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Abstract

Gauss-Seidel is an iterative computation used for solving sets of simulataneous linear equations,
Au = f. When these unknowns are associated with nodes in an irregular mesh, then the Gauss-Seidel
computation structure is related to the mesh structure. We use this structure to subdivide the computa-
tion at runtime using a technique called sparse tiling. The rescheduled computation exhibits better data
locality and therefore improved performance. This paper gives a complete proof that a serial schedule
based on sparse tiling generates results equivalent to those that a standard Gauss-Seidel computation
produces.

1 Introduction

Gauss-Seidel and Jacobi are examples of iterative methods that are used to solve simultaneous linear equa-
tions, Au = f. Iterative methods solve for u by iterating over the system of equations, converging towards
a solution. The iteratively calculated value of a mesh node unknown u; depends on the values of other un-
knowns on the same node, the unknowns associated with adjacent nodes within the mesh, and the non-zero
coefficients in the sparse matrix which relate those unknowns. Typically the sparse matrix is so large that
none of the values used by one calculation of u; remain in the cache for future iterations on wu;; thus the
computation exhibits poor data locality.

The pseudo-code for Gauss-Seidel is shown in (1). For each iteration of the outermost loop, the entire sparse
matrix is traversed. We refer to the iterator ¢ of this outermost loop as the convergence iterator. The j loop
iterates over the rows in the sparse matrix.! The %k loop, which is implicit in the summations, iterates over
the unknowns related to u;, with ajkugf) and ajkugfl) only being computed when a;; is a non-zero matrix
value. aji is the entry in the sparse matrix A at row j and column k. At each convergence iteration a new

value is generated for each unknown u;, using the most recently calculated values for neighboring unknowns.

fori=1,2,...T
forj=1,2,...,R

. - ' i N )
ugl) = (1/az;)(f; — izll ajkug) = D hejt1 ajkugj 1)) (1)

IThere is one row in the matrix for each unknown at each mesh node.



Figure 1: Irregular Gauss-Seidel iteration space graph for 3 convergence iterations

The Gauss-Seidel computation over an irregular 2D mesh can be visualized with the iteration space graph
shown in figure 1. The iteration space shown contains three convergence iterations. Each black iteration
point? , <i,v>, represents the computations for all ug-i) where u; is an unknown associated with mesh node
v and i is the convergence iteration. The arrows represent data dependences® between the iteration points.
Gauss-Seidel uses the most recent version of its neighbors, so some data dependences come from points in

the same ¢ iteration and some data dependences come from points in the previous ¢ iteration.

In this setting, data locality means that the data needed for the current iteration point are already in cache.
If data used or generated by neighboring iteration points in the same ¢ iteration are in cache, then the
computation exhibits intra-iteration locality. Inter-iteration locality occurs when the data from previous i
iterations remain in cache until their final use. Typical implementations of iterative algorithms like Gauss-
Seidel follow the schedule seen in (1), where the entire sparse matrix associated with the mesh is traversed
for each convergence iteration. Because the mesh and therefore associated sparse matrix are typically quite
large it is very unlikely that inter-iteration locality occurs in a typical iterative solver implementation.
Furthermore, the order in which iteration points in the same i iteration are visited will affect the amount of
intra-iteration locality.

Tiling is a compile-time transformation which subdivides the iteration space for a regular computation so
that the new tile-based schedule, where each tile is executed atomically, exhibits better data locality. We
say a tile is executed atomically when all the iteration points in the tile are executed before any iteration
points in subsequent tiles. The non-affine loop bounds and indirect memory references in sparse matrix
computations prohibit the use of compile time transformations. We have developed sparse tiling [18], which
tiles the iteration space resulting from an irregular mesh at run-time (see figure 2). The sparse tiled iteration
space is then used to guide run-time rescheduling and data reordering of Gauss-Seidel. Specifically, the
schedule changes from sweeping over the entire mesh each convergence iteration to executing the iteration
points tile-by-tile.

Sparse tiling uses a graph partitioner to divide the irregular mesh into approximately equal size cells. In

2We use the term iteration point for points in the iteration space graph and node for points in the mesh.
30nly the dependences for one mesh node are shown for clarity.



figure 2 the partitioning logically occurs at the middle convergence iteration, i = 2. The cells in the partition
act as seeds for tiles which are grown throughout the rest of the iteration space. For Gauss-Seidel over
irregular 2D meshes, this results in irregular column-shaped tiles which include iteration points from all
convergence iterations. The new schedule using sparse tiles improves inter- and intra-iteration locality and
thereby improve performance [18].
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Figure 2: Sparse tiled Gauss-Seidel

In this paper, we describe the structure of a Gauss-Seidel computation over an unstructure mesh. We then
give a run-time sparse tiling algorithm for such a computation. Based on the resulting sparse tiling we are
able to construct a new execution which satisfies the Gauss-Seidel partial ordering constraints.

2 Terminology

The mesh can be represented by a graph G(V, E) consisting of a set of nodes V' and edges E. Although a
mesh typically has undirected edges (v,w) € E, for presentation purposes assume that for each undirected
edge (v,w) in the mesh there are two directed edges <v,w >€ E and <w,v >€ E. Recall that each node
in a mesh can have multiple unknowns associated with it such as temperature, displacement, pressure, etc.
The sparse matrix A is generated by creating a linear equation for each unknown on each node in the mesh.
Assuming each unknown has a non-zero coefficient in the sparse matrix A for all other unknowns on the
same node including itself and all unknowns on neighboring nodes, then the size of the sparse matrix is
d*>(|E| + |V|) where d is the number of unknowns or degrees of freedom for each mesh node.

To describe the sparse tiling algorithm we use the following terminology.

Iteration point, <i,v >, represents all computation at convergence iteration ¢ for the unknowns associated
with node v.

Partition function, part(v) : V. — {0, ..., (k— 1)}, maps each node to a cell of the mesh partitioning, where
k is the number of tiles.



Tiling function, 6(i,v) : {1,..,7} x V — {0, ..., (k — 1)}, returns the tile identifier of the tile responsible
for executing the given iteration point. The tile identifier also indicates the execution order of the tiles.

Reordering function, o(v) : V — {0, ..., (V| — 1)}, specifies a complete ordering of the nodes v € V.

Schedule, 5(t,i) : {0, ..., (k—1)} x {1,...,T} — 2{0(F=D} ‘specifies for each tile and convergence iteration
the subset of matrix rows which need to be computed, where T is the number of convergence iterations.

Execution, e(i,v) : {1,...,T} x V — {1,2,..,(T = |V])}, indicates the relative execution time for each
iteration point.

3 Gauss-Seidel Partial Ordering Constraints

The outline of a Gauss-Seidel computation is as follows:

1. Choose an arbitrary order for the nodes in the mesh, o(v) : V- — {0, ..., (|[V] = 1)}.

2. Iterate towards convergence over the mesh 7' times, where each iteration visits all the nodes in the
chosen order

During each convergence iteration the unknowns at each node v are updated using the most recent values of
unknowns associated with neighboring nodes w where <wv,w> € E. The execution resulting from a typical
Gauss-Seidel schedule is e(i,v) = (i — 1)|V]| + o(v).

By analyzing the structure of a Gauss-Seidel computation, we find that although the Gauss-Seidel schedule
gives a total ordering on the execution, the data dependences between various parts of the computation allow
for a less strict partial order. If the partial order is satisfied by another execution, then given the same node
order o(v), the new execution will generate a solution which is bitwise identical to the original Gauss-Seidel
execution.

A Gauss-Seidel execution satisfies the following Partial Ordering Constraints.

1. Vi:1<i<(T—1)and Vv €V, e(i,v) < e(i + 1,v)
(the iteration points for each individual mesh node are executed in order)

2.Vi:1<i<(T—-1)and V <v,w>€ E, if 6(v) < o(w) then e(i,v) < e(i,w) < e(i + 1,v)
(if there is an edge between v and w then the execution must maintain the order between v and w
specified by o at each iteration, and later iterations of the node v must execute after previous iterations
of w)

4 Tiling Gauss-Seidel

Sparse tiling [18] subdivides the iteration space of iterative algorithms such as Gauss-Seidel in order to do
run-time data reordering and rescheduling. Sparse tiling includes the following run-time steps.



Partition the mesh

Tile the iteration space

Reorder mesh nodes to improve intra-iteration locality

Generate the sparse matrix from the reordered mesh

Reschedule the sparse matrix computation to improve inter-iteration locality

Execute the new schedule on the sparse matrix

The next sub-sections describe each part of the run-time process for sparse tiling. Finally, we prove that a
serial execution based on sparse tiling satisfies the Gauss-Seidel partial ordering constraints.

4.1 Partition the Mesh

Although optimal graph partitioning is an NP-Hard problem [5], there are many heuristics used to get
reasonable graph partitions. The goal of graph partitioning is to divide the nodes of a graph into k roughly
equal-sized cells, in a way that minimizes the number of edges whose two endpoints are in different cells.
Currently, we use the kmetis paritioning function in Metis which is based on the multilevel k-way partitioning
described in [11]. The k-way partitioning algorithm has a complexity of O(|E|), where |E| is the number of
edges in the mesh. After the partitioning, all mesh nodes v € V' have been assigned a cell in the partitioning,

part(v).

4.2 Tile the Iteration Space

The mesh partitioning, generated in the Partition step, creates a seed partitioning from which tiles can be
grown. We use the seed partitioning as the tiling at a particular convergence iteration, 7;. In other words
at i, where is is one of the convergence iterations 1 through T', 6(is,v) = part(v). To determine the tiling
at other convergence iterations we add or delete iteration points from the seed partition to allow atomic
execution of tiles across convergence iterations without violating any data dependences.

The SPARSENAIVE Algorithm shown in figure 3 will generate the tiling function 6, which assigns iteration
points to tiles, and the relation NodeOrd, which specifies some constraints on the reordering function o.
The first three instructions initialize the NodeOrd relation and all of the 6’s for the convergence iteration 5.
We then loop down through the convergence iterations that come before is setting the 6 function for each
iteration point <i,v> to the same as the iteration point directly above it. Finally, we visit the edges in the
mesh adjusting € to ensure that the data dependences are satisfied by the 6 values. We repeat this process
for the convergence iterations between i; and 7" in the upwards tiling. Once neighboring nodes are put into
two different tiles at any iteration i, there must be a constraint on their node order ¢ which we indicate by
putting <v,w > into the relation NodeOrd if for any iteration i, 8(i,v) < 0(i, w).

An upper bound on the complexity of this algorithm is O(T'k|V||E|), where T is the number of convergence
iterations, k is the number of tiles, |V| is the number of nodes in the mesh, and |E| is the number of edges
in the mesh. The k|V||E| term is due to the while loops at lines 6 and 17. In the worst-case, the while loop
will execute k|V| times. Yv € V, 6(i,v) decreases monotonically and can take on at most k values, and in
the worse case only one 6(i,v) would decrease each time through the while loop. In practice, the algorithm
runs much faster than this bound.



Algorithm SPARSENAIVE(G(V, E),part,T is,m)

1: Yo € V,0(is,v) « part(v)
2: for 1<i<T, NodeOrd(i) < 0
3: NodeOrd(is) + {<v,w> | 0(is,v) < 0(is,w) and <v,w> € E}

Downwards tile growth
4: for i = (is — 1) downto 1

5 foreach vertex v € V, 8(i,v) « 6(i + 1,v) end foreach
6: do while 6 changes

7 foreach <v,w> € NodeOrd(i + 1)

8: 0(i, w) < min(8(i,w),0( + 1,v))

9: 0(i,v) < min(0(i,v),0(i,w))

10: end foreach

11: end do while

12: NodeOrd(i) < NodeOrd(i + 1) J {<v,w> | 8(i,v) < 8(i,w) and <v,w> € E}
13: end for

14: NodeOrd(is) + NodeOrd(1)

Upwards tile growth
15: fori =(is +1) to T

16: foreach vertex v € V, 8(i,v) < 6(i — 1,v) end foreach
17: do while € changes

18: foreach <v,w> € NodeOrd(i — 1)

19: 0(i,v) < max(0(i,v), 00 —1,w))

20: 0(i, w) + maz(0(i,w),0(i,v))

21: end foreach

22: end do while

23: NodeOrd(i) < NodeOrd(i — 1) |J {<v,w> | 8(i,v) < 8(i,w) and <v,w> € E}
24: end for

25: NodeOrd < NodeOrd(T)

Figure 3: SPARSENAIVE Pseudocode




Algorithm SPARSENAIVE(G(V, E),part,T is,m)
{ pre-condition [1.1] (1 <T) and (1 <is; <T)and (2<m < |V|)}
1: Vv € V,0(is,v) + part(v)

for 1 <i<T, NodeOrd(i) < 0
3: NodeOrd(is) + {<v,w> | 0(is,v) < 0(is,w) and <v,w> € E}

&

{ post-condition [3.1] Vv € V,0(i,,v) is initialized }
{ post-condition [3.2] 8(is,v) < 6(is,w) if and only if <v,w>€ NodeOrd(is)}

Downwards tile growth
4: fori = (i — 1) downto 1

{ pre-condition [5.1] Vv € V,8(i + 1,v) is initialized }
5: foreach vertex v € V, 0(i,v) « 0(i + 1,v) end foreach
{ post-condition [5.1] Vv € V, 6(i,v) = 8(i + 1,v)}

6: do while 6 changes
T foreach <wv,w> € NodeOrd(i + 1)
8: 0(i,w) < min(8(i,w),0(i + 1,v))

{ post-condition [8.1] (i, w) < (i + 1,w)}
{ post-condition [8.2] (i, w) < (i + 1,v)}

9: 0(i,v) < min(0(i,v),0(i,w))
{ post-condition [9.1] 0(i,v) < (i + 1,v)}
{ post-condition [9.2] 6(i,v) < 0(i,w)}

10: end foreach
{ post-condition [10.1] Vv € V, 0(i,v) < (i + 1,v)}
{ post-condition [10.2] if # didn’t change then
YV <v,w>€ NodeOrd(i + 1), 6(i,v) < 8(i,w) < 0(i+ 1,v)}

11: end do while

{ post-condition [11.1] V <v,w>€ NodeOrd(i + 1), 6(i,v) < 8(i,w) < 0(i + 1,v)}

{ post-condition [11.2] V <v,w>€ E, 8(i,v) < 0(i + 1,w)}

12: NodeOrd(i) < NodeOrd(i + 1) |J {<v,w> | 8(i,v) < 6(i,w) and <v,w> € E}

{ post-condition [12.1] V <v,w>€ E, if §(i,v) < 8(i,w) then <v,w>€ NodeOrd(i)}

{ post-condition [12.2] NodeOrd(i + 1) C NodeOrd(i)}

13: end for
{ post-condition [13.1] Vi: 1 <i < (is— 1) and Yo € V, 8(i,v) < (i + 1,v)}
{ post-condition [13.2] Vi:1<i < (is— 1) and ¥V <v,w>€ E, 0(i,v) < 0(i + 1,w)}
{ post-condition [13.3] Vi : 1 <i < (is — 1), NodeOrd(i) is acyclic }
{ post-condition [13.4] Vi: 1 <i < (is — 1) and V <v,w>€ E,
if (i, v) < 0(i,w) then <v,w>€ NodeOrd(i) }

Figure 4: SPARSENAIVE Pseudocode with post-conditions, Part I




Algorithm SPARSENAIVE cont...

14: NodeOrd(is) < NodeOrd(1)

{ post-condition [14.1] for i = is, NodeOrd(i) is acyclic }
{ post-condition [14.2] for i =i and V <v,w>€ E,
if (i, v) < 0(i,w) then <v,w>€ NodeOrd(i)}

Upwards tile growth
15: fori=(is+1) to T

16:

17:
18:
19:

20:

21:

22:

23:

{ pre-condition [16.1] Vv € V, §(i — 1,v) is initialized }
foreach vertex v € V, 0(i,v) « 6(i — 1,v) end foreach
{ post-condition [16. 1] YvoeV,0(i,v) =60(i —1,v)}

do while 6 changes
foreach <v,w> € NodeOrd(i — 1)
0(i,v) < max(0(i,v),00 — 1,w))
{ post-condition [19.1] (i — 1,v) <
{ post-condition [19.2] (i — 1,w) < 6(i,v)}

0(i, w) = maz(6(i, w),0(i, v))
{ post-condition [20.1] (i — 1, 6(i
{ post-condition [20.2] #(i,v) < H(z,w)}

end foreach
{ post-condition [21.1] Vv € V, 0(i — 1,v) < 0(i,v)}
{ post-condition [21.2] if # didn’t change then
YV <v,w>€ NodeOrd(i — 1), (i — 1,w) < 8(i,v) < 0(i,w)}

end do while
{ post-condition [22.1] V <v,w>€ NodeOrd(i — 1), 0(i — 1,w) < 0(i,v) < 0(i,w)}
{ post-condition [22.2] V <v,w>€ E, (i — 1,v) < 8(i,w)}

NodeOrd(i) <+ NodeOrd(i — 1) |J {<v,w> | 8(i,v) < §(i,w) and <v,w> € E}
{ post-condition [23.1] V <v,w>€ E, if §(i,v) < 8(i,w) then <v,w>€ NodeOrd(i)}

24: end for

25:

{ post-condition [24.1 <Tand Vv eV, 0(qg—1,v) <0(q,v)}
{ post-condition [24.2 <TandV <v,w>€ E, 6(q —1,v) < 0(q,w)}

[24.1] is <q
[24.2] Vg = (i <q

{ post-condition [24.3] Vi : (i, <i<T, NodeOrd(i) is acyclic }
[24.4] V <
o(

Vg : (is+1)
:(Z +1)

i:(is +1)
{ post-condition [24.4] Vi : (i + 1) <i < T and V <v,w>€ E,
if 0(i,v) < 0(i,w) then <wv,w> inNodeOrd(i)}

NodeOrd < NodeOrd(T)

1

I /\

{ post-condition i< (T—-1)and Vv eV, 8(i,v) <8(i+1,v)}
{ post-condition

[
[
{ post-condition [
[
o(

1]v
21 Vi: 1< <(T—1)andV<vw>€E 0(i,v) <0(i +1,w)}
3] Vi:1<i<T, NodeOrd(i) is acyclic }

4 v 1<z<TandV<vw>€E,

i, w) then <v,w>€ NodeOrd(i)}

25.
25.
25.
{ post-condition [25.
if 0(i,v) <

Figure 5: SPARSENAIVE Pseudocode with post-conditions, Part 11




Figure 6: Dependences between post-conditions for SPARSENAIVE Algorithm
Figures 4 and 5 list post-conditions for the SPARSENAIVE tiling algorithm. Figure 6 shows how the post-
conditions relate to one another. Next we will give a proof for each of the post-conditions.
SparseNaive Post-condition 3.1 Vv € V,0(is,v) is initialized
Satisfied by assignments in line 1.
SparseNaive Post-condition 3.2 6(i,,v) < 0(is,w) if and only if <v,w>€ NodeOrd(is)
Satisfied by assignments in lines 2 and 3.

SparseNaive Post-condition 5.1 Yv € V, 0(i,v) = 0(i + 1,v)

Satisfied by assignment in line 5 and pre-condition 5.1. Pre-condition 5.1 is satisfied by post-condition 3.1
when i = (i; — 1) in the loop starting at line 4. For all ¢ such that 1 < i < (is — 1), it is satisfied by the
previous loop iteration’s post-condition 5.1.

SparseNaive Post-condition 8.1 (i, w) < 6(i + 1,w)

Post-condition 5.1 ensures that (i, w) starts out equal to 8(i + 1,w). In line 8, #(i,w) can only be reduced
thus postcondition 8.1 holds.

SparseNaive Post-condition 8.2 0(i,w) < 0(i + 1,v)



Satisfied by the assignment in line 8.

SparseNaive Post-condition 9.1 0(i,v) < 6(i +1,v)

Post-condition 5.1 ensures that 6(i,v) starts out equal to (i + 1,v). In line 9, 6(7,v) can only be reduced
thus postcondition 9.1 holds.

SparseNaive Post-condition 9.2 0(i,v) < 6(i,w)

Satisfied by the assignment in line 9.

SparseNaive Post-condition 10.1 Yv € V, 0(i,v) < 0(i + 1,v)

Satisfied by post-conditions 5.1, 8.1, and 9.1.

SparseNaive Post-condition 10.2 if 0 didn’t change then ¥V <v,w>€ NodeOrd(i+1), 6(i,v) < 0(i,w) <
0(i +1,v)

Follows immediately from post-conditions 8.2 and 9.2. Notice that it is important that 6 not change during
the entire foreach loop for this post-condition to be true. For example, assume that <wvi,ve >€ NodeOrd(i+
1) and <wg2,v3>€ NodeOrd(i + 1) with 6(i + 1,v3) = 0,6(i,v1) = 60(i + 1,v1) > 0, and 6(i,v2) > 0. If edge
< w1,v2 > is visited first in the foreach loop, then it will still be the case that 6(i,v1) > 0 and 8(i,v2) > 0.
However, later in the foreach loop when < vy, vs > is visited, (i, v2) will be set equal to 0 due to line 9. It
will then be the case that 6(i,v1) > 6(i,v2) which will be remedied the next time through the foreach loop.

SparseNaive Post-condition 11.1 V <v,w>€ NodeOrd(i + 1), 6(i,v) < 0(i,w) <0(i +1,v)

The do while loop in lines 6 through 11 ends when € no longer changes in the foreach loop starting at line
7. Therefore, due to post-condition 10.2, post-condition 11.1 is satisfied.

SparseNaive Post-condition 11.2 V <v,w>€ E, 0(i,v) < 0(i + 1, w)

Fori = (is—1) and V <v,w>€ E, the tiling function values §(i +1,v) and 6(i + 1, w) were set in line 1. For
all i such that 1 <i < (is—1) and V <v,w>€ E, the tiling function values 6(i+1,v) and (i + 1, w) were set
in the previous iteration of the for loop starting at line 4. The relationship between 6(i + 1,v) and 6(i + 1, w)
falls under three cases, either (i + 1,v) < 6(i + 1,w), 6(i + 1,v) > 0(i + 1,w), or (i + 1,v) = 6(1 + 1, w).

Case 1: If (i + 1,v) < 6(¢ + 1, w) then due to post-condition 3.2 if i = (i; — 1) and post-condition 12.1 if
1 <i < (is — 1), the following is true.

<v,w>€ NodeOrd(i + 1) (2)

10



Due to (2), post-condition 10.1, and the first inequality in post-condition 11.1, the following is true for all
such that 1 <7 < (i; — 1).
(i, v) < (i, w) < 0(i +1,0) (3)

Case 2: If (i + 1,v) > (¢ + 1, w) then due to post-condition 3.2 if i = (i; — 1) and post-condition 12.1 if
1 <i < (is — 1), the following is true.
<wv,w>€ NodeOrd(i + 1) 4)

Using (4) and swapping the roles of v and w in post-condition 11.1, we find the following is true for all ¢
such that 1 <i < (i, — 1).
0(i, w) < 0,0) < 8(i + 1,w) (5)

Case 3: If 8(i + 1,v) = 0(i + 1,w) then due to post-condition 10.1 the following is true for all i such that
1<i<(is—1).
0(i,v) < 0(i+1,v) = 6(i + 1, w) (6)

SparseNaive Post-condition 12.1 V <v,w>€ E, if 8(i,v) < 0(i,w) then <v,w>€ NodeOrd(i)

Satisfied by the assignment in line 12.

SparseNaive Post-condition 12.2 NodeOrd(i + 1) C NodeOrd(i)

Satisfied by the assignment in line 12.

SparseNaive Post-condition 13.1 Vi:1<i< (i —1) and Vv € V, 8(i,z) <0(i + 1,v)

Satisfied by the loop bounds of the for loop starting at line 4 and post-condition 10.1.

SparseNaive Post-condition 13.2 Vi: 1 <i< (is—1) andV <v,w>€ E, 0(i,v) < 0(i + 1,w)

Satisfied by the loop bounds of the for loop starting at line 4 and post-condition 11.2.

SparseNaive Post-condition 13.3 Vi: 1 < i < (is — 1), NodeOrd(i) is acyclic

During the downwards tile growth, relations are added to NodeOrd(i) at line 12. Post-condition 3.2 quar-
antees that NodeOrd(is) is initialized as acyclic. Using the inductive assumption that NodeOrd(i + 1)
is acyclic, we show that each new relation added at line 12 does not cause a cycle with the relations in
NodeOrd(i + 1) and any other relations previously added during the current execution of line 12.

We assume the contrary and then derive a contradiction. Assume there is a path <w, zo > ... <x,,v > in the
current set of relations such that upon adding < v, w > a cycle would be created. Due to the first inequality

11



in post-condition 11.1 and line 12 the following statement is true about the tiling function 6 values for the
nodes in the path at the current convergence iteration <.

O(i,w) <O(i,z0) < --- < 0(i,z,) <0(i,v) (7
Due to line 12, if the relation <wv,w > is being added to NodeOrd(i) then the following is true.
0(i,v) < 0(i,w) (8)

Combining (7) and (8) results in the contradiction that 6(i,v) < 0(i,v). Therefore, it is not possible to add
a relation <wv,w> to NodeOrd(i) which will cause a cycle.

SparseNaive Post-condition 13.4 Vi : 1 < i < (is — 1) and V <v,w >€ E, if 6(i,v) < 0(i,w) then
<wv,w>€ NodeOrd(i)

Satisfied by the loop bounds of the for loop starting at line 4 and post-condition 12.1.

SparseNaive Post-condition 14.1 for i =iy, NodeOrd(i) is acyclic

Satisfied by post-condition 13.3 and the assignment in line 14.

SparseNaive Post-condition 14.2 for i = iy and V < v,w >€ E, if 0(i,v) < 0(i,w) then < v,w >€
NodeOrd(i)

Due to post-condition 12.2, the following statement is true.
NodeOrd(is) C NodeOrd(is —1) C --- C NodeOrd(1) (9)

Therefore after the assignment in line 14, the relations put into NodeOrd(is) at line 3 are still in NodeOrd(is)
and post-condition 14.2 is satisfied by post-condition 3.2.

SparseNaive Post-condition 16.1 Yv € V, 8(i,v) = 0(i — 1,v)

Satisfied by assignment in line 16 and pre-condition 16.1. Pre-condition 16.1 is satisfied by post-condition
3.1 when ¢ = (is — 1) in the loop starting at line 15. For all 4 such that 1 < i < (i, — 1), it is satisfied by the
previous loop iteration’s post-condition 16.1.

SparseNaive Post-condition 19.1 6(i — 1,v) < 6(i, v)

Post-condition 16.1 ensures that 6(i,v) starts out equal to 8(i — 1, v). In line 19, 6(4,v) can only be increased
in value thus postcondition 19.1 holds.

SparseNaive Post-condition 19.2 6(i — 1,w) < 6(i,v)

Satisfied by the assignment in line 19.
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SparseNaive Post-condition 20.1 (i — 1,w) < (i, w)

Post-condition 16.1 ensures that (i, w) starts out equal to #(i—1,w). In line 20, 6(i, w) can only be increased
in value thus postcondition 20.1 holds.

SparseNaive Post-condition 20.2 6(i,v) < (i, w)

Satisfied by the assignment in line 20.

SparseNaive Post-condition 21.1 Yo € V, (i — 1,v) < 6(i,v)

Satisfied by post-conditions 16.1, 19.1, and 20.1.

SparseNaive Post-condition 21.2 if § didn’t change then ¥ < v,w >€ NodeOrd(i — 1), 6(i — 1,w) <
Bi,v) < 6(i,0)

Follows immediately from post-conditions 19.2 and 20.2. Notice that it is important that 6 not change
during the entire foreach loop for this post-condition to be true. For example, assume that < wy,ws >€
NodeOrd(i —1) and <ws, w3 >€ NodeOrd(i —1) with 8(i —1,wy) = 0(i,w1) = 4,0(i — 1, w2) = 0(i,ws) < 4,
and (i, ws) < 4. If edge <ws,ws > is visited first in the foreach loop, then after lines 19 and 20 it will still
be the case that 6(i,ws) < 4 and 0(i, ws) < 4. However, later in the foreach loop when <w;,w, > is visited,
0(i, w2) will be set equal to 4 due to line 20. It will then be the case that 6(i,w2) > 6(i,ws) which will be
remedied the next time through the foreach loop.

SparseNaive Post-condition 22.1 V <v,w>€ NodeOrd(i — 1), 8(i — 1,w) < 6(i,v) < (i, w)

The do while loop in lines 17 through 22 ends when # no longer changes in the foreach loop starting at line
18. Therefore, due to post-condition 21.2, post-condition 22.1 is satisfied.

SparseNaive Post-condition 22.2 V <v,w>€ E, 8(i — 1,v) < (i, w)

Fori = (is+1) and V <v,w>€ E, the tiling function values §(i — 1,v) and 6(i — 1, w) were set in line 1. For
all ¢ such that (is+1) <i < T and V <v,w>€ E, the tiling function values 8(i —1,v) and 6(i — 1, w) were set
in the previous iteration of the for loop starting at line 15. The relationship between 8(i —1,v) and 8(i — 1, w)
falls under three cases, either 8(i — 1,v) < (i — 1,w), (i — 1,v) > 0(i — 1,w), or (i — 1,v) = 6(i — 1, w).

Case 1: If 6(i — 1,v) < 0(i — 1, w) then due to post-conditions 3.2 and 12.2 if ¢ = (i5s + 1) and post-condition
23.11if (is + 1) < i < T, the following is true.
<v,w>€ NodeOrd(i — 1) (10)

Due to (10), post-condition 21.1, and the second inequality in post-condition 22.1, the following is true for
all ¢ such that (is +1) <i<T.
9(2 - 17“) < e(iav) < 0(i,’lU) (11)
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Case 2: If 0(i — 1,v) > (i — 1, w) then due to post-conditions 3.2 and 12.2 if i = (i5; + 1) and post-condition
23.11if (is + 1) < i < T, the following is true.

<w,v>€ NodeOrd(i — 1) (12)
Using (12) and swapping the roles of v and w in post-condition 22.1, we find the following is true for all ¢

such that (i, +1) <i <T.

Case 3: If 8(i — 1,v) = 6(i — 1,w) then due to post-condition 21.1 the following is true for all i such that
(i, +1)<i<T.
0 —1,v) =600 — 1,w) < 0(i,v) (14)

SparseNaive Post-condition 23.1 V <v,w>€ E, if 8(i,v) < 0(i,w) then <v,w>€ NodeOrd(i)

Satisfied by the assignment in line 23.

SparseNaive Post-condition 24.1 Vg: (is+1)<¢<T andYv eV, 8(q —1,v) < 0(q,v)

Satisfied by the loop bounds of the for loop starting at line 15 and post-condition 21.1.

SparseNaive Post-condition 24.2 Vg : (is+1) < ¢ <T andV <v,w>€ E, 6(¢ — 1,v) < 0(q,w)

Satisfied by the loop bounds of the for loop starting at line 15 and post-condition 22.2.

SparseNaive Post-condition 24.3 Vi: (i; + 1) <i < T, NodeOrd(i) is acyclic

During the upwards tile growth, relations are added to NodeOrd(i) at line 23. Post-condition 14.2 quarantees
that NodeOrd(is) is initialized as acyclic. Using the inductive assumption that NodeOrd(i — 1) is acyclic,
we show that each new relation added at line 23 does not cause a cycle with the relations in NodeOrd(i — 1)
and any other relations previously added during the current execution of line 23.

We assume the contrary and then derive a contradiction. Assume there is a path <w,xo > ... <z,,v > in
the current set of relations such that upon adding < v,w > a cycle would be created. Due to the second
inequality in the post-condition 22.1 and line 23 the following statement is true about the tiling function 6
values for the nodes in the path at the current convergence iteration ¢.

0(i,w) < 0(i,m9) < --- < 0(i,xp) < 0(i,v) (15)
Due to line 23, if the relation <wv,w > is being added to NodeOrd(i) then the following is true.
0(i,v) < (i, w) (16)

Combining (15) and (16) result in the contradiction that 6(i,v) < 6(i,v). Therefore, it is not possible to add
a relation <wv,w> to NodeOrd(i) which will cause a cycle.
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SparseNaive Post-condition 24.4 Vi : (is + 1) < i < T and V <v,w >€ E, if 0(i,v) < 0(i,w) then
<wv,w> inNodeOrd(i)

Satisfied by the loop bounds of the for loop starting at line 15 and post-condition 23.1.

SparseNaive Post-condition 25.1 Vi:1<i< (T —1) andVYv €V, 0(i,v) <8(i + 1,v)

This condition states that all later convergence iterations performed on the same node x will be in the
same or later tile. It depends directly on post-conditions 13.1, and 24.1 which are post-conditions for the
downward tile growth, and upward tile growth sections of the algorithm respectively. Between lines 13 and
the end of the algorithm, no assignments occur to 6(i,z) with 1 < i < i, and v € V. Also, post-condition
24.1 is not invalidated by line 25 in the algorithm.

Notice that upon substitution of ¢ = ¢ + 1 in post-condition 24.1 we get the following statement.

Vi:(is+1)<(i+1)<T and YoeV, 6((i+1)—1,0)<0(i+1,0) (17)

Rewriting (17) we get the following.

Viiig<i<(T'—1) and Yo eV, 6(i,v) <0(G+1,0v) (18)

By combining the domains of ¢ in post-condition 13.1 and (18) we get post-condition 25.1.

SparseNaive Post-condition 25.2 Vi: 1 <i< (T —1) and V <v,w>€ E, 0(i,v) < 0(i + 1,w)

This condition states that all later convergence iterations performed on the neighbors of any node v will be in
the same or later tile. It depends directly on post-conditions 13.2 and 24.2 which are post-conditions for the
downward tile growth and upward tile growth sections of the algorithm respectively. Between lines 13 and
the end of the algorithm, no assignments occur to 6(k,z) with 1 <i < i; and v € V. Also, post-condition
24.2 is not invalidated by line 25 in the algorithm.
Notice that upon substitution of ¢ =i + 1 in post-condition 24.2 we get the following statement.

Vi:(is+1)<(i+1)<T and V<v,w>€eE, 0((i+1)—1,v) <0+ 1,w) (19)
Rewriting (19) we get the following.

Vi:ig<i<(T'—1) and V<v,w>€ E, 6(i,v) <0+ 1,w) (20)

By combining the domains of i in post-condition 13.2 and (20) we get post-condition 25.2.

SparseNaive Post-condition 25.3 Vi: 1 < i < T, NodeOrd(i) is acyclic

This condition is satisfed by combining the domains of ¢ in post-conditions 13.3, 14.1, and 24.3 which
are post-conditions for the downward tile growth, reinitialization of NodeOrd(is), and upward tile growth
sections of the algorithm respectively. No assignments are made to the NodeOrd(i) sets in the given ranges
between the post-conditions and the end of the program.
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SparseNaive Post-condition 25.4 Vi : 1 < i < T and V <v,w >€ E, if 0(i,v) < 0(i,w) then <v,w >
inNodeOrd(i)

This condition is satisfed by combining the domains of ¢ in post-conditions 13.4, 14.2, and 24.4 which
are post-conditions for the downward tile growth, reinitialization of NodeOrd(is), and upward tile growth
sections of the algorithm respectively. No assignments are made to the NodeOrd(i) sets in the given ranges
between the post-conditions and the end of the program.

4.3 Reorder the Mesh Nodes

The first step of a typical Gauss-Seidel computation is to assign an arbitrary order o to the nodes. This
affects the result of the computation because at each convergence iteration each mesh node will use the most
recent values of the unknowns residing at neighboring nodes in the mesh to update its own unknowns. Mesh
nodes at each iteration are computed based on their order.

We have two goals when ordering the nodes: to satisfy the constraints specified in the NodeOrd relation and
to increase intra-iteration locality. First and foremost, we must satisfy the NodeOrd relation so that we can
show the new execution based on our constructed o satsifies the Gauss-Seidel Partial Ordering Constraints.
Second, want to give consecutive numbers to nodes that at any iteration are executed by the same tile,
because the data for a node is stored in memory based on its order. Therefore we want the data associated
with nodes executed by the same tile to be close in memory and consequently have better intra-iteration
locality. When these two goals conflict, for correctness we always satisfy the NodeOrd relation.

We construct the reordering function o by performing a topological sort of the nodes based on the NodeOrd
relation. SPARSENAIVE post-condition 25.3 (see figure 5) states that NodeOrd is acyclic, so a topological
sort is possible. The time complexity of the sort is O(|V |+ |E|). The topological sort attempts to give nodes
within the same cell of the partitioning consecutive ordering. The resulting o has the following property:

if <x,y>€ NodeOrd then o(z) < o(y).

4.4 Generate the Sparse Matrix

We generate the matrix using the typical Finite Element Analysis (FEA) matrix assembly functions, except
we ensure that rows for the unknowns on each node are consecutive in memory for improved intra-iteration
locality. This step is not counted as overhead because it is already part of FEA.

4.5 Reschedule the Sparse Matrix Computation

Inter-iteration locality is improved by executing multiple convergence iterations on a subset of mesh nodes
that fit into cache. The typical Gauss-Seidel schedule, as shown in (1), traverses the unknowns associated
with all the mesh nodes before moving to the next convergence iteration. Therefore, in order to improve
inter-iteration locality we reschedule Gauss-Seidel based on the tiling function 6.

Using the tiling function 6, we generate a set of mesh nodes for each tile to execute at each convergence
iteration. We can then use the reordering function o to translate each set of mesh nodes into the list of
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matrix rows associated with each of the mesh nodes. As previously described, each matrix row associated
with a mesh node will have consecutive ordering. For each mesh node scheduled for a specific tile and
convergence iteration <t,7>, we add the matrix rows {o(v)d,o(v)d+1,...,0(v)d+ (d—1)} to the set s(t,3).
The rescheduling step has an upper bound of O(dT'|V]), since there are T iteration points for each mesh node
and for each on of these iteration points there will be d rows in the sparse matrix, where d is the number of
unknowns per mesh node.

4.6 Execute the New Schedule

Finally, we rewrite the Gauss-Seidel computation in (1) as the pseudocode in (21).

fort=0,...,(k—1)
fori=1,2,..,T
for all j in sched(t, 1) (21)

’U/gl) = (]_/a]])(f] — 2‘17;;;11 a’jkug) _ Zg:j+1 ajkugci—l))

The rewritten Gauss-Seidel computation executes the iteration points tile-by-tile, and within a tile executes
one convergence iteration at a time. Within a convergence iteration, matrix rows associated with mesh nodes
are executed according to the order given by o. The complexity of this step is the same as Gauss-Seidel,
O(Td*(|E| + |V])), where d*(|E| + |V|) is the number of non-zeros in the sparse matrix.

Because of the new schedule in the rewritten Gauss-Seidel computation the following Execution Properties
hold for the execution function e’ based on sparse tiling.

1. for 1 <i,q < T and Yv,w € V, if 6(i,v) < 8(g,w) then €'(i,v) < €'(g,w)
(iteration points in one tile will all be executed before iteration points in later tiles)

2. for 1<i<q<TandVv,weV,if 0(i,v) = 0(q,w) then €'(i,v) < e'(g,w)
(within a tile all iteration points in one convergence iteration are executed before later convergence
iterations)

3. for1<i<TandV<v,w>€ E, if 8(i,v) = 0(i,w) and o(v) < o(w) then e'(i,v) < €'(i,w)
(neighboring nodes within the same tile maintain the order specified by o)

Next, we show that the execution e’ based on sparse tiling satisfies the Gauss-Seidel Partial Ordering Con-
straints.

4.7 Proof of Correctness

Given the SPARSENAIVE post-conditions in figures 4 and 5, the property for the reordering function o given
in section 4.3, and the Execution Properties 1-3 of the new schedule given in section 4.6, we show that the
sparse tiling based execution e’ satisfies the Gauss-Seidel Partial Ordering Constraints.

Gauss-Seidel Partial Ordering Constraint 1 Vi:1<i< (T'—1) andVYv €V, €'(i,v) < e'(i + 1,v).
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This partial ordering constraint requires that iterations on any node v are executed in order. Combining
SPARSENAIVE post-condition 25.1 and Execution Properties 1 and 2 satisfies this property.

Gauss-Seidel Partial Ordering Constraint 2 Vi : 1 < i < (T —1) and V <v,w>€ E, if o(v) < o(w)
then €'(i,v) < €'(i,w) < e'(i + 1,v).

This partial ordering constraint requires that for all edges <wv,w >€ E, where node v comes before node w
in the node order o, certain restrictions on the execution of iteration points for v and w must be satisfied.
First we will show the following.

Vi:1<i<(T—-1) and <v,w>€E, if o(v) <o(w) then 6(i,v) <O(i,w)<0(i+1v) (22)

For the first inequality of (22), we assume the contrary and derive a contradiction.

F: 1<i<(T—-1) and <v,w>€ E suchthat o(v) <o(w) and 6(i,v) > 0(i,w) (23)

Due to SPARSENAIVE post-condition 25.4 and (23) the following statement is true.

<w,v>€ NodeOrd(i) (24)

Due to (24) and the o property the following is true.

o(w) < o(v) (25)

(25) contradicts the assumption in (23), therefore the first inequality of (22) is true.

To obtain the second inequality of (22) we use SPARSENAIVE post-condition 25.2 and the fact that if <v,w>
is in E then so is <w,v>. Combining (22) with Execution Properties 1 and 3 for e’ shows that the sparse
Gauss-Seidel Partial Order Property 2 is satisfied.

5 Implementing Sparse Tiling

The Partition, Tile, Reorder, and Reschedule steps account for the run-time overhead of sparse tiling.
By combining their complexities we get an upper bound of O(dT'|V'|+Tk|V||E|). Since all of these steps occur
at run-time, their efficiency is important. It is possible to rewrite the SPARSENAIVE algorithm using WorkSets
to reduce the complexity of the overall overhead to O(dT'|V |+ T'|E|). Figure 7 shows the SPARSEWORKSET
algorithm.

Consider only the downward tile growth phase (the argument for the upward tile growth is similar). In the
SPARSENAIVE algorithm the while loop at line 6 is necessary because a specific (i, v) could change multiple
times. Such a change occurs if a relation <v,w > is in NodeOrd(i + 1) and 6(i, w) changes due to a relation
<w,z>€ NodeOrd(i+ 1) which is visited later in the foreach loop. The SPARSEWORKSET algorithm avoids
the need for the while loop by incorporating two changes to SPARSENAIVE. First SPARSEWORKSET has two
loops, at lines 5 and 11, over the relations in NodeOrd(i+ 1). The first loop makes sure that if node v comes
before node w in the NodeOrd relation, that the iteration point <%, w > must be in the same or an earlier
tile than the iteration point <i+ 1,v>. Since the tiling function # values for all iteration points <i + 1,v>
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where v € V won’t change at the current ¢ iteration, we only need to visit each <v,w>€ NodeOrd(i + 1)
once to get 8(i,w) < (i + 1,v). The second loop through the relations in NodeOrd(i + 1) makes sure that if
<v,w>€ NodeOrd(i + 1) then iteration point <i,v> is put into the same or earlier tile as iteration point
<i,w>. Since we visit the relations in NodeOrd(i + 1) in order of §(i,w), at any node v there won’t be a
path in NodeOrd, <v,w>,<w,z; >, ..., <Zp_1, T, > where 0(i,z,) < 6(i,w). Therefore, we only need to
visit each <v,w>€ NodeOrd(i + 1) once in the second foreach loop as well. Upon elimination of the while
loop, the complexity of the algorithm changes from O(Tk|V||E|) to O(T|E)).

Another costly part of the SPARSENAIVE algorithm occurs at lines 12 and 23, where each edge <wv,w > in the
mesh must be checked to determine if <v,w> belongs in NodeOrd(i). If <v,w > isn’t in NodeOrd(i + 1)
it must be the case that 8(i + 1,v) > (i + 1,w). Thus, we only need to check an edge < v,w > if either
0(i,v) or 8(i, w) has changed. In SPARSEWORKSET, IterWorkSet(i) keeps track of all nodes v whose 0(i, v)
value has changed (gotten smaller). We use it to determine which edges < v, w >€ E must be checked for
candidacy in NodeOrd(i). Since the upper bound on the number of edges in IterWorkSet(i) is |E|, the
worst-case complexity for SPARSEWORKSET remains O(T'|E|).
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Algorithm SERIALSPARSEWORKSET(G(V, E),part,T ,is,m)

1:

YoeVand 1l <i<T,0(i,v) < part(v)

2: for1<i<T, NodeOrd(i) <
3: NodeOrd(is) < {<v,w> | 0(is,v) < 0(is,w) and <v,w> € E}

Downwards tile growth
4: fori=1is— 1 downto 1

% foreach <wv,w> € NodeOrd(i + 1)

6 if 0(i,w) > 0(i + 1,v) then

7 for 1 < ¢ <1, 6(¢q,w) < 0(i + 1,v) end for
8: w € TterWorkSet(i)

9: end if

10: end foreach

11: foreach <v,w> € NodeOrd(i + 1) in order by (i, w)
12: if (i, v) > 0(i,w) then

13: for 1 < ¢ <1, 6(¢q,v) < 6(i,w) end for

14: v € IterWorkSet(i)

15: end if

16: end foreach

17: NodeOrd(i) < NodeOrd(i + 1)

18: foreach v € IterWorkSet(i); foreach <v,w>€ E
19: if 0(i,v) < 0(i,w) then <v,w>€ NodeOrd(i)
20: end if

21: end foreach; end foreach

22: end for

23: NodeOrd(is) + NodeOrd(1)

Upwards tile growth
24: fori =i, +1to T

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

foreach <v,w> € NodeOrd(i — 1)
if 8(i,v) < 8(i — 1,w) then
fori <q<T,0(q,v) < 0(i —1,w) end for
v € IterWorkSet(i)
end if
end foreach
foreach <v,w> € NodeOrd(i — 1) in reverse order of (i, v)
if (i, w) < 6(i,v) then
fori <q<T,0(q,w) + 6(i,v) end for
w € IterWorkSet(i)
end if
end foreach
NodeOrd(i) + NodeOrd(i — 1)
foreach v € IterWorkSet(i); foreach <v,w>€ E
if (i, v) < 0(i,w) then <v,w>€ NodeOrd(i) end if
end foreach; end foreach

41: NodeOrd < NodeOrd(T)

Figure 7: SparseWorkSet Algorithm
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6 Related Work

Related work can be categorized by whether it deals with regular or irregular meshes and whether it attempts
to improve intra-iteration locality and/or inter-iteration locality.

Traditional tiling [21, 10, 4, 20, 19, 1, 12] can usually be applied to the loop nest which traverses the unknowns
associated with a regular mesh. This is because a regular mesh uses a 2D or 3D array data structure
with affine boundaries. These compile-time techniques only work for intra-iteration locality, because the
convergence iteration loop is not usually implemented in a way that compilers can recognize as associated
with the loop over the sparse matrix. Also, determining the tiling and array padding factors has not been
solved for all cases. Rivera and Tseng [15] look more specifically at how to do tiling and array padding for
3D regular meshes.

There has also been work on run-time techniques for improving the intra-iteration locality for irregular
meshes [8, 14, 2, 7, 13]. Mitchell et al. [14] describe a compiler optimization which operates on non-affine
array references in loops. Sparse matrix data structures require indirect array references, which are a type
of non-affine array reference. Also, Im and Yelick [8, 9] describe a code generator called SPARSITY which
generates blocked sparse matrix-vector multiply. Both Mitchell and Im’s techniques improve spatial and
temporal locality on the vectors v and f when dealing with the system Au = f. Therefore, when applied
to an iterative algorithm such as Gauss-Seidel the intra-iteration locality would improve. However, they do
not improve the temporal or inter-iteration locality on the sparse matrix, because in their rescheduled code
the entire sparse matrix is traversed each convergence iteration. rescheduling

Increasing inter-iteration locality for iterative computations on regular meshes is explored by [3], [16], [17],
and [6].

The only other technique to our knowledge which handles inter-iteration locality for irregular meshes is
unstructured cache-blocking by Douglas et al.[3]. They tile the iteration space graph resulting from unstruc-
tured grids in the context of the Multigrid algorithm using Gauss-Seidel as a smoother. They achieve overall
speedups up to 2 with 2D meshes containing 3983, 15679, and 62207 nodes on an SGI O2. They partition
the mesh into cells using the Metis [11] partitioner; the dark lines show the mesh partitioning. They then
grow tiles from this partitioning up through the iteration space while respecting the data dependences. Each
node needs the most recent values of its neighbors to execute; therefore, the number of nodes they can
execute in one tile shrinks each iteration. The resulting tiles are pyramid-shaped. The new schedule for the
computation executes all of the tiles atomically, and then does a second phase of computation to deal with
the rest of the iteration points.

7 Conclusion

We present an algorithm for generating a sparse tiling for Gauss-Seidel. We also give the full proof showing
that a serial execution of sparse tiled Gauss-Seidel is bit-equivalent to standard Gauss-Seidel when both
computations start with the same node order. Finally, we present a more efficient version of the sparse tiling
algorithm based on WorkSets.
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