
UC San Diego
Technical Reports

Title
Proof of Correctness for Sparse Tiling of Gauss-Seidel

Permalink
https://escholarship.org/uc/item/14z6d0p3

Authors
Strout, Michelle Mills
Carter, Larry
Ferrante, Jeanne

Publication Date
2001-12-04

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/14z6d0p3
https://escholarship.org
http://www.cdlib.org/

Proof of Corre
tness for Sparse Tiling of Gauss-Seidel

Mi
helle Mills Strout, Larry Carter, and Jeanne Ferrante

University of California, San Diego

UCSD Department of Computer S
ien
e and Engineering

Te
hni
al Report #CS2001-0686

November 2001

Abstra
t

Gauss-Seidel is an iterative
omputation used for solving sets of simulataneous linear equations,

Au = f . When these unknowns are asso
iated with nodes in an irregular mesh, then the Gauss-Seidel

omputation stru
ture is related to the mesh stru
ture. We use this stru
ture to subdivide the
omputa-

tion at runtime using a te
hnique
alled sparse tiling. The res
heduled
omputation exhibits better data

lo
ality and therefore improved performan
e. This paper gives a
omplete proof that a serial s
hedule

based on sparse tiling generates results equivalent to those that a standard Gauss-Seidel
omputation

produ
es.

1 Introdu
tion

Gauss-Seidel and Ja
obi are examples of iterative methods that are used to solve simultaneous linear equa-

tions, Au = f . Iterative methods solve for u by iterating over the system of equations,
onverging towards

a solution. The iteratively
al
ulated value of a mesh node unknown u

j

depends on the values of other un-

knowns on the same node, the unknowns asso
iated with adja
ent nodes within the mesh, and the non-zero

oeÆ
ients in the sparse matrix whi
h relate those unknowns. Typi
ally the sparse matrix is so large that

none of the values used by one
al
ulation of u

j

remain in the
a
he for future iterations on u

j

; thus the

omputation exhibits poor data lo
ality.

The pseudo-
ode for Gauss-Seidel is shown in (1). For ea
h iteration of the outermost loop, the entire sparse

matrix is traversed. We refer to the iterator i of this outermost loop as the
onvergen
e iterator. The j loop

iterates over the rows in the sparse matrix.

1

The k loop, whi
h is impli
it in the summations, iterates over

the unknowns related to u

j

, with a

jk

u

(i)

k

and a

jk

u

(i�1)

k

only being
omputed when a

jk

is a non-zero matrix

value. a

jk

is the entry in the sparse matrix A at row j and
olumn k. At ea
h
onvergen
e iteration a new

value is generated for ea
h unknown u

j

, using the most re
ently
al
ulated values for neighboring unknowns.

for i = 1; 2; :::; T

for j = 1; 2; :::; R

u

(i)

j

= (1=a

jj

)(f

j

�

P

j�1

k=1

a

jk

u

(i)

k

�

P

R

k=j+1

a

jk

u

(i�1)

k

)

(1)

1

There is one row in the matrix for ea
h unknown at ea
h mesh node.

1

i

y

x

Figure 1: Irregular Gauss-Seidel iteration spa
e graph for 3
onvergen
e iterations

The Gauss-Seidel
omputation over an irregular 2D mesh
an be visualized with the iteration spa
e graph

shown in �gure 1. The iteration spa
e shown
ontains three
onvergen
e iterations. Ea
h bla
k iteration

point

2

, <i; v>, represents the
omputations for all u

(i)

j

where u

j

is an unknown asso
iated with mesh node

v and i is the
onvergen
e iteration. The arrows represent data dependen
es

3

between the iteration points.

Gauss-Seidel uses the most re
ent version of its neighbors, so some data dependen
es
ome from points in

the same i iteration and some data dependen
es
ome from points in the previous i iteration.

In this setting, data lo
ality means that the data needed for the
urrent iteration point are already in
a
he.

If data used or generated by neighboring iteration points in the same i iteration are in
a
he, then the

omputation exhibits intra-iteration lo
ality. Inter-iteration lo
ality o

urs when the data from previous i

iterations remain in
a
he until their �nal use. Typi
al implementations of iterative algorithms like Gauss-

Seidel follow the s
hedule seen in (1), where the entire sparse matrix asso
iated with the mesh is traversed

for ea
h
onvergen
e iteration. Be
ause the mesh and therefore asso
iated sparse matrix are typi
ally quite

large it is very unlikely that inter-iteration lo
ality o

urs in a typi
al iterative solver implementation.

Furthermore, the order in whi
h iteration points in the same i iteration are visited will a�e
t the amount of

intra-iteration lo
ality.

Tiling is a
ompile-time transformation whi
h subdivides the iteration spa
e for a regular
omputation so

that the new tile-based s
hedule, where ea
h tile is exe
uted atomi
ally, exhibits better data lo
ality. We

say a tile is exe
uted atomi
ally when all the iteration points in the tile are exe
uted before any iteration

points in subsequent tiles. The non-aÆne loop bounds and indire
t memory referen
es in sparse matrix

omputations prohibit the use of
ompile time transformations. We have developed sparse tiling [18℄, whi
h

tiles the iteration spa
e resulting from an irregular mesh at run-time (see �gure 2). The sparse tiled iteration

spa
e is then used to guide run-time res
heduling and data reordering of Gauss-Seidel. Spe
i�
ally, the

s
hedule
hanges from sweeping over the entire mesh ea
h
onvergen
e iteration to exe
uting the iteration

points tile-by-tile.

Sparse tiling uses a graph partitioner to divide the irregular mesh into approximately equal size
ells. In

2

We use the term iteration point for points in the iteration spa
e graph and node for points in the mesh.

3

Only the dependen
es for one mesh node are shown for
larity.

2

�gure 2 the partitioning logi
ally o

urs at the middle
onvergen
e iteration, i = 2. The
ells in the partition

a
t as seeds for tiles whi
h are grown throughout the rest of the iteration spa
e. For Gauss-Seidel over

irregular 2D meshes, this results in irregular
olumn-shaped tiles whi
h in
lude iteration points from all

onvergen
e iterations. The new s
hedule using sparse tiles improves inter- and intra-iteration lo
ality and

thereby improve performan
e [18℄.

i

y

x

0 1

32

Figure 2: Sparse tiled Gauss-Seidel

In this paper, we des
ribe the stru
ture of a Gauss-Seidel
omputation over an unstru
ture mesh. We then

give a run-time sparse tiling algorithm for su
h a
omputation. Based on the resulting sparse tiling we are

able to
onstru
t a new exe
ution whi
h satis�es the Gauss-Seidel partial ordering
onstraints.

2 Terminology

The mesh
an be represented by a graph G(V;E)
onsisting of a set of nodes V and edges E. Although a

mesh typi
ally has undire
ted edges (v; w) 2 E, for presentation purposes assume that for ea
h undire
ted

edge (v; w) in the mesh there are two dire
ted edges <v;w>2 E and <w; v >2 E. Re
all that ea
h node

in a mesh
an have multiple unknowns asso
iated with it su
h as temperature, displa
ement, pressure, et
.

The sparse matrix A is generated by
reating a linear equation for ea
h unknown on ea
h node in the mesh.

Assuming ea
h unknown has a non-zero
oeÆ
ient in the sparse matrix A for all other unknowns on the

same node in
luding itself and all unknowns on neighboring nodes, then the size of the sparse matrix is

d

2

(jEj+ jV j) where d is the number of unknowns or degrees of freedom for ea
h mesh node.

To des
ribe the sparse tiling algorithm we use the following terminology.

Iteration point, <i; v>, represents all
omputation at
onvergen
e iteration i for the unknowns asso
iated

with node v.

Partition fun
tion, part(v) : V ! f0; :::; (k�1)g, maps ea
h node to a
ell of the mesh partitioning, where

k is the number of tiles.

3

Tiling fun
tion, �(i; v) : f1; ::; Tg x V ! f0; :::; (k � 1)g, returns the tile identi�er of the tile responsible

for exe
uting the given iteration point. The tile identi�er also indi
ates the exe
ution order of the tiles.

Reordering fun
tion, �(v) : V ! f0; :::; (jV j � 1)g, spe
i�es a
omplete ordering of the nodes v 2 V .

S
hedule, s(t; i) : f0; :::; (k�1)g x f1; :::; Tg ! 2

f0;:::;(R�1)g

, spe
i�es for ea
h tile and
onvergen
e iteration

the subset of matrix rows whi
h need to be
omputed, where T is the number of
onvergen
e iterations.

Exe
ution, e(i; v) : f1; :::; Tg x V ! f1; 2; :::; (T � jV j)g, indi
ates the relative exe
ution time for ea
h

iteration point.

3 Gauss-Seidel Partial Ordering Constraints

The outline of a Gauss-Seidel
omputation is as follows:

1. Choose an arbitrary order for the nodes in the mesh, �(v) : V ! f0; :::; (jV j � 1)g.

2. Iterate towards
onvergen
e over the mesh T times, where ea
h iteration visits all the nodes in the

hosen order

During ea
h
onvergen
e iteration the unknowns at ea
h node v are updated using the most re
ent values of

unknowns asso
iated with neighboring nodes w where <v;w> 2 E. The exe
ution resulting from a typi
al

Gauss-Seidel s
hedule is e(i; v) = (i� 1)jV j+ �(v).

By analyzing the stru
ture of a Gauss-Seidel
omputation, we �nd that although the Gauss-Seidel s
hedule

gives a total ordering on the exe
ution, the data dependen
es between various parts of the
omputation allow

for a less stri
t partial order. If the partial order is satis�ed by another exe
ution, then given the same node

order �(v), the new exe
ution will generate a solution whi
h is bitwise identi
al to the original Gauss-Seidel

exe
ution.

A Gauss-Seidel exe
ution satis�es the following Partial Ordering Constraints.

1. 8i : 1 � i � (T � 1) and 8v 2 V; e(i; v) < e(i+ 1; v)

(the iteration points for ea
h individual mesh node are exe
uted in order)

2. 8i : 1 � i � (T � 1) and 8 <v;w>2 E, if �(v) < �(w) then e(i; v) < e(i; w) < e(i+ 1; v)

(if there is an edge between v and w then the exe
ution must maintain the order between v and w

spe
i�ed by � at ea
h iteration, and later iterations of the node v must exe
ute after previous iterations

of w)

4 Tiling Gauss-Seidel

Sparse tiling [18℄ subdivides the iteration spa
e of iterative algorithms su
h as Gauss-Seidel in order to do

run-time data reordering and res
heduling. Sparse tiling in
ludes the following run-time steps.

4

� Partition the mesh

� Tile the iteration spa
e

� Reorder mesh nodes to improve intra-iteration lo
ality

� Generate the sparse matrix from the reordered mesh

� Res
hedule the sparse matrix
omputation to improve inter-iteration lo
ality

� Exe
ute the new s
hedule on the sparse matrix

The next sub-se
tions des
ribe ea
h part of the run-time pro
ess for sparse tiling. Finally, we prove that a

serial exe
ution based on sparse tiling satis�es the Gauss-Seidel partial ordering
onstraints.

4.1 Partition the Mesh

Although optimal graph partitioning is an NP-Hard problem [5℄, there are many heuristi
s used to get

reasonable graph partitions. The goal of graph partitioning is to divide the nodes of a graph into k roughly

equal-sized
ells, in a way that minimizes the number of edges whose two endpoints are in di�erent
ells.

Currently, we use the kmetis paritioning fun
tion in Metis whi
h is based on the multilevel k-way partitioning

des
ribed in [11℄. The k-way partitioning algorithm has a
omplexity of O(jEj), where jEj is the number of

edges in the mesh. After the partitioning, all mesh nodes v 2 V have been assigned a
ell in the partitioning,

part(v).

4.2 Tile the Iteration Spa
e

The mesh partitioning, generated in the Partition step,
reates a seed partitioning from whi
h tiles
an be

grown. We use the seed partitioning as the tiling at a parti
ular
onvergen
e iteration, i

s

. In other words

at i

s

, where i

s

is one of the
onvergen
e iterations 1 through T , �(i

s

; v) = part(v). To determine the tiling

at other
onvergen
e iterations we add or delete iteration points from the seed partition to allow atomi

exe
ution of tiles a
ross
onvergen
e iterations without violating any data dependen
es.

The SparseNaive Algorithm shown in �gure 3 will generate the tiling fun
tion �, whi
h assigns iteration

points to tiles, and the relation NodeOrd, whi
h spe
i�es some
onstraints on the reordering fun
tion �.

The �rst three instru
tions initialize the NodeOrd relation and all of the �'s for the
onvergen
e iteration i

s

.

We then loop down through the
onvergen
e iterations that
ome before i

s

setting the � fun
tion for ea
h

iteration point <i; v> to the same as the iteration point dire
tly above it. Finally, we visit the edges in the

mesh adjusting � to ensure that the data dependen
es are satis�ed by the � values. We repeat this pro
ess

for the
onvergen
e iterations between i

s

and T in the upwards tiling. On
e neighboring nodes are put into

two di�erent tiles at any iteration i, there must be a
onstraint on their node order � whi
h we indi
ate by

putting <v;w> into the relation NodeOrd if for any iteration i, �(i; v) < �(i; w).

An upper bound on the
omplexity of this algorithm is O(TkjV jjEj), where T is the number of
onvergen
e

iterations, k is the number of tiles, jV j is the number of nodes in the mesh, and jEj is the number of edges

in the mesh. The kjV jjEj term is due to the while loops at lines 6 and 17. In the worst-
ase, the while loop

will exe
ute kjV j times. 8v 2 V , �(i; v) de
reases monotoni
ally and
an take on at most k values, and in

the worse
ase only one �(i; v) would de
rease ea
h time through the while loop. In pra
ti
e, the algorithm

runs mu
h faster than this bound.

5

Algorithm SparseNaive(G(V;E),part,T ,i

s

,m)

1: 8v 2 V; �(i

s

; v) part(v)

2: for 1 � i � T , NodeOrd(i) ;

3: NodeOrd(i

s

) f<v;w> j �(i

s

; v) < �(i

s

; w) and <v;w> 2 Eg

Downwards tile growth

4: for i = (i

s

� 1) downto 1

5: forea
h vertex v 2 V , �(i; v) �(i+ 1; v) end forea
h

6: do while �
hanges

7: forea
h <v;w> 2 NodeOrd(i+ 1)

8: �(i; w) min(�(i; w); �(i+ 1; v))

9: �(i; v) min(�(i; v); �(i; w))

10: end forea
h

11: end do while

12: NodeOrd(i) NodeOrd(i + 1)

S

f<v;w> j �(i; v) < �(i; w) and <v;w> 2 Eg

13: end for

14: NodeOrd(i

s

) NodeOrd(1)

Upwards tile growth

15: for i = (i

s

+ 1) to T

16: forea
h vertex v 2 V , �(i; v) �(i� 1; v) end forea
h

17: do while �
hanges

18: forea
h <v;w> 2 NodeOrd(i� 1)

19: �(i; v) max(�(i; v); �(i � 1; w))

20: �(i; w) max(�(i; w); �(i; v))

21: end forea
h

22: end do while

23: NodeOrd(i) NodeOrd(i � 1)

S

f<v;w> j �(i; v) < �(i; w) and <v;w> 2 Eg

24: end for

25: NodeOrd NodeOrd(T)

Figure 3: SparseNaive Pseudo
ode

6

Algorithm SparseNaive(G(V;E),part,T ,i

s

,m)

f pre-
ondition [1.1℄ (1 � T) and (1 � i

s

� T) and (2 � m � jV j)g

1: 8v 2 V; �(i

s

; v) part(v)

2: for 1 � i � T , NodeOrd(i) ;

3: NodeOrd(i

s

) f<v;w> j �(i

s

; v) < �(i

s

; w) and <v;w> 2 Eg

f post-
ondition [3.1℄ 8v 2 V; �(i

s

; v) is initialized g

f post-
ondition [3.2℄ �(i

s

; v) < �(i

s

; w) if and only if <v;w>2 NodeOrd(i

s

)g

Downwards tile growth

4: for i = (i

s

� 1) downto 1

f pre-
ondition [5.1℄ 8v 2 V; �(i+ 1; v) is initialized g

5: forea
h vertex v 2 V , �(i; v) �(i+ 1; v) end forea
h

f post-
ondition [5.1℄ 8v 2 V , �(i; v) = �(i+ 1; v)g

6: do while �
hanges

7: forea
h <v;w> 2 NodeOrd(i + 1)

8: �(i; w) min(�(i; w); �(i+ 1; v))

f post-
ondition [8.1℄ �(i; w) � �(i+ 1; w)g

f post-
ondition [8.2℄ �(i; w) � �(i+ 1; v)g

9: �(i; v) min(�(i; v); �(i; w))

f post-
ondition [9.1℄ �(i; v) � �(i+ 1; v)g

f post-
ondition [9.2℄ �(i; v) � �(i; w)g

10: end forea
h

f post-
ondition [10.1℄ 8v 2 V , �(i; v) � �(i+ 1; v)g

f post-
ondition [10.2℄ if � didn't
hange then

8 <v;w>2 NodeOrd(i + 1), �(i; v) � �(i; w) � �(i+ 1; v)g

11: end do while

f post-
ondition [11.1℄ 8 <v;w>2 NodeOrd(i + 1), �(i; v) � �(i; w) � �(i+ 1; v)g

f post-
ondition [11.2℄ 8 <v;w>2 E, �(i; v) � �(i+ 1; w)g

12: NodeOrd(i) NodeOrd(i + 1)

S

f<v;w> j �(i; v) < �(i; w) and <v;w> 2 Eg

f post-
ondition [12.1℄ 8 <v;w>2 E, if �(i; v) < �(i; w) then <v;w>2 NodeOrd(i)g

f post-
ondition [12.2℄ NodeOrd(i + 1) � NodeOrd(i)g

13: end for

f post-
ondition [13.1℄ 8i : 1 � i � (i

s

� 1) and 8v 2 V , �(i; v) � �(i+ 1; v)g

f post-
ondition [13.2℄ 8i : 1 � i � (i

s

� 1) and 8 <v;w>2 E, �(i; v) � �(i+ 1; w)g

f post-
ondition [13.3℄ 8i : 1 � i � (i

s

� 1), NodeOrd(i) is a
y
li
 g

f post-
ondition [13.4℄ 8i : 1 � i � (i

s

� 1) and 8 <v;w>2 E,

if �(i; v) < �(i; w) then <v;w>2 NodeOrd(i) g

Figure 4: SparseNaive Pseudo
ode with post-
onditions, Part I

7

Algorithm SparseNaive
ont...

14: NodeOrd(i

s

) NodeOrd(1)

f post-
ondition [14.1℄ for i = i

s

, NodeOrd(i) is a
y
li
 g

f post-
ondition [14.2℄ for i = i

s

and 8 <v;w>2 E,

if �(i; v) < �(i; w) then <v;w>2 NodeOrd(i)g

Upwards tile growth

15: for i = (i

s

+ 1) to T

f pre-
ondition [16.1℄ 8v 2 V , �(i� 1; v) is initialized g

16: forea
h vertex v 2 V , �(i; v) �(i� 1; v) end forea
h

f post-
ondition [16.1℄ 8v 2 V , �(i; v) = �(i� 1; v)g

17: do while �
hanges

18: forea
h <v;w> 2 NodeOrd(i � 1)

19: �(i; v) max(�(i; v); �(i � 1; w))

f post-
ondition [19.1℄ �(i� 1; v) � �(i; v)g

f post-
ondition [19.2℄ �(i� 1; w) � �(i; v)g

20: �(i; w) max(�(i; w); �(i; v))

f post-
ondition [20.1℄ �(i� 1; w) � �(i; w)g

f post-
ondition [20.2℄ �(i; v) � �(i; w)g

21: end forea
h

f post-
ondition [21.1℄ 8v 2 V , �(i� 1; v) � �(i; v)g

f post-
ondition [21.2℄ if � didn't
hange then

8 <v;w>2 NodeOrd(i � 1), �(i� 1; w) � �(i; v) � �(i; w)g

22: end do while

f post-
ondition [22.1℄ 8 <v;w>2 NodeOrd(i � 1), �(i� 1; w) � �(i; v) � �(i; w)g

f post-
ondition [22.2℄ 8 <v;w>2 E, �(i� 1; v) � �(i; w)g

23: NodeOrd(i) NodeOrd(i � 1)

S

f<v;w> j �(i; v) < �(i; w) and <v;w> 2 Eg

f post-
ondition [23.1℄ 8 <v;w>2 E, if �(i; v) < �(i; w) then <v;w>2 NodeOrd(i)g

24: end for

f post-
ondition [24.1℄ 8q : (i

s

+ 1) � q � T and 8v 2 V , �(q � 1; v) � �(q; v)g

f post-
ondition [24.2℄ 8q : (i

s

+ 1) � q � T and 8 <v;w>2 E, �(q � 1; v) � �(q; w)g

f post-
ondition [24.3℄ 8i : (i

s

+ 1) � i � T , NodeOrd(i) is a
y
li
 g

f post-
ondition [24.4℄ 8i : (i

s

+ 1) � i � T and 8 <v;w>2 E,

if �(i; v) < �(i; w) then <v;w> inNodeOrd(i)g

25: NodeOrd NodeOrd(T)

f post-
ondition [25.1℄ 8i : 1 � i � (T � 1) and 8v 2 V , �(i; v) � �(i+ 1; v)g

f post-
ondition [25.2℄ 8i : 1 � i � (T � 1) and 8 <v;w>2 E, �(i; v) � �(i+ 1; w)g

f post-
ondition [25.3℄ 8i : 1 � i � T , NodeOrd(i) is a
y
li
 g

f post-
ondition [25.4℄ 8i : 1 � i � T and 8 <v;w>2 E,

if �(i; v) < �(i; w) then <v;w>2 NodeOrd(i)g

Figure 5: SparseNaive Pseudo
ode with post-
onditions, Part II

8

3.1

3.2

5.1

8.1 9.1

10.1

8.2 9.2

10.2

11.1

11.2

13.2

12.1

13.313.1

12.2

25.1 25.2 25.3 25.4

14.1
14.2

13.4

16.1

19.1 20.1

21.1

19.2 20.2

21.2

22.1

22.2

24.2

23.1

24.324.1 24.4

Figure 6: Dependen
es between post-
onditions for SparseNaive Algorithm

Figures 4 and 5 list post-
onditions for the SparseNaive tiling algorithm. Figure 6 shows how the post-

onditions relate to one another. Next we will give a proof for ea
h of the post-
onditions.

SparseNaive Post-
ondition 3.1 8v 2 V; �(i

s

; v) is initialized

Satis�ed by assignments in line 1.

SparseNaive Post-
ondition 3.2 �(i

s

; v) < �(i

s

; w) if and only if <v;w>2 NodeOrd(i

s

)

Satis�ed by assignments in lines 2 and 3.

SparseNaive Post-
ondition 5.1 8v 2 V , �(i; v) = �(i+ 1; v)

Satis�ed by assignment in line 5 and pre-
ondition 5.1. Pre-
ondition 5.1 is satis�ed by post-
ondition 3.1

when i = (i

s

� 1) in the loop starting at line 4. For all i su
h that 1 � i < (i

s

� 1), it is satis�ed by the

previous loop iteration's post-
ondition 5.1.

SparseNaive Post-
ondition 8.1 �(i; w) � �(i+ 1; w)

Post-
ondition 5.1 ensures that �(i; w) starts out equal to �(i+ 1; w). In line 8, �(i; w)
an only be redu
ed

thus post
ondition 8.1 holds.

SparseNaive Post-
ondition 8.2 �(i; w) � �(i+ 1; v)

9

Satis�ed by the assignment in line 8.

SparseNaive Post-
ondition 9.1 �(i; v) � �(i+ 1; v)

Post-
ondition 5.1 ensures that �(i; v) starts out equal to �(i + 1; v). In line 9, �(i; v)
an only be redu
ed

thus post
ondition 9.1 holds.

SparseNaive Post-
ondition 9.2 �(i; v) � �(i; w)

Satis�ed by the assignment in line 9.

SparseNaive Post-
ondition 10.1 8v 2 V , �(i; v) � �(i+ 1; v)

Satis�ed by post-
onditions 5.1, 8.1, and 9.1.

SparseNaive Post-
ondition 10.2 if � didn't
hange then 8 <v;w>2 NodeOrd(i+1), �(i; v) � �(i; w) �

�(i+ 1; v)

Follows immediately from post-
onditions 8.2 and 9.2. Noti
e that it is important that � not
hange during

the entire forea
h loop for this post-
ondition to be true. For example, assume that <v

1

; v

2

>2 NodeOrd(i+

1) and <v

2

; v

3

>2 NodeOrd(i + 1) with �(i+ 1; v

3

) = 0; �(i; v

1

) = �(i+ 1; v

1

) > 0; and �(i; v

2

) > 0. If edge

<v

1

; v

2

> is visited �rst in the forea
h loop, then it will still be the
ase that �(i; v

1

) > 0 and �(i; v

2

) > 0.

However, later in the forea
h loop when <v

2

; v

3

> is visited, �(i; v

2

) will be set equal to 0 due to line 9. It

will then be the
ase that �(i; v

1

) > �(i; v

2

) whi
h will be remedied the next time through the forea
h loop.

SparseNaive Post-
ondition 11.1 8 <v;w>2 NodeOrd(i + 1), �(i; v) � �(i; w) � �(i+ 1; v)

The do while loop in lines 6 through 11 ends when � no longer
hanges in the forea
h loop starting at line

7. Therefore, due to post-
ondition 10.2, post-
ondition 11.1 is satis�ed.

SparseNaive Post-
ondition 11.2 8 <v;w>2 E, �(i; v) � �(i+ 1; w)

For i = (i

s

�1) and 8 <v;w>2 E, the tiling fun
tion values �(i+1; v) and �(i+1; w) were set in line 1. For

all i su
h that 1 � i < (i

s

�1) and 8 <v;w>2 E, the tiling fun
tion values �(i+1; v) and �(i+1; w) were set

in the previous iteration of the for loop starting at line 4. The relationship between �(i+1; v) and �(i+1; w)

falls under three
ases, either �(i+ 1; v) < �(i+ 1; w), �(i+ 1; v) > �(i+ 1; w), or �(i+ 1; v) = �(i+ 1; w).

Case 1: If �(i + 1; v) < �(i + 1; w) then due to post-
ondition 3.2 if i = (i

s

� 1) and post-
ondition 12.1 if

1 � i < (i

s

� 1), the following is true.

<v;w>2 NodeOrd(i+ 1) (2)

10

Due to (2), post-
ondition 10.1, and the �rst inequality in post-
ondition 11.1, the following is true for all i

su
h that 1 � i � (i

s

� 1).

�(i; v) � �(i; w) � �(i+ 1; v) (3)

Case 2: If �(i + 1; v) > �(i + 1; w) then due to post-
ondition 3.2 if i = (i

s

� 1) and post-
ondition 12.1 if

1 � i < (i

s

� 1), the following is true.

<v;w>2 NodeOrd(i+ 1) (4)

Using (4) and swapping the roles of v and w in post-
ondition 11.1, we �nd the following is true for all i

su
h that 1 � i � (i

s

� 1).

�(i; w) � �(i; v) � �(i+ 1; w) (5)

Case 3: If �(i + 1; v) = �(i + 1; w) then due to post-
ondition 10.1 the following is true for all i su
h that

1 � i � (i

s

� 1).

�(i; v) � �(i+ 1; v) = �(i+ 1; w) (6)

SparseNaive Post-
ondition 12.1 8 <v;w>2 E, if �(i; v) < �(i; w) then <v;w>2 NodeOrd(i)

Satis�ed by the assignment in line 12.

SparseNaive Post-
ondition 12.2 NodeOrd(i + 1) � NodeOrd(i)

Satis�ed by the assignment in line 12.

SparseNaive Post-
ondition 13.1 8i : 1 � i � (i

s

� 1) and 8v 2 V , �(i; x) � �(i+ 1; v)

Satis�ed by the loop bounds of the for loop starting at line 4 and post-
ondition 10.1.

SparseNaive Post-
ondition 13.2 8i : 1 � i � (i

s

� 1) and 8 <v;w>2 E, �(i; v) � �(i+ 1; w)

Satis�ed by the loop bounds of the for loop starting at line 4 and post-
ondition 11.2.

SparseNaive Post-
ondition 13.3 8i : 1 � i � (i

s

� 1), NodeOrd(i) is a
y
li

During the downwards tile growth, relations are added to NodeOrd(i) at line 12. Post-
ondition 3.2 quar-

antees that NodeOrd(i

s

) is initialized as a
y
li
. Using the indu
tive assumption that NodeOrd(i + 1)

is a
y
li
, we show that ea
h new relation added at line 12 does not
ause a
y
le with the relations in

NodeOrd(i + 1) and any other relations previously added during the
urrent exe
ution of line 12.

We assume the
ontrary and then derive a
ontradi
tion. Assume there is a path <w; x

0

> ::: <x

n

; v> in the

urrent set of relations su
h that upon adding < v;w > a
y
le would be
reated. Due to the �rst inequality

11

in post-
ondition 11.1 and line 12 the following statement is true about the tiling fun
tion � values for the

nodes in the path at the
urrent
onvergen
e iteration i.

�(i; w) � �(i; x

0

) � � � � � �(i; x

n

) � �(i; v) (7)

Due to line 12, if the relation <v;w> is being added to NodeOrd(i) then the following is true.

�(i; v) < �(i; w) (8)

Combining (7) and (8) results in the
ontradi
tion that �(i; v) < �(i; v). Therefore, it is not possible to add

a relation <v;w> to NodeOrd(i) whi
h will
ause a
y
le.

SparseNaive Post-
ondition 13.4 8i : 1 � i � (i

s

� 1) and 8 < v;w >2 E, if �(i; v) < �(i; w) then

<v;w>2 NodeOrd(i)

Satis�ed by the loop bounds of the for loop starting at line 4 and post-
ondition 12.1.

SparseNaive Post-
ondition 14.1 for i = i

s

, NodeOrd(i) is a
y
li

Satis�ed by post-
ondition 13.3 and the assignment in line 14.

SparseNaive Post-
ondition 14.2 for i = i

s

and 8 < v;w >2 E, if �(i; v) < �(i; w) then < v;w >2

NodeOrd(i)

Due to post-
ondition 12.2, the following statement is true.

NodeOrd(i

s

) � NodeOrd(i

s

� 1) � � � � � NodeOrd(1) (9)

Therefore after the assignment in line 14, the relations put intoNodeOrd(i

s

) at line 3 are still inNodeOrd(i

s

)

and post-
ondition 14.2 is satis�ed by post-
ondition 3.2.

SparseNaive Post-
ondition 16.1 8v 2 V , �(i; v) = �(i� 1; v)

Satis�ed by assignment in line 16 and pre-
ondition 16.1. Pre-
ondition 16.1 is satis�ed by post-
ondition

3.1 when i = (i

s

� 1) in the loop starting at line 15. For all i su
h that 1 � i < (i

s

� 1), it is satis�ed by the

previous loop iteration's post-
ondition 16.1.

SparseNaive Post-
ondition 19.1 �(i� 1; v) � �(i; v)

Post-
ondition 16.1 ensures that �(i; v) starts out equal to �(i�1; v). In line 19, �(i; v)
an only be in
reased

in value thus post
ondition 19.1 holds.

SparseNaive Post-
ondition 19.2 �(i� 1; w) � �(i; v)

Satis�ed by the assignment in line 19.

12

SparseNaive Post-
ondition 20.1 �(i� 1; w) � �(i; w)

Post-
ondition 16.1 ensures that �(i; w) starts out equal to �(i�1; w). In line 20, �(i; w)
an only be in
reased

in value thus post
ondition 20.1 holds.

SparseNaive Post-
ondition 20.2 �(i; v) � �(i; w)

Satis�ed by the assignment in line 20.

SparseNaive Post-
ondition 21.1 8v 2 V , �(i� 1; v) � �(i; v)

Satis�ed by post-
onditions 16.1, 19.1, and 20.1.

SparseNaive Post-
ondition 21.2 if � didn't
hange then 8 < v;w >2 NodeOrd(i � 1), �(i � 1; w) �

�(i; v) � �(i; v)

Follows immediately from post-
onditions 19.2 and 20.2. Noti
e that it is important that � not
hange

during the entire forea
h loop for this post-
ondition to be true. For example, assume that < w

1

; w

2

>2

NodeOrd(i�1) and <w

2

; w

3

>2 NodeOrd(i�1) with �(i�1; w

1

) = �(i; w

1

) = 4; �(i�1; w

2

) = �(i; w

2

) < 4;

and �(i; w

3

) < 4. If edge <w

2

; w

3

> is visited �rst in the forea
h loop, then after lines 19 and 20 it will still

be the
ase that �(i; w

2

) < 4 and �(i; w

3

) < 4. However, later in the forea
h loop when <w

1

; w

2

> is visited,

�(i; w

2

) will be set equal to 4 due to line 20. It will then be the
ase that �(i; w

2

) > �(i; w

3

) whi
h will be

remedied the next time through the forea
h loop.

SparseNaive Post-
ondition 22.1 8 <v;w>2 NodeOrd(i � 1), �(i� 1; w) � �(i; v) � �(i; w)

The do while loop in lines 17 through 22 ends when � no longer
hanges in the forea
h loop starting at line

18. Therefore, due to post-
ondition 21.2, post-
ondition 22.1 is satis�ed.

SparseNaive Post-
ondition 22.2 8 <v;w>2 E, �(i� 1; v) � �(i; w)

For i = (i

s

+1) and 8 <v;w>2 E, the tiling fun
tion values �(i�1; v) and �(i�1; w) were set in line 1. For

all i su
h that (i

s

+1) < i � T and 8 <v;w>2 E, the tiling fun
tion values �(i�1; v) and �(i�1; w) were set

in the previous iteration of the for loop starting at line 15. The relationship between �(i�1; v) and �(i�1; w)

falls under three
ases, either �(i� 1; v) < �(i� 1; w), �(i� 1; v) > �(i� 1; w), or �(i� 1; v) = �(i� 1; w).

Case 1: If �(i� 1; v) < �(i� 1; w) then due to post-
onditions 3.2 and 12.2 if i = (i

s

+1) and post-
ondition

23.1 if (i

s

+ 1) < i � T , the following is true.

<v;w>2 NodeOrd(i� 1) (10)

Due to (10), post-
ondition 21.1, and the se
ond inequality in post-
ondition 22.1, the following is true for

all i su
h that (i

s

+ 1) � i � T .

�(i� 1; v) � �(i; v) � �(i; w) (11)

13

Case 2: If �(i� 1; v) > �(i� 1; w) then due to post-
onditions 3.2 and 12.2 if i = (i

s

+1) and post-
ondition

23.1 if (i

s

+ 1) < i � T , the following is true.

<w; v>2 NodeOrd(i� 1) (12)

Using (12) and swapping the roles of v and w in post-
ondition 22.1, we �nd the following is true for all i

su
h that (i

s

+ 1) � i � T .

�(i� 1; v) � �(i; w) � �(i; v) (13)

Case 3: If �(i � 1; v) = �(i � 1; w) then due to post-
ondition 21.1 the following is true for all i su
h that

(i

s

+ 1) � i � T .

�(i� 1; v) = �(i� 1; w) � �(i; v) (14)

SparseNaive Post-
ondition 23.1 8 <v;w>2 E, if �(i; v) < �(i; w) then <v;w>2 NodeOrd(i)

Satis�ed by the assignment in line 23.

SparseNaive Post-
ondition 24.1 8q : (i

s

+ 1) � q � T and 8v 2 V , �(q � 1; v) � �(q; v)

Satis�ed by the loop bounds of the for loop starting at line 15 and post-
ondition 21.1.

SparseNaive Post-
ondition 24.2 8q : (i

s

+ 1) � q � T and 8 <v;w>2 E, �(q � 1; v) � �(q; w)

Satis�ed by the loop bounds of the for loop starting at line 15 and post-
ondition 22.2.

SparseNaive Post-
ondition 24.3 8i : (i

s

+ 1) � i � T , NodeOrd(i) is a
y
li

During the upwards tile growth, relations are added toNodeOrd(i) at line 23. Post-
ondition 14.2 quarantees

that NodeOrd(i

s

) is initialized as a
y
li
. Using the indu
tive assumption that NodeOrd(i � 1) is a
y
li
,

we show that ea
h new relation added at line 23 does not
ause a
y
le with the relations in NodeOrd(i� 1)

and any other relations previously added during the
urrent exe
ution of line 23.

We assume the
ontrary and then derive a
ontradi
tion. Assume there is a path <w; x

0

> ::: <x

n

; v > in

the
urrent set of relations su
h that upon adding < v;w > a
y
le would be
reated. Due to the se
ond

inequality in the post-
ondition 22.1 and line 23 the following statement is true about the tiling fun
tion �

values for the nodes in the path at the
urrent
onvergen
e iteration i.

�(i; w) � �(i; x

0

) � � � � � �(i; x

n

) � �(i; v) (15)

Due to line 23, if the relation <v;w> is being added to NodeOrd(i) then the following is true.

�(i; v) < �(i; w) (16)

Combining (15) and (16) result in the
ontradi
tion that �(i; v) < �(i; v). Therefore, it is not possible to add

a relation <v;w> to NodeOrd(i) whi
h will
ause a
y
le.

14

SparseNaive Post-
ondition 24.4 8i : (i

s

+ 1) � i � T and 8 < v;w >2 E, if �(i; v) < �(i; w) then

<v;w> inNodeOrd(i)

Satis�ed by the loop bounds of the for loop starting at line 15 and post-
ondition 23.1.

SparseNaive Post-
ondition 25.1 8i : 1 � i � (T � 1) and 8v 2 V , �(i; v) � �(i+ 1; v)

This
ondition states that all later
onvergen
e iterations performed on the same node x will be in the

same or later tile. It depends dire
tly on post-
onditions 13.1, and 24.1 whi
h are post-
onditions for the

downward tile growth, and upward tile growth se
tions of the algorithm respe
tively. Between lines 13 and

the end of the algorithm, no assignments o

ur to �(i; x) with 1 � i � i

s

and v 2 V . Also, post-
ondition

24.1 is not invalidated by line 25 in the algorithm.

Noti
e that upon substitution of q = i+ 1 in post-
ondition 24.1 we get the following statement.

8i : (i

s

+ 1) � (i+ 1) � T and 8v 2 V; �((i+ 1)� 1; v) � �(i+ 1; v) (17)

Rewriting (17) we get the following.

8i : i

s

� i � (T � 1) and 8v 2 V; �(i; v) � �(i+ 1; v) (18)

By
ombining the domains of i in post-
ondition 13.1 and (18) we get post-
ondition 25.1.

SparseNaive Post-
ondition 25.2 8i : 1 � i � (T � 1) and 8 <v;w>2 E, �(i; v) � �(i+ 1; w)

This
ondition states that all later
onvergen
e iterations performed on the neighbors of any node v will be in

the same or later tile. It depends dire
tly on post-
onditions 13.2 and 24.2 whi
h are post-
onditions for the

downward tile growth and upward tile growth se
tions of the algorithm respe
tively. Between lines 13 and

the end of the algorithm, no assignments o

ur to �(k; x) with 1 � i � i

s

and v 2 V . Also, post-
ondition

24.2 is not invalidated by line 25 in the algorithm.

Noti
e that upon substitution of q = i+ 1 in post-
ondition 24.2 we get the following statement.

8i : (i

s

+ 1) � (i+ 1) � T and 8 <v;w>2 E; �((i+ 1)� 1; v) � �(i+ 1; w) (19)

Rewriting (19) we get the following.

8i : i

s

� i � (T � 1) and 8 <v;w>2 E; �(i; v) � �(i+ 1; w) (20)

By
ombining the domains of i in post-
ondition 13.2 and (20) we get post-
ondition 25.2.

SparseNaive Post-
ondition 25.3 8i : 1 � i � T;NodeOrd(i) is a
y
li

This
ondition is satisfed by
ombining the domains of i in post-
onditions 13.3, 14.1, and 24.3 whi
h

are post-
onditions for the downward tile growth, reinitialization of NodeOrd(i

s

), and upward tile growth

se
tions of the algorithm respe
tively. No assignments are made to the NodeOrd(i) sets in the given ranges

between the post-
onditions and the end of the program.

15

SparseNaive Post-
ondition 25.4 8i : 1 � i � T and 8 < v;w >2 E, if �(i; v) < �(i; w) then <v;w >

inNodeOrd(i)

This
ondition is satisfed by
ombining the domains of i in post-
onditions 13.4, 14.2, and 24.4 whi
h

are post-
onditions for the downward tile growth, reinitialization of NodeOrd(i

s

), and upward tile growth

se
tions of the algorithm respe
tively. No assignments are made to the NodeOrd(i) sets in the given ranges

between the post-
onditions and the end of the program.

4.3 Reorder the Mesh Nodes

The �rst step of a typi
al Gauss-Seidel
omputation is to assign an arbitrary order � to the nodes. This

a�e
ts the result of the
omputation be
ause at ea
h
onvergen
e iteration ea
h mesh node will use the most

re
ent values of the unknowns residing at neighboring nodes in the mesh to update its own unknowns. Mesh

nodes at ea
h iteration are
omputed based on their order.

We have two goals when ordering the nodes: to satisfy the
onstraints spe
i�ed in the NodeOrd relation and

to in
rease intra-iteration lo
ality. First and foremost, we must satisfy the NodeOrd relation so that we
an

show the new exe
ution based on our
onstru
ted � satsi�es the Gauss-Seidel Partial Ordering Constraints.

Se
ond, want to give
onse
utive numbers to nodes that at any iteration are exe
uted by the same tile,

be
ause the data for a node is stored in memory based on its order. Therefore we want the data asso
iated

with nodes exe
uted by the same tile to be
lose in memory and
onsequently have better intra-iteration

lo
ality. When these two goals
on
i
t, for
orre
tness we always satisfy the NodeOrd relation.

We
onstru
t the reordering fun
tion � by performing a topologi
al sort of the nodes based on the NodeOrd

relation. SparseNaive post-
ondition 25.3 (see �gure 5) states that NodeOrd is a
y
li
, so a topologi
al

sort is possible. The time
omplexity of the sort is O(jV j+ jEj). The topologi
al sort attempts to give nodes

within the same
ell of the partitioning
onse
utive ordering. The resulting � has the following property:

if <x; y>2 NodeOrd then �(x) < �(y).

4.4 Generate the Sparse Matrix

We generate the matrix using the typi
al Finite Element Analysis (FEA) matrix assembly fun
tions, ex
ept

we ensure that rows for the unknowns on ea
h node are
onse
utive in memory for improved intra-iteration

lo
ality. This step is not
ounted as overhead be
ause it is already part of FEA.

4.5 Res
hedule the Sparse Matrix Computation

Inter-iteration lo
ality is improved by exe
uting multiple
onvergen
e iterations on a subset of mesh nodes

that �t into
a
he. The typi
al Gauss-Seidel s
hedule, as shown in (1), traverses the unknowns asso
iated

with all the mesh nodes before moving to the next
onvergen
e iteration. Therefore, in order to improve

inter-iteration lo
ality we res
hedule Gauss-Seidel based on the tiling fun
tion �.

Using the tiling fun
tion �, we generate a set of mesh nodes for ea
h tile to exe
ute at ea
h
onvergen
e

iteration. We
an then use the reordering fun
tion � to translate ea
h set of mesh nodes into the list of

16

matrix rows asso
iated with ea
h of the mesh nodes. As previously des
ribed, ea
h matrix row asso
iated

with a mesh node will have
onse
utive ordering. For ea
h mesh node s
heduled for a spe
i�
 tile and

onvergen
e iteration <t; i>, we add the matrix rows f�(v)d; �(v)d+1; :::; �(v)d+(d� 1)g to the set s(t; i).

The res
heduling step has an upper bound of O(dT jV j), sin
e there are T iteration points for ea
h mesh node

and for ea
h on of these iteration points there will be d rows in the sparse matrix, where d is the number of

unknowns per mesh node.

4.6 Exe
ute the New S
hedule

Finally, we rewrite the Gauss-Seidel
omputation in (1) as the pseudo
ode in (21).

for t = 0; :::; (k � 1)

for i = 1; 2; :::; T

for all j in s
hed(t; i)

u

(i)

j

= (1=a

jj

)(f

j

�

P

j�1

k=1

a

jk

u

(i)

k

�

P

R

k=j+1

a

jk

u

(i�1)

k

)

(21)

The rewritten Gauss-Seidel
omputation exe
utes the iteration points tile-by-tile, and within a tile exe
utes

one
onvergen
e iteration at a time. Within a
onvergen
e iteration, matrix rows asso
iated with mesh nodes

are exe
uted a

ording to the order given by �. The
omplexity of this step is the same as Gauss-Seidel,

O(Td

2

(jEj+ jV j)), where d

2

(jEj+ jV j) is the number of non-zeros in the sparse matrix.

Be
ause of the new s
hedule in the rewritten Gauss-Seidel
omputation the followingExe
ution Properties

hold for the exe
ution fun
tion e

0

based on sparse tiling.

1. for 1 � i; q � T and 8v; w 2 V , if �(i; v) < �(q; w) then e

0

(i; v) < e

0

(q; w)

(iteration points in one tile will all be exe
uted before iteration points in later tiles)

2. for 1 � i < q � T and 8v; w 2 V , if �(i; v) = �(q; w) then e

0

(i; v) < e

0

(q; w)

(within a tile all iteration points in one
onvergen
e iteration are exe
uted before later
onvergen
e

iterations)

3. for 1 � i � T and 8 <v;w>2 E, if �(i; v) = �(i; w) and �(v) < �(w) then e

0

(i; v) < e

0

(i; w)

(neighboring nodes within the same tile maintain the order spe
i�ed by �)

Next, we show that the exe
ution e

0

based on sparse tiling satis�es the Gauss-Seidel Partial Ordering Con-

straints.

4.7 Proof of Corre
tness

Given the SparseNaive post-
onditions in �gures 4 and 5, the property for the reordering fun
tion � given

in se
tion 4.3, and the Exe
ution Properties 1-3 of the new s
hedule given in se
tion 4.6, we show that the

sparse tiling based exe
ution e

0

satis�es the Gauss-Seidel Partial Ordering Constraints.

Gauss-Seidel Partial Ordering Constraint 1 8i : 1 � i < (T � 1) and 8v 2 V , e

0

(i; v) < e

0

(i+ 1; v).

17

This partial ordering
onstraint requires that iterations on any node v are exe
uted in order. Combining

SparseNaive post-
ondition 25.1 and Exe
ution Properties 1 and 2 satis�es this property.

Gauss-Seidel Partial Ordering Constraint 2 8i : 1 � i � (T � 1) and 8 <v;w>2 E, if �(v) < �(w)

then e

0

(i; v) < e

0

(i; w) < e

0

(i+ 1; v).

This partial ordering
onstraint requires that for all edges <v;w>2 E, where node v
omes before node w

in the node order �,
ertain restri
tions on the exe
ution of iteration points for v and w must be satis�ed.

First we will show the following.

8i : 1 � i � (T � 1) and <v;w>2 E; if �(v) < �(w) then �(i; v) � �(i; w) � �(i+ 1; v) (22)

For the �rst inequality of (22), we assume the
ontrary and derive a
ontradi
tion.

9i : 1 � i � (T � 1) and <v;w>2 E su
h that �(v) < �(w) and �(i; v) > �(i; w) (23)

Due to SparseNaive post-
ondition 25.4 and (23) the following statement is true.

<w; v>2 NodeOrd(i) (24)

Due to (24) and the � property the following is true.

�(w) < �(v) (25)

(25)
ontradi
ts the assumption in (23), therefore the �rst inequality of (22) is true.

To obtain the se
ond inequality of (22) we use SparseNaive post-
ondition 25.2 and the fa
t that if <v;w>

is in E then so is <w; v>. Combining (22) with Exe
ution Properties 1 and 3 for e

0

shows that the sparse

Gauss-Seidel Partial Order Property 2 is satis�ed.

5 Implementing Sparse Tiling

The Partition, Tile, Reorder, and Res
hedule steps a

ount for the run-time overhead of sparse tiling.

By
ombining their
omplexities we get an upper bound of O(dT jV j+TkjV jjEj). Sin
e all of these steps o

ur

at run-time, their eÆ
ien
y is important. It is possible to rewrite the SparseNaive algorithm using WorkSets

to redu
e the
omplexity of the overall overhead to O(dT jV j+T jEj). Figure 7 shows the SparseWorkSet

algorithm.

Consider only the downward tile growth phase (the argument for the upward tile growth is similar). In the

SparseNaive algorithm the while loop at line 6 is ne
essary be
ause a spe
i�
 �(i; v)
ould
hange multiple

times. Su
h a
hange o

urs if a relation <v;w> is in NodeOrd(i+1) and �(i; w)
hanges due to a relation

<w; z>2 NodeOrd(i+1) whi
h is visited later in the forea
h loop. The SparseWorkSet algorithm avoids

the need for the while loop by in
orporating two
hanges to SparseNaive. First SparseWorkSet has two

loops, at lines 5 and 11, over the relations in NodeOrd(i+1). The �rst loop makes sure that if node v
omes

before node w in the NodeOrd relation, that the iteration point <i;w> must be in the same or an earlier

tile than the iteration point <i+1; v>. Sin
e the tiling fun
tion � values for all iteration points <i+1; v>

18

where v 2 V won't
hange at the
urrent i iteration, we only need to visit ea
h <v;w>2 NodeOrd(i + 1)

on
e to get �(i; w) � �(i+1; v). The se
ond loop through the relations in NodeOrd(i+1) makes sure that if

<v;w>2 NodeOrd(i + 1) then iteration point <i; v> is put into the same or earlier tile as iteration point

<i;w>. Sin
e we visit the relations in NodeOrd(i + 1) in order of �(i; w), at any node v there won't be a

path in NodeOrd, <v;w>;<w; x

1

>; :::; <x

n�1

; x

n

> where �(i; x

n

) < �(i; w). Therefore, we only need to

visit ea
h <v;w>2 NodeOrd(i + 1) on
e in the se
ond forea
h loop as well. Upon elimination of the while

loop, the
omplexity of the algorithm
hanges from O(TkjV jjEj) to O(T jEj).

Another
ostly part of the SparseNaive algorithm o

urs at lines 12 and 23, where ea
h edge <v;w> in the

mesh must be
he
ked to determine if <v;w> belongs in NodeOrd(i). If <v;w> isn't in NodeOrd(i + 1)

it must be the
ase that �(i + 1; v) � �(i + 1; w). Thus, we only need to
he
k an edge < v;w > if either

�(i; v) or �(i; w) has
hanged. In SparseWorkSet, IterWorkSet(i) keeps tra
k of all nodes v whose �(i; v)

value has
hanged (gotten smaller). We use it to determine whi
h edges <v;w >2 E must be
he
ked for

andida
y in NodeOrd(i). Sin
e the upper bound on the number of edges in IterWorkSet(i) is jEj, the

worst-
ase
omplexity for SparseWorkSet remains O(T jEj).

19

Algorithm SerialSparseWorkset(G(V;E),part,T ,i

s

,m)

1: 8v 2 V and 1 � i � T; �(i; v) part(v)

2: for 1 � i � T , NodeOrd(i) ;

3: NodeOrd(i

s

) f<v;w> j �(i

s

; v) < �(i

s

; w) and <v;w> 2 Eg

Downwards tile growth

4: for i = i

s

� 1 downto 1

5: forea
h <v;w> 2 NodeOrd(i + 1)

6: if �(i; w) > �(i+ 1; v) then

7: for 1 � q � i, �(q; w) �(i+ 1; v) end for

8: w 2 IterWorkSet(i)

9: end if

10: end forea
h

11: forea
h <v;w> 2 NodeOrd(i + 1) in order by �(i; w)

12: if �(i; v) > �(i; w) then

13: for 1 � q � i, �(q; v) �(i; w) end for

14: v 2 IterWorkSet(i)

15: end if

16: end forea
h

17: NodeOrd(i) NodeOrd(i + 1)

18: forea
h v 2 IterWorkSet(i); forea
h <v;w>2 E

19: if �(i; v) < �(i; w) then <v;w>2 NodeOrd(i)

20: end if

21: end forea
h; end forea
h

22: end for

23: NodeOrd(i

s

) NodeOrd(1)

Upwards tile growth

24: for i = i

s

+ 1 to T

25: forea
h <v;w> 2 NodeOrd(i � 1)

26: if �(i; v) < �(i� 1; w) then

27: for i � q � T , �(q; v) �(i� 1; w) end for

28: v 2 IterWorkSet(i)

29: end if

30: end forea
h

31: forea
h <v;w> 2 NodeOrd(i � 1) in reverse order of �(i; v)

32: if �(i; w) < �(i; v) then

33: for i � q � T , �(q; w) �(i; v) end for

34: w 2 IterWorkSet(i)

35: end if

36: end forea
h

37: NodeOrd(i) NodeOrd(i � 1)

38: forea
h v 2 IterWorkSet(i); forea
h <v;w>2 E

39: if �(i; v) < �(i; w) then <v;w>2 NodeOrd(i) end if

40: end forea
h; end forea
h

41: NodeOrd NodeOrd(T)

Figure 7: SparseWorkSet Algorithm

20

6 Related Work

Related work
an be
ategorized by whether it deals with regular or irregular meshes and whether it attempts

to improve intra-iteration lo
ality and/or inter-iteration lo
ality.

Traditional tiling [21, 10, 4, 20, 19, 1, 12℄
an usually be applied to the loop nest whi
h traverses the unknowns

asso
iated with a regular mesh. This is be
ause a regular mesh uses a 2D or 3D array data stru
ture

with aÆne boundaries. These
ompile-time te
hniques only work for intra-iteration lo
ality, be
ause the

onvergen
e iteration loop is not usually implemented in a way that
ompilers
an re
ognize as asso
iated

with the loop over the sparse matrix. Also, determining the tiling and array padding fa
tors has not been

solved for all
ases. Rivera and Tseng [15℄ look more spe
i�
ally at how to do tiling and array padding for

3D regular meshes.

There has also been work on run-time te
hniques for improving the intra-iteration lo
ality for irregular

meshes [8, 14, 2, 7, 13℄. Mit
hell et al. [14℄ des
ribe a
ompiler optimization whi
h operates on non-aÆne

array referen
es in loops. Sparse matrix data stru
tures require indire
t array referen
es, whi
h are a type

of non-aÆne array referen
e. Also, Im and Yeli
k [8, 9℄ des
ribe a
ode generator
alled SPARSITY whi
h

generates blo
ked sparse matrix-ve
tor multiply. Both Mit
hell and Im's te
hniques improve spatial and

temporal lo
ality on the ve
tors u and f when dealing with the system Au = f . Therefore, when applied

to an iterative algorithm su
h as Gauss-Seidel the intra-iteration lo
ality would improve. However, they do

not improve the temporal or inter-iteration lo
ality on the sparse matrix, be
ause in their res
heduled
ode

the entire sparse matrix is traversed ea
h
onvergen
e iteration. res
heduling

In
reasing inter-iteration lo
ality for iterative
omputations on regular meshes is explored by [3℄, [16℄, [17℄,

and [6℄.

The only other te
hnique to our knowledge whi
h handles inter-iteration lo
ality for irregular meshes is

unstru
tured
a
he-blo
king by Douglas et al.[3℄. They tile the iteration spa
e graph resulting from unstru
-

tured grids in the
ontext of the Multigrid algorithm using Gauss-Seidel as a smoother. They a
hieve overall

speedups up to 2 with 2D meshes
ontaining 3983, 15679, and 62207 nodes on an SGI O2. They partition

the mesh into
ells using the Metis [11℄ partitioner; the dark lines show the mesh partitioning. They then

grow tiles from this partitioning up through the iteration spa
e while respe
ting the data dependen
es. Ea
h

node needs the most re
ent values of its neighbors to exe
ute; therefore, the number of nodes they
an

exe
ute in one tile shrinks ea
h iteration. The resulting tiles are pyramid-shaped. The new s
hedule for the

omputation exe
utes all of the tiles atomi
ally, and then does a se
ond phase of
omputation to deal with

the rest of the iteration points.

7 Con
lusion

We present an algorithm for generating a sparse tiling for Gauss-Seidel. We also give the full proof showing

that a serial exe
ution of sparse tiled Gauss-Seidel is bit-equivalent to standard Gauss-Seidel when both

omputations start with the same node order. Finally, we present a more eÆ
ient version of the sparse tiling

algorithm based on WorkSets.

21

8 A
knowledgements

This work was supported by an AT & T Labs Graduate Resear
h Fellowship and in part by NSF Grant

CCR-9808946.

Referen
es

[1℄ Steve Carr and Ken Kennedy. Compiler blo
kability of numeri
al algorithms. The Journal of Super-

omputing, pages 114{124, November 1992.

[2℄ Chen Ding and Ken Kennedy. Improving
a
he performan
e in dynami
 appli
ations through data

and
omputation reorganization at run time. In Pro
eedings of the ACM SIGPLAN '99 Conferen
e on

Programming Language Design and Implementation, pages 229{241, Atlanta, Georgia, May 1{4, 1999.

[3℄ Craig C. Douglas, Jonathan Hu, Markus Kowars
hik, Ulri
h R�ude, and Christian Weiss. Ca
he Opti-

mization for Stru
tured and Unstru
tured Grid Multigrid. Ele
troni
 Transa
tion on Numeri
al Anal-

ysis, pages 21{40, February 2000.

[4℄ D. Gannon, W. Jalby, and K. Gallivan. Strategies for
a
he and lo
al memory management by global

program transformation. Journal of Parallel and Distributed Computing, 5(5):587{616, O
tober 1988.

[5℄ Mi
hael R. Garey, David S. Johnson, and L. Sto
kmeyer. Some simpli�ed NP-
omplete graph problems.

Theoreti
al Computer S
ien
e, 1:237{267, 1976.

[6℄ Kang Su Gatlin and Larry Carter. Ar
hite
ture-
ognizant divide and
onquer algorithms. In Super
om-

puting SC'99, Portland, Oregon, November 1999. ACM Press and IEEE Computer So
iety Press.

[7℄ Hwansoo Han and Chau-Wen Tseng. EÆ
ient
ompiler and run-time support for parallel irregular

redu
tions. Parallel Computing, 26(13{14):1861{1887, De
ember 2000.

[8℄ Eun-Jin Im. Optimizing the Performan
e of Sparse Matrix-Ve
tor Multiply. Ph.d. thesis, University of

California, Berkeley, May 2000.

[9℄ Eun-Jin Im and Katherine Yeli
k. Optimizing sparse matrix
omputations for register reuse in sparsity.

In V.N.Alexandrov, J.J. Dongarra, and C.J.K.Tan, editors, Pro
eedings of the 2001 International Con-

feren
e on Computational S
ien
e, Le
ture Notes in Computer S
ien
e, San Fran
is
o, CA, USA, May

28-30, 2001. Springer-Verlag.

[10℄ F. Irigoin and R. Triolet. Supernode partitioning. In Pro
eedings of the 15th Annual ACM SIGPLAN

Symposium on Prini
iples of Programming Languages, pages 319{329, 1988.

[11℄ George Karypis and Vipin Kumar. Multilevel k-way partitioning s
heme for irregular graphs. Journal

of Parallel and Distributed Computing, 48(1):96{129, 10 January 1998.

[12℄ Kathryn S. M
Kinley, Steve Carr, and Chau-Wen Tseng. Improving data lo
ality with loop transfor-

mations. ACM Transa
tions on Programming Languages and Systems, 18(4):424{453, July 1996.

[13℄ John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving memory hierar
hy performan
e

for irregular appli
ations. In Pro
eedings of the 1999 Conferen
e on Super
omputing, ACM SIGARCH,

pages 425{433, N.Y., June 20{25 1999. ACM Press.

[14℄ Ni
holas Mit
hell, Larry Carter, and Jeanne Ferrante. Lo
alizing non-aÆne array referen
es. In Pro-

eedings of the 1999 International Conferen
e on Parallel Ar
hite
tures and Compilation Te
hniques

(PACT '99), pages 192{202, Newport Bea
h, California, O
tober 12{16, 1999. IEEE Computer So
iety

Press.

22

[15℄ Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3D s
ienti�

omputations. In ACM,

editor, SC2000: High Performan
e Networking and Computing. Dallas Convention Center, Dallas, TX,

USA, November 4{10, 2000, pages 60{61, New York, NY 10036, USA and 1109 Spring Street, Suite

300, Silver Spring, MD 20910, USA, 2000. ACM Press and IEEE Computer So
iety Press.

[16℄ Sriram Sellappa and Siddhartha Chatterjee. Ca
he-eÆ
ient multigrid algorithms. In V.N.Alexandrov,

J.J. Dongarra, and C.J.K.Tan, editors, Pro
eedings of the 2001 International Conferen
e on Com-

putational S
ien
e, Le
ture Notes in Computer S
ien
e, San Fran
is
o, CA, USA, May 28-30, 2001.

Springer-Verlag.

[17℄ Yonghong Song and Zhiyuan Li. New tiling te
hniques to improve
a
he temporal lo
ality. ACM

SIGPLAN Noti
es, 34(5):215{228, May 1999.

[18℄ Mi
helle Mills Strout, Larry Carter, and Jeanne Ferrante. Res
heduling for lo
ality in sparse matrix

omputations. In V.N.Alexandrov, J.J. Dongarra, and C.J.K.Tan, editors, Pro
eedings of the 2001

International Conferen
e on Computational S
ien
e, Le
ture Notes in Computer S
ien
e, San Fran
is
o,

CA, USA, May 28-30, 2001. Springer-Verlag.

[19℄ Mi
hael E. Wolf and Moni
a S. Lam. A data lo
ality optimizing algorithm. In Programming Language

Design and Implementation, 1991.

[20℄ M. Wolfe. More iteration spa
e tiling. In ACM, editor, Pro
eedings, Super
omputing '89: November

13{17, 1989, Reno, Nevada, pages 655{664, New York, NY 10036, USA, 1989. ACM Press.

[21℄ Mi
hael J. Wolfe. Iteration spa
e tiling for memory hierar
hies. In Parallel Pro
essing for S
ienti�

Computing, pages 357{361, 1987.

23

