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The importance of randomization in resource assignment problems

Keith Paarporn, Rahul Chandan, Mahnoosh Alizadeh, and Jason R. Marden

Abstract—In this paper, we consider problems involving
a central commander that must assign a pool of available
resources to two separate competitions. In each competition,
a sub-colonel allocates its endowed resources from the as-
signment against an opponent. We consider General Lotto
games as the underlying model of competition. Here, we also
take into account that the commander’s randomized resource
assignments cause the opponents to have uncertainty about the
sub-commanders’ actual assigned endowments. We find that
randomized assignments, which induce General Lotto games
of incomplete and asymmetric information in the component
competitions, do not offer strategic advantages over determin-
istic ones when the opponents have fixed resource endowments.
However, this is not the case when the opponents have per-unit
costs to utilize resources. We find the optimal randomized as-
signment strategy can actually improve the commander’s payoff
two-fold when compared to optimal deterministic assignments.

I. INTRODUCTION

The problem of how to allocate a limited amount of
resources is central to problems involving strategy in adver-
sarial environments. For example, the scheduling of security
patrols in airports, border control, and wildlife conservation
constitute a diverse set of resource allocation problems that
are consequential to the security of modern infrastructures
[14], [17], [19]. Strategies for military defense are also
largely based on resource allocation. Here, a single decision-
making entity is often not entirely responsible for how all
resources are to be allocated. This can be due to several rea-
sons: it may not have the capability to operate the entire pool
of resources due to computational or complexity constraints.
Moreover, a hierarchical decision-making structure may exist
where this is simply not possible. Instead, the responsibility
of allocating resources against adversaries is delegated to
multiple decision-makers.

In this paper, we focus on the problem of how a com-
mander should assign a pool of resources to multiple sub-
colonels that engage in competition against their opponents,
so as to maximize cumulative payoffs. The role of ran-
domizing such assignments is significant, as evidenced by
the development and implementation of algorithms in the
aforementioned application domains. Indeed, randomizing
the assignments causes opponents to hold uncertainty about
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the actual resource endowments of the sub-colonels. We take
this feature into account, where we consider General Lotto
games as the underlying model in each competition. Specifi-
cally, a randomized assignment induces General Lotto games
of incomplete information as the component competitions.
Figure (1] depicts the scenario under consideration.

We completely characterize the commander’s optimal as-
signment strategies when there are two sub-colonels. Our
main conclusions show that randomized assignments do not
offer any strategic advantages over deterministic assignments
when the opponents are known to have fixed resource endow-
ments. This, however, is not the case in settings where the
opponents instead have a per-unit cost to invest in resources.
In fact, the optimal (randomized) assignment strategy can
improve the commander’s payoff two-fold in comparison to
the best deterministic strategies.

The Colonel Blotto game models two competing op-
ponents that strategically allocate their endowed resources
across a set of battlefields. It is known that such solutions
are notoriously difficult to derive, and characterizations for
the most general settings are still unknown [2], [5], [15],
[16], [18]. The General Lotto game is a popular variant of
the Colonel Blotto game. It offers more analytical tractability
because it relaxes budget support constraints that are required
for mixed strategies in Blotto games [8], [11]. For this reason,
Lotto games are versatile models of competition for which
to study more complex adversarial settings [4], [6], [7], [10].

Settings with incomplete information have received at-
tention in the recent literature [1], [3], [9], [12], [13]. For
the commander assignment problem under consideration in
this paper, randomized assignments induce incomplete infor-
mation Lotto competitions where the opponent is uncertain
about the sub-colonel’s resource budget. We will leverage
equilibrium characterizations of such interactions from [13]
to address the commander assignment problem.

The paper is organized as follows. In Section [l we pro-
vide preliminaries on General Lotto games and two models
of incomplete information. In Section we define the
commander assignment problems and summarize the main
results. Section provides characterizations of optimal
assignment strategies for a parameter regime of interest that
highlights the importance of randomized assignments. The
full characterizations are provided in the Appendix.

II. PRELIMINARIES

We begin with a brief description of the commander
assignment problem (detailed formulation given in Section
[), and give preliminary details about General Lotto games
of complete and incomplete information.
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Fig. 1: A commander must decide how to assign available resources
to two sub-colonels competing over distinct sets of battlefields.
Here, the assignment strategy of the commander allocates a total of
X 4 resources to two sub-colonels in expectation. The sub-colonels’
endowments X 4; (¢ = 1,2) are drawn from the commander’s
(possibly randomized) assignment strategy. Opponent ¢ thus en-
gages in an incomplete information Lotto game where it does not
observe sub-colonel i’s true endowment. They compete over a set of
battlefields worth ¢; in total. Here, we consider two possible models
for the opponents. Both either have fixed resource endowments
XBi, or unlimited available resources but pay per-unit costs c;
to utilize them. This paper identifies the commander’s assignment
strategy that maximizes the cumulative payoff associated with the
two sub-colonels.

A. Commander assignment problem

The task of the commander is to assign resources to two
sub-colonels A1 and A2 that engage in separate competitions
against their opponents. We will consider General Lotto
games as the underlying model of competition in this paper.
The commander has a limited pool of total resources to
assign and seeks to maximize the cumulative payoff from
both competitions (see Figure [[). We assume that sub-
colonels and their opponents will play equilibrium strategies
in their respective competitions. The opponents’ beliefs about
the sub-colonels’ resource endowments can be shaped by
the commander’s assignment distribution. In particular, ran-
domized assignments induce opponents to engage in Lotto
games of incomplete information, whereas deterministic as-
signments induce complete information Lotto games.

B. Background on General Lotto games

A General Lotto game (GL) consists of two players A and
B, that have limited resource endowments X 4, Xp, who
compete over n battlefields with values v; > 0, j € [n].
A player wins battlefield j and its value v; if it allocates
more resources than its opponent. The losing player on j
gets zero value. An allocation for player ¢ € {A, B} is any
vector &y = {x¢,;}jen) € R’} (non-negative real vectors).
An admissible strategy for player £ € {A, B} is any n-variate
distribution Fy over allocations x, € R”} that satisfies the
condition

Bapnr, | 3 wej| < Xo. )
J€ln]

In words, a player can randomize its allocation, as long as
it does not exceed its endowment in expectation. We denote
L(Xy) as the set of all admissible strategies that satisfy (T).
The GL game is a two-player simultaneous move game with
constant-sum payoffs. The payoff function is given by

Un(Fy, Fog) =) Uj/ Fogj(ey)dFe(ze;) (D)
jem 70

where the integral term is the probability that ¢ allocates
more resources to battlefield j. The equilibrium character-
ization of all GL games are widely known [8], [10], [11],
which admit unique payoffs.

C. Incomplete information Lotto games

To address the commander assignment problem, equilib-
rium characterizations of General Lotto games with incom-
plete information are required. Accordingly, we consider
settings where player A’s endowment is assigned randomly
before play. Player B does not observe the true realization
of A’s endowment. Note that player A here plays the role
of a “sub-colonel” and B is the opponent. Two models of
incomplete information Lotto games are defined below. In
the first model, player B has a fixed resource endowment.
In the second model, player B has a per-unit cost to invest
in resources.

Definition 1. In the Bayesian General Lotto game (BL),
player A’s endowment is assigned as X1 with probability
p, and Xo with probability 1 — p where X1 > Xs. A
strategy for player A is a pair Fy := (Fa(t1), Fa(t2)) €
L(X1) x L(X2), where t indicates the “high” endowment
type X1, and to is the “low” endowment type Xo. Player
B does not observe which type is realized, and itself has a
fixed endowment Xp that is common knowledge. A strategy
for player B is any Fg € L(Xg). The expected payoffs to
each player are given by

My :=p-Ua(Fa(t1),Fp)+ (1 = p) - Ua(Fa(t2), Fp)
g :=p - Up(Fp,Fa(t1)) + (1 —p) - Up(FB, Fa(t2))
3)
The tuple G = (X1, X2, p, Xp) represents one instance of
this game. The class of all such game instances is denoted
G with arbitrary member G.

Definition 2. In the Bayesian General Lotto game with
costs (BLC), the model for player A remains the same
as in Definition [I| However, player B has an unlimited
resource endowment but pays a per-unit cost ¢ > 0 to
allocate resources. That is, a strategy for player B is any
Fp € L(Xp) where Xp is any positive number. While
player A’s payoff function from remains the same, player
B’s payoff here is given by

HB_C'EQ:BNFB Z LI,‘B)]‘ . (4)
J€E[n]
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Fig. 2: (Left) An example setup where the commander must assign X4 = 1 resources to the two sub-colonels in expectation against
two opponents with the same per-unit cost c; = c2 = c to utilize resources. Here, ¢1 = 1 and ¢2 = 2. (Center) This plot compares
the commander’s payoffs from using optimal randomized assignment strategies versus optimal deterministic ones. The x-axis indicates
the amount of resources an opponent obtains from a unit payment, ¢~'. We note that the best randomized assignment improves upon
the best deterministic assignment two-fold for ¢™! > 2. For the particular case ¢~' = 6, the commander’s optimal payoff is 0.5 for
deterministic and 1 for randomized assignments. The optimal deterministic assignment is X 41 = 1/3 (from Theorem . The optimal
randomized assignment strategy (calculated from Theorem [4.2) is to assign (X a1, Xa2) as {(0,0), (0,2), (1,0), (1,2)} with probabilities
{g, %, %, %} (Right) This diagram shows parameter regions where the optimal commander assignment strategy takes on varying degrees
of randomization for the endowments of each sub-colonel.

The tuple G= (X1, X2, p, c) represents one instance of this. We first consider the problem where the engagements are
game. The class of all such game instances is denoted G with  specified by BL games.

arbitrary element G. Definition 3. The commander assignment problem with

Complete equilibrium characterizations of both BL and  respect to BL games is defined by the optimization problem
BLC games are available in [13]. Indeed, these results max ){7TA(X171,X172,])1,X31|¢)1)

allow us to investigate the problem of how a commander PeP(Xa (6)
should .(randomly). assign resources.to two. sub-colonels. +7a( X1, Xo.2, 2, XBa2|d2)}
We are interested in whether randomized assignments offer
advantages over deterministic ones. where T 4(G|@) indicates the equilibrium payoff to player A
in a BL game G € G (derived in [13]) with total battlefield
III. PROBLEM FORMULATION AND SUMMARY OF value ¢. Here, the relevant parameters are specified by a total
RESULTS pool of resources X 4 > 0, fixed opponent budgets X g, and

The BL and BLC games represent two possible models Xpa, and total values ¢, ¢ > 0 for each set of battlefields.

of engagement between a sub-colonel and its opponent. In We find that randomized assignment strategies offer no
this paper, we consider the problem in which the commander  payoff benefits in comparison to the optimal deterministic
must assign, in expectation, a total amount X 4 among two  assignment reported in [10]. Indeed, we show that the
sub-colonels (see Figure [T). The assignment strategies avail-  optimization problem (6) can be reduced to deterministic
able to the commander are the set of probability distributions  assignment strategies. We next consider a second scenario
P on R such that each marginal P;, i = 1,2 has at most two  where the engagements are specified by BLC games.
values in its support. Furthermore, we require the commander
assigns no more than X 4 resources to the two sub-colonels
in expectation:

Definition 4. The commander assignment problem with
respect to BLC games is defined by the optimization problem

Z P(Xa1, X42) - (Xa1+ Xa2) < X4 (5 PeIg?§A){WA(X1,1,X1,2,P1,C1\¢1)

(Xa1,Xaz)&supp(P) +74(X2,1, X222, D2, C2]002) }
where X 4; is the resource endowment assigned to sub-
colonel i. Let us denote P(X,4) as the set of all such
distributions P. As such, the marginal P; is associated with
a probability p; := P;(X; 1) on a high endowment X ;, and
the probability 1 — p; on a low endowment X; 5, for sub-

(7

where 7 4(G|¢) denotes the (best-case) equilibrium payoff
to player A in a BLC game G € G with total battlefield
value ¢ (derived in [13]). Here, c; is the per-unit cost for
sub-colonel i’s opponent to utilize resources.

colonel i. A pair (X 41, X 42) is drawn according to P, upon Under BLC engagements, we find the central comman-
which sub-colonel ¢ selects an allocation strategy belonging  der’s cumulative payoff can improve two-fold when utilizing
to L(X ;). an optimal randomized assignment compared to an optimal

The commander’s objective is to select P € P(X,) deterministic assignment. An example of this comparison is
that maximizes the expected cumulative equilibrium payoff — shown in Figure[2] which highlights the payoff improvements
that the sub-colonels derive in their respective engagements.  the commander attains. A two-fold improvement is attainable



for a particular subset of parameters which we highlight in
Theorems and The full characterization, i.e. for all
possible parameters, of the commander’s optimal determin-
istic and randomized assignment strategies are provided in

Appendix [B]
IV. MAIN RESULTS

In this section, we address the commander assignment
problems (6) and for selected subset of parameters in
order to highlight the importance of randomization. Full
characterizations are given in the Appendix.

A. Assignment problem with respect to BL engagements

Let us consider the commander’s problem @ Here, the
opponents have fixed resource endowments Xpg; and Xpo
and thus the engagements are BL games. The commander’s
optimal assignment strategy is actually completely determin-
istic — randomized assignment strategies do not provide any
strict benefits over deterministic ones. Any assignment P that
assigns X 4; to sub-colonel 1 in expectation can do no better
than the strategy that simply assigns X 47 to sub-colonel
1 (and X4 — X 41 to sub-colonel 2) with probability one.
This result follows from the characterization of equilibrium
payoffs in BL games:

Fact 4.1. For any BL game G € G, it holds that w4 (G) <
7S(G), where
— if X/Xp <1

Cliewy o 1. ) 3Xp>

2X
is the equilibrium payoff from the complete information Lotto
game in which player A’s assigned the endowment X :=
pX1 + (1 — p) Xy with probability one. Here, ¢ is the sum
of battlefield valuations.

The proof of the above fact is reported in [13]. Thus,
any randomized assignment strategy P € P weakly under-
performs its corresponding deterministic assignment when
the opponents have fixed resource endowments. We can
then restrict attention to deterministic assignment strategies.
Indeed, the optimal deterministic assignment strategies been
characterized in the literature — see [10].

B. Assignment problem with respect to BLC engagements

Let us now consider the commander’s problem . Here,
the opponents have no limit on the amount of resources avail-
able, but pay the per-unit costs cj, co, respectively, to utilize
them. In the following analyses, we first consider determin-
istic assignment strategies. Then, we consider randomized
strategies P € P(X 4). We derive the optimal strategies and
payoffs in both cases for a specific parameter regime, and
provide some comparisons. The full characterizations for all
parameters, for both settings, are given in the Appendix.
Deterministic assignments: A deterministic assignment strat-
egy is any X4; € [0, X 4], which assigns X 41 resources

to sub-colonel 1 and X4 — X 41 to sub-colonel 2. The
commander’s objective is written as

Ua(Xa1)

]{ﬁ%I(XAh c1ld1) + 75 (Xa — Xan, c2|02)}

(©))
where 7G(X, c|¢) is the equilibrium payoff from a BLC
game in which A is assigned the endowment X w.p. one
(provided in Appendix [A). The following result highlights
the commander’s optimal deterministic assignment X}, for
a subset of parameters. The particular parameter subset
highlighted in the result below is of interest because, as we
will see, randomized assignments offer a two-fold payoff
gain over the best deterministic assignments.

Theorem 4.1. Suppose c; < Qq;(lA and ca < 2?(—:

Then the optimal deterministic assignment is given by

max
X 41€[0,X 4]

= max
XA1€[0,X 4

X4 = m)@;, which gives a payoff Ua(X3,) =
Xa(crditeado)
3 .

Randomized assignments: Suppose now the commander is
able to implement randomized assignments, i.e. any distribu-
tion P € P(X4). The following result explicitly character-
izes the optimal assignment strategy P* for the commander
for a subset of the parameters. This subset contains the
parameter region specified in Theorem The optimal
randomized assignment of a fixed budget X 4 under all other
parameters are characterized in Appendix [B]

Theorem 4.2. Define for i = 1,2,

i ¢ \° | 2c_ip_
2XA+\/<2XA) X,

Suppose ¢1 < ri(c2) and ca < ra(c1). Let X3, =

c1p1Xa XZ2 — CapaXa 201X21/¢1; and

_cipira _C2P2 XA x
c1p1+cagpa’ c1p1+cada’ 1

Py = /2c2X%,/d2. Then the optimal assignment P* €
P(Xa) is given by: P*(0,0) = (1 — p})(1 — p}),

* [ X Aa02 _ ) ok * [ XA101 _
P <Oa 3622 ) - (1 - pl)pQr P < gc] a0> -
* * * X 1 X450 %%
pi(l — p3), and P <,/ 2Ac11¢ A/ 2AC22¢2) = pips.

The resulting payoff to the commander is Ua(P*) =

V2Xa(c101 + c292).

This result indicates the commander can improve its payoff
two-fold over the best deterministic assignment by random-
izing both sub-colonels’ endowments. In other parameter
regimes, the optimal assignment ranges from randomizing
a single sub-colonel’s endowment to using a completely
deterministic assignment for both (see Appendix [B).

(10)

DN | =

ri(e—;) =

V. CONCLUSIONS

This paper considers the problem of how limited resources
should be assigned to multiple decision-makers in adversarial
environments. We considered a class of resource allocation
problems under the framework of General Lotto games,
where a commander decides how to split assets to two



sub-colonels. We identified settings where the commander
can exploit informational asymmetry against opponents by
randomizing its resource assignments to the sub-colonels.
Specifically, randomization induces the opponents to hold
uncertainty about the sub-colonels’ resource endowments.
When the opponents have fixed resource budgets, probabilis-
tic assignments offer no benefits over completely determin-
istic assignments. When the opponents have per-unit costs,
we find optimal assignments can improve the commander’s
payoff two-fold in comparison to the optimal deterministic
assignment.
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APPENDIX

This appendix contains the complete characterizations and
proofs for the commander’s optimal assignment strategies
in all parameter regimes. The results are given for both
deterministic and randomized assignments with respect to
BLC games. As such, Theorems Pf;fl and @ are subsumed
as special cases.

A. Commander’s optimal deterministic assignments

The optimal deterministic assignment, i.e. the X7, that
solves (@), is given below for any set of parameters
Xa,{ci,pi}i=1,2. We note the result of Theorem is
subsumed as Case 1 below.

Lemma A.l. The optimal
is given in_the following

deterministic assignment
cases. Denote Q; =

= 1,2 and define ri(c_;) =

2
1 bi @i 2c_ip_;
2 |2X4 + \/(QXA) + .
Case I: ¢ < 55, 2 < ¢2 . Then X}, =
and Ux(X%,) = M

Case 2: c¢; > 2¢;(1A, o < szA. If c1 > r1(c2), then X3, =

2% and Ua(X74) = ¢1+ Q2. If c1 < ri(c2), then X3, is

c1¢1
c1¢p1+capa Xa

given by
$1 . Xa(cipr4cags)
¢y if o1 + Qo > \/:
> o . XA<c1¢21+02¢2) (11)
Totean XA, o1+ Q2 < \/?
and the payoff is
X
Ua(X7%;) = max { ¢1 + Qo, \/ A(Cl¢12+ co2)
(12)

Case 2’: ¢; < 2?(1,4’ co > 2X Af ca > ra(cr), then X3, =
Xa— £2 and Ua(X5,) = o+ Q1. If o < ra(c1), then
X7, is given by

XA—f, UC¢2+Q1Z\/@ 13)
PR I £ rrerresse
and Ua(X3,) = max{¢2 Lo, W}
Case 3: ¢; ,2) and X 4 — % < ¢1 . Then
. XA_Q%a if g2+ Q1> d1+ Q2
Xa1=19 o : (14)
2017 if o2+ Q1 < 1 + Q2
and Ua(X},) = a1, {9 + Q-
Case 4: X 4 — ¢02 > 26 . Then X}, € [2"; ,XA—%) and
Ua(X5y) = b1 + 2.

Proof. The proof relies on utilizing the characterization
of equilibrium payoffs in sub-colonel i’s BLC game with
complete information, i.e. sub-colonel ¢ has the resource



endowment X4, > 0 with probability 1. It is given as

follows:
. ciXai i o < 2
A4 (Xai, cildi) = \/T . e (15)
®i, if ¢; > 55—

for ¢ = 1, 2. This allows us to explicitly pose the commander
assignment problem (9). Its solution is given as the four cases
presented in the statement. For space concerns, we provide
the proof for Case 1 only. The proof for other cases are
reported in [13].

When ¢; < 2?(71,4 and ¢y < 2X , the objective of (@) can be

written as U (X a1) = Cl¢12XA1 + \/62¢2(X’24 Xa1) for all
X 41 € [0, X 4]. This function is concave and the derivative

is zero at X%, = mX“‘ €10, Xal. [ ]

B. Commander’s optimal randomized assignments

We now provide the complete characterization of the
commander’s optimal randomized assignment strategies for
any set of parameters ci,ca, ¢1,¢P2 > 0 (7). The optimal
joint assignment strategy P* ranges from randomizing both
sub-colonels’ endowments (Case 1), to using a completely
deterministic assignment (Case 4). The result of Theorem
[£.2] is subsumed as Case 1 below.

Lemma B.1. Consider the assignment problem (). The
optimal distribution P* € P(X ) on resource assignments
and the resulting payoff U (P*) are given by the following
four cases.

Case 1 (Theorem {4.2| W Suppose ¢1 < 11(c2) and ¢y <

c X c X
ra(c1). Let X3 = qdfﬁ Xho = ﬁﬁ
Pi = V21 X4, /01, and p5 = \/2c2 X7,/ p2. We have
* * * * X%
Pr0,0) = (1 - p)( = p}) P (0F¢> =

and

(1 — pi)ps, P*( Zad 0> = pi(1 — p3)

pr* (\/Tlf’l, \/T"‘fz) = pip5. The resulting payoff to

= /2X4(c1¢1 + c202).

the commander is Uy (P*)

Case 2: Suppose c¢; > rl(cQ) and ¢y < ﬁ Let
Xiy = 45 Xip = Xa— 45, and p5 = 26X}, /o.
Then P*(X74,,0) = 1—p5 and P* X4, /4222 ) = ps.
The resulting payoff to the commander is Ua(P*) = ¢1 +
\/262¢2 (XA - E)

Case 3: Suppose cy > r3(c1) and ¢1 < 2?(1 , or 7“2(01) <
cz<ﬁand012m.LetXAl XA—%

Xy = 2% and py = \/2c1.X%, /1. Then P*(0,X%,) =
1 —p] and P* <\/ A1¢1 XA2> = pi. The resulting payoff

to the commander is U (P*) = ¢ + \/ZClqﬁl (XA — —)

202

Case 4: Suppose X 4 — 2‘*; 22 > 26 . Then any P* that satisfies

P*(X%,,X%,) = 1 for some X3, € [%,XA — 2%] and
X = Xa — X, is an optimal assignment. The resulting
payoff to the commander is U (P*) = ¢1 + ¢2.

Proof. Note that any feasible P € P(X 4) induces expected
endowments Xa; = p;X1; + (1 — p;) X2, for each sub-
colonel, where X 41 + X2 = X4 is satisfied. For given
expected endowments X Al,X A2, the distribution P that
maximizes the commander’s objective (/) is one whose
marginals optimize the sub-colonels’ equilibrium payoff in
their respective BLC games. The optimal marginals are
characterized in [13], and are given by

(X0 X5.,00) = (V);gy,o, QCiXAi) it i< 3%
e RAN £

(XAi,XAm ><) ) if ¢; > 2;
(16)
and the resulting payoff to Ai in its BLC game is
_ 2e:0: X 4, ifc; < i
Hji(XAiaCi|¢i) = \/m ] Ci 2X.Ai .37
¢i7 if C; Z 2)2;’.

Thus, the optimization is equivalent to determining the
optimal expected endowment to sub-colonel 1:

{I04 (X a1, e1]n) +IT (X a—Xan, ca|¢2)} (18)

~ max
XA1€[0,X 4]
The objective function above takes distinct forms depending
on the values of ci,co,¢1,¢2. For space concerns, we
provide the proof for Case 1 only. The proof for other cases
are reported in [13].
Ifc; < “b andcz < 5 X , the objective can be written as
\/2c1¢1XA1+\/2cQ¢2 (Xa — Xa1), VX a1 € [0, X 4]. This
function is concave. Setting the derivative (w.r.t. X 41) to

zero, we obtain X%, = ﬁ){ A and the optimal com-

mander’s payoff is U, (P*) \/2XA (c1¢1 + c2¢2). Here,
the distribution P* € P(X A) Is given by substituting the
solution X%, into the characterization of optimal marginal
distributions for each sub-colonel. ]
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