulosum, stratum spinosum, stratum 
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basale, nerve, vasculature, collagen, sweat glands, adipose tissue and inflammatory cells) were assessed 

on each pair of images by the examiners. Each FIBI image was scored from 0 to 2 per structural element 

based on the scoring system in Table 4.1. 

Table 4.1: Scoring system for FIBI comparison images 

Score: 

0: FIBI cannot identify the structure without correlating with standard H&E slides 

1: FIBI can identify the structure without the need of standard H&E slides 

2: FIBI can identify the structure with more certainty than standard H&E slides 

N/A: Not applicable (the structure is not in the field to evaluate) 

 

4.3 - Results 
FIBI staining and imaging of paraffin-embedded specimens required approximately five minutes and did 

not adversely affect the specimens. Seventeen paraffin block-face FIBI images taken from nine cases 

were carefully compared to their standard H&E slide counterparts; diagnoses are provided in Table 4.2. A 

simple deep-learning-based color conversion step using the CycleGAN method generated re-colored FIBI 

images that were similar to traditional H&E (Figure 4.2). These color-converted FIBI and traditional 

H&E images were evaluated for identification of typical skin structures and diagnostic information. Mean 

scores from two board-certified dermatopathologists are reported in Table 4.3. In all specimens where 

present, FIBI images were equivalent to H&E slides for identifying epidermal layers, collagen, sweat 

glands, nerve tissue, and the presence of inflammatory cells (Figure 4.3). In the two melanocytic lesions 

evaluated, melanin and dermal melanocytes were evident with FIBI. While the dermatopathologist 

reviewers were able to identify inflammation and the presence of inflammatory cells, they described some 

difficulties in distinguishing between inflammatory cell subtypes such as eosinophils versus neutrophils 

in the 10X color-converted FIBI images. However, the subtypes are more distinguishable in 20X FIBI 
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images (Figure 4.4), indicating some limitations with the color conversion of 10X FIBI images. The 

majority of images from FIBI could be used to independently identify vasculature (Figure 4.5). Structural 

components like elastin are particularly prominent due to the extra contrast provided by the fluorescence 

excitation in FIBI. We observed that slide-free FIBI imaging avoided common artifacts that can affect 

quality using standard formalin-fixed paraffin-embedded processing, such as folding and tissue trauma 

(Figure 4.6). 

Table 4.2: Diagnoses for the nine cases examined. 

Specimen Diagnosis 

1 Targetoid hemosiderotic lymphovascular malformation 

2 Basal cell carcinoma, nodular pattern 

3 Squamous cell carcinoma, keratoacanthoma type 

4 Infundibular follicular cyst 

5 Squamous cell carcinoma 

6 Lentiginous compound melanocytic nevus 

7 Arthropod bite reaction 

8 Arthropod bite reaction 

9 Intradermal melanocytic nevus 
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Figure 4.2 – A paraffin-embedded specimen of squamous cell carcinoma (keratoacanthoma type) imaged 

with FIBI and color-mapped to H&E with deep learning. The quality of the raw FIBI image (A) is improved 

to generate the adjusted FIBI image (B). This adjusted FIBI image is then passed into a deep learning-based 

FIBI-to-H&E color mapping tool to generate a version of the FIBI image with H&E contrast (C) that is 

virtually indistinguishable from a true, correlated H&E image (D). (FIBI - original 10× magnification, H&E 

– original 20× magnification) 

Table 4.3: Scores for FIBI comparison images 

Skin structure Mean Score 

(N = 17) 

Stratum corneum 0.96 

Stratum granulosum 1 

Stratum spinosum 1 

Stratum basale 1 

Vasculature 0.86 

Collagen 1 

Sweat glands 1 

Nerve 1 

Inflammatory cells 1 
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Figure 4.3 – Deparaffinized block face images from FIBI (A), (C), color-converted with CycleGAN with 

corresponding traditional H&E glass slides (B), (D) depicting epidermal cells and structures. The top 

images (A), (B) are taken of a specimen diagnosed with targetoid hemosiderotic lymphovascular 

malformation. The bottom images (C), (D) are taken of a specimen diagnosed with infundibular follicular 

cyst. (FIBI - 10× magnification, H&E - 20× magnification) 

 

Figure 4.4 – Close-up examples of inflammatory cells in FIBI (left) and H&E (right) images. Shown here 

are prominent examples of neutrophils (A), (B) along with eosinophils and scattered lymphocytes (C), (D). 

Images were taken from a specimen with an arthropod bite. FIBI images were not converted with 

CycleGAN, but rather manually color adjusted. (FIBI - 20× magnification, H&E - 20× magnification) 
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Figure 4.5 – Close-up example of a blood vessel in raw FIBI and H&E images taken from a specimen 

exhibiting an arthropod bite. The elastin of the internal elastic lamina is particularly prominent. FIBI 

images were not converted with CycleGAN, but rather manually color adjusted. (FIBI - 20× 

magnification, H&E - 20× magnification) 

 

Figure 4.6 – Common sectioning artifacts in H&E-stained glass slides (right; folding, tissue trauma) 
avoided in tissue surface FIBI images (left). Shown here are cases of squamous cell carcinoma (A), (B) and 
infundibular cyst (C), (D). (FIBI - 10× magnification, H&E - 20× magnification) 

 

 

 

 

 

` 
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 4.4 - Discussion 

In this study, FIBI images of cutaneous tissue specimens were comparable to their traditional H&E slide 

counterparts. Epidermal structures, inflammatory cells (however not always down to the subtype), and 

collagen were identifiable with FIBI image alone and other structures such as vasculature benefited from 

correlation with standard H&E slides. While these results are promising, evaluation on a greater number 

of cases for varied applications is needed to fully assess the suitability of FIBI as a potential alternative to 

conventional histology. 

The ease of image capture with FIBI and the digitized nature of images are major advantages, 

especially in the expanding world of telepathology and machine learning [103]. FIBI uses widely 

available, familiar dyes (H&E), which contributes to its utility. With machine learning, real-time 

conversion of raw FIBI images to closely resemble authentic H&E coloration is possible. In addition, 

image acquisition is non-destructive, so specimens can be sectioned, re-dyed, or submitted for 

downstream immunohistochemistry or molecular studies. Tissue-face imaging also avoids common 

sectioning artifacts (Figure 4.2) such as creasing, separation of tissue components, and fat bleaching 

[104]. These artifacts can interfere with machine learning training as well [105]. Not thinly sectioning 

specimens may limit visualization of clandestine pathologies beneath the imaged surface, but specimens 

can be grossly sliced for additional evaluation and submitted for paraffinization or freezing after FIBI 

evaluation.  

The FIBI microscopy device is portable and uses inexpensive components. This could expand 

access to histologic examination in areas with lower laboratory resources. The rapid tissue surface 

preparation and image capture (approximately five minutes) also lends itself well to time-sensitive 

procedures such as STAT sections or Mohs micrographic surgery. 

A limitation of this study is that the standard H&E slides used for comparison are one section 

ahead of the block face captured by FIBI, thus not precisely spatially matched. This minimally restricted 
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direct correlation of images for dermatopathologist review. Consequently, we scored nine of eleven 

specimens on direct comparison. Also, the deep-learning-based models for H&E color conversion are still 

in the development stages and can generate local errors in the re-coloration step. This was especially 

evident for inflammatory cells and vasculature. However, such structures were distinguishable in 20X 

FIBI images, without CycleGAN color conversion, since those models were developed with 10X FIBI 

images. More training data, especially for 20X images, is necessary to overcome the limitations of the 

color conversion. As these models continue to train, their accuracy is expected to improve. As for the 

lower score in vasculature identification, in the six images where FIBI required referencing to standard 

H&E images, vessels mostly lacked the negative luminal white space seen in typical slides. This makes 

sense, as we are viewing the intact vessel lumen with FIBI but may benefit from better color conversion 

to negative space for ease of interpretation. Lastly, having only two dermatopathologist evaluators limits 

conclusions based on image scores. Nonetheless, this is a proof-of-concept study and depicts FIBI as a 

reasonable future alternative to standard histology processing, with benefits over traditional glass slides. 

All specimens were paraffin-embedded, and the face of the block was de-paraffinized and 

imaged. This was done to obtain specimens with a diversity of pathologies, as fresh, fixed tissue 

especially of small or infrequently encountered lesions are not readily available. While the images 

obtained are similar to others derived from fresh or fixed but unembedded specimens, they are not exact 

analogues, so this study can only be used to suggest the future promise of FIBI in clinical settings. 

A similar study examined the use of MUSE to image fresh, non-sectioned skin tissue [31]. 

However, FIBI overcomes some of the limitations of MUSE. The UV excitation used by MUSE requires 

longer exposures that lengthens scan times, whereas FIBI employs visible light for excitation, generating 

intrinsically brighter images requiring shorter exposure times, currently in the few tens of milliseconds 

per field. Additionally, while MUSE uses fluorescent dyes, FIBI uses traditional H&E stains, which may 

make it easier to integrate the FIBI technology into existing histology workflows.  
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Other advances are being made in the slide-free histology arena. For instance, a similar study by 

Sun et al. [106] used third-harmonic generation and three-photon fluorescence microscopy to image 

H&E-stained skin tissue. They converted these images to standard H&E coloration with set algorithms for 

color mapping. Our study uses deep-learning-based color mapping with continued improvement and 

dynamic applications. In addition, our color camera image capture system is likely to be among the most 

affordable imaging technologies under development. Many newer technologies estimate costs of $65,000 

to $400,000 USD [107].  

Future work may explore whether special stains like periodic acid Schiff (PAS) and Prussian Blue 

can be used in conjunction with FIBI, but since many special stains can require multiple reagents and 

hours of preparation, this may negate some of the benefits of the rapid FIBI technology. Instead, we may 

explore the use of machine-learning-based algorithms to color-convert FIBI images to resemble special 

stains similar to how de Haan et al. converted standard H&E images into “virtual” Masson’s Trichrome, 

Jones, and PAS stains [108]. 

4.5 - Conclusion 

We demonstrate that FIBI microscopy is a promising tool for dermatopathology. It may be applicable for 

rapid and easy imaging of fresh, excised skin specimens in the clinic, without the need for fixation, tissue 

processing, or sectioning. These digitized FIBI images can be converted to standard H&E coloration to 

enable rapid pathologic and inform care decisions. For instance, FIBI could be used on fresh tissue in 

Mohs surgery without needing to wait for freezing or requiring extensive laboratory equipment. Since 

FIBI is rapid and non-destructive, if results prove to be non-diagnostic, the specimen can still be 

submitted for routine histopathology without delaying standard workflow. Future work aims to validate 

FIBI microscopy for dermatopathology applications and compare it to traditional methods for a variety of 

skin pathologies. 
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5. Label- and slide-free tissue histology using 3D epi-mode 

quantitative phase imaging and virtual H&E staining 
 

5.1 - Introduction 

Histopathology is the gold-standard for diagnosing disease, guidance of surgical margins during lesion 

resection, and overall clinical evaluation of tissue[1]. To visualize tissue architecture, labor-and-time-

intensive tissue processing is currently required. During the most common histopathology procedure, an 

excised tissue specimen is fixed in formalin and paraffin embedded (FFPE), sectioned to generate micron-

thick slices, and then mounted onto microscope slides. Those slides can then undergo a number of 

different staining procedures with the most common being hematoxylin and eosin (H&E) staining, in 

which hematoxylin stains cell nuclei purple and eosin stains the extracellular matrix, stroma, and 

cytoplasm pink[1]. This standard widely used process typically takes eight hours or more to complete. 

Consequently, fast, real-time tissue assessment with H&E-like contrast would have the potential to 

improve a number of medical procedures, ranging from surgical margin assessment to cancer screening 

and more.  

In an effort to gain real-time pathology-level tissue assessments for use in surgery and other 

clinical fields, alternate microscopy techniques have been employed to provide imaging feedback during 

tissue excision. Some of these techniques include rapid tissue staining followed by linear[73], [109] and 

nonlinear fluorescence microscopy[22]; as well as label-free approaches ranging from ultraviolet-based 

methods and autofluorescence [110]–[112] to more complex nonlinear techniques[64], [113]–[115]. 

Many of these methods have also incorporated virtual staining pipelines to obtain images that are familiar 

to pathologists and thus avoid the need for further training on each imaging modality[22], [64]–[66], [73], 

[75], [109]. While promising, these methods have certain potential downsides, as they variously rely on 

staining the imaged tissues, employ UV light, and/or use complex and expensive nonlinear methods to 

achieve virtual histology. Further, translation of these technologies to in-vivo applications is challenging 



66 

 

or infeasible given the need for exogenous agents, concerns regarding tissue damage, and technological 

hurdles. These challenges limit the applicability of virtually stained microscopy and slide-free histology 

and point out the advantages of a microscopy method that could provide histopathologic information 

quickly (real-time), non-destructively, and with high-resolution in 3D, using simple, low-cost 

instrumentation. 

To achieve these desired capabilities, we propose the use of virtual-H&E-stained images obtained 

with quantitative oblique back-illumination microscopy (qOBM) as a method of real-time histopathology 

for excised tissue samples, and with a clear path to future in-vivo applications. qOBM is a label- and 

fixative-free, wide-field, low-cost microscopy technique capable of obtaining sub-cellular resolution, 

quantitative phase images of thick, scattering tissue samples using same-side epi-illumination[116], [117]. 

(Thick, scattering samples refers to, for example, excised tissues without sectioning or intact organs such 

as brains, which cannot be imaged with transmission microscopes.) The level of 3D cellular and 

subcellular structural detail provided by this technology is comparable to that provided by label-free 

nonlinear microcopy methods, but with an embodiment that is simple and orders of magnitude cheaper, as 

it uses LEDs instead of femto-/pico-second lasers, is faster (wide-field vs point scanning), gentle on 

tissues and cells, and can be easily modified and miniaturized for in-vivo applications[37], [39]. Here we 

advance qOBM and the field of slide-free histology by introducing an image translation method by which 

qOBM images are virtually stained to resemble H&E-stained images. 

The approach leverages deep learning, specifically generative adversarial networks (GANs)[60], 

which have been employed to generate virtual H&E histology from alternative microscopy modalities 

such as quantitative phase imaging[75], reflectance confocal microscopy[118] and photoacoustic remote 

sensing microscopy[119], among others[66]. This approach typically requires training datasets in which 

the alternative microscopy images can be pixel-registered with the target domain images (e.g., H&E), and 

most often relies on the use of thin tissue sections. Here, such pixel-registered datasets are unobtainable as 

qOBM imaging is performed on fresh tissue whereas ground-truth H&E images are subject to tissue 
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distortions from histological processes. To work around the lack of one-to-one pixel matching, we turn to 

cycle-consistent GANs (CycleGANs) [78]. Recent reports (using fluorescently labeled tissue and/or UV 

light) have demonstrated the utility of such networks for virtual H&E staining while relaxing the pixel-

matching constraint[29], [70], [94]. Here, we demonstrate the efficacy of CycleGANs for virtual H&E 

staining of qOBM images. This combination has the potential to reduce the time needed to acquire H&E 

images from hours or even days to ~1 second.  

To demonstrate the clinical utility of this method, we primarily focus on imaging brain tissue and 

differentiating between healthy and tumor regions (this represents one of many potential applications). To 

date, identifying brain tumor margins intraoperatively remains a significant clinical challenge; thus, 

neurosurgeons are often conservative with excised margins to minimize damage to healthy brain tissue 

vital for neurological function. However, this approach can lead to incomplete resections and tumor 

recurrence. Novel intraoperative methods such as 5-aminolevulinic acid (5-ALA) in-vivo staining have 

shown promise for improving clinical outcomes[120]–[122], but they are not without their limitations. 

For example, 5-ALA exhibits variable uptake based on brain morphology[121], and has limited 

sensitivity for low-grade disease and infiltrative tumor cells even in high-grade tumors[123]–[125]. Real-

time, label-free image guidance with H&E-like contrast has the potential to significantly improve 

neurosurgical outcomes, particularly if deployed in situ (that is, in the surgical site rather than on excised 

specimens).  

In this study, we first demonstrate conversion of qOBM images to vH&E (i.e., qOBM-to-vH&E 

conversion) using mouse liver specimens, which have a simple and homogenous structure, to establish the 

feasibility and effectiveness of the approach, as well as to show its utility for imaging a variety of tissue 

types. Then, we demonstrate qOBM-to-vH&E conversion using tissues from a rat glioma tumor model 

and human glioma specimens. To validate the results, we (1) trained a classifier on real H&E images of 

tumor and healthy tissues and then tested on virtual H&E images, and (2) performed a user study with 

five board-certified neuropathologists. The proposed qOBM-to-vH&E conversion pipeline permits a 
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novel histopathology workflow (Fig. 5.1) that has the potential to reduce the time and costs associated 

with obtaining histological H&E images. Further, the level of histological detail with H&E-like contrasts 

achieved by the proposed simple and label-free method is exemplary and paves the way for novel 

capabilities in a number of medical applications.  

 

Figure 5.1 - Deep learning-enabled qOBM imaging workflow. (A) The standard histology workflow 

requires several sample preparation steps before viewing under a brightfield microscope and 

interpretation. This process can take about 8 hours or longer. (B) Our proposed workflow utilizes qOBM 

imaging to image a fresh specimen of tissue and virtual staining to obtain similarly interpretable images in 

about 1 second. 

 

5.2 - Methods 

5.2.1 - Label-free qOBM imaging 

The qOBM system consists of a conventional inverted microscope with a modified epi-illumination 

scheme, as shown in Fig. 5.1B. The illumination consists of four LED light sources (720nm) coupled into 

1mm multimode fiber optics with a 0.5 NA. The fibers are evenly distributed around the microscope 

objective (Nikon Plan Fluor ELWD, 60x, 0.7 NA) at a 45-degree angle from the optical axis. LEDs 

illuminate samples sequentially, and for each illumination, a raw bright field image is collected. By way 

of multiple scattering, this illumination configuration produces an effective oblique illumination[15], 

[116]. Upon subtraction of two captures with diametrically opposed illumination, we obtain a differential 
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phase contrast (DPC) image, IDPC, which provides tomographic cross-sectioning capabilities with 

qualitative differential phase contrast. 

To reconstruct a 3D quantitative phase image with qOBM, two DPC images from orthogonal 

angles (or shear directions) are processed and deconvoluted with the system’s optical transfer function 

through a Tikhonov regularized deconvolution following,  

8 = ℱ:( ; ∑  > ?A̅BC> ⋅ DABC∗
∑  > |DABC|5 + GH, 

  

Here, 8 represents the quantitative phase, ?A̅BC>  is each DPC image along the kth shear direction, alpha is a 

regularization parameter, and DABC is the optical transfer function of the system, which can be obtained 

by characterizing the distribution of the multiple-scattered light passing through the focal plane within the 

sample[116], [117]. 

The qOBM images capture the quantitative phase of the samples, which is directly correlated to 

the refractive index and dry mass of the sample. Additionally, the qOBM images show outstanding detail 

in all directions of illumination, have diffraction limited resolution (~0.6 μm), and a sensitivity of ~2 

nm.[37], [116] qOBM image acquisition is at 10Hz (limited by the frame rate of the camera) and 

processing of the quantitative phase images is achieved in real-time using a regular table top computer.  

5.2.2 - Sample preparation and imaging 

In this work, we studied the virtual staining of qOBM images from 3 types of tissues: mouse liver, rat 

brain 9L gliosarcoma tumor model, human brain tumors. All animal tissue excision and imaging 

protocols were approved by Institutional Animal Care and Use Committee of the Georgia Institute of 

Technology. All human samples were de-identified and obtained through the Winship Cancer Institute of 

Emory University using approved protocols. Tissues were imaged fresh and untreated, ex-vivo within 6 to 

12 hours of removal. The imaged mouse livers from 8 healthy animals were donated by the Haider lab at 

Georgia Tech and Emory University, from mice sacrificed for various purposes. The livers were excised 
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and imaged fresh within 3 hours of the procedure. Details about the 9L gliosarcoma rat tumor model 

protocol and imaging may be found in Costa et al.[37] In short, 14 Fisher rats were intracranially 

implanted with 9L gliosarcoma cells. The animals were sacrificed 9-12 days after the implant, and brains 

were excised, cut coronally to expose the tumor, and imaged fresh within 12 hours of extraction. In this 

animal model, the tumor is confined to the side of the brain where the tumor cells were implanted, leaving 

the counter-lateral side of all treated brains as an additional control. This also allows for a priori 

knowledge of the location of the tumor. The human tissue from N = 5 patients were imaged post-surgery, 

within 6 hours of recession.  

The qOBM imaging sessions consisted of multiple lateral and axial scans of different regions of 

each tissue. These scans were performed in an automated manner, enabled by the X-Y-Z automatic stages 

built into the microscope. Axial stacks were taken by translating the objective by 1 µm steps. The lateral 

scanning was performed with an overlap of 20% to facilitate stitching of mosaics and combined with axial 

scans.  

After imaged with qOBM, all tissues were formalin-fixed for 48 hours, processed, and embedded 

in paraffin. Then, the samples were sliced into 5µm sections and stained with H&E. The whole H&E 

sample slides were then digitally scanned by an Olympus NanoZoomer whole slide scanner at either 20x 

or 40x magnification. Finally, the H&E slide scans were inspected to select similar regions to those 

acquired with qOBM for the CycleGAN training process, described below.  

5.2.3 - Virtual H&E staining with CycleGAN 

We define two image domains, one for qOBM images (�), and one for H&E images (�). We attempt to 

determine a transformation 
: � → �. In the CycleGAN framework used here[78], there are two tasks. 

One task is to learn 
�: � → � that maps � ∈ � to � ∈ �. The auxiliary task is to learn a generator 


�: � → �. Additionally, we have adversarial discriminators �� and ��. �� discriminates between the 

fake outputs of 
� and real images from the domain �. On the other hand, �� discriminates between the 
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fake outputs of 
� and real images from the domain �. The CycleGAN framework then exploits the 

cycle-consistency property that 
��
�(�)� ≈ � and 
��
�(�)� ≈ �. This is expressed as the following 

loss: 

ℒ�����(
�, 
�) = ��~!"#$#(�) %&
��
�(�)� − �&() + ��~!"#$#(�) %&
��
�(�)� − �&() 

where ‖⋅‖( is the L1 norm. This is trained with traditional least-squares adversarial losses: 

ℒI(�, 
, �, �) = ��~!"#$#(�) %���
(�)� − 1�5) 

ℒA(�, 
, �, �) = 1
2 ��~!"#$#(�)0(�(�) − 1)51 + 1

2 ��~!"#$#(�) KL��
(�)�M5N 

Finally, for regularization, an identity constraint is imposed: 

ℒ,-/(
�, 
�) = ��~!"#$#(�)0‖
�(�) − �‖(1 + ��~!"#$#(�)0‖
�(�) − �‖(1 

Thus, the full objective is: 

minR ℒST�� = U���ℒ�����(
�, 
�) + ℒI(��, 
� , �, �) + ℒI(��, 
�, �, �) + U,-/ℒ,-/(
�, 
�) 

minV ℒST�� = ℒA(��, 
� , �, �) + ℒA(��, 
�, �, �) 

where U��� = 10 controls the importance of the cycle-consistency loss, and U,-/ = 0.5 controls the 

importance of the identity loss. 

The generator architecture (
�, 
�) was a ResNet-based fully convolutional network described in 

Zhu et al.[78] Unless otherwise specified, the generator had nine residual blocks. A 70x70 PatchGAN[81] 

was used for the discriminator (��, ��). Unless otherwise specified, the discriminator had three layers. 

The same loss function and optimizer as described in the original paper[78] was used. The learning rate 

(LR) was fixed at 2e-4 the first 100 epochs and linearly decayed to zero in the next 100 epochs. A batch 

size of 4 is used. 
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qOBM images were center-cropped to 1536x1536 pixel images and divided into nine 512x512 

tiles. Unless otherwise noted, all qOBM images were contrast-inverted. The H&E images were upscaled 

with bilinear interpolation by a factor of either 1.5x or 2x (depending on the dataset) such that the images 

had features of comparable pixel dimensions to those in the qOBM images.  

To enable a scalable inference pipeline, we utilized a tiled inference procedure as described in 

Abraham et al.[94] Briefly summarized, the model was applied to overlapping 512x512 tiles of the 

original FOV and the tiles were stitched by defining a given pixel’s intensity as the weighted average of 

intensity values from the vH&E patches which overlapped at the given pixel location. The weighting was 

based on a Gaussian kernel. 

Since four raw captures are taken with qOBM, from which two DPC images are reconstructed, 

single capture- and DPC-to-vH&E conversion was also performed and compared to qOBM-to-vH&E (the 

images used for training come from the exact same fields of view), except the images were not inverted, 

since the nuclei appeared dark and therefore should be the best-case scenario for conversion efforts. 

Neither the raw capture nor the DPC image approaches supported good CycleGAN conversions 

(Supplementary Fig. 5.3).  

For conversion of rat brain, the single model trained on all four observed tissue subtypes 

simultaneously used a larger model. As commonly noted with CycleGANs, model size played a role in 

conversion performance (see Supplementary Note 5.2). Our larger model had twelve residual blocks in 

the generator and six layers in the discriminator. Fine-tuning of the rat CycleGAN on the human 

specimens simply consisted of initializing the model with the rat CycleGAN model weights and training 

at an LR of 2e-5. When using the high-resolution H&E for fine-tuning instead, the usual LR of 2e-4 was 

applied. For conversion of the qOBM strip, the full stitched strip is taken and passed into our tiled 

inference algorithm, rather than the individual FOVs from the strip. 
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5.2.4 - Quantitative evaluation of virtual H&E staining results 

We first trained a convolutional neural network on standard brightfield H&E images to classify between 

healthy (cortex or basal ganglia) regions and tumor regions. We performed five-fold cross validation. The 

model was trained on a total of 1744 standard H&E images, so in each fold, this leads to a train-validation 

split of 1395 - 349 image tiles. An ImageNet-pretrained ResNet18[49] was fine-tuned with a batch size of 

128 and for 4 epochs. In the first epoch, only the linear head layer was trainable, and the remaining the 

model weights were frozen (not updatable). It was trained with a LR of 1e-2 with a short LR warmup 

followed by a cosine decay. The remaining three epochs were trained with all layers updatable, with a 

base LR of 5e-3, but using “discriminative LRs” [43] where early layers in the neural network have even 

lower LRs. These three remaining epochs were trained with a one-cycle LR schedule [126]. The mean 

and standard deviation of the accuracies for the classifiers trained on each of the five folds were reported. 

Once accurate H&E healthy vs. tumor classifiers were trained, they were applied to vH&E 

images. The accuracy was calculated by comparing the labels predicted by the classifier to the ground 

truth labels of the original qOBM images. This was one for each of the five trained classifiers, and the 

mean and standard deviation of the accuracies were reported. 

5.2.5 - Computational Hardware and Software 

All deep learning models were trained on NVIDIA A100 80GB GPUs. The PyTorch (version 1.9.1) [83], 

fastai (version 2.6.3) [84], and UPIT (version 0.2.3) [127] libraries were used for training and inference of 

all models. 

5.2.6 - Clinical validation of vH&E images of brain tissue 

To evaluate the quality and usefulness of the virtually stained qOBM images compared to the gold 

standard H&E-stained images, we conducted a panel study with 5 board-certified neuropathologists. In 

this study, the neuropathologists were asked to evaluate a total of 100 180 µm x 180 µm images. The 

image set contained 30 real H&E rat brain images (10 tumor, 10 healthy, and 10 mixed fields of tumor 
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and healthy), 30 virtually stained qOBM images (10 tumor, 10 healthy, and 10 mixed fields of tumor and 

healthy), 20 real H&E human brain tumor images, and 20 virtually stained qOBM human brain tumor 

images. The order of images presented in the survey was randomized with healthy and tumor regions 

from both humans and rats combined. For each image, neuropathologists were asked if tumor cells were 

present in the image (Y/N/Cannot assess), based on the image if they would recommend continued 

resection of the area (Y/N), and how confident they were in giving that recommendation with numerical 

scores (1, unsure to 5, very confident). 

5.3 - Results 

5.3.1 - Virtual staining of label-free qOBM images of fresh mouse liver 

To establish the feasibility and effectiveness of unpaired image-to-image translation from qOBM to H&E, 

we first attempted to generate vH&E images of healthy mouse liver specimens, which demonstrate a 

consistent, well-defined microanatomy primarily comprising of well-organized hepatic cells and blood 

vessels. qOBM images of freshly excised liver tissue specimens (N=8), donated from otherwise discarded 

tissue, were obtained with a 60X objective (0.7 N.A., 270 x 270 μm field of view, with lateral resolution 

of 0.6 μm and cross-sectional/axial resolution of 2.5 µm). qOBM images, including real-time processing, 

were acquired at 10Hz. All animal experimental protocols were approved by Institutional Animal Care 

and Use Committee (IACUC) of the Georgia Institute of Technology and Emory University. Tissues were 

subsequently submitted for histological processing to obtain H&E slides (sections were ~5 µm thick). 

Prior to CycleGAN training, the qOBM images were contrast-enhanced and grayscale inverted. The 

images were divided into 512 x 512 pixel (~ 70 x 70 µm) tiles for training. We used a standard ResNet-

based generator architecture and a PatchGAN discriminator, training on 2358 qOBM and 1737 H&E tiles 

for 200 epochs at a batch size of 4. 

Figure 5.2 shows representative results. First, the native qOBM phase images (Fig. 5.2A) show 

clear cellular and subcellular detail that closely parallels the structure of the traditional H&E images (Fig. 

5.2C), making qualitative assessment of the translation relatively simple. For example, in qOBM, with 
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contrast generated by the refractive index properties of the tissue, hepatocyte nuclei appear dark and 

possess subtle but appreciable subnuclear structure/texture (shown in insets), while red blood cells appear 

bright. Figure 5.2B shows the translated vH&E image, which preserves the general structure of the qOBM 

image, with a high-fidelity style conversion to H&E. Specifically, nuclear and subnuclear structures of the 

hepatocytes are converted appropriately, with the expected purple hue and texture. The network also 

correctly enhances and converts nuclei that can be difficult to identify in qOBM (white arrow), although 

some are occasionally missed (yellow arrow). The missed nuclei occur in areas near capillaries; this is 

likely due to the fact that the capillary structures in the qOBM images of fresh tissues are different (better 

preserved and continuous) than in the target H&E images of processed tissue sections in which the 

capillaries appear more fragmented (blue arrows highlight vessel structures). Consequently, the network 

may at times not appropriately deal with such structures. Training with more data could potentially 

resolve these small errors; nevertheless, the overall structure of the tissue is well preserved and is 

consistent with the appearance of healthy mouse liver.  

We also note that structures observed in qOBM that are not present in H&E, such as small bright 

white droplets—likely composed of lipids—are correctly ignored in the vH&E images and do not produce 

unwanted artifact. And red blood cells, also depicted in bright white in the phase image, are correctly 

translated to their characteristic bright red hue in H&E. These results confirm that CycleGANs can 

successfully translate qOBM quantitative phase images of thick fresh tissue to H&E-like images without 

needing pixel-matched paired images. 
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Figure 5.2 - qOBM-to-vH&E conversion of mouse liver tissue. (A) Label-free 60x qOBM image of 

mouse liver tissue. (B) Corresponding vH&E image. (C) Standard brightfield H&E image provided for 

comparison. The white boxes and insets show a representative appropriately converted hepatocyte with 

appreciable subnuclear detail, the yellow arrows refer to nuclei missed by the conversion, and the blue 

arrows refer to capillaries. Scale bar is 50 µm. 

 

5.3.2 - Virtual staining of label-free microscopy images of rat brain tumor 

Having established the qualitative ability to translate qOBM images into vH&E using a relatively simple 

and homogeneous sample type, we next turn to the more challenging task of virtually staining complex 

brain tissue (healthy and tumor) and later providing quantitative metrics of translation fidelity. 

qOBM imaging of fresh tissues from a 9L gliosarcoma rat tumor model (N = 14) was performed 

as described in Costa et al.[37] (also see Materials and Methods); this tumor was chosen because of its 

similarity to high-grade human gliomas. Treated animals had tumors confined to one hemisphere, leaving 

the other as control. Two healthy mice were also imaged and analyzed as additional controls (thus a total 

of N=16 animals were analyzed). Images were acquired with a 60X, 0.7NA objective. During the imaging 

sessions, the brains were scanned laterally and axially (volumetrically) in an automated manner to acquire 

data from different regions of the brain. Following qOBM imaging, the brains were formalin fixed, 

embedded in paraffin wax, cut into thin (5 μm) sections, and stained with H&E. 

Four general tissue subtypes were observed and characterized with qOBM in the 9L gliosarcoma 

model. Figures 3A, B show two densely hypercellular tumor regions, one with a malignant sarcomatous 
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population (Fig. 5.3A), and another with a malignant glial component (Fig. 5.3B). This biphasic tumor 

tissue pattern is characteristic of gliosarcomas. Additionally, Fig. 5.3C demonstrates healthy basal ganglia 

(with the presence of white matter bundles) and Fig. 5.3D shows healthy cortex. We trained a single 

CycleGAN model for qOBM-to-vH&E conversion on an image set representing all four subtypes with a 

total of 1377 qOBM and 1744 H&E tiles of size 512 x 512 pixels, trained for 200 epochs at a batch size 

of 4. Qualitatively, the CycleGAN provides qOBM-to-vH&E conversions (Fig. 5.3E, F, G, and H) that 

are remarkably similar to standard H&E, provided for comparison in Fig. 5.3I, J, K, and L. For instance, 

Fig. 5.3E (vH&E) clearly shows the same overall pleomorphic, herringbone-shaped spindle cell structure 

shown in Fig. 5.3I (real H&E), and Fig. 5.3F shows hyperchromatic appearance (dark purple color) of the 

tumor cells. In the basal ganglia, the vH&E image clearly shows the eosinophilic (deep pink color) white 

matter bundles, consistent with the real H&E image (Fig. 5.3K). Finally, cortex regions such as normal 

basal ganglia exhibit the appropriate cellularity, with blood cells (with large phase values) correctly 

translated to an intense red hue. 

Figure 5.4 shows qOBM-to-vH&E conversion of specimens that were not shown to the network 

during training, consisting of an admixture of healthy brain and tumor. The conversion is successful and 

shows excellent agreement with the style and appearance of real H&E images. Specifically, the examples 

in Fig. 5.4 show clear lines of delineation between the tumor and brain tissue, and a mesenchymal 

transition characteristic of the 9L gliosarcoma rat model. The non-tumor brain tissue also demonstrates 

reactive characteristics such as high cellularity as expected of tissue adjacent to tumor. These results 

highlight the ability of the qOBM-to-vH&E conversion network to make correct inferences even when 

presented with structures outside of those explicitly provided in training. We attribute this capability, in 

part, to the close resemblance of the native qOBM phase images to histology, where again the style/mode 

difference between qOBM to H&E is relatively minor (particularly when compared to other label-free 3D 

scattering-based imaging technologies[118], [128]). 
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To quantitatively evaluate the qOBM-to-vH&E conversion, we trained a convolutional neural 

network classifier to discriminate between H&E images of healthy and tumor tissue and observed its 

performance on vH&E images. The tissue class (i.e., ground truth healthy vs. tumor) for each qOBM and 

H&E image was known a priori based on the anatomical location of the implanted tumor cells. The 

classifier was trained with 5-fold cross validation on 1395 real H&E tiles to discriminate between healthy 

and tumor, which yielded an accuracy of 99.4 ± 0.8% on a held-out test set of 349 512 x 512-pixel tiles. 

The classifier was then employed on 270 vH&E tiles generated by the CycleGAN and displayed an 

accuracy of 95.2 ± 2.8% (Fig. 5.5). This suggests that the translated images preserve both the style and 

diagnostic information content of the traditional H&E images.  
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Figure 5.3 - qOBM-to-vH&E conversion of brain tissue from the 9L gliosarcoma rat tumor model. 

(A)-(D) Label-free 60x qOBM images of each of the four rat brain tissue subtypes, including two types of 

tumor structure (A and B), heathy basal ganglia (C) and healthy cortex (D). (E)-(H) Corresponding 

vH&E images produced by a CycleGAN trained on rat brain images. (I)-(L) Standard brightfield H&E 

images of the same tissue subtypes, provided for comparison. Scale bar is 50 µm. 
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Figure 5.4 - qOBM-to-vH&E conversion for images with a mix of healthy and tumor rat brain 

tissue, never seen during training. (A)-(B) Label-free 60x qOBM images of mixed rat brain tissue. (C)-

(D) The corresponding vH&E images. (E)-(F) Standard brightfield H&E images of the same tissue 

subtypes, provided for comparison. Scale bar is 50 µm. 

 

Figure 5.5 – Quantitative evaluation of qOBM-to-vH&E conversion for rat brain tissue. A classifier 

trained on standard H&E images to differentiate between tumor and healthy images is assessed using 

vH&E images. Summary of results: (A) accuracy of training H&E set with 5-fold cross-validation and the 

accuracy of the vH&E test set. (B) A confusion matrix of this H&E healthy/tumor classifier applied to the 

vH&E images.  



81 

 

5.3.3 - Virtual H&E staining of mosaics and tomographic volumes 

The qOBM system used in these studies was equipped with lateral and axial automated stages that enable 

scanning tissue in all directions to create large mosaics, as well as tomographic volumetric datasets. 

Figure 5.6 demonstrates a virtual H&E strip mosaic (6.3 mm x 270 µm) of a rat brain, while Fig. 5.7 

shows a vH&E 3D rendered volume (270 µm x 270 µm x 60 µm) of a rat brain tumor margin. In Fig. 5.6, 

the overall margin delineation between tumor tissue and normal tissue based on the cellularity is clearly 

apparent, with excellent agreement to H&E. Figure 5.7 demonstrates a transition from a glial tumor 

subtype surrounded by basal ganglia tissue structures into the sarcomatous tumor subtype, which is 

clearly apparent in the vH&E images. Here the robustness of the vH&E translation is evident and 

demonstrates a consistent color and structure in the reconstructed images stitched or stacked together 

using a standard process (see Materials and Methods), with no special consideration for the mosaic or 

volumetric nature of the datasets. 

 

Figure 5.6 - Label-free qOBM imaging of a strip of rat brain tissue and corresponding vH&E. A 

virtual H&E strip mosaic of rat brain tumor obtained by applying the CycleGAN trained on rat brain to 

the whole mosaic at once. (A) Virtual-H&E mosaic (6.3mm x 270µm). Scale bar is 300 µm. (B) A 

zoomed-in region of the label-free 60x qOBM strip (600µm X 270µm). Scale bar is 50 µm. (C) A 

zoomed-in region of the corresponding vH&E strip. (D) A zoomed in region of a brightfield H&E strip 

region provided for comparison.  
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5.3.4 - Virtual staining of label-free microscopy images of human glioma specimens 

To demonstrate the potential clinical utility of the approach, the CycleGAN deep learning pipeline was 

employed to virtually stain qOBM images of human astrocytoma specimens. Samples consisted of freshly 

excised human brain tumor and tumor-edge regions of infiltrating grade 2 and grade 3 astrocytoma 

specimens discarded from neurosurgery. Five patient samples were analyzed. All tissues were imaged 

fresh within 6 hours of removal, and no modifications were made to the tissues prior to the qOBM 

imaging process. It is important to note that the margins of these types of infiltrating tumors, especially 

grade 2 astrocytomas, are extremely difficulty to identify intraoperatively, particularly in vivo where 

existing assessment tools lack sensitivity. All human samples were de-identified and obtained through the 

Winship Cancer Institute of Emory University using approved protocols.  

 

 

Figure 5.7 - A qOBM and corresponding vH&E 3D volumetric stack of a rat brain tumor margin. 

A virtual-H&E volumetric stack (270 µm x 270 µm x 60µm) obtained by applying the trained rat brain 

CycleGAN to each image in the stack. (A) qOBM-to-vH&E conversion of the volumetric stack is 

depicted. (B) vH&E volume, with X-Y, X-Z, and Y-Z cross sections shown. (C) qOBM image slices at 

various depths and the corresponding vH&E image slices. Scale bar is 50 µm. 
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Figure 5.8 - qOBM-to-vH&E conversion of human gliomas. Each row contains a qOBM image, 

corresponding vH&E, and standard brightfield H&E images, provided for comparison. (A)-(I) Three 

separate human grade 3 glioma specimens (one per row). (J)-(L) Human grade-2 (low-grade) glioma 

specimen. (M)-(O) Healthy human tissue specimen from the edge of a grade 3 astrocytoma. Scale bar is 

50 µm. 
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We continued training the CycleGAN developed for rat brain tissue on an additional 837 qOBM 

and 372 H&E tiles of human glioma tissue. This process is often referred to as transfer learning or fine-

tuning[129]. Qualitatively, this fine-tuned model performed significantly better on human specimens than 

when we attempted to apply a neural network trained exclusively on rat specimens (Supplementary Fig. 

5.5). We also compared our fine-tuned model to training from scratch on the human glioma images alone 

(Supplementary Fig. 5.5E, F), observing that the fine-tuned model demonstrates significantly better 

subnuclear detail, especially when trained with higher resolution H&E images (Fig. 5.8). 

Figure 5.8A-F show two human grade 3 astrocytomas, clearly identifiable due to their 

hypercellular and hyperchromatic tumor cells. In the qOBM phase images, the cells are tightly packed 

and display rough intranuclear texture; these are appropriately translated in the vH&E image. In Fig. 

5.8G-I, we see another hypercellular human grade 3 astrocytoma. Both the virtual and real H&E show 

atypically shaped cells and nuclei that are an important indicator of tumor presence. Note that the qOBM 

image (Fig. 5.8G) contains small bright white dots throughout the image which we have exclusively 

observed in brain samples from patients who have received prior radiation treatments (data from a parallel 

study[130]). These features are only visible in the qOBM images of fresh tissues and vanish after FFPE 

H&E processing. Interestingly, the digital conversion to vH&E also suppresses the appearance of these 

structures. This is similar to the results presented in Fig. 5.2, where the lipid-like structures present in the 

qOBM images of liver are not displayed in the corresponding vH&E image as they are absent in the target 

domain H&E images. Figure 5.8J-L, present a human grade 2 (low-grade) astrocytoma. Here we observe, 

in both the virtual and real H&E, moderate cellularity and nuclear pleomorphism. This shows the 

potential of the proposed method to correctly capture H&E-like histological detail indicative of low-grade 

disease, which again, is extremely difficult to identify intraoperatively with existing intraoperative tools. 

Finally, Fig. 5.8M-O, presents a healthy human tissue specimen from the edge of a grade 3 astrocytoma 

tumor, where the vH&E image resembles the real H&E image, with both showing regularly shaped cell 

nuclei without hyperchromasia and at the expected density for normal tissue. 
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Volumetric stacks of human gliomas specimens can also be obtained and virtually stained, 

allowing us to gain additional insight about the specimen. For example, Fig. 5.9 shows a volume of a 

human grade 3 astrocytoma where the first most shallow image exhibits a structure consistent with 

normal brain tissue with the exception of a single atypical cell (as indicated by the arrow in Fig. 5.9C at a 

depth of Z = 2 µm). These characteristics alone would not be sufficient to diagnose as tumor or warrant 

excision of the tissue if seen in-vivo intraoperatively. However, as we image deeper into the sample, the 

tissue exhibits higher cellularity with larger, hyperchromatic cells becoming evident, reflecting the 

presence of tumor. By being able to move axially (deeper) into the tissue, we can gain additional 

information, including seeing increased counts of more irregular nuclei, which indicates tumor. 

 

Figure 5.9 - A qOBM and corresponding vH&E 3D volumetric stack of a human glioma margin. A 

virtual H&E volumetric stack obtained by applying the trained human glioma CycleGAN to each image 

in the stack. (A) qOBM-to-vH&E conversion of the volumetric stack is depicted. (B) vH&E volume, with 

X-Y, X-Z, and Y-Z cross sections shown. (C) qOBM image slices at various depths and the 

corresponding vH&E image slices. The white arrow highlights an irregular nucleus. Scale bar is 50 µm.
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5.3.5 - Neuropathologist validation of virtually stained qOBM images 

To further validate the potential clinical utility of the virtually stained qOBM images, we performed a 

user study with American Board of Pathology certified neuropathologists. We collated a set of 30 vH&E 

images of the rat brain tumor model and 20 vH&E images of human gliomas along with corresponding 

real H&E images, giving a total of 100 images. These images were reviewed by five neuropathologists, 

who were asked to respond to 3 questions: (1) Are tumor cells present in the image? (Y/N/Cannot assess); 

(2) If this field of view were representative of a larger region, would you recommend continued 

resection? (Y/N); and (3) How confident are you in this evaluation? (1, unsure to 5, very confident).  

To assess accuracy, we designated the following criteria: For the H&E and vH&E images of the 

animal model, ground truth was based on a-priori knowledge of the location of the tumor (see Methods 

and Materials). For the human H&E images, ground truth was taken to be the consensus answer from the 

five neuropathologists. For the vH&E images, ground truth was based on the evaluation of the same 

specimens after H&E processing, which in this case also agreed with consensus of the vH&E images.  

Parameter H&E Virtual 

H&E 

Statistical Significance 

Accuracy 94% 96% N.S. 

Overall Group 

Concordance 

0.74 0.81 - 

Diagnostic Confidence 4.6 4.7 N.S. 

Table 5.1 – Neuropathologist user study comparing standard H&E and virtual H&E for 

interpretation. Overall accuracy of assessing tumor cell presence is reported. Group concordance is 
reported as average pairwise Cohen’s Kappa value. Diagnostic confidence is scored from 1 (unsure) to 5 
(very confident) and average score is reported. 

The responses of the neuropathologists (results summarized in Table 5.1) further validate that the 

vH&E images and the H&E-stained tissue sectioned images are of similar quality. Both the accuracy and 

the quality ratings between the two modalities were high, and with no statistically significant differences, 

suggesting that the virtual staining method produced high-quality discernible images that would be 

clinically useful for interpretation by neuropathologists. Specifically, the overall accuracy for assessing 

the presence of tumor cells on the real H&E and vH&E images was 94% and 96%, respectively. The 
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inter-group concordance using the average pairwise Cohen’s Kappa value for recommended continued 

resection demonstrates a near-perfect level of concordance between the pathologists for both the H&E 

and virtually stained results (0.74 and 0.81 for the real and virtual H&E, respectively). Finally, the 

diagnostic confidence was also similar for both types of images (4.6 and 4.7 for the real and virtual H&E, 

respectively). 

This survey supports the effectiveness of qOBM-to-vH&E conversion for clinical applications 

including intraoperative guidance and more. 

5.4 - Discussion 

Traditional biopsies require tissue excision, histological processing, and examination by a pathologist, a 

long process that is challenging to accomplish in a surgical environment; the logistics also affect the 

feasibility of many other clinical tasks such as cancer screening. For intraoperative surgical applications, 

rapid pathological assessments have thus far been limited because standard FFPE histology requires time-

consuming (overnight or longer) tissue processing, leading to the usage of faster but technically 

challenging approaches such as frozen sections. Various slide-free and label-free microscopy technologies 

have been developed to address these problems, but those that do so successfully face significant 

challenges for in-vivo applications and require complex, bulky and expensive systems to achieve H&E-

like images. Here we demonstrate the feasibility of qOBM imaging for rapid assessments, supplementing 

it with a deep-learning-based framework to obtain H&E-like results from its otherwise clinically 

unfamiliar grayscale phase-contrast images. To this end, we made use of an unpaired image-to-image 

translation algorithm known as a CycleGAN to perform a qOBM-to-virtual H&E conversion. We 

demonstrated this approach with both liver and brain tissue, from three species (mouse, rat and human). 

The converted images rendered the subcellular and cytoplasmic detail present in the original qOBM 

image to resemble familiar H&E contrast. The ability of qOBM to provide real-time, label-free, 

tomographic images of thick tissue specimens with remarkable agreement to traditional H&E histology is 

feasible because the style/mode difference between qOBM to H&E is relatively minor and facilitates the 
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use of unpaired image-to-image translation. Additionally, qOBM can be implemented as a handheld 

probe[37], [39], enabling in-vivo imaging for potential intraoperative, monitoring or screening, as well as 

other clinical and biomedical applications.  

Previous studies have explored the use of CycleGANs for virtual H&E staining with confocal 

fluorescence[70], MUSE[94], and UV photoacoustic microscopy[29]. Two alternative methods were also 

compared for MUSE-to-H&E conversion but it was observed that best performance was obtained with 

CycleGANs[94]. This motivated the use of CycleGANs in our approach. Here we identified several steps 

that improved CycleGAN performance for qOBM-to-vH&E conversion: First, grayscale inverting the 

qOBM images was necessary for the success of conversion since nuclei (especially of tumor cells) have 

higher refractive index and thus show a higher brightness in qOBM images whereas the background is 

dark, opposite to how such structures appear in standard H&E (Supplementary Note 5.1). Second, transfer 

learning helped with the performance of human glioma qOBM-to-vH&E conversion (Supplementary 

Note 5.2). We also found that our models for transforming individual FOVs generalized well to 

volumetric stacks and stitching large fields of view, which had been a challenge in other image translation 

pipelines[118]. We evaluated our conversion efforts with a proxy deep learning classification task, 

observing that a classifier trained on standard H&E performs similarly on vH&E images. Additionally, 

we validated our model performance with a study involving 5 neuropathologists, who found the virtual 

H&E images functionally equivalent to the standard H&E images for potential surgical guidance.  

Moreover, qOBM enables 3D sectioning with vH&E contrast, overcoming limitations of many 

current slide-free histology methods. Volumetric imaging can be especially important as it can provide a 

more comprehensive understanding of a tissue specimen and therefore enables more accurate 

diagnoses[17]. In fact, in this work we observed that the volumetric imaging capabilities of qOBM can 

provide critical insight for human specimen that could otherwise be missed with surface level (2D) 

technologies, even ex vivo. Note that while the deepest vH&E slices we show here is 60 μm from the cut 

surface, qOBM can achieve a penetration depth of ~120 μm with 720 nm LED illumination (data not 
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shown). The full depth range of qOBM could potentially be used for vH&E with improvements in signal-

to-noise ratio. Moreover, further improvements in the penetration depth of qOBM and hence vH&E can 

be achieved by using longer wavelengths extending into the near-IR.  

Recent work using reflectance confocal microscopy (RCM) and deep learning also showed an 

ability to provide pseudo-H&E virtual staining[118]. While extremely promising, this approach is not 

without limitations. In contrast to the case with qOBM, RCM is generally unable to capture the same 

level of cellular and subcellular details, resulting from inherent differences in the object-frequency-

content acquired with each method[116], [117]. Consequently, the RCM to pseudo-H&E  pipeline[118] 

requires a two-step process with “ground truth” pseudo-H&E images constructed from tissues stained 

with acetic acid and an analytical pseudo-H&E algorithm. The proposed pipeline using qOBM and direct 

conversion to H&E overcomes these limitations and enables improved histological detail with simpler 

instrumentation (wide field vs. point scanning, and LED lights sources vs. lasers), while achieving the 

same penetration depth.  

In terms of computational speed, the CycleGAN takes <1 second to acquire and virtually stain a 

FOV using an NVIDIA A100 GPU. For eventual clinical applications, we expect such a model to be run 

on more modest computer units where inference time could be longer. However, we believe there are 

many opportunities for further optimization of the speed of model inference, either through the use of 

deep learning compilers that speed up the existing model, or compression/distillation approaches[131] 

that train a smaller, faster model that matches the performance of the original model. 

While the qOBM-to-vH&E conversion algorithm serves as a useful visualization tool for 

clinicians to interpret qOBM images, we envision the usage of qOBM-to-vH&E conversion as part of an 

AI-based diagnostic and decision support pipeline. Various diagnostic AI systems have been developed 

for H&E-stained images with high accuracy[132], [133]. In contrast, due to the limited data available for 

a novel technology like qOBM, it would be challenging to develop diagnostic AI systems from scratch. 

Instead, the qOBM images can be converted to vH&E and diagnostic pipelines developed for H&E can 
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then be applied. A proof-of-concept example was demonstrated here by the use of a simple CNN trained 

on H&E images subsequently applied to the vH&E images (Fig. 5.5). The utilization of qOBM-to-vH&E 

conversion may allow us to leverage recent advances in computational pathology in new settings, 

widening the potential of qOBM imaging and slide-free histology. 

While our virtual staining results are promising and vH&E images retain diagnostically relevant 

features, conversion is not pixel-wise perfect. As shown in Supplementary Fig. 5.4, the CycleGAN 

occasionally has the tendency to hallucinate nuclei, or omit them (Fig. 5.2), primarily around blood 

vessels. We believe this is due to inherent differences between fresh tissues imaged in qOBM and 

processed tissues imaged in standard brightfield H&E images, which make the unpaired image-to-image 

translation difficult in certain scenarios. We note that the main difficulties appear when artifacts are 

present in the target domain (H&E of fixed tissues) that are not observed in the original domain (qOBM 

of fresh tissues). However, the model does well when additional features are present in the original 

domain but missing in the target domain. Future work can examine unpaired image-to-image translation 

techniques that better ensure the content of the original image is preserved appropriately. However, the 

underlying challenge limiting conversion efforts is the lack of paired pixel-matched ground truth data. 

Specifically, the exact same cells and structures cannot be captured by both qOBM and standard 

brightfield H&E due to the additional tissue processing and sectioning steps involved in the latter. This 

challenge is what necessitated the use of unpaired image-to-image translation. Therefore, for further 

improvements and pixel-wise agreement, an alternative approach could be to incorporate a secondary 

slide-free microscopy technology that provides images similar to H&E in a multimodal system.  

Given the lack of pixel-wise ground truth, we validated the virtual H&E brain images by 

conducting a neuropathologist study, which indicated no significant difference between how board-

certified neuropathologists interpret standard brightfield H&E and vH&E images. Future work will focus 

on imaging in vivo and in real-time, to be evaluated using a handheld probe to collect and virtually stain 

images. 
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The proposed technology has the potential to significantly save time, labor and expense, while 

enabling new capabilities for non-invasive, in-vivo imaging. For analysis of ex-vivo samples, as 

demonstrated here, an existing digital brightfield microscope can be modified to deliver 3D quantitative 

phase imaging and vH&E with qOBM for less than $500 USD. No reagents for staining are required, as 

this is a label-free technology. Further, as we have previously shown[37], [39], qOBM can be configured 

as a handheld probe or endoscope which could enable novel in-vivo capabilities. 

In this study, we specifically focused on the application of brain tumor margin assessment, where 

real-time, label-free in-vivo histological analysis is gravely needed; however, the proposed workflow 

enabled by deep learning-based virtual staining of qOBM images could be transformative and widely 

used to improve cancer screening, detection, treatment guidance, and more.  

5.5 - Supplementary Information 

5.5.1 – Supplementary Notes 

Supplementary Note 5.1: Intensity inversion required for optimal CycleGAN conversion 

We found it necessary to invert the grayscale values of the native qOBM images, in order to render the 

nuclei to appear dark against a lighter background (as they typically appear on H&E). If this step is not 

taken, the nuclei in qOBM are frequently converted by the CycleGAN into white areas in vH&E (green 

arrows; Supp Fig. 5.1) while the darker cytoplasmic regions in qOBM are rendered erroneously as nuclei 

(blue arrows; Supp Fig. 5.1). A similar phenomenon was observed for virtual re-staining of MUSE, 

another microscopy modality, in Abraham et al.[94]  

Supplementary Note 5.2: Effect of model size on CycleGAN performance 

We note that CycleGAN model size is an important property that affects conversion quality. 

Supplementary Figure 5.2 compares the conversions with a small model size/capacity (three layers in the 

discriminators, nine residual blocks in the generators) and large model size (six layers in the 

discriminators, twelve residual blocks in the generators) to the conversions of four separate CycleGANs 
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with a small model capacity trained on images of each of the four observed subtypes. These results 

indicate that the small model size can capture histological features of individual tissue subtypes but was 

unable to do so for multiple combined subtypes. Instead, as determined by visual examination, a larger 

model capacity was necessary to obtain conversions that capture the diversity of histological features seen 

in the multiple tissue subtypes. 

Supplementary Note 5.3: Additional comments on the performance of the classifier developed to 

differentiate tumors from healthy tissue. 

The classifier trained on H&E images from the 9L gliosarcoma tumor model to differentiate tumors from 

healthy tissue shows excellent accuracy when tested on vH&E images (95.2 ± 2.8%). Nevertheless, it is 

interesting to note which image types were misclassified. As the confusion matrix of the classifier applied 

to vH&E images shows (Fig. 5.5B), the misclassified regions are false positives, indicating that the 

CycleGAN conversion occasionally imparted tumor-like features to healthy images. As shown in 

Supplementary Figure 5.4, the misclassified regions are primarily a result of the CycleGAN hallucinating 

dark (hyperchromatic) tumor nuclei around blood vessels in otherwise acellular cortex region (Supp Fig. 

5.4A-B) and basal ganglia (Supp Fig. 5.4C-D). Similar to the liver results presented above, this suggest 

that the network at times struggled to interpret structures around blood vessels which had a different 

appearance in the fresh tissues compared to the processed tissues. Again, it is likely that such failures can 

be mitigated with improved training of the qOBM-to-vH&E CycleGAN, using larger datasets or 

alternatively, unpaired image-to-image translation algorithms.  
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Supplementary Note 5.4: Generalization of CycleGAN trained on rat to human specimens 

To examine the generalization of the qOBM-to-vH&E conversion, we took a neural network trained on 

rat images and applied it to the qOBM images of human specimens (Supp Fig. 5.5A-B). We observed that 

nuclear detail remained present, but the CycleGAN had a tendency to render nuclei as red blood cells, 

inappropriately convert whitespaces, and hallucinate other details (Supp Fig. 5.5C-D). This motivated the 

use of transfer learning to improve conversion efforts on the human glioma images. 

5.5.2 - Supplementary Figures 

 

 

Supplementary Figure 5.1 - qOBM-to-vH&E conversion with original qOBM images. A Label-free 

60x qOBM image of a rat brain tumor region with spherical epithelioid cells. B vH&E produced by 

CycleGAN trained with the original qOBM images of the rat brain tumor regions with spherical 

epithelioid cells. C vH&E produced by CycleGAN trained with the contrast-inverted qOBM images of 

the rat brain tumor regions with spherical epithelioid cells. D Standard brightfield H&E image provided 

for comparison. Arrows highlight specific examples of inaccuracy during conversion. 
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Supplementary Figure 5.2 - qOBM-to-vH&E conversion on brain tissue subtypes using CycleGANs 

with different training setups. A-D Label-free 60x qOBM images of each of the four rat brain tissue 

subtypes. E-H Corresponding vH&E images produced by separate CycleGANs for each of the four rat 

brain tissue subtypes. I-L Corresponding vH&E images produced by a single CycleGAN trained on all 

four rat brain tissue subtypes simultaneously. M-P Corresponding vH&E images produced by a single 

CycleGAN with more layers, trained on all four rat brain tissue subtypes simultaneously. Q-T Standard 

brightfield H&E images of the same tissue subtypes, provided for comparison. 
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Supplementary Figure 5.3 - Example vH&E conversions by CycleGANs trained on single capture, 

DPC, and qOBM images. A qOBM image of rat brain cortex. B One of the raw captures from the same 

field of view used to reconstruct the qOBM image. C One of the DPC images from the same field of view 

used to reconstruct the qOBM image. D vH&E image produced by a CycleGAN trained on rat brain 

cortex qOBM and H&E images. E vH&E image produced by a CycleGAN trained on rat brain cortex 

single capture and H&E images. F vH&E image produced by a CycleGAN trained on a rat brain cortex 

DPC and H&E images. G Standard brightfield H&E image provided for comparison. 
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Supplementary Figure 5.4 - Examples of poor qOBM-to-H&E conversions by the CycleGAN 

trained on rat brain images. A 60x qOBM image of rat cortex. B Corresponding vH&E image. C 60x 

qOBM image from rat basal ganglia. D Corresponding vH&E image. Red boxes highlight location of 

significant conversion error. Conversion errors are primarily observed around vessels which are structures 

that deviate between the qOBM images of fresh tissues and H&E images of processed tissue sections. In 

qOBM images of fresh tissues, capillaries are better preserved and continuous; in comparison, capillaries 

appear fragmented in H&E images of processed tissue sections.  
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Supplementary Figure 5.5 - qOBM-to-vH&E conversion of human glioma specimens using 

CycleGANs with different training and dataset setups. A-B Label-free 60x qOBM images of human 

glioma specimens. C-D Corresponding vH&E images produced by the CycleGAN trained on only rat 

brain images. E-F Corresponding vH&E images produced by a CycleGAN trained only on human glioma 

images. G-H Corresponding vH&E images produced by a CycleGAN originally trained on rat brain 

images and further fine-tuned on human glioma images. I-J Corresponding vH&E images produced by a 

CycleGAN originally trained on rat brain images and further fine-tuned on human glioma images, using 

higher resolution H&E images. K-L Standard brightfield H&E images of the same tissue subtypes, 

provided for comparison. 
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6. Conclusion 

6.1 - Significance 

In this dissertation, I explored the use of deep-learning-based virtual H&E staining for MUSE, FIBI, and 

qOBM microscopy. CycleGAN proved to be a simple yet powerful approach for virtual staining, even 

when compared to other variants such as DualGAN and GANILLA. The virtual staining approach was 

evaluated via pathologist user studies, highlighting the effectiveness and potential for clinical utility of 

this method. The work presented here represents some of the first studies in the literature examining the 

use of unpaired image-to-image translation frameworks for SFM virtual staining.  

6.2 - Data-centric AI and the power of simple frameworks 

I show in this dissertation that CycleGANs are a powerful approach for virtual staining of SFM 

modalities. The CycleGAN framework is a fairly simple framework for unpaired image-to-image 

translation (and one of the first frameworks for this task), with numerous extensions being developed. 

Chapter 2 compared CycleGAN to two other similar models and observed the CycleGAN to be the best-

performing model. This is in agreement with other recent studies comparing different models for virtual 

staining and other histopathology tasks [134]–[136].  

The success of a simple framework like CycleGAN may be surprising. However, it turns out that 

the processing and curation of the dataset plays a very important role in the quality of the conversions, 

and with appropriately clean and well-processed datasets, simple models like CycleGANs can perform 

quite well. For example, training CycleGANs on native MUSE and qOBM images originally fails, while 

inverting the intensities of the image, and thereby aligning the dark/light ratios of nuclei and cytoplasm 

between the SFM and H&E modes, enables successful conversion. Another consideration is to ensure the 

size of nuclei match between the SFM images and H&E images (which is done by resizing the H&E 

images). If the scale of the features in the images do not match, conversion efforts fail. Additionally, 

significant effort was put into the curation of the qOBM training dataset, such as omitting out-of-focus 
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regions and ensuring that similar histologic features were well-represented in both the qOBM and H&E 

sets. Model development underwent an iterative process in which errors by one iteration of the qOBM-to-

H&E model informed the collection and curation of the next version of the training dataset.  

This importance of data preprocessing and curation aligns well with the paradigm of data-centric 

AI. Data-centric AI is a recent concept that emphasizes the systematic engineering of data to build AI 

systems, shifting the focus from model development to data engineering [137]. This dissertation indicates 

the importance of data-centric AI in the context of microscopy modality conversion. 

6.3 - Limitations and future directions 

Here, I describe some of the limitations of the current methodologies. Additionally, I discuss future 

directions to improve the quality of microscopy modality conversion and validate such algorithms for 

clinical use-cases. 

6.3.1 - Hallucinations of CycleGANs 

While CycleGANs have been demonstrated to be quite powerful, they are not without issues. For 

instance, it is frequently observed that a CycleGAN trained on biased datasets can add spurious features 

or remove critical features in medical images: CycleGANs can “cause” or “cure” cancer [138]. This is 

since the model is replicating the distribution of the target domain (as incentivized by the discriminator), 

and if the datasets are biased, then the CycleGAN will convert in a biased manner. We observe occasional 

hallucinations as well, but by ensuring the datasets are preprocessed appropriately and curated well, the 

likelihood of disastrous hallucinations decreases. That said, certain minor hallucinations are acceptable or 

even desirable. As highlighted in Figure 3.4, certain features in the vH&E images generated from FIBI 

are not explicitly present in the original FIBI image. However, it nevertheless improves the clarity of the 

image due to the improved similarity to standard H&E. Another example is demonstrated in Figure 5.8D-

F, where the vH&E images do not contain the radiation artifacts seen in qOBM. Therefore, it is important 

to be cautious of overly focusing on content preservation and removing all hallucinations. 
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6.3.2 - Alternative unpaired image-to-image translation approaches 

While CycleGANs served as a very promising algorithm for unpaired virtual staining, there are several 

alternative algorithms for unpaired image-to-image translation that could be explored. Some alternative 

frameworks include: UNIT [139], U-GAT-IT [140], DistanceGAN [141], HarmonicGAN [142], L-

CycleGAN [143], and SPA-GAN [144]. All of these models are based on a GAN framework but have 

different model architectures or loss functions to either improve style transfer or the content preservation 

of the model. 

Another particularly promising method for unpaired image-to-image translation is contrastive 

unpaired translation (CUT) [145]. It utilizes a “contrastive objective” that looks at patches in the input 

and output image and tries to keep the features of nearby patches similar while features of more distant 

patches are incentivized to be dissimilar. MUSE-to-H&E conversion on a dataset of skeletal muscle tissue 

images with CUT was attempted, but results were disappointing (Figure 6.1). CycleGAN managed to 

maintain the structure of the skeletal muscle and the location of the nuclei, while CUT did not (the muscle 

bundles in the CUT version align poorly with actual structure in the MUSE original and replicated well in 

the CycleGAN version. One potential explanation is because muscle tissue is fairly homogenous, distant 

patches do indeed resemble local features, and thus the CUT algorithm approach is poorly suited to this 

specimen.  
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Figure 6.1 - Comparison of CycleGAN and CUT for MUSE-to-H&E conversion. Shown is a MUSE 
image of skeletal muscle, a corresponding standard H&E, and conversions by the CycleGAN and CUT 
models trained on a dataset of similar images. 

 
Ozyoruk et al. developed a variant of CUT for converting images of frozen-section slides into 

FFPE-like images [71]. It is likely that utilizing such variants specifically designed for histopathological 

applications may achieve better results and should be investigated further. 

Recently, a variety of loss-function regularization terms have been described that may be able to 

help ensure content preservation, especially in the context of medical imaging and microscopy. In Li et al. 

[85], the authors demonstrated the addition of a saliency constraint to CycleGANs for various microscopy 

image transformation tasks, such as immunofluorescence-to-H&E conversion. The saliency loss term is 

defined by minimizing the difference between the threshold-based segmentation masks of the original 

SFM and virtual H&E image: 

ℒZ[�,�.��(
�, 
�) = ��~!"#$#(�) %&\](�) − \̂ �
�(�)�&() + ��~!"#$#(�) %&\̂ (�) − \]�
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where � is the SFM image, 
�(�) is conversion to vH&E, � is the real H&E image, 
�(�) is conversion 

to fake SFM, \] and \̂  are segmentation functions parameterized by thresholds G and _, and ‖⋅‖( 

represent an +(-norm. It requires manual tuning of separate threshold values for images from the separate 

domains. Additionally, the paper demonstrates successful results mainly with images that are fairly sparse 
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in content, with a clear background and foreground, which is not necessarily true for many SFM images. 

Nevertheless, it is a worthwhile future direction. 

A recent approach is to use self-regularization, where the input and output of a generator network 

are constrained to be the same. For example, [146] utilized self-regularization for training a network to 

convert medical endoscopy images into synthetic endoscopy data for domain adaptation applications. 

Additionally, self-regularization has been applied to unpaired image-to-image translation with promising 

results [147]. It may be beneficial to incorporate self-regulation into the CycleGAN training objective by 

directly minimizing the difference between the input SFM image and the output virtual H&E image: 

ℒZ��S(
�, 
�) = ��~!"#$#(�)0‖
�(�) − �‖(1 + ��~!"#$#(�)0‖
�(�) − �‖(1 

In the field of image generation, diffusion models have become extremely successful and popular, 

beating GANs at several tasks [148], [149]. Despite their popularity, there has been limited exploration of 

diffusion models for unpaired image-to-image translation.  

Dual Diffusion Implicit Bridge (DDIB) [150] exploits the shared latent representation of any 

diffusion model. This means that separate diffusion models are trained to generate images for the two 

domains (SFM and H&E, for example), and an unpaired image-to-image translation model is obtained for 

free. Preliminary results for MUSE-to-H&E conversion with DDIB based on a latent diffusion model 

[151] indicated that the H&E style is produced well in the converted images, but content is not always 

appropriately maintained, resulting in missing or inaccurately-shaped nuclei (Figure 6.2). Future work 

should more thoroughly examine the use of DDIB for virtual staining, including the incorporation of 

additional constraints to improve content preservation. 
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Figure 6.2- Preliminary results exploring the use of DDIB for MUSE-to-H&E conversion (urothelial 
cell carcinoma dataset as explored in Chapter 2). The MUSE image is transformed into a shared latent 
“noise” space before being transformed into an H&E image with a latent diffusion model. Overall H&E 
style is replicated, and some aspects of content is maintained (green box), while other aspects of the 
original image are not preserved (red oval). Inverted MUSE image shown for improved clarity of nuclei. 

 

6.3.3 - Alternative imaging strategies to collect paired datasets 

While this dissertation explored the use of unpaired image-to-image translation for virtual staining of 

SFM to overcome an absence of accessible paired data, in some cases it may be possible to collect paired 

data for SFM via alternative imaging approaches.  

For example, Borhani et al. [38] demonstrates techniques for deploying deep learning for 

mapping label-free MPM to H&E-stained brightfield images. In this study, paired image data can be 

collected, as MPM can be used to image stained slides. This study was unusual as it did not use GANs for 

virtual H&E staining.  

Another paper investigated virtual staining of RCM by generating paired image datasets to aid 

their efforts [118]. Specifically, skin tissue was stained with acetic acid to enhance nuclear contrast in the 

RCM images. Then, pseudo-H&E ground truth images were constructed via an analytical approach based 

on Beer-Lambert Law. Their pipeline therefore requires two steps: conversion with a GAN-based 

framework to acetic acid-stained images, followed by conversion to pseudo-H&E with another GAN. 

Additionally, Li et al. utilized a specialized neural network architecture that took in a stack of 7 images 

and output a pseudo-H&E conversion for the central plane. Note that true H&E images are not used at all 

to train the virtual staining network, since obtaining the paired H&E image was not possible. 



104 

 

In the context of the SFMs studied in this dissertation, Niemeier et al. explored the development 

of sequential staining techniques in order to acquire MUSE-H&E pairs [152]. Further research in this 

direction could result in better virtual staining of MUSE images. 

There are several potential approaches for improving qOBM-to-H&E conversion quality. Note 

that both qOBM and QPI both provide quantitative phase information, with the former being applied for 

thick samples, and the latter for thin slides. It therefore may be possible to utilize QPI virtual staining 

models that are trained with pixel-matched data [68]. However, differences between QPI of FFPE thin 

sections and qOBM of fresh unprocessed thick samples may hinder the transfer of QPI-to-H&E models to 

qOBM-to-H&E. An alternative approach is to utilize an additional slide-free microscopy system that 

provides H&E-like images to serve as ground truth. FIBI images already closely resemble H&E. It can be 

envisaged that a single microscope system images a thick specimen simultaneously with qOBM and FIBI. 

This would allow for the development of a qOBM-to-FIBI algorithm using more robust paired 

approaches. Again, while the contrasts associated with FIBI images are similar to H&E, unpaired 

translation into virtual H&E may provide additional benefit. Then, the FIBI vH&E images can be used to 

train a qOBM-to-vH&E model using paired methods. As described in Chapter 3, we have seen very 

promising results with FIBI-to-H&E conversion, more so than with unpaired qOBM-to-H&E conversion 

since the FIBI and H&E domains are much more similar, resulting in a much easier translation task that 

can be solved satisfactorily with unpaired translation techniques. 

Finally, it is worth pointing out that generated vH&E images form a pair with the original image 

SFM image, albeit a semi-accurate pair. It may be possible that training a standard image-to-image 

translation method (like with pix2pix) on a carefully filtered and curated subset of (SFM, CycleGAN-

generated vH&E) pairs may result in a better-performing, more robust neural network for virtual staining. 

6.3.4 - Virtual staining evaluation 

As described in the Chapter 1.7.4, evaluation of SFM virtual staining is challenging due to the lack of 

pixel-matched ground truth. Style transfer metrics and content preservation metrics, along with 
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pathologist case studies are all complementary forms of evaluation. Most reports utilize style transfer 

metrics, and some use pathologist user studies, while very few utilize content preservation metrics. This 

dissertation was similar: MUSE-to-H&E was evaluated with a two-sample classifier test, FIBI-to-H&E 

was evaluated with a pathologist user study, and qOBM-to-H&E was evaluated with both a neural 

network classifier and a pathologist user study. Future work should therefore focus on more 

comprehensively evaluating content preservation (without overstating the importance of this, as discussed 

in Chapter 6.3.1).  

An alternative approach for measuring content preservation rarely seen in the literature is to 

generate nuclear instance segmentation masks and tissue class masks for the SFM images and virtually 

stained image that can subsequently be compared. Hand-labeling of nuclei will likely be needed for SFM 

images, but this can be accelerated by computer vision methodologies such as using a thresholding 

algorithm or training pixel classifiers to label the nuclei. A pretrained nuclear segmentation model can be 

applied to the virtually stained images to extract the nuclei segmentation mask, which can be further 

refined after manual inspection. After generating nuclear segmentation masks for SFM images and the 

conversions, we can directly compare using common segmentation metrics such as Dice coefficient [153]. 

A similar analysis can be done with tissue components. For example, for skin images, we can label the 

epithelium, connective tissue, and muscle layers in both the SFM and converted images and also compare 

with Dice coefficient. The labels in the SFM and virtually stained images can be generated with pixel-

level classifiers that are trained on annotations and subsequently reviewed and refined manually. 

A major concern regarding the application of deep learning models for medical purposes is the 

generalizability and robustness of the models. Chapter 3 studied this in the context of qOBM-to-H&E 

conversion, where it was observed that the CycleGAN trained on rat brain tissue images generalized to 

previously unseen mixed tumor/healthy examples. Additionally, it was observed that the CycleGAN 

trained on human glioma tissue generalized to an image of healthy human brain tissue. However, these 

experiments are by no means comprehensive. In future work, the generalizability and robustness of SFM 
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virtual staining methods could be more systematically analyzed. For example, models could be trained on 

normal skin, colon, breast, and brain specimens and apply the trained model to samples with basal cell 

carcinoma, squamous cell carcinoma, invasive ductal carcinoma, glioblastoma, and low-grade gliomas. 

The opposite route could be tested as well. Then, training could be performed with mixed datasets such as 

training normal skin+basal cell carcinoma and testing on normal skin images. Doing so will allow us to 

analyze how the balance between normal and cancerous images in the training set affects the final 

conversion. Additionally, it would be desirable to train models with data from multiple cancer types or 

even organs. Such experiments will help us better understand the strengths and limitations of unpaired 

image-to-image translation frameworks when applied to SFM-to-H&E conversion. 

Finally, the pathologist studies described throughout this dissertation, while promising, were 

comprised of a limited number of specimens and pathologists. To definitively establish clinical utility, a 

more comprehensive pathologist evaluation will be needed.  

6.3.5 - Incorporating the unique details provided by SFM  

Some SFM methods provide additional information about the tissue (Section 3.3.7 describes some 

examples of extra detail provided by FIBI) that may be lost in the microscopy modality conversion 

process. This loss of information is acceptable since it allows for better replication of the stain style that 

may be more familiar to pathologists, but it would be desirable if there were also approaches that can 

selectively maintain some of the additional information from the original SFM image. Certain unique 

features in the SFM images could be segmented and masked out during conversion in order to remain 

unchanged in the final image. Another approach could be to convert the SFM images to alternative stains 

that pathologists may be familiar with, such as Masson’s Trichome. All the studies in this dissertation 

focus on virtual H&E staining, but the same approach should function well for other stains. Alternatively, 

a simple overlay of a vH&E and original FIBI image may also suffice (Figure 6.3) and could serve as a 

target for another neural network to learn directly from. There are many potential directions for 
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developing novel approaches that take the best features of both the SFM images and virtually stained 

images for superior histological visualization. 

Figure 6.3 - A simple overlay of the FIBI image on top of its virtual H&E conversion may provide 

improved contrasts and visualization. This is a FIBI image of fixed human prostatic adenocarcinoma 
tissue, and it’s overlayed on top of the virtual H&E image with 40% opacity. 

 

6.3.6 - Diagnostic AI with slide-free microscopy, enabled by virtual staining 

In this dissertation, virtual staining was developed with the goal of improving the ease of interpretation of 

SFM methods by pathologists. However, the availability of trained expert pathologists to provide 

diagnoses in some scenarios such as intraoperative consultation can be especially difficult in fields with 

growing shortages in pathology expertise, such as neuropathology [154]. Therefore, another research 

direction for improving the interpretation of SFM images is to automatically provide diagnoses via AI. As 

briefly discussed in Chapter 1, various diagnostic AI systems have been developed for stained brightfield 

images (especially H&E-stained) with high accuracy [132], [133]. In contrast, due to the limited data 

available for a novel SFM technology, it would be challenging to develop diagnostic AI systems from 

scratch. However, SFM virtual staining could be utilized to provide virtually stained images that can be 

entered into previously developed diagnostic pipelines. A preliminary proof-of-concept example was 

given in Chapter 5 using a simple CNN trained on H&E images subsequently applied to the vH&E 

images generated from qOBM. Furthermore, obtaining accurate predictions from diagnostic pipelines 

applied to virtually stained images should be treated as a desirable goal and this can be utilized as a metric 
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for virtual staining performance (Section 1.7.4). To emphasize, the output of virtual staining algorithms is 

not just viewed by pathologists, but other AI systems for computational pathology. This approach to 

developing and applying SFM virtual staining methods could enable novel applications of computational 

pathology in previously unexplored settings.  
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