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ABSTRACT OF DISSERTATION

Sleeping Networks: A Computational Model and Algorithm for the Role of Sleep in Learning
and Memory
by

Timothy Tadros

Doctor of Philosophy in Neurosciences with a Specialization in Computational Neurosciences

University of California San Diego 2022

Professor Maksim Bazhenov, Chair

This dissertation explores the computational role of sleep on memory consolidation.
Chapter 1 explores a biophysical model of the thalamo-cortical network as it learns a relational
memory task. We conclude by making predictions about the role of sleep on relational memory.
Chapter 2 explores a less realistic biophysical model as it learns a digit recognition task. We
created a sleep algorithm for this model and show that sleep can improve performance. Chapters
3 and 4 utilize this novel sleep algorithm for biophysical networks and apply this algorithm to
artificial neural networks, who suffer from poor generalization (Chapter 3) and catastrophic
forgetting (Chapter 4). We show that this sleep algorithm can help mitigate these issues and suggest

that sleep is instrumental in memory generalization and continual learning.
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1 Role of Sleep in Formation of Relational Associative Memory

1.1 Abstract

Relational memory, the ability to make and remember associations between objects, is an
essential component of mammalian reasoning. In relational memory tasks, it has been shown that
periods of offline processing, such as sleep, are critical to making indirect associations. To
understand biophysical mechanisms behind the role of sleep in improving relational memory, we
developed a model of the thalamocortical network to test how slow-wave sleep affects
performance on an unordered relational memory task. First, the model was trained in the awake
state on a paired associate inference task, in which the model learned to recall direct associations.
After a period of subsequent slow-wave sleep, the model developed the ability to recall indirect
associations. We found that replay, during sleep, of memory patterns learned in awake increased
synaptic connectivity between neurons representing the item that was overlapping between tasks
and neurons representing the unlinked items of the different tasks; this forms an attractor that
enables indirect memory recall. Our study predicts that overlapping items between indirectly
associated tasks are essential for relational memory, and sleep can reactivate pathways to and from
overlapping items to the unlinked objects to strengthen these pathways and form new relational
memories.
1.2 Introduction

The ability to form indirect associations between learned items with overlapping elements
highlights an important part of abstract problem solving. This type of learning, known as transitive
inference, is a fundamental feature of relational memory (DeVito, Kanter, and Eichenbaum 2010).
For example, one may watch a movie (object A) and experience a feeling of familiarity about a

certain actor (object B), giving rise to the question of what movie that actor has been in previously



(object C). This type of memory, where the premises that ‘A goes with B’, and ‘B goes with C’
are learned, represents a type of transitive inference where the indirect association (that ‘A goes
with C’) is not inherently learned but is inferred by the subject. Despite the seeming complexity
of the task, it has been shown that rats, primates, and humans are capable of performing transitive
inference and relational memory tasks (Vasconcelos 2008; DeVito, Kanter, and Eichenbaum
2010). Importantly, depending on the type of task, the ability to connect indirect associations or
inferences may not be explicitly acquired immediately after training (Ellenbogen et al. 2007;
Walker et al. 2002).

Empirical studies suggest that offline processing, such as during sleep, is important in
forming indirect associations (Ellenbogen et al. 2007; Werchan and Gémez 2013) . Sleep is a
principle component behind many types of memory consolidation and plays an important role in
learning (Klinzing, Niethard, and Born 2019; Walker and Stickgold 2004; Ji and Wilson 2007;
Magquet 2001). The role of non-Rapid Eye Movement (NREM) sleep in learning and memory has
been shown to be significant, aiding in consolidation of declarative memories and memories for
complex motor learning tasks (Diekelmann and Born 2010; Walker et al. 2003; Miyamoto et al.
2016). A central hypothesis for memory improvement during NREM sleep is that replay or
reactivation of learned synaptic memory traces during sleep oscillations (spindles or slow waves)
strengthens synaptic traces of these labile memories (Wei, Krishnan, and Bazhenov 2016; Wei et
al. 2018; Gonzalez et al. 2020). Sleep has been shown to augment problem solving (Lewis,
Knoblich, and Poe 2018a; Lau, Alger, and Fishbein 2011; Walker et al. 2002; Wagner et al. 2004;
Nieuwenhuis et al. 2013) and hypothesized to create cognitive schemata by replaying memories

with overlapping elements, strengthening the connections between overlapping memories and



leading to generalization of learned concepts (Lewis and Durrant 2011; Lewis, Knoblich, and Poe
2018a).

Accumulating evidence suggests that sleep may play a critical role in learning relational
memory tasks (Ellenbogen et al. 2007; Werchan and Gomez 2013; Studte, Bridger, and
Mecklinger 2015; Chatburn, Lushington, and Kohler 2014; Lau, Tucker, and Fishbein 2010; Lau,
Alger, and Fishbein 2011). One study showed that duration of slow wave sleep is significantly
correlated with learning indirect associations (Lau, Tucker, and Fishbein 2010). Another study
tested a subject’s ability to relate abstract concepts through generalization, and found
improvements after a day-time nap (Lau, Alger, and Fishbein 2011). It has also been shown that
sleep can increase a subject’s ability to perform hierarchical transitive inference, where A > B and
B > C are learned premises and A > C is a tested abstraction (Ellenbogen et al. 2007).

Despite the progress made in understanding the role of sleep in increasing relational
memory performance, it remains unknown what biophysical mechanisms account for this function.
Here, using a biophysical model of the thalamocortical network, we tested the role of NREM sleep
on the network’s ability to perform a relational memory task. We found that the network can form
indirect inferences, which were never trained directly, following periods of slow-wave sleep. We
further revealed that sleep replay increases connections to/from a shared conjunctive memory unit,
giving rise to an increase in performance during relational memory tasks. Ultimately, a theoretical
understanding of how sleep aids with relational memory would guide development of experiments,

where these findings can be tested in vivo.



1.3 Methods
1.3.1 Thalamocortical Network Model
1.3.1.2 Network Architecture

The base thalamocortical network used in this new study has been described in our other
works (Wei et al. 2018; Wei, Krishnan, and Bazhenov 2016; Krishnan et al. 2016; Gonzalez et al.
2020). The network was composed of two connected populations of neurons: thalamic and cortical.
Different from previous work, we constructed two layers (functional regions) for both the thalamic
and cortical components of the network and we did not rely on local connectivity but rather random
connectivity between neurons. The thalamic part of the network was broken down into two
populations and contained total 60 excitatory thalamocortical relay neurons (TC cells) and 60
inhibitory reticular neurons (RE cells). Layer 1 contained 40 TC neurons and 40 RE neurons,
whereas layer 2 contained 20 TC and RE neurons. The cortical part of the network was also broken
down into two layers, representing two functionally different cortical areas. In layer 1 (representing
primary visual cortex), there were 200 excitatory pyramidal neurons (PY cells) and 40 inhibitory
interneurons (IN cells). In layer 2 (representing associative cortex) there were 100 PY neurons and
20 IN cells. Connectivity was random; excitatory connections were mediated by NMDA and
AMPA connections, while inhibitory connections were mediated by GABAa and GABAs
connections. All connections are summarized in Table 1.1 and described as follows.

To describe specific connections, starting in the thalamus, RE neurons received AMPA
connections from TC neurons and GABAA connections from RE neurons as well as AMPA
connections from PY neurons in associated cortical layer. AMPA synapses between TC and RE
cells had connection probability 10% in layer 1 and 20% in layer 2. RE cells were connected to

each other through GABAA synapses within the same layer with probability 6.25% in layer 1 and



12.5% in layer 2. Finally, cortical PY neurons synapsed via AMPA connections onto RE cells with
connection probability 10% and 20% in layers 1 and layer 2, respectively. TE cells received
connections from RE cells through both GABAA and GABAg synapses, as well as AMPA
connections from PY neurons in associated cortical layer. Each TC cell received a connection from
an RE cell with a 10%, and 20% probability in layer 1 and layer 2, respectively. Each TC cell also
received an AMPA synapse from cortical PY neurons, with connection probability 12.5% and
25%, in layers 1 and layer 2, respectively.

Table 1.1: Thalamocortical network connection architecture

Connection Type Synapse Type Connection Prob. (L1, L2)
TC -RE AMPA 10%, 20%

RE -TC GABAA, GABAg 10%, 20%

RE - RE GABAA 6.25%, 12.5%

PY - RE AMPA 10%, 20%

PY -TC AMPA 12.5%, 25%

TC -PY AMPA 10%, 20%
PY(L1)—PY(L2) AMPA (plastic), NMDA 20%

PY(L2) - PY(L2) AMPA (plastic), NMDA 50%

PY(L2) - PY(L1) AMPA 25%

IN-PY(L1) GABAA 2 connections
IN-PY(L2) GABAA 13 connections
PY(L1)-IN NMDA, AMPA 3.75%, 7.5%
PY(L2) - IN NMDA, AMPA 5%, 10%
TC-IN AMPA 5%, 50%

In the cortex, PY neurons received non-plastic AMPA connections from TC cells, plastic
and non-plastic AMPA connections from other PY neurons, and GABAA connections from IN
neurons in the same cortical layer. The TC cells in layer 1 connected to PY neurons in layer 1 of
cortex with a connection probability of 10%. In layer 2, this connection probability was increased
to 20%. Thus, considering size difference between layer 1 and 2, each PY neuron received about

the same number of TC inputs. In layer 1 of cortex, each PY neuron received feedback connections



from layer 2 PY neurons with a connection probability of 25%. In addition, each layer 1 PY neuron
received two inhibitory GABAA connections from IN neurons in layer 1 of cortex. In layer 2, each
neuron received a feedforward plastic AMPA connection from a layer 1 PY neurons with
probability 20%, and a recurrent plastic AMPA connection from layer 2 PY neurons with
probability 50%. Each plastic AMPA connection in cortex was also accompanied by a non-plastic
NMDA excitatory synapse. In addition, layer 2 PY neurons received 13 GABA connections from
local INs.

Finally, each IN received non-plastic AMPA connections from TC cells in thalamus, with
connection probability 3.75% in layer 1 and 7.5% in layer 2. In addition, all INs received non-
plastic NMDA and AMPA synapses from PY neurons in both layer 1 and layer 2 of cortex. Layer
1 PY to layer 1 and layer 2 INs AMPA and NMDA connections occurred with a probability of 5%
and 10%, respectively. Layer 2 PY to layer 1 and layer 2 INs AMPA and NMDA connections
occurred with a probability of 5% and 50%, respectively. Note that the latter 50% connections

were much weaker than other connections.

1.3.1.2 Wake-sleep Transition

The transition between wake and sleep was modelled after previous work which describes
the role of neuromodulators - acetylcholine (ACh), histamine (HA), and GABA - during the sleep
and waking state needed to observe sleep rhythms canonical of slow-wave sleep (Krishnan et al.
2016). ACh modulated potassium leak currents in all neuron types and excitatory AMPA
connections within cortex. HA modulated the strength of the hyperpolarization-activated mixed
cation current in TC neurons and GABA modulated the strength of inhibitory GABAergic
synapses in both thalamus and cortex. The levels of ACh and HA were reduced during stage 3

(N3) slow-wave sleep (SWS) while GABA levels were increased compare to awake state. The



exact levels of each neuromodulator were chosen by conducting a parameter sweep and observing
which parameters resulted in the appearance of canonical slow waves. In addition, to simulate
stage 2 (N2) sleep characterized by spindles, neuromodulation parameters were determined by
parameter sweep looking for the local field potential (LFP) power in the spindle frequency band
(7-16 Hz in our study). Parameters for N2 sleep were intermediate between waking and N3 states.
1.3.1.3 Intrinsic Currents

All neurons were modelled with Hodgkin-Huxley kinetics and equations can be found in
previous works (Wei et al. 2018; Gonzalez et al. 2020). In cortex, PY and IN neurons possessed
dendritic and axo-somatic compartments (Wei et al. 2018). Membrane potential dynamics were
modeled by the following dynamical equations:

v,
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where C,, is membrane capacitance, V, and Vs are the dendritic or axo-somatic membrane
voltages, respectively, IV is the fast sodium (Na") current, IN%"is the persistent sodium current,
1K™ is the slow voltage-dependent non-inactivating potassium (K*) current, 1X¢¢ is the slow

calcium (Ca?*)-dependent K* current, AChyy, is the change in K* leak current %

which depends
on the level of acetylcholine (ACh) which changes during wake and sleep states, 77V is the high-
threshold Ca?" current, I is the chloride (CI°) leak current, g is the conductance between dendritic
and axo-somatic compartments, and /°”" is the synaptic current input to the neuron (as described
in the next section). INs contained all the above intrinsic currents with except of the persistent

sodium current. All intrinsic ionic currents (I’) were modeled based on Hodgkin-Huxley (Hodgkin

and Huxley 1952) equations as follows:



U =gmMhV(V - E;),

where g; is the maximal conductance, m (activation) and h (inactivation) are the gating variables,
V is the voltage of the compartment, and E; is the reversal potential of the current. Gating variable

dynamics were described as follows:
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where = m or h, 7 is the time constant, Qy is the temperature related term, Q = Q((T=23)/10) =

29529, with Q = 2.3 and T = 36.

In the thalamus region of the model, TC and RE neurons were modeled by single

compartment neurons with the following dynamical equation:
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where IN? is the fast Na* current, IX is the fast K* current, IX is the K leak current, I” is the low-
threshold Ca?* current, I" is the hyperpolarization-activated mixed cation current, I* is the Cl- leak
current, and /57" is the total synaptic current input to the neurons (described in next section). The
hyperpolarization-activated mixed cation current I" was not expressed in RE neurons. In addition,
histamine (HA) exerted its influence on I" in TC cells by shifting the activation curve of H Agp as

described by:
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Our previous work gives a more detailed description of the individual currents (Krishnan et al.

2016; Wei et al. 2018).

1.3.1.4 Synaptic Currents and Spike-Timing Dependent Plasticity (STDP)

Here, we describe the synaptic currents which were composed of AMPA, NMDA, GABAA,
and GABARg synapses as well as the STDP rules (see Krishnan et al., 2016; Wei et al., 2018 for
more details on the specific synaptic currents). The effect of acetylcholine on AMPA and GABAA

synaptic currents was described by the following equations:

ngyﬁ;llPA = AChAMPA gsyn [0] (V - Esyn)r

Ist;anA = )/GABAA gsyn [0](V - Esyn)J

where gsy, is the maximal conductance, [0] is the fraction of open channels, and Ej,,, is the

yn
reversal potential of the channel (Ecapa-a =-70 mV, Eampa =0 mV, and Exmpa =0 mv). AChyypa
describes the influence of acetylcholine levels on AMPA synaptic currents for PY-PY, TC-PY,
and TC-IN connections. ¥ s 454, modulated the GABA synaptic currents for inhibitory IN-PY, RE-
RE, and RE-TC connections. These values were changed between sleep and wake states. The
influence of GABA was increased during sleep so that yg4p4, Was increased, whereas ACh was
decreased during sleep so that AChyyps Was reduced. During stage 3 (N3) sleep, the model

generated periodic transitions between Up and Down states. As in our previous studies, Down-to-

Up transitions were mediated by spontaneous miniature excitatory transmitter release from PY-



PY and PY-IN synapses, while Up-to-Down transitions depended on synaptic depression and
intrinsic current, such as Ix(ca) (I. Timofeev et al. 2000).

Spike-timing dependent plasticity (STDP) controlled long-term potentiation and
depression of synaptic weights between PY neurons. The change in the synaptic strength (gampa)

and amplitude of miniature EPSPs (Amepsp) were described previously (Wei et al. 2018):

Jampa < Gampa t Gmax F(AL),

Amgpsp < Amepsp + fApy_py F(AL),

where g4, 18 the maximal conductance of g4y pa, and £=0.01 represents the lower effect of STDP
on A,,gpsp as compared to gaypa; F represents the STDP function and depends on the relative
timing of pre- and post-synaptic spikes as defined by:

Ay e B/t i At >0
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where A, _ set the maximum amplitude of synaptic change (A _ = 0.002, 7, _ = 20ms). A, the
synaptic depotentiation term, was reduced to 0.001 during training to reflect the effect of

acetylcholine during focused learning (Sugisaki et al. 2016).

1.3.1.5 Heterosynaptic Plasticity

Heterosynaptic plasticity was implemented in some simulations. To mimic heterosynaptic
plasticity properties observed in vivo (Chistiakova et al. 2014; Volgushev et al. 2016), after each
STDP event in which a synaptic weight was modified, we also modified the weights of remaining
synapses into the same neuron to hold the total synaptic input per neuron constant. Thus, if s; =
Xj=1Wj; is the total synaptic input to neuron i from neurons j = I:n, then this quantity was
maintained constant throughout the simulation. Thus, any increase of a single synaptic weight

would result in a corresponding decrease of the other weights connecting to the same neuron i. To
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implement this property, we computed the total synaptic input for each neuron i after supervised

training was completed. Then, during associative training, after each STDP event, the new

supervisedTR/

conductances for all pre-synaptic neurons j were computed by setting w;; = w;; * s;

supervisedTR
i

s, where s is the synaptic input to neuron i after supervised training and s} is the
current total synaptic input to neuron i at time ¢ of the STDP event.
1.3.1.6 Memory Training and Testing

Training and testing of associative memories was modelled after behavioral works (Lau,
Tucker, and Fishbein 2010). After creating a two-layer cortical architecture, we selected the groups
of neurons in each layer that correspond to each stimulus. Neuron IDs were mapped to a stimulus
label as shown in Table 1.2. The first training phase was the supervised learning. Here, an
individual item was stimulated in layer 1 followed, with 5 ms delay, stimulation of that item in
layer 2. This phase created a feedforward pathway through the network that represents an
individual stimulus. Each feedforward pathway stimulation (e.g., A-A’) included 40 trials with a
500ms gap between trials. The total length of supervised training was therefore 120 seconds for
all 6 feedforward pathways.

Following supervised training, we implemented an unsupervised associative training
phase, where pairs of stimuli were presented simultaneously. This occurred by stimulating pairs
of input items together (e.g., A+B, B+C, etc) in layer 1. These pairs of items were stimulated
sequentially every 500 ms with a 2 second gap between same-pair stimulations. The exact duration
of associative training varied by experiment, but if associative training time was 135s/pair, then
each pair was stimulated 270 times.

Finally, there was a sleep phase. During sleep, the levels of neuromodulators were changed

to induce spindles (N2) or slow oscillations (N3) and there was no external stimulation provided.
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Each sleep phase was followed by a testing phase, where each of the six groups was stimulated in
layer 1, and the response of layer 2 neurons was measured. Stimulation was provided every 500
ms and each group was stimulated eight times. Performance was measured as the network’s ability
to recall both the direct and indirect associated item (e.g., upon stimulation of A, can the network
recall both B’ and C’?). In Figure 1.9B, we performed additional tests where groups A, C, X, and
Z were stimulated and neuron groups B’ and Y’ were hyperpolarized to prevent activation. In
another experiments, we hyperpolarized neurons from linking groups B/B’ and Y/Y’ during sleep
to simulate experiments with optogenetic inactivation.

Table 1.2: Neuron indices in cortical architecture

Neuron Groups Layer One Region Layer Two Region

AA° Neurons 10-29 10-19 (Neurons 210-219)
B,B’ Neurons 40-59 20-29 (Neurons 220-229)
cC Neurons 70-89 30-39 (Neurons 230-239)
X, X’ Neurons 110-129 50-59 (Neurons 250-259)
Y.Y’ Neurons 140-159 60-69 (Neurons 260-269)
7,7 Neurons 170-189 70-79 (Neurons 270-279)

1.3.2 Experimental Design and Statistical Analysis

All analyses were performed within standard Python functions and libraries. Data are
presented as mean and standard deviation unless otherwise stated. Each experiment was repeated
with 10 network stimulations from different network initializations and random seeds for purposes
of statistical analyses, using standard two-sided or one-sided T-tests.
1.3.2.1 Relational Memory Performance Metrics

Here, we describe the association matrices shown in Figure 3 as well as the conversion
from these matrices to an association score. To build an association matrix, individual neuronal
groups were stimulated in layer 1 (e.g., item A was stimulated), and we measured the number of

spikes in each of the six layer 2 groups (A’, B’, C’, X’, Y’, Z’). This number was averaged over
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the 10 different (initialization) network simulations and 8 testing trials within each network
simulation. We only considered spikes that occur within 150ms of stimulation to the layer 1
groups. To compute an association score based on the association matrix, we built a binary 6x6
mask with 1’s in the upper left and lower right 3x3 grids and -1’s everywhere else. This mask
depicts what an ideal associative matrix should look like, where activity in the upper left and lower
right grids is acceptable and activity in the upper right and lower left grids is spurious. After
element-wise multiplication of the mask and the associative matrix, the resultant matrix was
summed up across both rows and columns. To normalize this final score, we divided the final sum
by the maximum element in the association matrix multiplied by 18 (here, 18 is the number of
elements that should be positive, e.g. number of groups * number of items in each group, or 6*3,
where 6 is number of groups (A-B-C, X-Y-Z) and 3 is number of items in each group). The final
number was on a scale from -1 to 1, where a score of -1 occurs when the association matrix is the
opposite of what it should be after successful learning (e.g., stimulating group A activates X’, Y,
and Z’), an association score of 0 is true for a random matrix, and an association score of 1 indicates
perfect performance on the task (e.g., stimulating group A equally stimulates A’, B’, C’).
1.3.2.2 Latency and Rate Analysis

In Figure 1.4, we show the spiking rates and latency of neurons in layer 2. To compute the
latency of response, after applying a pulse of stimulation during testing, we analyzed the next 200
ms window of activity in layer 2. The latency, for each layer 2 neuron, was determined by taking
the time of activation of a neuron in layer 2 and subtracting the time of stimulation in layer 1. If a
neuron does not spike in the 200ms time window, its latency was ignored from the computation.
The firing rate was computed by calculating the total number of spikes that occur in the 200 ms

window. We considered four different types of memories: direct memories (e.g., activation of
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neuron group A’/C’ when B’ is stimulated), indirect memories (e.g., activation of neuron group
A’/C’ when C/A is stimulated, respectively) and incorrect memories (e.g., activation of neuron
group X’/Z> when A is stimulated). For each type of memory, latencies and rates were averaged
across all pairs of that type (e.g., direct memories = A-B’, B-A’, B-C’, indirect memories = A-C’,
C-A’, incorrect memories = A-X’, A-Z’, C-X’, C-Z’ for the ABC triplet). We should note that
this metric likely overestimated latency for the incorrect memories, since it did not consider the
fact that if a neuron does not fire, its latency is ignored from the computation. Thus, e.g., if only
one incorrect neuron fired with a latency of <50 ms, then the average latency would in fact be <50
ms. This was rarely the case but nevertheless the drop in latency of the incorrect memories was
likely due to this phenomenon since the rate of firing (3 spikes/stimulation) is quite low already.
1.3.2.3 Weight Analysis

In Figure 1.5 and 1.6A-D, we explored the synaptic connectivity matrices. Figure 1.5 was
obtained by recording the synaptic weights between neurons for each type of connection
(feedforward or recurrent). To evaluate the synaptic input to each neuron i, we computed the

following equation: s; = Ywy;j3, where j is any neuron that meets the criteria (e.g., direct, indirect,
or incorrect memories) and wy; ;y is the weight connecting form neuron j to neuron i. If a synapse
does not exist between two neurons i and j, then the weight is ignored. In Figures 6A-D, we built
a graph of all neurons in layer 2. A node in the graph depicts 10 individual neurons from layer 2.
An edge was created between nodes, if there existed a weight that exceeds 80% of the maximum
weight value at that given time point. For example, if the maximum weight at time ¢ is W}, , then
the threshold is defined as W;,, = 0.8 * W}},,. For any weight, in the weight matrix, an edge was
created between two nodes if there existed a weight value that exceeds the value W, and the

thickness of the edge depicts how many such weights meet the criteria.
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1.3.2.4 Modularity Analysis

Community detection algorithm was used to describe brain network changes during task
learning (Bassett et al. 2015; Alexander-Bloch et al. 2010; Mucha et al. 2010). Modularity refers
to the formation of cliques in a network, or series of intra-connected nodes with limited
connections to other cliques (Alexander-Bloch et al. 2010). Time-dependent communities can be
analyzed by measuring the structure of multi-slice networks, which can be thought of as a
combination of individual networks that are composed of nodes that are linked in time to past and
future versions of that network (Mucha et al. 2010). To perform community detection (Figures 6E-
F), we used existing community detection algorithm (Jeub et al. 2020). First, the Leicht-Newman
modularity matrix for ordered and directed layers was computed (Leicht and Newman 2008). This
algorithm finds a partition that maximizes the modularity of the matrix. After this partition was
computed, the generalized Louvain method for community detection was applied (Jeub et al. 2020;
De Meo et al. 2011). As a result of applying these algorithms, a network partition and community
assignment graph was returned as a function of time. The algorithms aim to find a community
assignment partition that maximizes the resulting modularity of the network. Two parameters were
tuned to aid in this process: the coupling between temporal layers (w = 1.0) and the intra-layer
resolution (y = 1.75).
1.3.2.5 Replay Analysis

To analyze memory replay, we adopted a method from (Gonzélez et al. 2020). First, the
LFP during sleep was computed by evaluating the average membrane potential across all
pyramidal neurons in the cortex. A threshold for crossing from Up to Down state and vice versa
of the slow oscillations was computed by taking the resting membrane potential (-63 mV) and

subtracting the mean sleep membrane potential. After the threshold was computed, we filtered the
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LFP using a 2"™-order Butterworth filter with a Nyquist frequency of 500 Hz and passband and
stopband frequencies of 0 and 3 Hz, respectively. Next, we applied the threshold to find the Up to
Down state and Down to Up state transition times. Activity above the threshold was denoted as
an Up state.

Once the Up and Down states were identified, we analyzed the activity within each
individual Up state to calculate replay events. A spiking event was considered a replay event when
a pre-synaptic and a post-synaptic neuron fired within a given time window (<200 ms). The order
of firing (pre-post, or post-pre) was used to determine the direction of replay and to compute a
directional graph between neurons, where each edge stores the number of replay events going in

that direction (see (Gonzalez et al. 2020) for details).

1.4 Results
1.4.1 Thalamocortical Model of Relational Memory

In this work, we used a minimal thalamocortical network model to test the role of sleep in
learning an unordered relational memory task (Figure 1.1A-B). Cortex was modelled with a
network consisting of two layers, each representing a distinct functional area of the cortex, and
each including excitatory pyramidal (PY) cells and inhibitory interneurons (INs). A two-layer
cortical model was motivated by visual associative learning in the primate brain. Prior work
suggests that associations are learned by recurrent synaptic connections in the parietal associative
cortex (Bjekic¢ et al. 2019; Fitzgerald, Freedman, and Assad 2011; Fitzgerald et al. 2013; Aminoff
and Tarr 2015). This area of cortex receives input from primary visual cortex (Galetti et al., 2001
Eur. J. Neuro.), which shows a mostly stereotyped response upon presentation of visual stimuli
(Deitch et al., 2021). Thus, we constructed our model with two populations of cortical neurons

(which we call layers here, when we refer to the model): the first representing visual cortex with a
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mostly stereotyped population response to specific stimuli, and the second representing associative
cortex, with recurrent connectivity to promote associative memory learning.

Thalamus was modelled by two populations of neurons, each including excitatory
thalamocortical (TC) neurons and inhibitory reticular (RE) neurons, with bidirectional connections
to its respective cortical areas (see Methods for details). Indeed, neuroanatomical studies suggest
that different subdivisions of thalamus project to different areas of cortex, with primary areas of
thalamus such as LGN projecting bi-directionally to primary visual cortex (Briggs et al., 2007),
and other subdivisions, such as the lateral posterior nucleus, connecting bi-directionally to parietal
cortex (Lyamzin et al., 2019 Neurosci. Research). All neurons were simulated with Hodgkin-
Huxley dynamics and are based upon previous work (Wei et al. 2018; Wei, Krishnan, and
Bazhenov 2016; Krishnan et al. 2016).

Using this model, we were able to simulate three distinct states of the network — awake,
stage 2 (N2) sleep and stage 3 (N3) sleep — by changing the level of neuromodulators (Krishnan
et al. 2016; Vanini, Lydic, and Baghdoyan 2012). Awake state was characterized by random
asynchronous firing of cortical neurons, N2 sleep was characterized by spindles with occasional
Down states, and N3 sleep (or slow-wave sleep (SWS)) was characterized by canonical slow
oscillations between Up (active) and Down (silent) states (Blake and Gerard 1937; Steriade 2006;
Steriade, McCormick, and Sejnowski 1993) (Figure 1.1B, C, see also Figure 1.8A). The thalamic
component of the network primarily served the function of driving and modulating oscillations
during sleep, specifically to increase synchrony of sleep slow oscillations in N3 (Lemieux et al.
2014) and to generate spindles in N2, while learning-related plasticity occurred in the cortical
neuronal populations. Synaptic plasticity was implemented in AMPA receptors, occurring in

feedforward connections between layer 1 and layer 2 cortical pyramidal cell populations, as well
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as recurrent connections between layer 2 pyramidal neurons (Figure 1.1F) (see Methods for
details).

To test relational memory in the model, we built two triplets of relational memory items
(ABC, XYZ). During associative training, each of the four direct object pairs (A-B, B-C, X-Y, Y-
Z) was presented to the network, as described below (Figure 1.1A, left). During testing, a single
item from each pair was presented (e.g., item A) and the ability of the network to recall each of
the relevant associative items (items B and C) was measured (Figure 1.1A, right). Each of the six
distinct items (A, B, C, X, Y, Z, Figure 1.1F) were represented by distinct groups of neurons in
the first layer of the network.
1.4.2 Training and Testing Stimulation Protocol

The network stimulation included three distinct phases: supervising training, associative
training, and sleep (Figure 1.2A). The first phase in training was to build connections between
neurons representing item A in the first layer (neuron group A) and ‘“higher level” neurons
representing the item in the second layer (neuron group A’) (Figure 1.2B). Since all connections
in the model were initially random, before training there were equal connections from neuron
group A to all the neuron groups in the second layer (A’-Z’). Thus, to create distinct pathways
through the cortex that represent each of the six distinct items, we incorporated the supervised
training phase. During supervised training, neuron group A was stimulated and then neuron group
A’ in the second layer was stimulated with a 5 ms time delay. Through spike-timing dependent
plasticity (STDP), this stimulation paradigm strengthened feedforward connections between A and
A’ and led to the formation of a pathway through the network representing each of the six distinct

items. After supervised training, there was a testing phase where each of the six neuron groups in
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layer 1 was stimulated and the activity of neurons in associative layer 2 was measured. During
testing, plasticity was turned off so spiking activity did not lead to STDP events.

Following supervised training, we simulated associative learning phase. Items A+B, B+C,
X+Y, Y+Z were presented simultaneously to the network by stimulating groups A and B together
or B and C together, etc. (Figure 1.2C). Because of the preceding supervised training, neurons in
the second layer responded to the stimulation in the first layer, such that, e.g., when neuron groups
A and B were stimulated, neuron groups A’ and B’ fired without any direct stimulation. After a
period of associative training, there was another testing phase.

During the associative training phase, we also tested two plasticity schemes: In the first
scheme, STDP was used as a sole learning rule to increase synaptic connectivity between neurons
with correlated firing activity and decrease synaptic connectivity between those neurons with
uncorrelated firing activity. In the second scheme, STDP was used along with hetero-synaptic
plasticity (Chen et al. 2013; Chistiakova et al. 2014). Heterosynaptic plasticity can induce plastic
changes at synapses that are not active during the induction. It has been postulated since early
theoretical studies which used normalization to prevent runaway dynamics of synaptic weights
and introduce synaptic competition to the model systems with Hebbian-type learning (von der
Malsburg 1973; Miller 1996). Any synapse to a cell may express heterosynaptic changes after
episodes of strong postsynaptic activity leading to a sufficient rise of intracellular calcium
(reviewed in (Chistiakova et al. 2014; 2015)). Thus in the model including heterosynaptic
plasticity, after each STDP event, individual weights connecting to a neuron were modified so that
the total sum of synaptic inputs to the neuron remained constant. This served to balance excitation

in the network and prevent runaway networks dynamics by ensuring that the overall level of

19



excitation remains constant during learning. Below we report results for each of these conditions
and we discuss later possible implications of heterosynaptic plasticity in associative learning.

Finally, we simulated sleep phase (Figure 1.2D). Based on experimental data, the
improvement of indirect relational memory following sleep is most correlated with slow-wave
sleep (SWS) (Tucker, Fishbein, and Lau 2010) and thus we primarily focused on testing the effect
of SWS on relational memory (differential role of spindles is discussed later in the paper). We
need to mention that we did not explicitly model hippocampus and associated ripple events;
instead, we assumed that coactivation of the cortical neurons (e.g., A+B) may be result of direct
sensory input or hippocampal input (as postulated by ‘indexing’ theory (Teyler and DiScenna
1986)). Following SWS, there was another testing phase. Overall, based on behavioral work, we
tested the hypothesis that following sleep, the presentation of item A in the first layer will lead to
a greater co-activation in neuron groups A’ and C’, i.e., association between items A and C would
form, when compared with the same group activation before sleep.

1.4.3 Sleep Improves Associative Memory Performance Both With and Without
Heterosynaptic Plasticity

In Figure 1.3A, the strength of response in the layer 2 neuronal subgroups (A’-Z’) is shown
in response to stimulation of each of the six layer 1 neuronal subgroups (A-Z) in the first cortical
layer. After supervised training, stimulation of a single group in layer 1 (e.g. group A) led to
activity in its corresponding neuronal subgroup in layer 2 (group A’). Spurious activity in other
layer 2 groups was usually minimal and based off the random connectivity matrix, where some
groups may be connected (based on number of connections) more strongly than other groups
(Figure 1.3A, left), (See Methods and materials for computing activity).

After associative training, an increase in direct relational memory was observed. Here,

stimulation of a neuron group A led to activity in neuron groups A’ and B’, indicating that the
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network has learned to make direct associations between objects A and B. Stimulation of the
linking item (e.g. B or Y) led to activity in all three of the items in the corresponding triplet (A’,
B’, C’ or X’, Y’, Z°). However, most notable is that stimulating A or C alone did not lead to a
strong response in the indirect relational item, C’ or A’, respectively (Figure 1.3A, middle). After
sleep phase, this indirect relational memory was significantly strengthened, as stimulation of A or
C (X or Z), led to a stronger response in the indirect relational item, C’ or A’ (Z’ or X’),
respectively (Figure 1.3A, right).

To quantify the changes in the association matrices, we used a measure of how “diagonal”
the matrix is in respect to four main 3x3 blocks, which evaluated the extent to which the matrix
shows strong responses in the upper left and lower right 3x3 blocks, and low responses in the top
right and bottom left 3x3 blocks (see Methods and Materials). (This measure would be zero for
uniform matrix; +1 for a matrix with the top left and bottom right 3x3 blocks all having the same
values, with zero activity in the top right and bottom left 3x3 blocks; and -1 for the opposite case
(activity in top right and bottom left blocks)). We found that sleep leads to a significant
improvement in relational memory, based on simulating ten random different network
configurations (Figure 1.3B, p=0.0062, t(9)=3.55, between relational memory after sleep and after
associative training, based on a two-sided t-test).

The extent of improvement after sleep was determined by two factors: the length of
associative training and length of sleep. We observed that if associative training was long, then
indirect associations can be learned without sleep (Figure 1.3E, 50 seconds). However, when
associative training was shorter, then sleep had a beneficial impact on improving relational
memory (Figure 1.3E, 20, 35 seconds). Given the model with no homeostatic mechanisms built in

to constrain synaptic weights, it was observed that long training or long sleep periods could lead
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to runaway network dynamics, where stimulating a single neuronal group in layer one leads to
activity across many neurons of the second layer, thus lowering overall response specificity and
performance.

Given the negative impact of the runaway network dynamics, we next explored the use of
biologically realistic heterosynaptic plasticity mechanism to constrain synaptic weights. Thus,
during associative training, heterosynaptic plasticity was put in place, such that the total sum of
synaptic inputs to any neuron was conserved over time. In this model, any event that leads to
synaptic potentiation between neurons would also lead to a corresponding depotentiation of other
connections to the same neuron to keep net sum of all input weights constant (see Methods and
Materials for details). In the model with heterosynaptic plasticity, we observed less spurious
activity after associative training (Figure 1.3C, middle). In addition, activation of the indirect
memory after associative training was almost non-existent. Importantly, after sleep, the activity in
the indirect memory items was strong, with very little activity in neurons representing non-
associated items (Figure 1.3C, right). Here, improvement after sleep was strongly significant
(Figure 1.3D, p=3.78 x 10", t(9) = 13.04, based on two-sided T-test). This suggests that, for SWS
to have a beneficial impact on the network’s ability to recall indirectly associated items, the
weights before sleep must be sufficiently separated but not too strong overall, as it was when
heterosynaptic plasticity was applied during associative training. In general, the best performance
was observed when sleep was incorporated into the network (Figure 1.3F). Increasing the training
time beyond a certain duration did not always increase the baseline performance; however, sleep
applied even after long associative training could still further improve performance. We tested
how associative memory performance depends on the total number of slow waves and we found a

significant positive correlation in a broad range of sleep durations (Fig. 3G). This result is in
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agreement with previous experimental work that found a significant correlation between the SWS
length and relational memory learning (Tucker, Fishbein, and Lau 2010). Interestingly, very long
sleep could have the opposite effect and reduce performance (see, e.g., Tsieep=700sec), suggesting
the existence of an optimal sleep duration that could also depend on the duration of preceding
training sessions. For further analyses, we used the heterosynaptic plasticity condition with Tgjeep
=300 seconds and Tirin = 135 seconds.

Synaptic plasticity may also occur between cortical pyramidal cells and interneurons, as
well as between thalamus and neocortex. Although we did not explicitly incorporate these types
of plasticity in our model, we tested effect of changes in the balance of excitation and inhibition
on post-sleep memory performance. Thus, we modified the level of inhibition in the network by
setting it to +/- 10% of the baseline value. We found no significant difference in the associative
score after sleep (t(10) = -0.8, p = 0.4, one-sided t-test). After associative training performance
was relatively higher in the network with reduced baseline inhibition (t(10) = 2.4, p= 0.02, one-
sided t-test). In this case, there was still a significant post-sleep improvement (t(10) = -4.96, p =
0.0001). The network with increased inhibition revealed slightly reduced performance right after
associative training but relatively higher gain after sleep.

1.4.4 Sleep Increases Amplitude and Decreases Latency of Indirect Memory Response

Since sleep increases the association score, we next asked if sleep can improve the latency
of group activation by reducing time delay between responses of stimulated and indirectly recalled
groups. To test this, we analyzed the raw neuronal traces after supervising training, after
associative training, and after sleep (Figure 1.4A-C). As mentioned before, heterosynaptic
plasticity was in place in all these simulations. During testing, each group (A-C, X-Z) was

simulated eight times every 500 ms in layer 1 and the response in layer 2 was measured. We next

23



converted these firing patterns into a local field potential (LFP) for each of the six groups of
neurons in the second layer and averaged across eight simulations. Results are shown when X is
stimulated in the first layer (Figure 1.4D). After supervised training, stimulating X led to a strong
response in X’ (Figure 1.4D, left). After associative training, the strength of the response of Y’
was increased and there was a small, sustained response in Z’ (Figure 1.4D, middle). Finally, after
sleep the response profiles of Y’ and Z’ nearly become overlapping, suggesting that the network
has used its knowledge of an association between Z’ and Y’ to correctly infer the indirect
association between Z’ and X’ (Figure 1.4D, right).

We measured response latency as a time delay from layer 1 stimulation to the first action
potential in each layer 2 neuronal group’s response and we measured response intensity as total
number of spikes per stimulation of each layer 2 neuronal group. After supervised training, the
average latency of direct memories (A-B’, which have not been learned yet), indirect memories
(A-C’), and incorrect memories (A-X’) were all similar at ~200ms (Figure 1.4E, left group). In
addition, the rate of response was very low and similar across all 3 types of memories (Figure 1.4F,
left group). After associative training, the latency of the direct memory recall was substantially
reduced and the intensity of response was increased (Figure 1.4E-F, middle group). The latency
and the response amplitude of the indirect memory were also improved, but the latency was not
significantly different from that of response for incorrect memories, and the amplitude was not as
strong as for direct memory. Importantly, after sleep, the latency of the indirect memory recall was
significantly reduced compare to incorrect one (Figure 1.4E, right group, t(1163)=24.27,
p=3.039x10"1% two-sided T-test) and the intensity of response was significantly increased
(Figure 1.4F, right group, t(319) = -9.64, p=2.41x10"""). This behavioral change in the network

response dynamics highlights the increase in strength of the indirect memory following SWS.
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1.4.4 Sleep Increases Modularity of Each Triplet in Layer Two Recurrent Connections

To determine which network changes were responsible for improving indirect relational
memories after sleep, we analyzed the changes in synaptic weights. There were two types of plastic
connections in the model: feedforward connections between layer 1 and layer 2, and recurrent
connections within layer 2. In the feedforward connectivity matrices, we observed that sleep leads
to a significant increase in the synaptic input coming from both indirect (Figure 1.5A, right, e.g.
connection A to C’, t=-6.98, p=1.39 x 10>, two-sided t-test) and direct neuronal groups (Figure
1.5A, right, e.g. connection A to B’, t=-5.66, p=5.29 x 10”7, two-sided t-test). Importantly, the
incorrect memory weights (e.g., X to A’) were not significantly greater than their pre-training
values (in fact they were smaller than their pre-training values, p < 1 x 10'%, one-sided t-test),
suggesting that sleep does not just increase all the connections but only connections related to
associated memory items. In the recurrent weights (Figure 1.5B), a similar effect was observed
where synaptic input from direct and indirect memory groups was significantly increased to
specific neurons after sleep (p=6.18 x 102, p=7.67 x 10-® for both groups (direct and indirect,
respectively), two-sided t-test). Interestingly (also see discussion below), synaptic input from a
neuronal group to its indirect triplet pair (e.g., A’ to C’) in the second layer became even larger
than the synaptic input from an indirect group in the first layer (e.g., A to C’, p=0.02, two-sided t-
test, average feedforward synaptic input=2.08, average recurrent synaptic input=2.75).

To better quantify changes in the recurrent connections in layer 2, we built and analyzed a
graph of 10 nodes, where each node represents a group of 10 neurons (i.e., group A’ = 11-20,
B’=21-30, ..., 2’=71-80) (Figure 1.6, A-D). We created an edge between two groups if there were
any strong enough weights (i.e., exceeding a threshold) between these groups (the weight threshold

was set at 80% of the maximum weight value at different time points, e.g., threshold before training
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= 0.0218, threshold after supervised training = 0.1295, threshold after associative training =
0.1857, threshold after sleep = 0.1913). On the graph, the thickness of the edge depicts how many
such weights existed between the two nodes. After supervised training, recurrent weights within
trained groups (e.g., between all the neurons from group A’) increased, but weights between
groups remained weak and the graph was essentially disconnected (Figure 1.6B). After associative
training, relatively weak connections were formed between the linking group B’ (or Y’) and the
other relevant groups, A’ and C’ (or X’ and Z’) (Figure 1.6C). In addition, the self-connections
(recurrent connections within a group) were magnified. Finally, after sleep, the overall
connectivity between the group triplets was increased, with weak connections between direct
memory pairs becoming stronger (e.g., X’-Y’) and new connections forming between indirect
memories (e.g., X’-Z’) (Figure 1.6D). Overall, these changes suggest that items in each triplet
(e.g., X’-Y’-Z’) becomes strongly connected to the other items in that triplet so that activation of
any one group can lead to activation of the other groups. Thus, after sleep all the neurons in the
second layer associated with the items belonging to the same relational memory triplet formed an
attractor in synaptic weights space.

To further test this idea, we performed modularity analysis on the time-dependent recurrent
weight matrix to determine how clusters of neurons change over the course of training and sleep
(see Methods and Materials for details). We used a time-dependent community detection algorithm
in order to assign each of the 100 neurons in layer 2 to a community (where community assignment
can change over time) based on the synaptic connectivity matrix (Leicht and Newman 2008; Jeub
et al. 2020). Figure 1.6E illustrates how the community assignment changed during supervised
training, associative training, and sleep. During supervised training, each of the 6 subgroups was

put into a community with itself, as the neurons within these groups became strongly
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interconnected. During associative training, there was some mixing between these six subgroups,
as observed, e.g., in the merging of communities representing Y’ and Z’ (orange group in Figure
1.6E). Finally, during sleep, we observed merging of each of the three subgroups from each triplet
into larger community. We found that the number of communities in the network started out high
but was further reduced mostly during associative training (Figure 1.6F). Together, these results
suggest that sleep altered the connectivity matrix to enable formation of a large community of
related neurons who all shared similar stimulus-response profiles - formation of indirect memories.
Thus, sleep altered the community structure by building a strong attractor among members of each
of the memory triplets.

1.4.5 Replay During Sleep Drives Synaptic Weight Changes

Given that during sleep synaptic weights are restructured to support formation of indirect
associative memory, the question remains of what it is specifically about sleep that leads to these
changes. Based on our previous work (Wei, Krishnan, and Bazhenov 2016; Gonzdlez et al. 2020;
Wei et al. 2018), we hypothesized that replay during sleep of synaptic traces formed during training
leads to a strengthening of these synaptic traces and thus an improvement in memory (Lewis and
Durrant 2011; Ji and Wilson 2007). Importantly, since in our model indirect connections, e.g.,
from A to C’ or A’ to C’, are never explicitly activated during training, these pathways may
become active during SWS, which could explain the weight changes illustrated above.

To detect possible replay events, we applied a procedure previously proposed in (Gonzalez
et al, 2020). After detecting individual Up states (using LFP thresholding, see Methods, Figure
1.7A), we identified, for each Up state, all spiking events that could lead to STDP changes. Thus,
if Neuron I fired during an Up state and this was followed by Neuron II firing (within a 200ms

time window), then this pair was considered an STDP event and the direction of replay (from
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Neuron I to Neuron II) was recorded. We observed that the number of STDP events within the
trained region of the network, both in feedforward and recurrent connections, was significantly
greater than outside of the trained regions (Figure 1.7B, p<le-5, for visualization purposes, only
pairs with number of replay events above a threshold (top 75%) are shown). Importantly, we
observed not just more STDP events randomly distributed across all the neuronal pairs in the
trained region, but a higher number of events in specific neuronal pairs (Figure 1.7B, note red dots
in the regions of interest), suggesting that those events reflect replay of the memory elements
formed during associative training. In other words, during an Up state, there was a significantly
higher chance that the neurons within the trained region would spike in a defined order compared
to the neurons outside of the trained region, indicating that SWS does in fact reactivate synaptic
memory traces learned during the associative phase.

We next measured the extent to which replay is correlated with synaptic connectivity
changes. Thus, we plotted observed synaptic weight change against the total number of replay
events per neuronal pair and discovered a significant correlation between the number of replay
events for a given connection and the amplitude of the weight change in this connection (Figure
1.7C). This was true for both feedforward and recurrent connections (R*2=0.62, p=1 x 10"!2 for
feedforward and R"2=0.41, p=1 x 107! for recurrent connections). These data suggest that sleep
replay can restructure weights to build the communities underlying relational memory formation
as reported in Figure 1.6. We next separated replay events based on the type of connection: either
self-connection (e.g., A-A’, or A’-A’), direct connection (e.g., A-B’, A’-B’), indirect connection
(e.g., A-C’, A’-C), or incorrect connection (e.g., A-X’, A’-X’). In feedforward connections, we
observed that self-connections had the largest number of replay events, followed by direct,

indirect, and incorrect connections, in order (Figure 1.7D, top, number of replay events is averaged

28



across ten trials and all the connections in each of the four categories). This suggests that in
feedforward connections, replay reflects the underlying strength of the synaptic weights (compared
Fig. 1.7D top and Fig. 1.5A). Since self-connections were the strongest (Figure 1.5A, t=-3.99,
p=6.72x107, two-sided t-test), these connections experienced the greatest number of replay events.
However, in the recurrent connections, there was a greater amount of replay events in the indirect
connections (Figure 1.7D, bottom, t=2.72, p =0.006, two-sided t-test). This type of replay can lead
to the formation of the communities (Figure 1.6), responsible for formation of indirect associative
memories.
1.4.6 N3 Sleep is Uniquely Responsible for Post-sleep Improvement Although Spindle-

Slow—Wave Nesting may be Important

Behavioral studies suggest that duration of N3 sleep, but not N2 sleep, during a daytime
nap is significantly correlated with associative memory performance (Tucker, Fishbein, and Lau
2010). We tested the effect of N2 sleep by modifying level of neuromodulators in the model, that
was set in between their waking and N3 state levels (Krishnan et al. 2016). In this regime, the
network generated frequent spindle events interrupted by occasional slow waves (Figure 1.8A).
We compared four conditions: 300s of N3 sleep alone (control, as in above simulations), 300s of
N2 sleep alone, 600s of N2 sleep alone, and 300s of mixed sleep (200s of N2 followed by 100s of
N3). We found that N2 sleep alone was not sufficient to significantly boost associative memory
performance, for either 300s or 600s of N2 sleep duration (t(9) =-1.56, p = 0.13, one-sided t-test)
(Figure 1.8B, left). However, either 300s of N3 sleep or mixed N3+N2 sleep did result in a
significant improvement (t(9) = -2.39, p = 0.028, one-sided t-test) (Figure 1.8B, right). These
results confirm behavioral evidence showing a unique role for N3 sleep, as opposed to N2 sleep,

in improving relational memory.
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Other studies suggested that phase locking between slow-waves and spindles (frequency
nesting) may be necessary for memory consolidation (Latchoumane et al. 2017; Kim, Gulati, and
Ganguly 2019). We tested this by measuring the power in spindle frequency band (from 7 to 16
Hz) in 3 distinct phases of the N3 slow oscillations: Down to Up transition, Up to Down transition,
and Random time windows during the Up state. Local field potentials were computed and the starts
and ends of each Up state were identified as done previously (see Methods). We calculated the
spindle power in 100ms time windows centered in each of the 3 phases. We found significantly
higher power in the spindle frequency band near the Down to Up transition compared to the two
other phases tested (Figure 1.8D). Additionally, we found that this spindle power was significantly
correlated with associative memory improvement following sleep (Figure 1.8C, R"2 = 0.5, p =
0.03). These results predict that phase-locking between spindles and slow waves may be important
in relational memory.

1.5 Discussion

How does sleep give rise to relational memory? Our study suggests the following
conceptual model. First, for each “basic” memory, there exists a feedforward pathway through the
network that is stable and robust, so a stimulus presentation, i.e., pattern activation in primary
sensory area (e.g., neuron group A, Figure 1.9A, left), leads to reliable and unique response in
associative cortex (activation of neuron group A’). These pathways can possibly form during
development, can be strengthened during subsequent training, and need to be robust for associative
learning to take place. These pathways represent sensory “primitives” that have been once learned
and do not need to be changed in adult brain. Second, during associative learning, events that have
shared context are learned to be represented together. In the model, this occurred when inputs A

and B are presented together, which leads to an overlapping representation in associative cortex,
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where presentation of A or B alone leads to firing and recollection of the other object (i.e., B’ or
A’) (Figure 1.9A, middle). If different associative memories include a common item, e.g., A-B
and B-C, sleep aids in forming indirect associative memory between nonoverlapping items A’ and
C’ by strengthening the entire pathway A = C’ (or C 2 A’), both through an increase in
feedforward connections from A to B’ and C’ as well as community (or attractor) formation for
the entire A’-B’-C’ group in associative cortex (Figure 1.9A, right). As sleep replay takes place on
a compressed timescale (Nadasdy et al. 1999), the entire group (A’-B’-C’) can be activated within
a small enough window for connections to grow between A’ and C’, taking advantage of STDP
type mechanisms. Indeed, inhibiting the overlapping elements (B/B’ or Y/Y’) during sleep (or
during memory recall) prevents post-sleep improvement on this associative memory task in our
model (Figure 1.9B), in line with in vivo work which showed that associations between a visual
stimulus and fear response could be blocked by optogenetic inhibition of neurons representing the
visual stimulus during sleep (Clawson et al. 2021).

Recent experiments suggest that learning rules may differ between anesthetized and awake
states and are biased towards synaptic depression during Up states of SOs in urethane-anesthetized
mice (Gonzéalez-Rueda et al. 2018). This result supports the synaptic homeostatic downscaling
(SHY) hypothesis suggesting that during sleep synapses are downscaled to free up synaptic
resources for learning during the next wake state (Tononi and Cirelli 2014). The other view is that
synaptic potentiation occurs during NREM sleep to enable memory consolidation (Igor Timofeev
and Chauvette 2018) (see also review in (Puentes-Mestril and Aton 2017). In our new study, based
on a large scope of existing experimental data, we utilized a symmetric STDP rule, that is similar
in both wake and sleep states, and we observed strengthening of synaptic connections to form new

associative memories during sleep. This model may need to be extended based on prevailing
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biological views about plasticity rules in the waking and sleeping brain as new data are
accumulated. In addition, plasticity mechanisms such as heterosynaptic and homeostatic synaptic
plasticity may affect learning and their effects are different between sleep and wake. Indeed, e.g.,
the effect of heterosynaptic plasticity depends on neuromodulators (Bannon et al. 2017) whose
levels fluctuate during sleep-wake cycle. In our new study we explicitly tested effect of
heterosynaptic plasticity on associative memory and found that it helps to form associative
memories. Because of the complexity of the effects of neuromodulation, we, however, considered
simplified model where heterosynaptic scaling operates similarly during sleep and awake.

Our work expands upon computational models of relational memory by providing a
biophysically plausible account of learning during waking and consolidation during sleep.
Previous models for relational memory include the temporal context model (TCM) and retrieval
based models (Kumaran 2012; Kumaran and McClelland 2012). Our model adds to this literature
by: 1) developing a biophysical account, based on STDP rules, that explores the role of sleep replay
on relational memory tasks, and 2) suggesting a role for both the TCM and retrieval-based models,
based on different types of relational memory tasks. TCM and retrieval-based models have been
successful at demonstrating performance on associative memory tasks (Kumaran and McClelland
2012). However, these models were constructed using pre-set weights between different regions
of the network and sleep replay was implemented using artificial stimulation. In contrast, in our
work, we show that STDP rules can be used based on realistic task settings to learn relational
memories and synaptic replay, that is needed for formation of indirect relational memories, occurs
naturally during SWS and does not require any additional stimulation. We found that, during slow-
wave sleep, individual items were replayed spontaneously and in a correct order to form a new

relational memory.
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Our model, which more closely aligns with TCM, may be insufficient at explaining
generalization on ordered relational memory tasks (Ellenbogen et al. 2007; Werchan and Gémez
2013). We showed that replay is as likely to occur in the forward or backward directions (e.g.,
forward=A - B, backward=B = A). In this simplified task, memory consolidation during sleep
occurs mainly in a recurrent layer, as neurons representing single units become wired together
based on a shared context and form an attractor or community that enables indirect memory recall.
However, in an ordered relational memory task, where the hierarchy of items needs to be learned,
replay within a single attractor-based layer may be insufficient to correctly encode the order of the
task, and big-loop recurrency may be necessary.

Many studies explored the effect of sleep on relational memory without analyzing
correlation between specific sleep stages and performance improvement (Hiuyan Lau, Alger, and
Fishbein 2011; Huguet et al. 2019). Our work expands upon these studies by suggesting a unique
role for slow-wave sleep in improving relational memory. We further predict that while nesting
spindles and slow waves may be important for consolidation of relational memories, spindles alone
are not sufficient for consolidation. Our study predicts that the number of slow waves observed
during sleep is significantly correlated with the subject’s ability to perform relational memory
tasks, in line with previous work that demonstrated a significant correlation between the SWS
length and relational memory learning (Tucker, Fishbein, and Lau 2010).

Our study also further supports evidence that mental health disorders, such as
schizophrenia, where SWS is disrupted may experience deficits in relational memory (Titone et
al. 2004; Martin, Jeste, and Ancoli-Israel 2005; Pritchett et al. 2012). Patients with schizophrenia
have shown a marked decrease compared to healthy controls in their performance on transitive

inference and relational memory tasks (Titone et al. 2004; Avery et al. 2021). One of the deficits
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in sleep in schizophrenia subjects is a significant decrease in the amount of SWS (Keshavan,
Reynolds, and Kupfer 1990; Yang and Winkelman 2006; Manoach and Stickgold 2009; Benca et
al. 1992). Our model suggests that if disrupted SWS is responsible for deficiencies to learn
transitive inference in schizophrenia, then methods focusing on recovery of normal sleep patterns
in schizophrenia could lead to an improvement in associated cognitive symptoms.

We should note the limitation of our work by ignoring the explicit impact of the
hippocampus on memory consolidation and transitive inference. Previous studies have described
the importance of the hippocampus in transitive inference tasks, where hippocampal activation is
increased during the performance of transitive inference tasks, and damage to the hippocampus
decreases performance on such tasks (DeVito, Kanter, and Eichenbaum 2010; Heckers et al. 2004;
Wendelken and Bunge 2010; Zalesak and Heckers 2009). Recent studies revealed a complex bi-
directional model of the interaction between hippocampal and cortical networks (Helfrich et al.
2019; Rothschild, Eban, and Frank 2017). Our recent modeling work (Sanda et al. 2021) found
that hippocampal ripples can coordinate large-scale spatio-temporal dynamics of cortical slow
waves. We address these concerns by noting the similarity of the second layer in our model with
hippocampal regions, which rely on similar attractor dynamics (Colgin et al. 2010). Thus, the same
mechanisms we propose here may explain relational memory improvement during sleep in cortico-
hippocampal system. Importantly, empirical and computational studies reported that hippocampal
activation during SWS is preceded by cortical input and follows a cortical-hippocampal-cortical
pathway (Navarrete, Valderrama, and Lewis 2020; Rothschild, Eban, and Frank 2017; Sanda et al.
2021). In this scenario, the content of replay may be introduced by cortical networks (layer 1 in
our model) and lead to the chosen content of replay in hippocampal and other cortical networks

(layer 2 in the model).
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REM sleep is likely to be very critical in memory and learning but its specific role in
formation of relational memories is unknown. One study found that a fraction of time spent in
REM sleep during a 60-minute nap was correlated with improvement on A-C item pairs but also
led to more forgetting of directly learned (A-B) relations (Alger and Payne 2016). In this work,
however, subjects who did not attain REM sleep during the 60-minute period also performed
similarly to those that attained REM sleep. Thus, it remains an open question how REM and
NREM sleep can differentially contribute to relational memory and to memory consolidation in
general (see, however, Wei et al. 2018). It is also likely that the cycling between REM and NREM
sleep over the course of a typical night, i.e., multi-phasic sleep with specific temporal structure, is
important for sleep-dependent memory consolidation.

To summarize, we built a model of the thalamocortical system which suggests specific
biophysical mechanisms that explain the role of sleep in the formation of indirect associative
memories. This model predicts that inhibition of neuronal groups that represent items that link
associated items may decrease performance on relational memory tasks (Clawson et al. 2021),
while artificial stimulation during sleep replay of non-associated items may lead to false memory
formation (Diekelmann, Born, and Wagner 2010). Our model can be extended in order to describe
transitive inference tasks where there is an underlying hierarchy of items (e.g., A>B) which likely
requires a third layer to account for big-loop recurrency needed to perform ordered transitive
inference.
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Figure 1.1: Thalamocortical model of relational memory simulates transitions between awake and sleep

states.

(A) Basic task setup. During associative training (left), pairs of items are presented simultaneously (A+B,
B+C). The relational memory task (right) tests the ability of the network to retrieve direct (B) and
indirect (C) items, when presented with item A.

(B) Basic network architecture (PY: Excitatory pyramidal cells; IN: Inhibitory interneurons; TC:
Thalamocortical neurons; RE: inhibitory thalamic reticular neurons). Excitatory connections terminate
in a dot, whereas inhibitory connections terminate in a line. Arrows indicate the direction of
connections.

(C) Baseline network dynamics of the 200 PY neurons and 100 INs during wake and slow-wave sleep (each
row depicts membrane potential over time of a single neuron).

(D) Zoom-in of baseline network dynamics in awake state before sleep (left), during sleep (middle; one Up
state is shown), and in awake state after sleep (right). Network dynamics before and after sleep are
shown for layer two neurons. During sleep, a canonical slow wave pattern is seen across both layers.

(E) Weight connectivity matrix for feedforward connections from layer 1 to layer 2 in cortex (left) and
recurrent connections within layer 2 (right). Connection probability is 30% for feedforward connections
and 50% for recurrent connections. A white dot represents that a connection exists between two
neurons.

(F) Two-layer cortical network architecture. There are plastic feedforward connections from layer 1 to
layer 2 and plastic recurrent connections within layer 2. A subset of neurons in each layer is trained to
represent individual items (e.g., neurons 10-29 (denoted neuron group A in the text) in layer 1 represent
item A and neurons 210-219 (denoted neuron group A’) represent item A in the second layer).
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Figure 1.2: Training and testing protocol include supervised and associative training in awake state and
spontaneous activity during SWS.

(A) Overall network dynamics for the three phases: supervised training (purple), associative training
(green) and sleep (cyan). Each phase is followed by a testing phase (T1, T2, and T3).

(B) During supervised training, neuron groups A, B, C, X, Y, Z are stimulated in layer 1 and neuron groups
A’, B, C, X’, Y, Z’, respectively, are stimulated in layer 2 with a 5 ms time delay. Example
stimulations of C and C’ and X and X’ are shown on the left. During testing, a single neuron group in
layer 1 is stimulated (e.g. neuron group Z on the right), and the response of neurons in layer 2 are
measured. Red bars are shown to accentuate neuron groups that are stimulated.

(C) During associative training, neuron groups A+B, B+C, X+Y, Y+Z are stimulated simultaneously. Each
pair is stimulated with a 500 ms delay after previous group stimulation. No stimulation is provided in
layer 2. After associative training, another testing phase is performed.

(D) During sleep, neuromodulator levels are altered in order to simulate deep stage 3 (N3) sleep activity
characterized by spontaneous slow-waves across cortex. After sleep, another testing phase is
performed.
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Figure 1.3: Sleep improves associative memory performance

(A,C) Responses of layer 2 neuron groups after stimulating a neuron group in layer 1 during testing after
supervised training (left), associative training (middle), and sleep (right). Panel (A) depicts responses in the
model without heterosynaptic plasticity (HSP) and panel (C) is from the model with heterosynaptic
plasticity included during associative training.

(B,D) Conversion of association matrices shown in (A) and (C) to a single association performance score.
Panel (B) is without heterosynaptic plasticity and panel (D) is with heterosynaptic plasticity.

(E,F) Associative training duration vs. sleep duration. Panel (E) is from the model without heterosynaptic
plasticity and panel (F) is from the model with heterosynaptic plasticity. The first number in each cell
depicts the association score before sleep and the second number depicts the association score after sleep.
Color depicts the % change in association score from after to before sleep.

(G) Improvement in association score as a function of number of slow waves (p=2.45 x 103, R"2=0.74)
in the model including heterosynaptic plasticity. Each dot represents a different network trial. Network
trials are computed for 100s, 300s, and 500s of sleep as well as different durations of associative training.
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Figure 1.4: Sleep increases amplitude and decreases latency of indirect memory response.

(A,B,C) Raw network response traces during testing phase of stimulating A, B, C, X, Y, Z (from left to
right) after supervised training (A), associative training (B), and sleep (C). Note increase in response and
decrease in latency after sleep.

(D) Averaged (across 8 trials) and smoothed, through a band-pass filter at 0.1 and 20 Hz, local field potential
(LFP) computed separately for the three neuron groups in layer 2 (X’, Y’, Z’ are shown) upon simulations
of a neuron group X in layer 1. LFPs are shown during testing phase after supervised training (left),
associative training (middle), and sleep (right).

(E) Average response latency for direct memories (black, e.g., latency of neuron group B’ when A is
stimulated), indirect memories (pink, e.g. latency of neuron group C’ when A is stimulated), and incorrect
memories (cyan, e.g. latency of neuron group X’ when A is stimulated).

(F) Average firing rate of neurons in layer 2 for each type of memory (direct, indirect, and incorrect) during
testing phase.
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Figure 1.5: Synaptic weight dynamics explains improvements in relational memory after sleep.
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(A,B) Left, Feedforward (A) and recurrent (B) synaptic weight matrices after supervised training,
associative training, and sleep. Right, Synaptic input to the neurons of each memory type in layer 2 (the
sum of all the weights connecting to those neurons) for self-memories (A-A’), direct memories (A-B’),
indirect memories (A-C’), and incorrect memories (A-X’) after supervised training, associative training,
and sleep.
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Figure 1.6: Sleep increases modularity of each item triplet (A’B’C’ and X’Y’Z’) in layer 2 recurrent
connections.

(A-D) Graphs of layer 2 connectivity matrices. Each dot represents a group of 10 neurons (red dots = A’,
B’, C’, blue dots = X’,Y’,Z’). A line is drawn between two dots if there is a weight between groups that
exceeds a given threshold (75% of the maximal wight). The thickness of the line represents the number of
such connections. (A) before any training, (B) after supervised training, (C) after associative training, and
(D) after sleep. Note that threshold is calculated for each state separately, so, e.g., before training many
connections exceed the threshold defined by initial weak connections.

(E) Community assignment for layer 2 neurons over time during each training/sleep phase (ST = supervised
training, AT = associative training, and sleep). Neurons were assigned the same color (at any given time)
if those neurons belonged to the same community.

(F) The number of communities over time. Data are averaged across 10 network trials and error bars
indicate the standard deviation across trials.

41



A Local Field Potential During SWS

— LFP
— fLFP

Threshold
—@- Start Times
-@- End Times

>
|
wn
KoKk 50s 1s
B = - C D 150,
[N 0.06 ESelf
- HlDirect
- . %) Ellindirect
> o € Eincorrect
o 0.04 140} ko
< - = it}
a © >
c [ 190G 2
5 ] | Bo.02 =
-] 24
Oaf []] #*
O 0.0
5 <
S < 1]
©
c
>
n
)
|-
a

140 160

= | °
N> . 0.1 (Y )
|- - [ ]
Pl A T, = = «®
X[ o . ©
Ol EL = o
O = . T 0% o ®
Eg--j‘_.' EEY . 3 p=1e-10
L= 1== < F ° RA2=0.41

= =_sia - = -0.1

A'B'C XY Z 140 160 180

Postsynaptic neuron ID # Replay Events

Figure 1.7: Replay during sleep drives synaptic weight changes.

(A) Local field potential during SWS (left) and examples of slow-waves (right). Beginning/end times of
Up and Down states are computed by setting a threshold for the transition from Down to Up state and vice
versa.

(B) Number of replay events for feedforward (top) and recurrent (bottom) connections. Replay events are
selected by identifying sequential ordered firing events, within a specified time window. Replay events
occur significantly more in the areas of interest (black grids) than in other areas (p<le-4, based on shuffling
replay matrix 10,000 times).

(C) Change in synaptic weights as a function of number of replay events between neurons for feedforward
(top, R2 = 0.61, p=1 x 10™'?) and recurrent (bottom, R2=0.41, p=1x 10™'%) connections.

(D) Number of replay events between self, direct, indirect, and incorrect neuron groups for feedforward
(top) and recurrent (bottom) connections. For feedforward connections, there was a significantly higher
number of replay events between self-connections than direct connections, direct connections than indirect
connections, and indirect connections than incorrect connections. For recurrent connections, indirect
connections revealed the most replay events (p=0.006 between wrong connections, and p=3.28 x 107
between direct connections).
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Figure 1.8: State 2 (N2) sleep has little effect on association score, although spindle/slow oscillation
nesting during N3 sleep reveals significance.

(A) Network dynamics including both N2 and N3 sleep: supervised training (purple), associative training
(green) and sleep, comprised of N2 (lime) and N3 sleep (cyan). Bottom row shows zoom-in of N2 sleep
(two spindles are shown) and N3 sleep (slow-waves)

(B) Association scores following 300s of N2 sleep (top left), 300s of N3 sleep (top right), 600s of N2 sleep
(bottom left), and 300s of mixed sleep (200s N2 and 100s N3, bottom right).

(C) Association score improvement as a function of spindle power near Down-to-Up transition of N3 sleep
suggests a significant correlation between spindle/slow oscillation nesting and association score.
Spindle power in 1000s of mV"2.

(D) Spindle power is significantly higher near Down-to-Up transition then near Up-to-Down transition or
a random time selected during the Up state of a slow-wave. Power was calculated based on 100ms time
windows.
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Figure 1.9: Proposed model of relational memory and main experimental predictions.

(A) Summary of the changes to the model at different time points. During supervised training, feedforward
connections are formed between layers 1 and 2 to represent self-memories (e.g., A-A’). During
associative training, the network learns to associate items presented together (e.g., A with B and B with
C). However, these connections are weak and no indirect associations are learned (e.g., A is not
associated with C). After sleep, direct and indirect memory connections are strengthened and one
attractor is formed for entire triplet of items, i.e., a community including A’, B’, and C’.

(B) Effect of inactivating different neuronal groups during either sleep or testing on association score. Blue
bars show performance after training and orange ones show performance after sleep. Silencing linking
group in any one layer only (B’ or B, Y’ or Y) during sleep still leads to significant post-sleep
improvement for associative memories (B’, Y’ - t(10) = -4.91, p = 0.001; B, Y - t(10) = -2.03, p =
0.045, one-sided t-test, FDR correction). However, silencing linking groups in both layers (B/B’, Y/Y”)
during sleep prevents post-sleep improvement for these associative memory tasks (t(10) = -0.59, p =

0.28). Inactivating linking groups in layer 2 alone (B’, Y”) during testing was sufficient to significantly
reduce associative memory performance.
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2 Simulated sleep helps to generalize knowledge in a spiking network trained with spike-
timing dependent plasticity

2.1 Abstract

Artificial neural networks are known to generalize poorly to new examples; although they
excel at representing data observed in the training set, they are unable to represent data drawn from
different distributions. In the mammalian brain, evidence suggests that sleep promotes
generalization of learned examples. To address the validity of this hypothesis, we utilized a
previously developed spiking neural network trained with spike-timing dependent plasticity
(STDP) to perform digit classification on the MNIST dataset. We demonstrate that incorporating
an offline, sleep-like period after training leads to generalization and robustness to novel inputs.
2.2 Introduction

Although artificial neural networks (ANNSs) can rival human performance on various tasks,
ranging from complex games (Silver et al. 2016) to image classification (Krizhevsky, Sutskever,
and Hinton 2012), they have been shown to underperform when the testing data differs in specific
ways even by a small amount from the training data (Geirhos et al. 2018). This lack of
generalization presents several issues when ANNS are utilized in the real world. Primarily, ANNs
are often trained on refined datasets of images designed to best capture the image content, whereas
in real-world scenarios, they may be tested on disturbed or noisy inputs, not observed during
training. Creating more robust neural networks will pave the way forward for using these
promising neuro-inspired architectures in the real-world.

It has been hypothesized that in the mammalian brain sleep helps to create generalized
representations of the information learned during the awake state (Stickgold 2013). Sleep has been

identified as being critical for memory consolidation - a process of converting recent memories
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into long-tern storage (Rasch and Born 2013). During sleep, there is reactivation of neurons
involved in previously learned activity (Stickgold 2005b) and this reactivation is likely to invoke
the same spatio-temporal pattern as the pattern observed during training in the awake state (Wilson
and McNaughton 1994). Sleep reactivation, or replay, serves to strengthen synapses involved in a
learned task through spike-timing dependent plasticity rules (STDP). Sleep, through STDP, can
increase a subject's ability to form logical connections between memories and to generalize
knowledge learned during the awake state (Payne et al. 2009).

Similarly, research suggests that sleep can help extract the gist of a task by strengthening
connections pertinent to all memories while weakening connections, through synaptic
downscaling, relevant to a single, spurious memory (Lewis and Durrant 2011). This body of
neuroscience work suggests that a sleep-like phase applied in training neural networks may allow
for gist extraction of the training data, leading to increased generalization and robustness to the
underlying distribution of the training data. Our hypothesis is that sleep could aid in increasing a
neural network's generalization performance by reducing the impact that small additions of noise
can have on the network's classification accuracy.

2.3 Methods
2.3.1 Network Architecture and Simulated Sleep

To address the validity of this hypothesis, we utilized a spiking neural network trained with
STDP previously proposed to perform digit classification on the MNIST dataset (see (P. Diehl and
Cook 2015) for details). The MNIST dataset represents a simple task for artificial intelligence
whereby the network must learn to classify grayscale images of handwritten digits (Lecun et al.
1998). The spiking network consists of 3 layers: an input layer, an excitatory middle layer and an

inhibitory layer. Neurons in the input layer receive input proportional to the intensity of each pixel
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in the MNIST images. The input layer projects to a layer of excitatory neurons with an all-to-all
connectivity matrix and the weights of these connections are updated by an STDP rule. In addition,
the excitatory layer projects to and receives lateral inhibition (which promotes competition
amongst neurons) from the inhibitory layer. The neurons within each layer are governed by leaky-
integrate-and-fire dynamics. Additionally, each neuron in the excitatory layer has a threshold
parameter which is governed by a homeostatic rule to ensure balanced activity (see Figure 2.1 for
a summary of the architecture).

As the network is presented with more images, the network is able to classify a greater
percentage of images correctly, by modifying weights from the input to the excitatory layer to
compute 2-dimensional spatial filters of the MNIST digits (see Figure 2.2A-C). 2-D receptive
fields are computed by reshaping the weights connecting to a single neuron in the excitatory layer
into the same dimension as the input images. Then, these 2-D receptive fields are aligned in order
to visualize all receptive fields learned by the network.

While this network can learn the task, it only reaches high levels of performance (>80%)
after training on more than 100,000 images. We took a partially trained network (between 20 and
80% of the full training image set) and applied a sleep-like phase after the learning phase. During
simulated sleep, we modified the intrinsic and synaptic currents to mimic changes in
neuromodulator levels, while presenting noisy Poisson input based on the statistics of the MNIST
input (see Figure 2.1 for dynamical equation updates). These changes capture cellular and synaptic
changes which occur during stage 3 sleep, and result in an increase in activity, mirroring the "up-
state" of slow-wave sleep (Wei, Krishnan, and Bazhenov 2016). During sleep, the same STDP and
threshold updating rules are used. We compared performance before (awake) and after sleep by

computing the classification of the network on different testing images. Classification is done by
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assigning each neuron in the excitatory layer a label (0-9) based on which set of digits produce the
maximum mean firing activity in that neuron. Networks are tested from various random
initializations (n=5) to measure variability of the training and sleep phases.
2.4 Results
2.4.1 Sleep improves performance on networks trained with small dataset

After training in the awake state, the network is able to accurately classify the MNIST
digits. However, at different levels of awake training (measured by how many images in the
training set the network has observed), incorporating an off-line sleep period after awake training
notably increases classification accuracy on a novel test set (Figure 2.3) Most notably, at very
small levels of training (1000 images), the trained network classifies the test set with 20%
accuracy. However, after a sleep-like period where noisy input is presented to the network,
classification accuracy reaches 60%. This effect is pronounced even at higher levels of awake
training, suggesting that a sleep-like period can promote one-shot learning and greater
generalization of the task structure.
2.4.2 Sleep promotes increased generalization

As noted above, neural network-based classifiers often suffer from poor robustness. If a
network is trained on intact, undistorted images, then the network will fail to classify distorted
images, even if the distortions are not significant enough to affect human-level perception. To test
the effect of sleep on a network's robustness, we added noise to the MNIST images, either by
adding random Gaussian noise or applying a blur filter to the images (Figure 2.4A). We found that
the network after undergoing a sleep period is able to classify more images correctly even as the

images are further distorted (Figure 2.4B). These results mirror the results from biology which
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suggest that sleep can help a subject extract the gist of a task and generalize knowledge learned
during a waking period.
2.4.3 Sleep decorrelates the representation of distinct digits

We next wanted to ask how sleep is able to give rise to one-shot learning and increased
robustness. In biological networks, it has been hypothesized that sleep can generalize knowledge
by down-scaling the activity of irrelevant synapses or neurons and strengthening the impact of
highly salient neurons (Lewis and Durrant 2011). Additionally, biophysical modelling suggests
that sleep can decorrelate the representation of a certain task by devoting synapses to specific
memory traces (Gonzalez et al. 2020). In this network, we observed the same effect, where the
representation in the excitatory layer of distinct digits is further decorrelated after sleep as
compared to before while the representation of digits from the same class remains highly correlated
(see Fig. 2.5).
2.4.4 Sleep prunes task-irrelevant neurons from the network

We next analyzed which component of the network, changing neuronal thresholds or
synaptic plasticity, contributed the most to the accuracy increase after sleep. We observed that
most neurons experienced an increase in their thresholds due to the constant activity presented
during sleep and the homeostatic rule used to change thresholds (Figure 2.6A). However, neurons
with well-formed 2-D receptive fields were qualitatively more likely to have decreasing thresholds
after sleep (Figure 2.6C). Oppositely, neurons with noisy 2-D receptive fields were more likely to
experience an increase in their firing thresholds following sleep (Figure 2.6D). We quantified this
phenomenon by looking at the average neighborhood pixel variance using 3x3 pixel squares.
Receptive fields with low neighborhood pixel variance are likely to be more refined since there is

little variability between neighboring pixels. In contrast, noisy receptive fields should have high
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neighborhood pixel variance. There was a significant correlation between neighborhood pixel
variance and threshold change (Figure 2.6B), suggesting the hypothesis that sleep improves
performance and robustness by pruning task-irrelevant neurons from the network by increasing
their firing thresholds.

We confirmed this as the main source of improvement after sleep by testing the network in
four conditions: using either before- or after-sleep weights and before- or after-sleep thresholds.
The largest performance increase was observed when after-sleep thresholds were used (no
significant difference between normal sleep and only using after-sleep thresholds, p=0.22).
However, when pre-sleep thresholds were used along with the STDP changes that resulted from
sleep, performance did not improve significantly. This suggests that in the default network
architecture, sleep improves performance by altering the thresholds in a manner in which task-
specific neurons can respond more acutely (because of reduced thresholds) to the images presented
during testing.

Finally, we analyzed the effect of reducing inhibition and fixing the thresholds during sleep
in order to determine the role of synaptic plasticity changes that occur during sleep on
generalization. We were able to see the same performance increase after sleep by reducing
inhibition in the network, as competition between neurons was reduced (normal sleep vs. only
STDP changes, p=0.85). We explored the synaptic weight changes during sleep and uncovered
two main principles (Fig 2.6). First, in neurons with well-formed receptive fields, there is very
little synaptic weight change after sleep. Second, in neurons with task-irrelevant receptive fields,
there is an overall synaptic down-scaling of connections, mirroring the results from the threshold
analysis above. Overall, these results support the role of sleep in memory consolidation and

generalization of knowledge learned during the waking state. Moreover, this line of work supports
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the synaptic homeostasis hypothesis of sleep which suggests that slow-wave sleep improves
performance by down-scaling synaptic weights (Tononi and Cirelli 2006).
2.5 Discussion

In this study, we applied an off-like sleep-like phase to the training phase of a spiking
network trained to perform the MNIST digit classification task. We found that after any amount
of awake training, adding a sleep phase, where noisy Poisson input is passed through the network
and activity is elevated, can increase the classification accuracy on a novel test set. Similarly, the
network after sleep is able to respond to more diverse representations of the image set, classifying
noisy and blurred images more accurately than before sleep. These results mirror work in biology
which has shown that sleep can help extract the gist of a task and generalize knowledge learned
during the awake state (Stickgold 2013). Additionally, these results lend support to the synaptic
homeostasis hypothesis which suggests that sleep down-scales synaptic weights to make efficient
use of brain space in an energy-conserving manner (Tononi and Cirelli 2006). Our experiments
suggests that down-scaling of synaptic activity is likely constrained to task-irrelevant neurons,
thereby containing the representation of the task to a subset of neurons.

For artificial intelligence systems, these results suggest that the same classification
accuracy can be achieved by adding a sleep phase after either a shorter length awake-training
period or with a reduced dataset, giving rise to one-shot