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ABSTRACT OF DISSERTATION 

 
Sleeping Networks: A Computational Model and Algorithm for the Role of Sleep in Learning 

and Memory 
 
 

by 
 

Timothy Tadros 
 
 

Doctor of Philosophy in Neurosciences with a Specialization in Computational Neurosciences 
 
 

University of California San Diego 2022 
 
 

Professor Maksim Bazhenov, Chair 
 

 
This dissertation explores the computational role of sleep on memory consolidation. 

Chapter 1 explores a biophysical model of the thalamo-cortical network as it learns a relational 

memory task. We conclude by making predictions about the role of sleep on relational memory. 

Chapter 2 explores a less realistic biophysical model as it learns a digit recognition task. We 

created a sleep algorithm for this model and show that sleep can improve performance. Chapters 

3 and 4 utilize this novel sleep algorithm for biophysical networks and apply this algorithm to 

artificial neural networks, who suffer from poor generalization (Chapter 3) and catastrophic 

forgetting (Chapter 4). We show that this sleep algorithm can help mitigate these issues and suggest 

that sleep is instrumental in memory generalization and continual learning. 



 

1 

1 Role of Sleep in Formation of Relational Associative Memory 

1.1 Abstract 

Relational memory, the ability to make and remember associations between objects, is an 

essential component of mammalian reasoning. In relational memory tasks, it has been shown that 

periods of offline processing, such as sleep, are critical to making indirect associations. To 

understand biophysical mechanisms behind the role of sleep in improving relational memory, we 

developed a model of the thalamocortical network to test how slow-wave sleep affects 

performance on an unordered relational memory task. First, the model was trained in the awake 

state on a paired associate inference task, in which the model learned to recall direct associations. 

After a period of subsequent slow-wave sleep, the model developed the ability to recall indirect 

associations. We found that replay, during sleep, of memory patterns learned in awake increased 

synaptic connectivity between neurons representing the item that was overlapping between tasks 

and neurons representing the unlinked items of the different tasks; this forms an attractor that 

enables indirect memory recall. Our study predicts that overlapping items between indirectly 

associated tasks are essential for relational memory, and sleep can reactivate pathways to and from 

overlapping items to the unlinked objects to strengthen these pathways and form new relational 

memories. 

1.2 Introduction 

The ability to form indirect associations between learned items with overlapping elements 

highlights an important part of abstract problem solving. This type of learning, known as transitive 

inference, is a fundamental feature of relational memory (DeVito, Kanter, and Eichenbaum 2010). 

For example, one may watch a movie (object A) and experience a feeling of familiarity about a 

certain actor (object B), giving rise to the question of what movie that actor has been in previously 
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(object C). This type of memory, where the premises that ‘A goes with B’, and ‘B goes with C’ 

are learned, represents a type of transitive inference where the indirect association (that ‘A goes 

with C’) is not inherently learned but is inferred by the subject. Despite the seeming complexity 

of the task, it has been shown that rats, primates, and humans are capable of performing transitive 

inference and relational memory tasks (Vasconcelos 2008; DeVito, Kanter, and Eichenbaum 

2010). Importantly, depending on the type of task, the ability to connect indirect associations or 

inferences may not be explicitly acquired immediately after training (Ellenbogen et al. 2007; 

Walker et al. 2002).  

Empirical studies suggest that offline processing, such as during sleep, is important in 

forming indirect associations (Ellenbogen et al. 2007; Werchan and Gómez 2013) . Sleep is a 

principle component behind many types of memory consolidation and plays an important role in 

learning (Klinzing, Niethard, and Born 2019; Walker and Stickgold 2004; Ji and Wilson 2007; 

Maquet 2001). The role of non-Rapid Eye Movement (NREM) sleep in learning and memory has 

been shown to be significant, aiding in consolidation of declarative memories and memories for 

complex motor learning tasks (Diekelmann and Born 2010; Walker et al. 2003; Miyamoto et al. 

2016). A central hypothesis for memory improvement during NREM sleep is that replay or 

reactivation of learned synaptic memory traces during sleep oscillations (spindles or slow waves) 

strengthens synaptic traces of these labile memories (Wei, Krishnan, and Bazhenov 2016; Wei et 

al. 2018; González et al. 2020). Sleep has been shown to augment problem solving (Lewis, 

Knoblich, and Poe 2018a; Lau, Alger, and Fishbein 2011; Walker et al. 2002; Wagner et al. 2004; 

Nieuwenhuis et al. 2013) and hypothesized to create cognitive schemata by replaying memories 

with overlapping elements, strengthening the connections between overlapping memories and 
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leading to generalization of learned concepts (Lewis and Durrant 2011; Lewis, Knoblich, and Poe 

2018a).  

Accumulating evidence suggests that sleep may play a critical role in learning relational 

memory tasks (Ellenbogen et al. 2007; Werchan and Gómez 2013; Studte, Bridger, and 

Mecklinger 2015; Chatburn, Lushington, and Kohler 2014; Lau, Tucker, and Fishbein 2010; Lau, 

Alger, and Fishbein 2011). One study showed that duration of slow wave sleep is significantly 

correlated with learning indirect associations (Lau, Tucker, and Fishbein 2010). Another study 

tested a subject’s ability to relate abstract concepts through generalization, and found 

improvements after a day-time nap (Lau, Alger, and Fishbein 2011). It has also been shown that 

sleep can increase a subject’s ability to perform hierarchical transitive inference, where A > B and 

B > C are learned premises and A > C is a tested abstraction (Ellenbogen et al. 2007). 

Despite the progress made in understanding the role of sleep in increasing relational 

memory performance, it remains unknown what biophysical mechanisms account for this function. 

Here, using a biophysical model of the thalamocortical network, we tested the role of NREM sleep 

on the network’s ability to perform a relational memory task. We found that the network can form 

indirect inferences, which were never trained directly, following periods of slow-wave sleep. We 

further revealed that sleep replay increases connections to/from a shared conjunctive memory unit, 

giving rise to an increase in performance during relational memory tasks. Ultimately, a theoretical 

understanding of how sleep aids with relational memory would guide development of experiments, 

where these findings can be tested in vivo. 
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1.3 Methods 

1.3.1 Thalamocortical Network Model 

1.3.1.2 Network Architecture 

The base thalamocortical network used in this new study has been described in our other 

works (Wei et al. 2018; Wei, Krishnan, and Bazhenov 2016; Krishnan et al. 2016; González et al. 

2020). The network was composed of two connected populations of neurons: thalamic and cortical. 

Different from previous work, we constructed two layers (functional regions) for both the thalamic 

and cortical components of the network and we did not rely on local connectivity but rather random 

connectivity between neurons. The thalamic part of the network was broken down into two 

populations and contained total 60 excitatory thalamocortical relay neurons (TC cells) and 60 

inhibitory reticular neurons (RE cells). Layer 1 contained 40 TC neurons and 40 RE neurons, 

whereas layer 2 contained 20 TC and RE neurons. The cortical part of the network was also broken 

down into two layers, representing two functionally different cortical areas. In layer 1 (representing 

primary visual cortex), there were 200 excitatory pyramidal neurons (PY cells) and 40 inhibitory 

interneurons (IN cells). In layer 2 (representing associative cortex) there were 100 PY neurons and 

20 IN cells. Connectivity was random; excitatory connections were mediated by NMDA and 

AMPA connections, while inhibitory connections were mediated by GABAA and GABAB 

connections. All connections are summarized in Table 1.1 and described as follows. 

To describe specific connections, starting in the thalamus, RE neurons received AMPA 

connections from TC  neurons and GABAA  connections from RE neurons as well as AMPA 

connections from PY neurons in associated cortical layer. AMPA synapses between TC and RE 

cells had connection probability 10% in layer 1 and 20% in layer 2. RE cells were connected to 

each other through GABAA synapses within the same layer with probability 6.25% in layer 1 and 
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12.5% in layer 2. Finally, cortical PY neurons synapsed via AMPA connections onto RE cells with 

connection probability 10% and 20% in layers 1 and layer 2, respectively. TE cells received 

connections from RE cells through both GABAA and GABAB synapses, as well as AMPA 

connections from PY neurons in associated cortical layer. Each TC cell received a connection from 

an RE cell with a 10%, and 20% probability in layer 1 and layer 2, respectively. Each TC cell also 

received an AMPA synapse from cortical PY neurons, with connection probability 12.5% and 

25%, in layers 1 and layer 2, respectively. 

Table 1.1: Thalamocortical network connection architecture 

Connection Type Synapse Type Connection Prob. (L1, L2) 
TC – RE AMPA 10%, 20% 
RE – TC GABAA, GABAB 10%, 20% 
RE – RE GABAA 6.25%, 12.5% 
PY – RE AMPA 10%, 20% 
PY – TC AMPA 12.5%, 25% 
TC – PY AMPA 10%, 20% 
PY(L1) – PY(L2) AMPA (plastic), NMDA 20% 
PY(L2) – PY(L2) AMPA (plastic), NMDA 50% 
PY(L2) – PY(L1) AMPA 25% 
IN – PY(L1) GABAA 2 connections 
IN – PY(L2) GABAA 13 connections 
PY(L1) – IN NMDA, AMPA 3.75%, 7.5% 
PY(L2) – IN NMDA, AMPA 5%, 10% 
TC - IN AMPA 5%, 50% 

 

In the cortex, PY neurons received non-plastic AMPA connections from TC cells, plastic 

and non-plastic AMPA connections from other PY neurons, and GABAA connections from IN 

neurons in the same cortical layer. The TC cells in layer 1 connected to PY neurons in layer 1 of 

cortex with a connection probability of 10%. In layer 2, this connection probability was increased 

to 20%. Thus, considering size difference between layer 1 and 2, each PY neuron received about 

the same number of TC inputs. In layer 1 of cortex, each PY neuron received feedback connections 
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from layer 2 PY neurons with a connection probability of 25%. In addition, each layer 1 PY neuron 

received two inhibitory GABAA connections from IN neurons in layer 1 of cortex. In layer 2, each 

neuron received a feedforward plastic AMPA connection from a layer 1 PY neurons with 

probability 20%, and a recurrent plastic AMPA connection from layer 2 PY neurons with 

probability 50%. Each plastic AMPA connection in cortex was also accompanied by a non-plastic 

NMDA excitatory synapse. In addition, layer 2 PY neurons received 13 GABAA connections from 

local INs.  

Finally, each IN received non-plastic AMPA connections from TC cells in thalamus, with 

connection probability 3.75% in layer 1 and 7.5% in layer 2. In addition, all INs received non-

plastic NMDA and AMPA synapses from PY neurons in both layer 1 and layer 2 of cortex. Layer 

1 PY to layer 1 and layer 2 INs AMPA and NMDA connections occurred with a probability of 5% 

and 10%, respectively. Layer 2 PY to layer 1 and layer 2 INs AMPA and NMDA connections 

occurred with a probability of 5% and 50%, respectively. Note that the latter 50% connections 

were much weaker than other connections. 

 
1.3.1.2 Wake-sleep Transition 

The transition between wake and sleep was modelled after previous work which describes 

the role of neuromodulators - acetylcholine (ACh), histamine (HA), and GABA  - during the sleep 

and waking state needed to observe sleep rhythms canonical of slow-wave sleep (Krishnan et al. 

2016). ACh modulated potassium leak currents in all neuron types and excitatory AMPA 

connections within cortex. HA modulated the strength of the hyperpolarization-activated mixed 

cation current in TC neurons and GABA modulated the strength of inhibitory GABAergic 

synapses in both thalamus and cortex. The levels of ACh and HA were reduced during stage 3 

(N3) slow-wave sleep (SWS) while GABA levels were increased compare to awake state. The 
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exact levels of each neuromodulator were chosen by conducting a parameter sweep and observing 

which parameters resulted in the appearance of canonical slow waves. In addition, to simulate 

stage 2 (N2) sleep characterized by spindles, neuromodulation parameters were determined by 

parameter sweep looking for the local field potential (LFP) power in the spindle frequency band 

(7-16 Hz in our study). Parameters for N2 sleep were intermediate between waking and N3 states. 

1.3.1.3 Intrinsic Currents 

All neurons were modelled with Hodgkin-Huxley kinetics and equations can be found in 

previous works (Wei et al. 2018; González et al. 2020).  In cortex, PY and IN neurons possessed 

dendritic and axo-somatic compartments (Wei et al. 2018). Membrane potential dynamics were 

modeled by the following dynamical equations: 

𝐶!
𝑑𝑉"
𝑑𝑡 = 	−𝐼"#$ − 𝐼"#$% − 𝐼"&! − 𝐼"&'$ − 𝐴𝐶ℎ()*𝐼"&+ − 𝐼",-. − 𝐼"+ − 𝑔(𝑉" − 𝑉/) − 𝐼012, 

𝑔(𝑉" − 𝑉/) = −𝐼/#$ − 𝐼/#$% − 𝐼/& ,  

where 𝐶! is membrane capacitance, 𝑉" and 𝑉/ are the dendritic or axo-somatic membrane 

voltages, respectively, 𝐼	#$ is the fast sodium (Na+) current, 𝐼	#$%is the persistent sodium current, 

𝐼	&! is the slow voltage-dependent non-inactivating potassium (K+) current, 𝐼	&'$ is the slow 

calcium (Ca2+)-dependent K+ current, 𝐴𝐶ℎ()* is the change in K+ leak current 𝐼	&+ which depends 

on the level of acetylcholine (ACh) which changes during wake and sleep states, 𝐼	,-. is the high-

threshold Ca2+ current, 𝐼	+ is the chloride (Cl-) leak current, g is the conductance between dendritic 

and axo-somatic compartments, and 𝐼012 is the synaptic current input to the neuron (as described 

in the next section). INs contained all the above intrinsic currents with except of the persistent 

sodium current. All intrinsic ionic currents (𝐼4) were modeled based on Hodgkin-Huxley (Hodgkin 

and Huxley 1952) equations as follows: 
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𝐼4 = 𝑔4𝑚5ℎ#0𝑉 − 𝐸42, 

where 𝑔4 is the maximal conductance, 𝑚 (activation) and ℎ (inactivation) are the gating variables, 

𝑉 is the voltage of the compartment, and 𝐸4 is the reversal potential of the current. Gating variable 

dynamics were described as follows: 

𝑑𝑥
𝑑𝑡 = −

𝑥 − 𝑥6
𝜏7

	, 

𝜏7 =
(1 (𝛼7 + 𝛽7)⁄ )

𝑄8
, 

𝑥6 =
𝛼7

(𝛼7 + 𝛽7)
, 

where = 𝑚 or ℎ, 𝜏 is the time constant, 𝑄8 is the temperature related term, 𝑄8 =	𝑄((8:;<)/?@) =

2.9529, with 𝑄 = 2.3 and 𝑇 = 36. 

In the thalamus region of the model, TC and RE neurons were modeled by single 

compartment neurons with the following dynamical equation: 

𝐶!
𝑑𝑉"
𝑑𝑡 = 	−𝐼#$ − 𝐼& − 𝐴𝐶ℎ()*𝐼&+ − 𝐼8 − 𝐼A −	𝐼+ − 𝐼012, 

where 𝐼#$ is the fast Na+ current, 𝐼& is the fast K+ current, 𝐼&+ is the K+ leak current, 𝐼8 is the low-

threshold Ca2+ current, 𝐼A is the hyperpolarization-activated mixed cation current, 𝐼+ is the Cl- leak 

current, and 𝐼012 is the total synaptic current input to the neurons (described in next section). The 

hyperpolarization-activated mixed cation current 𝐼A was not expressed in RE neurons. In addition, 

histamine (HA) exerted its influence on 𝐼A in TC cells by shifting the activation curve of 𝐻𝐴(A as 

described by: 
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𝑚6 =
1

1 + 𝑒𝑥𝑝 E
𝑉 + 75 + 𝐻𝐴(A

5.5 G
	. 

Our previous work gives a more detailed description of the individual currents (Krishnan et al. 

2016; Wei et al. 2018). 

1.3.1.4 Synaptic Currents and Spike-Timing Dependent Plasticity (STDP) 

Here, we describe the synaptic currents which were composed of AMPA, NMDA, GABAA, 

and GABAB synapses as well as the STDP rules (see Krishnan et al., 2016; Wei et al., 2018 for 

more details on the specific synaptic currents). The effect of acetylcholine on AMPA and GABAA 

synaptic currents was described by the following equations:  

𝐼012.5%. = 	𝐴𝐶ℎ.5%.	𝑔012	[𝑂]0𝑉 − 𝐸0122, 

𝐼012B.C. = 	𝛾B.C.! 	𝑔012	[𝑂]0𝑉 − 𝐸0122, 

where 𝑔012 is the maximal conductance, [𝑂] is the fraction of open channels, and 𝐸012 is the 

reversal potential of the channel (EGABA-A = -70 mV, EAMPA = 0 mV, and ENMDA = 0 mv). 𝐴𝐶ℎ.5%. 

describes the influence of acetylcholine levels on AMPA synaptic currents for PY-PY, TC-PY, 

and TC-IN connections. 𝛾B.C.! modulated the GABA synaptic currents for inhibitory IN-PY, RE-

RE, and RE-TC connections. These values were changed between sleep and wake states. The 

influence of GABA was increased during sleep so that 𝛾B.C.! was increased, whereas ACh was 

decreased during sleep so that 𝐴𝐶ℎ.5%. was reduced. During stage 3 (N3) sleep, the model 

generated periodic transitions between Up and Down states. As in our previous studies, Down-to-

Up transitions were mediated by spontaneous miniature excitatory transmitter release from PY-
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PY and PY-IN synapses, while Up-to-Down transitions depended on synaptic depression and 

intrinsic current, such as IK(Ca) (I. Timofeev et al. 2000).  

Spike-timing dependent plasticity (STDP) controlled long-term potentiation and 

depression of synaptic weights between PY neurons. The change in the synaptic strength (gAMPA) 

and amplitude of miniature EPSPs (AmEPSP) were described previously (Wei et al. 2018):  

𝑔.5%. 	← 𝑔.5%. + 𝑔!$7	𝐹(∆𝑡), 

𝐴!D%/% 	← 𝐴!D%/% + 𝑓𝐴%E:%E	𝐹(∆𝑡), 

where 𝑔!$7 is the maximal conductance of 𝑔.5%., and f=0.01 represents the lower effect of STDP 

on 𝐴!D%/% as compared to 𝑔.5%.; F represents the STDP function and depends on the relative 

timing of pre- and post-synaptic spikes as defined by: 

𝐹(Δ𝑡) = Q 𝐴F	𝑒
:|HI|/J" , 𝑖𝑓	Δ𝑡 > 0

−𝐴:	𝑒:|HI|/J# , 𝑖𝑓	Δ𝑡 < 0
	 

where  𝐴F,: set the maximum amplitude of synaptic change (𝐴F,: = 0.002,	𝜏F,: = 20ms). A-, the 

synaptic depotentiation term, was reduced to 0.001 during training to reflect the effect of 

acetylcholine during focused learning (Sugisaki et al. 2016). 

1.3.1.5 Heterosynaptic Plasticity 

Heterosynaptic plasticity was implemented in some simulations. To mimic heterosynaptic 

plasticity properties observed in vivo (Chistiakova et al. 2014; Volgushev et al. 2016), after each 

STDP event in which a synaptic weight was modified, we also modified the weights of remaining 

synapses into the same neuron to hold the total synaptic input per neuron constant. Thus, if 𝑠L =

	∑ 𝑤L42
4M?  is the total synaptic input to neuron i from neurons j = 1:n, then this quantity was 

maintained constant throughout the simulation. Thus, any increase of a single synaptic weight 

would result in a corresponding decrease of the other weights connecting to the same neuron i. To 
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implement this property, we computed the total synaptic input for each neuron i after supervised 

training was completed. Then, during associative training, after each STDP event, the new 

conductances for all pre-synaptic neurons j were computed by setting 𝑤L4 = 𝑤L4 ∗ 𝑠L
0NOPQRL0PS8T/

𝑠LI, where 𝑠L
0NOPQRL0PS8T is the synaptic input to neuron i after supervised training and 𝑠LI is the 

current total synaptic input to neuron i at time t of the STDP event.  

1.3.1.6 Memory Training and Testing 

Training and testing of associative memories was modelled after behavioral works (Lau, 

Tucker, and Fishbein 2010). After creating a two-layer cortical architecture, we selected the groups 

of neurons in each layer that correspond to each stimulus. Neuron IDs were mapped to a stimulus 

label as shown in Table 1.2. The first training phase was the supervised learning. Here, an 

individual item was stimulated in layer 1 followed, with 5 ms delay, stimulation of that item in 

layer 2. This phase created a feedforward pathway through the network that represents an 

individual stimulus. Each feedforward pathway stimulation (e.g., A-A’) included 40 trials with a 

500ms gap between trials. The total length of supervised training was therefore 120 seconds for 

all 6 feedforward pathways.  

Following supervised training, we implemented an unsupervised associative training 

phase, where pairs of stimuli were presented simultaneously. This occurred by stimulating pairs 

of input items together (e.g., A+B, B+C, etc) in layer 1. These pairs of items were stimulated 

sequentially every 500 ms with a 2 second gap between same-pair stimulations. The exact duration 

of associative training varied by experiment, but if associative training time was 135s/pair, then 

each pair was stimulated 270 times. 

 Finally, there was a sleep phase. During sleep, the levels of neuromodulators were changed 

to induce spindles (N2) or slow oscillations (N3) and there was no external stimulation provided. 
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Each sleep phase was followed by a testing phase, where each of the six groups was stimulated in 

layer 1, and the response of layer 2 neurons was measured. Stimulation was provided every 500 

ms and each group was stimulated eight times. Performance was measured as the network’s ability 

to recall both the direct and indirect associated item (e.g., upon stimulation of A, can the network 

recall both B’ and C’?). In Figure 1.9B, we performed additional tests where groups A, C, X, and 

Z were stimulated and neuron groups B’ and Y’ were hyperpolarized to prevent activation. In 

another experiments, we hyperpolarized neurons from linking groups B/B’ and Y/Y’ during sleep 

to simulate experiments with optogenetic inactivation. 

Table 1.2: Neuron indices in cortical architecture 
 

 
1.3.2 Experimental Design and Statistical Analysis 

All analyses were performed within standard Python functions and libraries. Data are 

presented as mean and standard deviation unless otherwise stated. Each experiment was repeated 

with 10 network stimulations from different network initializations and random seeds for purposes 

of statistical analyses, using standard two-sided or one-sided T-tests. 

1.3.2.1 Relational Memory Performance Metrics 

Here, we describe the association matrices shown in Figure 3 as well as the conversion 

from these matrices to an association score. To build an association matrix, individual neuronal 

groups were stimulated in layer 1 (e.g., item A was stimulated), and we measured the number of 

spikes in each of the six layer 2 groups (A’, B’, C’, X’, Y’, Z’). This number was averaged over 

Neuron Groups Layer One Region Layer Two Region 
A,A’ Neurons 10-29 10-19 (Neurons 210-219) 
B,B’ Neurons 40-59 20-29 (Neurons 220-229) 
C,C’ Neurons 70-89 30-39 (Neurons 230-239) 
X,X’ Neurons 110-129 50-59 (Neurons 250-259) 
Y,Y’ Neurons 140-159 60-69 (Neurons 260-269) 
Z,Z’ Neurons 170-189 70-79 (Neurons 270-279) 
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the 10 different (initialization) network simulations and 8 testing trials within each network 

simulation. We only considered spikes that occur within 150ms of stimulation to the layer 1 

groups. To compute an association score based on the association matrix, we built a binary 6x6 

mask with 1’s in the upper left and lower right 3x3 grids and -1’s everywhere else. This mask 

depicts what an ideal associative matrix should look like, where activity in the upper left and lower 

right grids is acceptable and activity in the upper right and lower left grids is spurious. After 

element-wise multiplication of the mask and the associative matrix, the resultant matrix was 

summed up across both rows and columns. To normalize this final score, we divided the final sum 

by the maximum element in the association matrix multiplied by 18 (here, 18 is the number of 

elements that should be positive, e.g. number of groups * number of items in each group, or 6*3, 

where 6 is number of groups (A-B-C, X-Y-Z) and 3 is number of items in each group). The final 

number was on a scale from -1 to 1, where a score of -1 occurs when the association matrix is the 

opposite of what it should be after successful learning (e.g., stimulating group A activates X’, Y’, 

and Z’), an association score of 0 is true for a random matrix, and an association score of 1 indicates 

perfect performance on the task (e.g., stimulating group A equally stimulates A’, B’, C’). 

1.3.2.2 Latency and Rate Analysis 

In Figure 1.4, we show the spiking rates and latency of neurons in layer 2. To compute the 

latency of response, after applying a pulse of stimulation during testing, we analyzed the next 200 

ms window of activity in layer 2. The latency, for each layer 2 neuron,  was determined by taking 

the time of activation of a neuron in layer 2 and subtracting the time of stimulation in layer 1. If a 

neuron does not spike in the 200ms time window, its latency was ignored from the computation. 

The firing rate was computed by calculating the total number of spikes that occur in the 200 ms 

window. We considered four different types of memories: direct memories (e.g., activation of 
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neuron group A’/C’ when B’ is stimulated), indirect memories (e.g., activation of neuron group 

A’/C’ when C/A is stimulated, respectively) and incorrect memories (e.g., activation of neuron 

group X’/Z’ when A is stimulated). For each type of memory, latencies and rates were averaged 

across all pairs of that type (e.g., direct memories = A-B’, B-A’, B-C’, indirect memories = A-C’, 

C-A’, incorrect memories = A-X’, A-Z’, C-X’, C-Z’  for the ABC triplet). We should note that 

this metric likely overestimated latency for the incorrect memories, since it did not consider the 

fact that if a neuron does not fire, its latency is ignored from the computation. Thus, e.g., if only 

one incorrect neuron fired with a latency of <50 ms, then the average latency would in fact be <50 

ms. This was rarely the case but nevertheless the drop in latency of the incorrect memories was 

likely due to this phenomenon since the rate of firing (3 spikes/stimulation) is quite low already. 

1.3.2.3 Weight Analysis 

In Figure 1.5 and 1.6A-D, we explored the synaptic connectivity matrices. Figure 1.5 was 

obtained by recording the synaptic weights between neurons for each type of connection 

(feedforward or recurrent). To evaluate the synaptic input to each neuron i, we computed the 

following equation: 𝑠L =	∑𝑤{L4}, where j is any neuron that meets the criteria (e.g., direct, indirect, 

or incorrect memories) and 𝑤{L4} is the weight connecting form neuron j to neuron i. If a synapse 

does not exist between two neurons i and j, then the weight is ignored. In Figures 6A-D, we built 

a graph of all neurons in layer 2. A node in the graph depicts 10 individual neurons from layer 2. 

An edge was created between nodes, if there existed a weight that exceeds 80% of the maximum 

weight value at that given time point. For example, if the maximum weight at time t is 𝑊!$7I  , then  

the threshold is defined as 𝑊IA = 0.8 ∗ 𝑊!$7I . For any weight, in the weight matrix, an edge was 

created between two nodes if there existed a weight value that exceeds the value 𝑊IA 	and the 

thickness of the edge depicts how many such weights meet the criteria.  
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1.3.2.4 Modularity Analysis 

Community detection algorithm was used to describe brain network changes during task 

learning (Bassett et al. 2015; Alexander-Bloch et al. 2010; Mucha et al. 2010). Modularity refers 

to the formation of cliques in a network, or series of intra-connected nodes with limited 

connections to other cliques (Alexander-Bloch et al. 2010). Time-dependent communities can be 

analyzed by measuring the structure of multi-slice networks, which can be thought of as a 

combination of individual networks that are composed of nodes that are linked in time to past and 

future versions of that network (Mucha et al. 2010). To perform community detection (Figures 6E-

F), we used existing community detection algorithm (Jeub et al. 2020). First, the Leicht-Newman 

modularity matrix for ordered and directed layers was computed (Leicht and Newman 2008). This 

algorithm finds a partition that maximizes the modularity of the matrix. After this partition was 

computed, the generalized Louvain method for community detection was applied (Jeub et al. 2020; 

De Meo et al. 2011). As a result of applying these algorithms, a network partition and community 

assignment graph was returned as a function of time. The algorithms aim to find a community 

assignment partition that maximizes the resulting modularity of the network. Two parameters were 

tuned to aid in this process: the coupling between temporal layers (𝜔 = 1.0) and the intra-layer 

resolution (𝛾 = 1.75).  

1.3.2.5 Replay Analysis 

To analyze memory replay, we adopted a method from (González et al. 2020). First, the 

LFP during sleep was computed by evaluating the average membrane potential across all 

pyramidal neurons in the cortex. A threshold for crossing from Up to Down state and vice versa 

of the slow oscillations was computed by taking the resting membrane potential (-63 mV) and 

subtracting the mean sleep membrane potential. After the threshold was computed, we filtered the 
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LFP using a 2nd-order Butterworth filter with a Nyquist frequency of 500 Hz and passband and 

stopband frequencies of 0 and 3 Hz, respectively. Next, we applied the threshold to find the Up to 

Down state and Down to Up state transition times.  Activity above the threshold was denoted as 

an Up state.  

Once the Up and Down states were identified, we analyzed the activity within each 

individual Up state to calculate replay events. A spiking event was considered a replay event when 

a pre-synaptic and a post-synaptic neuron fired within a given time window (<200 ms). The order 

of firing (pre-post, or post-pre) was used to determine the direction of replay and to compute a 

directional graph between neurons, where each edge stores the number of replay events going in 

that direction (see (González et al. 2020) for details).  

 
1.4 Results 

1.4.1 Thalamocortical Model of Relational Memory 

In this work, we used a minimal thalamocortical network model to test the role of sleep in 

learning an unordered relational memory task (Figure 1.1A-B). Cortex was modelled with a 

network consisting of two layers, each representing a distinct functional area of the cortex, and 

each including excitatory pyramidal (PY) cells and inhibitory interneurons (INs). A two-layer 

cortical model was motivated by visual associative learning in the primate brain. Prior work 

suggests that associations are learned by recurrent synaptic connections in the parietal associative 

cortex (Bjekić et al. 2019; Fitzgerald, Freedman, and Assad 2011; Fitzgerald et al. 2013; Aminoff 

and Tarr 2015). This area of cortex receives input from primary visual cortex (Galetti et al., 2001 

Eur. J. Neuro.), which shows a mostly stereotyped response upon presentation of visual stimuli 

(Deitch et al., 2021). Thus, we constructed our model with two populations of cortical neurons 

(which we call layers here, when we refer to the model): the first representing visual cortex with a 
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mostly stereotyped population response to specific stimuli, and the second representing associative 

cortex, with recurrent connectivity to promote associative memory learning. 

Thalamus was modelled by two populations of neurons, each including excitatory 

thalamocortical (TC) neurons and inhibitory reticular (RE) neurons, with bidirectional connections 

to its respective cortical areas (see Methods for details). Indeed, neuroanatomical studies suggest 

that different subdivisions of thalamus project to different areas of cortex, with primary areas of 

thalamus such as LGN projecting bi-directionally to primary visual cortex (Briggs et al., 2007), 

and other subdivisions, such as the lateral posterior nucleus, connecting bi-directionally to parietal 

cortex (Lyamzin et al., 2019 Neurosci. Research). All neurons were simulated with Hodgkin-

Huxley dynamics and are based upon previous work (Wei et al. 2018; Wei, Krishnan, and 

Bazhenov 2016; Krishnan et al. 2016). 

Using this model, we were able to simulate three distinct states of the network – awake,  

stage 2 (N2) sleep and stage 3 (N3) sleep – by changing the level of neuromodulators (Krishnan 

et al. 2016; Vanini, Lydic, and Baghdoyan 2012). Awake state was characterized by random 

asynchronous firing of cortical neurons, N2 sleep was characterized by spindles with occasional 

Down states, and N3 sleep (or slow-wave sleep (SWS)) was characterized by canonical slow 

oscillations between Up (active) and Down (silent) states (Blake and Gerard 1937; Steriade 2006; 

Steriade, McCormick, and Sejnowski 1993) (Figure 1.1B, C, see also Figure 1.8A). The thalamic 

component of the network primarily served the function of driving and modulating oscillations 

during sleep, specifically to increase synchrony of sleep slow oscillations in N3 (Lemieux et al. 

2014) and to generate spindles in N2, while learning-related plasticity occurred in the cortical 

neuronal populations. Synaptic plasticity was implemented in AMPA receptors, occurring in 

feedforward connections between layer 1 and layer 2 cortical pyramidal cell populations, as well 



 

18 

as recurrent connections between layer 2 pyramidal neurons (Figure 1.1F) (see Methods for 

details).  

To test relational memory in the model, we built two triplets of relational memory items 

(ABC, XYZ). During associative training, each of the four direct object pairs (A-B, B-C, X-Y, Y-

Z) was presented to the network, as described below (Figure 1.1A, left). During testing, a single 

item from each pair was presented (e.g., item A) and the ability of the network to recall each of 

the relevant associative items (items B and C) was measured (Figure 1.1A, right). Each of the six 

distinct items (A, B, C, X, Y, Z, Figure 1.1F) were represented by distinct groups of neurons in 

the first layer of the network.  

1.4.2 Training and Testing Stimulation Protocol 

The network stimulation included three distinct phases: supervising training, associative 

training, and sleep (Figure 1.2A). The first phase in training was to build connections between 

neurons representing item A in the first layer (neuron group A) and “higher level” neurons 

representing the item in the second layer (neuron group A’) (Figure 1.2B). Since all connections 

in the model were initially random, before training there were equal connections from neuron 

group A to all the neuron groups in the second layer (A’-Z’). Thus, to create distinct pathways 

through the cortex that represent each of the six distinct items, we incorporated the supervised 

training phase. During supervised training, neuron group A was stimulated and then neuron group 

A’ in the second layer was stimulated with a 5 ms time delay. Through spike-timing dependent 

plasticity (STDP), this stimulation paradigm strengthened feedforward connections between A and 

A’ and led to the formation of a pathway through the network representing each of the six distinct 

items. After supervised training, there was a testing phase where each of the six neuron groups in 
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layer 1 was stimulated and the activity of neurons in associative layer 2 was measured. During 

testing, plasticity was turned off so spiking activity did not lead to STDP events. 

Following supervised training, we simulated associative learning phase. Items A+B, B+C, 

X+Y, Y+Z were presented simultaneously to the network by stimulating groups A and B together 

or B and C together, etc. (Figure 1.2C). Because of the preceding supervised training, neurons in 

the second layer responded to the stimulation in the first layer, such that, e.g., when neuron groups 

A and B were stimulated, neuron groups A’ and B’ fired without any direct stimulation. After a 

period of associative training, there was another testing phase. 

During the associative training phase, we also tested two plasticity schemes: In the first 

scheme, STDP was used as a sole learning rule to increase synaptic connectivity between neurons 

with correlated firing activity and decrease synaptic connectivity between those neurons with 

uncorrelated firing activity. In the second scheme, STDP was used along with hetero-synaptic 

plasticity (Chen et al. 2013; Chistiakova et al. 2014). Heterosynaptic plasticity can induce plastic 

changes at synapses that are not active during the induction. It has been postulated since early 

theoretical studies which used normalization to prevent runaway dynamics of synaptic weights 

and introduce synaptic competition to the model systems with Hebbian-type learning (von der 

Malsburg 1973; Miller 1996). Any synapse to a cell may express heterosynaptic changes after 

episodes of strong postsynaptic activity leading to a sufficient rise of intracellular calcium 

(reviewed in (Chistiakova et al. 2014; 2015)). Thus in the model including heterosynaptic 

plasticity, after each STDP event, individual weights connecting to a neuron were modified so that 

the total sum of synaptic inputs to the neuron remained constant. This served to balance excitation 

in the network and prevent runaway networks dynamics by ensuring that the overall level of 
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excitation remains constant during learning. Below we report results for each of these conditions 

and we discuss later possible implications of heterosynaptic plasticity in associative learning. 

Finally, we simulated sleep  phase (Figure 1.2D). Based on experimental data, the 

improvement of indirect relational memory following sleep is most correlated with slow-wave 

sleep (SWS) (Tucker, Fishbein, and Lau 2010) and thus we primarily focused on testing the effect 

of SWS on relational memory (differential role of spindles is discussed later in the paper). We 

need to mention that we did not explicitly model hippocampus and associated ripple events; 

instead, we assumed that coactivation of the cortical neurons (e.g., A+B) may be result of direct 

sensory input or hippocampal input (as postulated by ‘indexing’ theory (Teyler and DiScenna 

1986)). Following SWS, there was another testing phase. Overall, based on behavioral work, we 

tested the hypothesis that following sleep, the presentation of item A in the first layer will lead to 

a greater co-activation in neuron groups A’ and C’, i.e., association between items A and C would 

form, when compared with the same group activation before sleep.  

1.4.3 Sleep Improves Associative Memory Performance Both With and Without 
Heterosynaptic Plasticity 

 
In Figure 1.3A, the strength of response in the layer 2 neuronal subgroups (A’-Z’) is shown 

in response to stimulation of each of the six layer 1 neuronal subgroups (A-Z) in the first cortical 

layer. After supervised training, stimulation of a single group in layer 1 (e.g. group A) led to 

activity in its corresponding neuronal subgroup in layer 2 (group A’). Spurious activity in other 

layer 2 groups was usually minimal and based off the random connectivity matrix, where some 

groups may be connected (based on number of connections) more strongly than other groups 

(Figure 1.3A, left), (See Methods and materials for computing activity).  

After associative training, an increase in direct relational memory was observed. Here, 

stimulation of a neuron group A led to activity in neuron groups A’ and B’, indicating that the 
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network has learned to make direct associations between objects A and B. Stimulation of the 

linking item (e.g. B or Y) led to activity in all three of the items in the corresponding triplet (A’, 

B’, C’ or X’, Y’, Z’). However, most notable is that stimulating A or C alone did not lead to a 

strong response in the indirect relational item, C’ or A’, respectively (Figure 1.3A, middle). After 

sleep phase, this indirect relational memory was significantly strengthened, as stimulation of A or 

C (X or Z), led to a stronger response in the indirect relational item, C’ or  A’ (Z’ or X’), 

respectively (Figure 1.3A, right).  

To quantify the changes in the association matrices, we used a measure of how “diagonal” 

the matrix is in respect to four main 3x3 blocks, which evaluated the extent to which the matrix 

shows strong responses in the upper left and lower right 3x3 blocks, and low responses in the top 

right and bottom left 3x3 blocks (see Methods and Materials). (This measure would be zero for 

uniform matrix; +1 for a matrix with the top left and bottom right 3x3 blocks all having the same 

values, with zero activity in the top right and bottom left 3x3 blocks; and -1 for the opposite case 

(activity in top right and bottom left blocks)). We found that sleep leads to a significant 

improvement in relational memory, based on simulating ten random different network 

configurations (Figure 1.3B, p=0.0062, t(9)=3.55, between relational memory after sleep and after 

associative training, based on a two-sided t-test). 

The extent of improvement after sleep was determined by two factors: the length of 

associative training and length of sleep. We observed that if associative training was long, then 

indirect associations can be learned without sleep (Figure 1.3E, 50 seconds). However, when 

associative training was shorter, then sleep had a beneficial impact on improving relational 

memory (Figure 1.3E, 20, 35 seconds). Given the model with no homeostatic mechanisms built in 

to constrain synaptic weights, it was observed that long training or long sleep periods could lead 
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to runaway network dynamics, where stimulating a single neuronal group in layer one leads to 

activity across many neurons of the second layer, thus lowering overall response specificity and 

performance.  

Given the negative impact of the runaway network dynamics, we next explored the use of 

biologically realistic heterosynaptic plasticity mechanism to constrain synaptic weights. Thus, 

during associative training, heterosynaptic plasticity was put in place, such that the total sum of 

synaptic inputs to any neuron was conserved over time. In this model, any event that leads to 

synaptic potentiation between neurons would also lead to a corresponding depotentiation of other 

connections to the same neuron to keep net sum of all input weights constant (see Methods and 

Materials for details). In the model with heterosynaptic plasticity, we observed less spurious 

activity after associative training (Figure 1.3C, middle). In addition, activation of the indirect 

memory after associative training was almost non-existent. Importantly, after sleep, the activity in 

the indirect memory items was strong, with very little activity in neurons representing non-

associated items (Figure 1.3C, right). Here, improvement after sleep was strongly significant 

(Figure 1.3D, p=3.78 x 10^-6, t(9) = 13.04, based on two-sided T-test). This suggests that, for SWS 

to have a beneficial impact on the network’s ability to recall indirectly associated items, the 

weights before sleep must be sufficiently separated but not too strong overall, as it was when 

heterosynaptic plasticity was applied during associative training. In general, the best performance 

was observed when sleep was incorporated into the network (Figure 1.3F). Increasing the training 

time beyond a certain duration did not always increase the baseline performance; however, sleep 

applied even after long associative training could still further improve performance. We tested 

how associative memory performance depends on the total number of slow waves and we found a 

significant positive correlation in a broad range of sleep durations (Fig. 3G). This result is in 
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agreement with previous experimental work that found a significant correlation between the SWS 

length and relational memory learning (Tucker, Fishbein, and Lau 2010). Interestingly, very long 

sleep could have the opposite effect and reduce performance (see, e.g., Tsleep=700sec), suggesting 

the existence of an optimal sleep duration that could also depend on the duration of preceding 

training sessions. For further analyses, we used the heterosynaptic plasticity condition with Tsleep 

= 300 seconds and Ttrain = 135 seconds. 

Synaptic plasticity may also occur between cortical pyramidal cells and interneurons, as 

well as between thalamus and neocortex. Although we did not explicitly incorporate these types 

of plasticity in our model, we tested effect of changes in the balance of excitation and inhibition 

on post-sleep memory performance. Thus, we modified the level of inhibition in the network by 

setting it to +/- 10% of the baseline value. We found no significant difference in the associative 

score after sleep (t(10) = -0.8, p = 0.4, one-sided t-test). After associative training performance 

was relatively higher in the network with reduced baseline inhibition (t(10) = 2.4, p= 0.02, one-

sided t-test). In this case, there was still a significant post-sleep improvement (t(10) = -4.96, p = 

0.0001). The network with increased inhibition revealed slightly reduced performance right after 

associative training but relatively higher gain after sleep.  

1.4.4    Sleep Increases Amplitude and Decreases Latency of Indirect Memory Response 

Since sleep increases the association score, we next asked if sleep can improve the latency 

of group activation by reducing time delay between responses of stimulated and indirectly recalled 

groups. To test this, we analyzed the raw neuronal traces after supervising training, after 

associative training, and after sleep (Figure 1.4A-C). As mentioned before, heterosynaptic 

plasticity was in place in all these simulations. During testing, each group (A-C, X-Z) was 

simulated eight times every 500 ms in layer 1 and the response in layer 2 was measured. We next 
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converted these firing patterns into a local field potential (LFP) for each of the six groups of 

neurons in the second layer and averaged across eight simulations. Results are shown when X is 

stimulated in the first layer (Figure 1.4D). After supervised training, stimulating X led to a strong 

response in X’ (Figure 1.4D, left). After associative training, the strength of the response of Y’ 

was increased and there was a small, sustained response in Z’ (Figure 1.4D, middle). Finally, after 

sleep the response profiles of Y’ and Z’ nearly become overlapping, suggesting that the network 

has used its knowledge of an association between Z’ and Y’ to correctly infer the indirect 

association between Z’ and X’ (Figure 1.4D, right).  

We measured response latency as a time delay from layer 1 stimulation to the first action 

potential in each layer 2 neuronal group’s response and we measured response intensity as total 

number of spikes per stimulation of each layer 2 neuronal group. After supervised training, the 

average latency of direct memories (A-B’, which have not been learned yet), indirect memories 

(A-C’), and incorrect memories (A-X’) were all similar at ~200ms (Figure 1.4E, left group). In 

addition, the rate of response was very low and similar across all 3 types of memories (Figure 1.4F, 

left group). After associative training, the latency of the direct memory recall was substantially 

reduced and the intensity of response was increased (Figure 1.4E-F, middle group). The latency 

and the response amplitude of the indirect memory were also improved, but the latency was not 

significantly different from that of response for incorrect memories, and the amplitude was not as 

strong as for direct memory. Importantly, after sleep, the latency of the indirect memory recall was 

significantly reduced compare to incorrect one (Figure 1.4E, right group, t(1163)=24.27, 

p=3.039x10^-100, two-sided T-test) and the intensity of response was significantly increased 

(Figure 1.4F, right group, t(319) = -9.64, p=2.41x10-19). This behavioral change in the network 

response dynamics highlights the increase in strength of the indirect memory following SWS.  
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1.4.4 Sleep Increases Modularity of Each Triplet in Layer Two Recurrent Connections 

To determine which network changes were responsible for improving indirect relational 

memories after sleep, we analyzed the changes in synaptic weights. There were two types of plastic 

connections in the model: feedforward connections between layer 1 and layer 2, and recurrent 

connections within layer 2. In the feedforward connectivity matrices, we observed that sleep leads 

to a significant increase in the synaptic input coming from both indirect (Figure 1.5A, right, e.g. 

connection A to C’, t=-6.98, p=1.39 x 10-95, two-sided t-test) and direct neuronal groups (Figure 

1.5A, right, e.g. connection A to B’, t=-5.66, p=5.29 x 10-79, two-sided t-test). Importantly, the 

incorrect memory weights (e.g., X to A’) were not significantly greater than their pre-training 

values (in fact they were smaller than their pre-training values, p < 1 x 10-100, one-sided t-test), 

suggesting that sleep does not just increase all the connections but only connections related to 

associated memory items. In the recurrent weights (Figure 1.5B), a similar effect was observed 

where synaptic input from direct and indirect memory groups was significantly increased to 

specific neurons after sleep (p=6.18 x 10-62, p=7.67 x 10-88 for both groups (direct and indirect, 

respectively), two-sided t-test). Interestingly (also see discussion below), synaptic input from a 

neuronal group to its indirect triplet pair (e.g., A’ to C’) in the second layer became even larger 

than the synaptic input from an indirect group in the first layer (e.g., A to C’, p=0.02, two-sided t-

test, average feedforward synaptic input=2.08, average recurrent synaptic input=2.75). 

To better quantify changes in the recurrent connections in layer 2, we built and analyzed a 

graph of 10 nodes, where each node represents a group of 10 neurons (i.e., group A’ = 11-20, 

B’=21-30, …, Z’=71-80) (Figure 1.6, A-D). We created an edge between two groups if there were 

any strong enough weights (i.e., exceeding a threshold) between these groups (the weight threshold 

was set at 80% of the maximum weight value at different time points, e.g., threshold before training 
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= 0.0218, threshold after supervised training = 0.1295, threshold after associative training = 

0.1857, threshold after sleep = 0.1913). On the graph, the thickness of the edge depicts how many 

such weights existed between the two nodes. After supervised training, recurrent weights within 

trained groups (e.g., between all the neurons from group A’) increased, but weights between 

groups remained weak and the graph was essentially disconnected (Figure 1.6B). After associative 

training, relatively weak connections were formed between the linking group B’ (or Y’) and the 

other relevant groups, A’ and C’ (or X’ and Z’) (Figure 1.6C). In addition, the self-connections 

(recurrent connections within a group) were magnified. Finally, after sleep, the overall 

connectivity between the group triplets was increased, with weak connections between direct 

memory pairs becoming stronger (e.g., X’-Y’) and new connections forming between indirect 

memories (e.g., X’-Z’) (Figure 1.6D). Overall, these changes suggest that items in each triplet 

(e.g., X’-Y’-Z’) becomes strongly connected to the other items in that triplet so that activation of 

any one group can lead to activation of the other groups. Thus, after sleep all the neurons in the 

second layer associated with the items belonging to the same relational memory triplet formed an 

attractor in synaptic weights space. 

To further test this idea, we performed modularity analysis on the time-dependent recurrent 

weight matrix to determine how clusters of neurons change over the course of training and sleep 

(see Methods and Materials for details). We used a time-dependent community detection algorithm 

in order to assign each of the 100 neurons in layer 2 to a community (where community assignment 

can change over time) based on the synaptic connectivity matrix (Leicht and Newman 2008; Jeub 

et al. 2020). Figure 1.6E illustrates how the community assignment changed during supervised 

training, associative training, and sleep. During supervised training, each of the 6 subgroups was 

put into a community with itself, as the neurons within these groups became strongly 
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interconnected. During associative training, there was some mixing between these six subgroups, 

as observed, e.g., in the merging of communities representing Y’ and Z’ (orange group in Figure 

1.6E). Finally, during sleep, we observed merging of each of the three subgroups from each triplet 

into larger community. We found that the number of communities in the network started out high 

but was further reduced mostly during associative training (Figure 1.6F). Together, these results 

suggest that sleep altered the connectivity matrix to enable formation of a large community of 

related neurons who all shared similar stimulus-response profiles - formation of indirect memories. 

Thus, sleep altered the community structure by building a strong attractor among members of each 

of the memory triplets. 

1.4.5 Replay During Sleep Drives Synaptic Weight Changes 

Given that during sleep synaptic weights are restructured to support formation of indirect 

associative memory, the question remains of what it is specifically about sleep that leads to these 

changes. Based on our previous work (Wei, Krishnan, and Bazhenov 2016; González et al. 2020; 

Wei et al. 2018), we hypothesized that replay during sleep of synaptic traces formed during training 

leads to a strengthening of these synaptic traces and thus an improvement in memory (Lewis and 

Durrant 2011; Ji and Wilson 2007). Importantly, since in our model indirect connections, e.g., 

from A to C’ or A’ to C’, are never explicitly activated during training, these pathways may 

become active during SWS, which could explain the weight changes illustrated above.   

To detect possible replay events, we applied a procedure previously proposed in (Gonzalez 

et al, 2020).  After detecting individual Up states (using LFP thresholding, see Methods, Figure 

1.7A), we identified, for each Up state, all spiking events that could lead to STDP changes. Thus, 

if Neuron I fired during an Up state and this was followed by Neuron II firing (within a 200ms 

time window), then this pair was considered an STDP event and the direction of replay (from 
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Neuron I to Neuron II) was recorded. We observed that the number of STDP events within the 

trained region of the network, both in feedforward and recurrent connections, was significantly 

greater than outside of the trained regions (Figure 1.7B, p<1e-5, for visualization purposes, only 

pairs with number of replay events above a threshold (top 75%) are shown). Importantly, we 

observed not just more STDP events randomly distributed across all the neuronal pairs in the 

trained region, but a higher number of events in specific neuronal pairs (Figure 1.7B, note red dots 

in the regions of interest), suggesting that those events reflect replay of the memory elements 

formed during associative training. In other words, during an Up state, there was a significantly 

higher chance that the neurons within the trained region would spike in a defined order compared 

to the neurons outside of the trained region, indicating that SWS does in fact reactivate synaptic 

memory traces learned during the associative phase. 

We next measured the extent to which replay is correlated with synaptic connectivity 

changes. Thus, we plotted observed synaptic weight change against the total number of replay 

events per neuronal pair and discovered a significant correlation between the number of replay 

events for a given connection and the amplitude of the weight change in this connection (Figure 

1.7C). This was true for both feedforward and recurrent connections (R^2=0.62, p=1 x 10-12 for 

feedforward and R^2=0.41, p=1 x 10-10 for recurrent connections). These data suggest that sleep 

replay can restructure weights to build the communities underlying relational memory formation 

as reported in Figure 1.6. We next separated replay events based on the type of connection: either 

self-connection (e.g., A-A’, or A’-A’), direct connection (e.g., A-B’, A’-B’), indirect connection 

(e.g., A-C’, A’-C’), or incorrect connection (e.g., A-X’, A’-X’). In feedforward connections, we 

observed that self-connections had the largest number of replay events, followed by direct, 

indirect, and incorrect connections, in order (Figure 1.7D, top, number of replay events is averaged 
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across ten trials and all the connections in each of the four categories). This suggests that in 

feedforward connections, replay reflects the underlying strength of the synaptic weights (compared 

Fig. 1.7D top and Fig. 1.5A). Since self-connections were the strongest (Figure 1.5A, t=-3.99, 

p=6.72x10-5, two-sided t-test), these connections experienced the greatest number of replay events. 

However, in the recurrent connections, there was a greater amount of replay events in the indirect 

connections (Figure 1.7D, bottom, t=2.72, p =0.006, two-sided t-test). This type of replay can lead 

to the formation of the communities (Figure 1.6), responsible for formation of indirect associative 

memories.  

1.4.6 N3 Sleep is Uniquely Responsible for Post-sleep Improvement Although Spindle-

Slow—Wave Nesting may be Important 

Behavioral studies suggest that duration of N3 sleep, but not N2 sleep, during a daytime 

nap is significantly correlated with associative memory performance (Tucker, Fishbein, and Lau 

2010). We tested the effect of N2 sleep by modifying level of neuromodulators in the model, that 

was set in between their waking and N3 state levels (Krishnan et al. 2016). In this regime, the 

network generated frequent spindle events interrupted by occasional slow waves (Figure 1.8A). 

We compared four conditions: 300s of N3 sleep alone (control, as in above simulations), 300s of 

N2 sleep alone, 600s of N2 sleep alone, and 300s of mixed sleep (200s of N2 followed by 100s of 

N3). We found that N2 sleep alone was not sufficient to significantly boost associative memory 

performance, for either 300s or 600s of N2 sleep duration (t(9) = -1.56, p = 0.13, one-sided t-test) 

(Figure 1.8B, left). However, either 300s of N3 sleep or mixed N3+N2 sleep did result in a 

significant improvement (t(9) = -2.39, p = 0.028, one-sided t-test) (Figure 1.8B, right). These 

results confirm behavioral evidence showing a unique role for N3 sleep, as opposed to N2 sleep, 

in improving relational memory. 
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Other studies suggested that phase locking between slow-waves and spindles (frequency 

nesting) may be necessary for memory consolidation (Latchoumane et al. 2017; Kim, Gulati, and 

Ganguly 2019). We tested this by measuring the power in spindle frequency band (from 7 to 16 

Hz) in 3 distinct phases of the N3 slow oscillations: Down to Up transition, Up to Down transition, 

and Random time windows during the Up state. Local field potentials were computed and the starts 

and ends of each Up state were identified as done previously (see Methods). We calculated the 

spindle power in 100ms time windows centered in each of the 3 phases. We found significantly 

higher power in the spindle frequency band near the Down to Up transition compared to the two 

other phases tested (Figure 1.8D). Additionally, we found that this spindle power was significantly 

correlated with associative memory improvement following sleep (Figure 1.8C, R^2 = 0.5, p = 

0.03). These results predict that phase-locking between spindles and slow waves may be important 

in relational memory.  

1.5 Discussion 

How does sleep give rise to relational memory? Our study suggests the following 

conceptual model. First, for each “basic” memory, there exists a feedforward pathway through the 

network that is stable and robust, so a stimulus presentation, i.e., pattern activation in primary 

sensory area (e.g., neuron group A, Figure 1.9A, left), leads to reliable and unique response in 

associative cortex (activation of neuron group A’). These pathways can possibly form during 

development, can be strengthened during subsequent training, and need to be robust for associative 

learning to take place. These pathways represent sensory “primitives” that have been once learned 

and do not need to be changed in adult brain. Second, during associative learning, events that have 

shared context are learned to be represented together. In the model, this occurred when inputs A 

and B are presented together, which leads to an overlapping representation in associative cortex, 
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where presentation of A or B alone leads to firing and recollection of the other object (i.e., B’ or 

A’) (Figure 1.9A, middle). If different associative memories include a common item, e.g., A-B 

and B-C, sleep aids in forming indirect associative memory between nonoverlapping items A’ and 

C’ by strengthening the entire pathway A à C’ (or C àA’), both through an increase in 

feedforward connections from A to B’ and C’ as well as community (or attractor) formation for 

the entire A’-B’-C’ group in associative cortex (Figure 1.9A, right). As sleep replay takes place on 

a compressed timescale (Nádasdy et al. 1999), the entire group (A’-B’-C’) can be activated within 

a small enough window for connections to grow between A’ and C’, taking advantage of STDP 

type mechanisms. Indeed, inhibiting the overlapping elements (B/B’ or Y/Y’) during sleep (or 

during memory recall) prevents post-sleep improvement on this associative memory task in our 

model (Figure 1.9B), in line with in vivo work which showed that associations between a visual 

stimulus and fear response could be blocked by optogenetic inhibition of neurons representing the 

visual stimulus during sleep (Clawson et al. 2021).  

Recent experiments suggest that learning rules may differ between anesthetized and awake 

states and are biased towards synaptic depression during Up states of SOs in urethane-anesthetized 

mice (González-Rueda et al. 2018). This result supports the synaptic homeostatic downscaling 

(SHY) hypothesis suggesting that during sleep synapses are downscaled to free up synaptic 

resources for learning during the next wake state (Tononi and Cirelli 2014). The other view is that 

synaptic potentiation occurs during NREM sleep to enable memory consolidation (Igor Timofeev 

and Chauvette 2018) (see also review in (Puentes-Mestril and Aton 2017). In our new study, based 

on a large scope of existing experimental data, we utilized a symmetric STDP rule, that is similar 

in both wake and sleep states, and we observed strengthening of synaptic connections to form new 

associative memories during sleep. This model may need to be extended based on prevailing 
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biological views about plasticity rules in the waking and sleeping brain as new data are 

accumulated. In addition, plasticity mechanisms such as heterosynaptic and homeostatic synaptic 

plasticity may affect learning and their effects are different between sleep and wake. Indeed, e.g., 

the effect of heterosynaptic plasticity depends on neuromodulators (Bannon et al. 2017) whose 

levels fluctuate during sleep-wake cycle. In our new study we explicitly tested effect of 

heterosynaptic plasticity on associative memory and found that it helps to form associative 

memories. Because of the complexity of the effects of neuromodulation, we, however, considered 

simplified model where heterosynaptic scaling operates similarly during sleep and awake. 

Our work expands upon computational models of relational memory by providing a 

biophysically plausible account of learning during waking and consolidation during sleep. 

Previous models for relational memory include the temporal context model (TCM) and retrieval 

based models (Kumaran 2012; Kumaran and McClelland 2012). Our model adds to this literature 

by: 1) developing a biophysical account, based on STDP rules, that explores the role of sleep replay 

on relational memory tasks, and 2) suggesting a role for both the TCM and retrieval-based models, 

based on different types of relational memory tasks. TCM and retrieval-based models have been 

successful at demonstrating performance on associative memory tasks (Kumaran and McClelland 

2012). However, these models were constructed using pre-set weights between different regions 

of the network and sleep replay was implemented using artificial stimulation. In contrast, in our 

work, we show that STDP rules can be used based on realistic task settings to learn relational 

memories and synaptic replay, that is needed for formation of indirect relational memories, occurs 

naturally during SWS and does not require any additional stimulation. We found that, during slow-

wave sleep, individual items were replayed spontaneously and in a correct order to form a new 

relational memory.  
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Our model, which more closely aligns with TCM, may be insufficient at explaining 

generalization on ordered relational memory tasks (Ellenbogen et al. 2007; Werchan and Gómez 

2013). We showed that replay is as likely to occur in the forward or backward directions (e.g., 

forward=A à B, backward=B à A). In this simplified task, memory consolidation during sleep 

occurs mainly in a recurrent layer, as neurons representing single units become wired together 

based on a shared context and form an attractor or community that enables indirect memory recall. 

However, in an ordered relational memory task, where the hierarchy of items needs to be learned, 

replay within a single attractor-based layer may be insufficient to correctly encode the order of the 

task, and big-loop recurrency may be necessary.  

Many studies explored the effect of sleep on relational memory without analyzing 

correlation between specific sleep stages and performance improvement (Hiuyan Lau, Alger, and 

Fishbein 2011; Huguet et al. 2019). Our work expands upon these studies by suggesting a unique 

role for slow-wave sleep in improving relational memory. We further predict that while nesting 

spindles and slow waves may be important for consolidation of relational memories, spindles alone 

are not sufficient for consolidation. Our study predicts that the number of slow waves observed 

during sleep is significantly correlated with the subject’s ability to perform relational memory 

tasks,  in line with previous work that demonstrated a significant correlation between the SWS 

length and relational memory learning (Tucker, Fishbein, and Lau 2010).  

Our study also further supports evidence that mental health disorders, such as 

schizophrenia, where SWS is disrupted may experience deficits in relational memory (Titone et 

al. 2004; Martin, Jeste, and Ancoli-Israel 2005; Pritchett et al. 2012). Patients with schizophrenia 

have shown a marked decrease compared to healthy controls in their performance on transitive 

inference and relational memory tasks (Titone et al. 2004; Avery et al. 2021). One of the deficits 
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in sleep in schizophrenia subjects is a significant decrease in the amount of SWS (Keshavan, 

Reynolds, and Kupfer 1990; Yang and Winkelman 2006; Manoach and Stickgold 2009; Benca et 

al. 1992). Our model suggests that if disrupted SWS is responsible for deficiencies to learn 

transitive inference in schizophrenia, then methods focusing on recovery of normal sleep patterns 

in schizophrenia could lead to an improvement in associated cognitive symptoms.  

We should note the limitation of our work by ignoring the explicit impact of the 

hippocampus on memory consolidation and transitive inference. Previous studies have described 

the importance of the hippocampus in transitive inference tasks, where hippocampal activation is 

increased during the performance of transitive inference tasks, and damage to the hippocampus 

decreases performance on such tasks (DeVito, Kanter, and Eichenbaum 2010; Heckers et al. 2004; 

Wendelken and Bunge 2010; Zalesak and Heckers 2009). Recent studies revealed a complex bi-

directional model of the interaction between hippocampal and cortical networks (Helfrich et al. 

2019; Rothschild, Eban, and Frank 2017). Our recent modeling work (Sanda et al. 2021) found 

that hippocampal ripples can coordinate large-scale spatio-temporal dynamics of cortical slow 

waves. We address these concerns by noting the similarity of the second layer in our model with 

hippocampal regions, which rely on similar attractor dynamics (Colgin et al. 2010). Thus, the same 

mechanisms we propose here may explain relational memory improvement during sleep in cortico-

hippocampal system. Importantly, empirical and computational studies reported that hippocampal 

activation during SWS is preceded by cortical input and follows a cortical-hippocampal-cortical 

pathway (Navarrete, Valderrama, and Lewis 2020; Rothschild, Eban, and Frank 2017; Sanda et al. 

2021). In this scenario, the content of replay may be introduced by cortical networks (layer 1 in 

our model) and lead to the chosen content of replay in hippocampal and other cortical networks 

(layer 2 in the model).  
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REM sleep is likely to be very critical in memory and learning but its specific role in 

formation of relational memories is unknown. One study found that a fraction of time spent in 

REM sleep during a 60-minute nap was correlated with improvement on A-C item pairs but also 

led to more forgetting of directly learned (A-B) relations (Alger and Payne 2016). In this work, 

however, subjects who did not attain REM sleep during the 60-minute period also performed 

similarly to those that attained REM sleep. Thus, it remains an open question how REM and 

NREM sleep can differentially contribute to relational memory and to memory consolidation in 

general (see, however, Wei et al. 2018). It is also likely that the cycling between REM and NREM 

sleep over the course of a typical night, i.e., multi-phasic sleep with specific temporal structure, is 

important for sleep-dependent memory consolidation. 

To summarize, we built a model of the thalamocortical system which suggests specific 

biophysical mechanisms that explain the role of sleep in the formation of indirect associative 

memories. This model predicts that inhibition of neuronal groups that represent items that link 

associated items may decrease performance on relational memory tasks (Clawson et al. 2021), 

while artificial stimulation during sleep replay of non-associated items may lead to false memory 

formation (Diekelmann, Born, and Wagner 2010). Our model can be extended in order to describe 

transitive inference tasks where there is an underlying hierarchy of items (e.g., A>B) which likely 

requires a third layer to account for big-loop recurrency needed to perform ordered transitive 

inference.  
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1.7 Figures 

 
Figure 1.1: Thalamocortical model of relational memory simulates transitions between awake and sleep 
states. 
(A) Basic task setup. During associative training (left), pairs of items are presented simultaneously (A+B, 

B+C). The relational memory task (right) tests the ability of the network to retrieve direct (B) and 
indirect (C) items, when presented with item A. 

(B) Basic network architecture (PY: Excitatory pyramidal cells; IN: Inhibitory interneurons; TC: 
Thalamocortical neurons; RE: inhibitory thalamic reticular neurons). Excitatory connections terminate 
in a dot, whereas inhibitory connections terminate in a line. Arrows indicate the direction of 
connections. 

(C) Baseline network dynamics of the 200 PY neurons and 100 INs during wake and slow-wave sleep (each 
row depicts membrane potential over time of a single neuron).  

(D) Zoom-in of baseline network dynamics in awake state before sleep (left), during sleep (middle; one Up 
state is shown), and in awake state after sleep (right). Network dynamics before and after sleep are 
shown for layer two neurons. During sleep, a canonical slow wave pattern is seen across both layers. 

(E) Weight connectivity matrix for feedforward connections from layer 1 to layer 2 in cortex (left) and 
recurrent connections within layer 2 (right). Connection probability is 30% for feedforward connections 
and 50% for recurrent connections. A white dot represents that a connection exists between two 
neurons. 

(F) Two-layer cortical network architecture. There are plastic feedforward connections from layer 1 to 
layer 2 and plastic recurrent connections within layer 2. A subset of neurons in each layer is trained to 
represent individual items (e.g., neurons 10-29 (denoted neuron group A in the text) in layer 1 represent 
item A and neurons 210-219 (denoted neuron group A’) represent item A in the second layer). 
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Figure 1.2: Training and testing protocol include supervised and associative training in awake state and 
spontaneous activity during SWS. 

(A) Overall network dynamics for the three phases: supervised training (purple), associative training 
(green) and sleep (cyan). Each phase is followed by a testing phase (T1, T2, and T3).  

(B) During supervised training, neuron groups A, B, C, X, Y, Z are stimulated in layer 1 and neuron groups 
A’, B’, C’, X’, Y’, Z’, respectively, are stimulated in layer 2 with a 5 ms time delay. Example 
stimulations of C and C’ and X and X’ are shown on the left. During testing, a single neuron group in 
layer 1 is stimulated (e.g. neuron group Z on the right), and the response of neurons in layer 2 are 
measured. Red bars are shown to accentuate neuron groups that are stimulated. 

(C) During associative training, neuron groups A+B, B+C, X+Y, Y+Z are stimulated simultaneously. Each 
pair is stimulated with a 500 ms delay after previous group stimulation. No stimulation is provided in 
layer 2. After associative training, another testing phase is performed.  

(D) During sleep, neuromodulator levels are altered in order to simulate deep stage 3 (N3) sleep activity 
characterized by spontaneous slow-waves across cortex. After sleep, another testing phase is 
performed. 
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Figure 1.3: Sleep improves associative memory performance 

(A,C) Responses of layer 2 neuron groups after stimulating a neuron group in layer 1 during testing after 
supervised training (left), associative training (middle), and sleep (right). Panel (A) depicts responses in the 
model without heterosynaptic plasticity (HSP) and panel (C) is from the model with heterosynaptic 
plasticity included during associative training. 
(B,D) Conversion of association matrices shown in (A) and (C) to a single association performance score. 
Panel (B) is without heterosynaptic plasticity and panel (D) is with heterosynaptic plasticity. 
(E,F) Associative training duration vs. sleep duration. Panel (E) is from the model without heterosynaptic 
plasticity and panel (F) is from the model with heterosynaptic plasticity. The first number in each cell 
depicts the association score before sleep and the second number depicts the association score after sleep. 
Color depicts the % change in association score from after to before sleep.  
(G) Improvement in association score as a function of number of slow waves (p=2.45 x 10-13, R^2=0.74) 
in the model including heterosynaptic plasticity. Each dot represents a different network trial. Network 
trials are computed for 100s, 300s, and 500s of sleep as well as different durations of associative training. 
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Figure 1.4: Sleep increases amplitude and decreases latency of indirect memory response. 

(A,B,C) Raw network response traces during testing phase of stimulating A, B, C, X, Y, Z (from left to 
right) after supervised training (A), associative training (B), and sleep (C). Note increase in response and 
decrease in latency after sleep.  
(D) Averaged (across 8 trials) and smoothed, through a band-pass filter at 0.1 and 20 Hz, local field potential 
(LFP) computed separately for the three neuron groups in layer 2 (X’, Y’, Z’  are shown) upon simulations 
of a neuron group X in layer 1. LFPs are shown during testing phase after supervised training (left), 
associative training (middle), and sleep (right).  
(E) Average response latency for direct memories (black, e.g., latency of neuron group B’ when A is 
stimulated), indirect memories (pink, e.g. latency of neuron group C’ when A is stimulated), and incorrect 
memories (cyan, e.g. latency of neuron group X’ when A is stimulated).  
(F) Average firing rate of neurons in layer 2 for each type of memory (direct, indirect, and incorrect) during 
testing phase. 
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Figure 1.5: Synaptic weight dynamics explains improvements in relational memory after sleep. 

(A,B) Left, Feedforward (A) and recurrent (B) synaptic weight matrices after supervised training, 
associative training, and sleep. Right, Synaptic input to the neurons of each memory type in layer 2 (the 
sum of all the weights connecting to those neurons) for self-memories (A-A’), direct memories (A-B’), 
indirect memories (A-C’), and incorrect memories (A-X’) after supervised training, associative training, 
and sleep. 
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Figure 1.6: Sleep increases modularity of each item triplet (A’B’C’ and X’Y’Z’) in layer 2 recurrent 
connections. 

(A-D) Graphs of layer 2 connectivity matrices. Each dot represents a group of 10 neurons (red dots = A’, 
B’, C’, blue dots = X’,Y’,Z’). A line is drawn between two dots if there is a weight between groups that 
exceeds a given threshold (75% of the maximal wight). The thickness of the line represents the number of 
such connections. (A) before any training, (B) after supervised training, (C) after associative training, and 
(D) after sleep. Note that threshold is calculated for each state separately, so, e.g., before training many 
connections exceed the threshold defined by initial weak connections.  
(E) Community assignment for layer 2 neurons over time during each training/sleep phase (ST = supervised 
training, AT = associative training, and sleep). Neurons were assigned the same color (at any given time) 
if those neurons belonged to the same community.  
(F) The number of communities over time. Data are averaged across 10 network trials and error bars 
indicate the standard deviation across trials. 
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Figure 1.7: Replay during sleep drives synaptic weight changes. 

(A) Local field potential during SWS (left) and examples of slow-waves (right). Beginning/end times of 
Up and Down states are computed by setting a threshold for the transition from Down to Up state and vice 
versa.  
(B) Number of replay events for feedforward (top) and recurrent (bottom) connections. Replay events are 
selected by identifying sequential ordered firing events, within a specified time window. Replay events 
occur significantly more in the areas of interest (black grids) than in other areas (p<1e-4, based on shuffling 
replay matrix 10,000 times).  
(C) Change in synaptic weights as a function of number of replay events between neurons for feedforward 
(top, R2 = 0.61, p=1 x 10-12) and recurrent (bottom, R2=0.41, p=1x 10-10) connections.  
(D) Number of replay events between self, direct, indirect, and incorrect neuron groups for feedforward 
(top) and recurrent (bottom) connections. For feedforward connections, there was a significantly higher 
number of replay events between self-connections than direct connections, direct connections than indirect 
connections, and indirect connections than incorrect connections. For recurrent connections, indirect 
connections revealed the most replay events (p=0.006 between wrong connections, and p=3.28 x 10-36 
between direct connections). 
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Figure 1.8: State 2 (N2) sleep has little effect on association score, although spindle/slow oscillation 
nesting during N3 sleep reveals significance. 

(A) Network dynamics including both N2 and N3 sleep: supervised training (purple), associative training 
(green) and sleep, comprised of N2 (lime) and N3 sleep (cyan). Bottom row shows zoom-in of N2 sleep 
(two spindles are shown) and N3 sleep (slow-waves) 

(B) Association scores following 300s of N2 sleep (top left), 300s of N3 sleep (top right), 600s of N2 sleep 
(bottom left), and 300s of mixed sleep (200s N2 and 100s N3, bottom right).  

(C) Association score improvement as a function of spindle power near Down-to-Up transition of N3 sleep 
suggests a significant correlation between spindle/slow oscillation nesting and association score. 
Spindle power in 1000s of mV^2. 

(D) Spindle power is significantly higher near Down-to-Up transition then near Up-to-Down transition or 
a random time selected during the Up state of a slow-wave. Power was calculated based on 100ms time 
windows. 
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Figure 1.9: Proposed model of relational memory and main experimental predictions. 

(A) Summary of the changes to the model at different time points. During supervised training, feedforward 
connections are formed between layers 1 and 2 to represent self-memories (e.g., A-A’). During 
associative training, the network learns to associate items presented together (e.g., A with B and B with 
C). However, these connections are weak and no indirect associations are learned (e.g., A is not 
associated with C). After sleep, direct and indirect memory connections are strengthened and one 
attractor is formed for entire triplet of items, i.e., a community including A’, B’, and C’. 

(B) Effect of inactivating different neuronal groups during either sleep or testing on association score. Blue 
bars show performance after training and orange ones show performance after sleep. Silencing linking 
group in any one layer only (B’ or B, Y’ or Y) during sleep still leads to significant post-sleep 
improvement for associative memories (B’, Y’ - t(10) = -4.91, p = 0.001; B, Y - t(10) = -2.03, p = 
0.045, one-sided t-test, FDR correction). However, silencing linking groups in both layers (B/B’, Y/Y’) 
during sleep prevents post-sleep improvement for these associative memory tasks (t(10) = -0.59, p = 
0.28). Inactivating linking groups in layer 2 alone (B’, Y’) during testing was sufficient to significantly 
reduce associative memory performance.   
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2 Simulated sleep helps to generalize knowledge in a spiking network trained with spike-

timing dependent plasticity 

2.1 Abstract 

Artificial neural networks are known to generalize poorly to new examples; although they 

excel at representing data observed in the training set, they are unable to represent data drawn from 

different distributions. In the mammalian brain, evidence suggests that sleep promotes 

generalization of learned examples. To address the validity of this hypothesis, we utilized a 

previously developed spiking neural network trained with spike-timing dependent plasticity 

(STDP) to perform digit classification on the MNIST dataset. We demonstrate that incorporating 

an offline, sleep-like period after training leads to generalization and robustness to novel inputs. 

2.2 Introduction 

Although artificial neural networks (ANNs) can rival human performance on various tasks, 

ranging from complex games (Silver et al. 2016) to image classification (Krizhevsky, Sutskever, 

and Hinton 2012), they have been shown to underperform when the testing data differs in specific 

ways even by a small amount from the training data (Geirhos et al. 2018). This lack of 

generalization presents several issues when ANNs are utilized in the real world. Primarily, ANNs 

are often trained on refined datasets of images designed to best capture the image content, whereas 

in real-world scenarios, they may be tested on disturbed or noisy inputs, not observed during 

training. Creating more robust neural networks will pave the way forward for using these 

promising neuro-inspired architectures in the real-world. 

It has been hypothesized that in the mammalian brain sleep helps to create generalized 

representations of the information learned during the awake state (Stickgold 2013). Sleep has been 

identified as being critical for memory consolidation - a process of converting recent memories 
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into long-tern storage (Rasch and Born 2013). During sleep, there is reactivation of neurons 

involved in previously learned activity (Stickgold 2005b) and this reactivation is likely to invoke 

the same spatio-temporal pattern as the pattern observed during training in the awake state (Wilson 

and McNaughton 1994). Sleep reactivation, or replay, serves to strengthen synapses involved in a 

learned task through spike-timing dependent plasticity rules (STDP). Sleep, through STDP, can 

increase a subject's ability to form logical connections between memories and to generalize 

knowledge learned during the awake state (Payne et al. 2009).  

Similarly, research suggests that sleep can help extract the gist of a task by strengthening 

connections pertinent to all memories while weakening connections, through synaptic 

downscaling, relevant to a single, spurious memory (Lewis and Durrant 2011).  This body of 

neuroscience work suggests that a sleep-like phase applied in training neural networks may allow 

for gist extraction of the training data, leading to increased generalization and robustness to the 

underlying distribution of the training data. Our hypothesis is that sleep could aid in increasing a 

neural network's generalization performance by reducing the impact that small additions of noise 

can have on the network's classification accuracy. 

2.3 Methods 

2.3.1 Network Architecture and Simulated Sleep 

To address the validity of this hypothesis, we utilized a spiking neural network trained with 

STDP previously proposed to perform digit classification on the MNIST dataset (see (P. Diehl and 

Cook 2015) for details). The MNIST dataset represents a simple task for artificial intelligence 

whereby the network must learn to classify grayscale images of handwritten digits (Lecun et al. 

1998). The spiking network consists of 3 layers: an input layer, an excitatory middle layer and an 

inhibitory layer. Neurons in the input layer receive input proportional to the intensity of each pixel 
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in the MNIST images. The input layer projects to a layer of excitatory neurons with an all-to-all 

connectivity matrix and the weights of these connections are updated by an STDP rule. In addition, 

the excitatory layer projects to and receives lateral inhibition (which promotes competition 

amongst neurons) from the inhibitory layer. The neurons within each layer are governed by leaky-

integrate-and-fire dynamics. Additionally, each neuron in the excitatory layer has a threshold 

parameter which is governed by a homeostatic rule to ensure balanced activity (see Figure 2.1 for 

a summary of the architecture). 

As the network is presented with more images, the network is able to classify a greater 

percentage of images correctly, by modifying weights from the input to the excitatory layer to 

compute 2-dimensional spatial filters of the MNIST digits (see Figure 2.2A-C). 2-D receptive 

fields are computed by reshaping the weights connecting to a single neuron in the excitatory layer 

into the same dimension as the input images. Then, these 2-D receptive fields are aligned in order 

to visualize all receptive fields learned by the network. 

While this network can learn the task, it only reaches high levels of performance (>80%) 

after training on more than 100,000 images. We took a partially trained network (between 20 and 

80% of the full training image set) and applied a sleep-like phase after the learning phase. During 

simulated sleep, we modified the intrinsic and synaptic currents to mimic changes in 

neuromodulator levels, while presenting noisy Poisson input based on the statistics of the MNIST 

input (see Figure 2.1 for dynamical equation updates). These changes capture cellular and synaptic 

changes which occur during stage 3 sleep, and result in an increase in activity, mirroring the "up-

state" of slow-wave sleep (Wei, Krishnan, and Bazhenov 2016). During sleep, the same STDP and 

threshold updating rules are used. We compared performance before (awake) and after sleep by 

computing the classification of the network on different testing images. Classification is done by 
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assigning each neuron in the excitatory layer a label (0-9) based on which set of digits produce the 

maximum mean firing activity in that neuron. Networks are tested from various random 

initializations (n=5) to measure variability of the training and sleep phases. 

2.4 Results 

2.4.1    Sleep improves performance on networks trained with small dataset 

After training in the awake state, the network is able to accurately classify the MNIST 

digits. However, at different levels of awake training (measured by how many images in the 

training set the network has observed), incorporating an off-line sleep period after awake training 

notably increases classification accuracy on a novel test set (Figure 2.3) Most notably, at very 

small levels of training (1000 images), the trained network classifies the test set with 20% 

accuracy. However, after a sleep-like period where noisy input is presented to the network, 

classification accuracy reaches 60%. This effect is pronounced even at higher levels of awake 

training, suggesting that a sleep-like period can promote one-shot learning and greater 

generalization of the task structure. 

2.4.2    Sleep promotes increased generalization 

As noted above, neural network-based classifiers often suffer from poor robustness. If a 

network is trained on intact, undistorted images, then the network will fail to classify distorted 

images, even if the distortions are not significant enough to affect human-level perception. To test 

the effect of sleep on a network's robustness, we added noise to the MNIST images, either by 

adding random Gaussian noise or applying a blur filter to the images (Figure 2.4A). We found that 

the network after undergoing a sleep period is able to classify more images correctly even as the 

images are further distorted (Figure 2.4B). These results mirror the results from biology which 
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suggest that sleep can help a subject extract the gist of a task and generalize knowledge learned 

during a waking period. 

2.4.3 Sleep decorrelates the representation of distinct digits 

We next wanted to ask how sleep is able to give rise to one-shot learning and increased 

robustness. In biological networks, it has been hypothesized that sleep can generalize knowledge 

by down-scaling the activity of irrelevant synapses or neurons and strengthening the impact of 

highly salient neurons (Lewis and Durrant 2011). Additionally, biophysical modelling suggests 

that sleep can decorrelate the representation of a certain task by devoting synapses to specific 

memory traces (González et al. 2020). In this network, we observed the same effect, where the 

representation in the excitatory layer of distinct digits is further decorrelated after sleep as 

compared to before while the representation of digits from the same class remains highly correlated 

(see Fig. 2.5).  

2.4.4    Sleep prunes task-irrelevant neurons from the network 

We next analyzed which component of the network, changing neuronal thresholds or 

synaptic plasticity, contributed the most to the accuracy increase after sleep. We observed that 

most neurons experienced an increase in their thresholds due to the constant activity presented 

during sleep and the homeostatic rule used to change thresholds (Figure 2.6A). However, neurons 

with well-formed 2-D receptive fields were qualitatively more likely to have decreasing thresholds 

after sleep (Figure 2.6C). Oppositely, neurons with noisy 2-D receptive fields were more likely to 

experience an increase in their firing thresholds following sleep (Figure 2.6D). We quantified this 

phenomenon by looking at the average neighborhood pixel variance using 3x3 pixel squares. 

Receptive fields with low neighborhood pixel variance are likely to be more refined since there is 

little variability between neighboring pixels. In contrast, noisy receptive fields should have high 
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neighborhood pixel variance. There was a significant correlation between neighborhood pixel 

variance and threshold change (Figure 2.6B), suggesting the hypothesis that sleep improves 

performance and robustness by pruning task-irrelevant neurons from the network by increasing 

their firing thresholds. 

We confirmed this as the main source of improvement after sleep by testing the network in 

four conditions: using either before- or after-sleep weights and before- or after-sleep thresholds. 

The largest performance increase was observed when after-sleep thresholds were used (no 

significant difference between normal sleep and only using after-sleep thresholds, p=0.22). 

However, when pre-sleep thresholds were used along with the STDP changes that resulted from 

sleep, performance did not improve significantly. This suggests that in the default network 

architecture, sleep improves performance by altering the thresholds in a manner in which task-

specific neurons can respond more acutely (because of reduced thresholds) to the images presented 

during testing. 

Finally, we analyzed the effect of reducing inhibition and fixing the thresholds during sleep 

in order to determine the role of synaptic plasticity changes that occur during sleep on 

generalization. We were able to see the same performance increase after sleep by reducing 

inhibition in the network, as competition between neurons was reduced (normal sleep vs. only 

STDP changes, p=0.85). We explored the synaptic weight changes during sleep and uncovered 

two main principles (Fig 2.6). First, in neurons with well-formed receptive fields, there is very 

little synaptic weight change after sleep. Second, in neurons with task-irrelevant receptive fields, 

there is an overall synaptic down-scaling of connections, mirroring the results from the threshold 

analysis above. Overall, these results support the role of sleep in memory consolidation and 

generalization of knowledge learned during the waking state. Moreover, this line of work supports 
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the synaptic homeostasis hypothesis of sleep which suggests that slow-wave sleep improves 

performance by down-scaling synaptic weights (Tononi and Cirelli 2006). 

2.5 Discussion 

In this study, we applied an off-like sleep-like phase to the training phase of a spiking 

network trained to perform the MNIST digit classification task. We found that after any amount 

of awake training, adding a sleep phase, where noisy Poisson input is passed through the network 

and activity is elevated, can increase the classification accuracy on a novel test set. Similarly, the 

network after sleep is able to respond to more diverse representations of the image set, classifying 

noisy and blurred images more accurately than before sleep. These results mirror work in biology 

which has shown that sleep can help extract the gist of a task and generalize knowledge learned 

during the awake state (Stickgold 2013). Additionally, these results lend support to the synaptic 

homeostasis hypothesis which suggests that sleep down-scales synaptic weights to make efficient 

use of brain space in an energy-conserving manner (Tononi and Cirelli 2006). Our experiments 

suggests that down-scaling of synaptic activity is likely constrained to task-irrelevant neurons, 

thereby containing the representation of the task to a subset of neurons. 

For artificial intelligence systems, these results suggest that the same classification 

accuracy can be achieved by adding a sleep phase after either a shorter length awake-training 

period or with a reduced dataset, giving rise to one-shot learning. Similarly, incorporating a sleep-

phase to the training of artificial neural networks can increase the network's robustness to noisy 

images or imperfect pictures captured in the real-world. 
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2.7 Figures 

 
Figure 2.1: Network architecture and sleep changes 

(A) Network schematic showing the basic network architecture (adapted from (Diehl and Cook 2015)). 
(B) Changes to network applied during sleep include presenting the average image and increasing leak and 

AMPA currents. 
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Figure 2.2: Network is able to learn the digit classification task 

(A) Accuracy as a function of number of images seen. 
(B) Receptive fields of neurons in the excitatory layer form into 2-d spatial filters. Network receptive fields 

at different stages in baseline (before sleep) training reveal that traininh refines the receptive fields of 
excitatory layer neurons. 
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Figure 2.3: Sleep improves accuracy and generalization 

(A) Accuracy before and after sleep for different training levels. 
(B) Example images for increasing levels of noise and blur. 
(C) Accuracy before and after sleep on various noise conditions (10,000 image network). 
(D) Confusion matrices on undistoreted images before and after sleep. 
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Figure 2.4: Decorrelated representation of distinct digits after sleep 

(A) Pairwise correlations for normal images before and after sleep. Correlations computed in the excitatory 
layer of the network. 

(B) Noisy images. 
(C) Blurred images. 
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Figure 2.5: Task-irrelevant neurons fire less after sleep 

(A) Number of neurons that have increasing or decreasing thresholds after sleep at various stages of 
training. 

(B) Firing rates of neurons before and after sleep for neurons with increasing or decreasing thresholds. 
(C) Example receptive fields for neurons with decreasing thresholds. 
(D) Example receptive fields for neurons with increasing thresholds. 
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Figure 2.6: STDP alone can achieve the same effect by reducing inhibition and fixing thresholds during 
sleep 

(A) Accuracy before sleep, after normal sleep, and after a sleep period with only STDP. 
(B) Weight distributions before (top) and after-STDP sleep (middle).  
(C) Example canonical receptive field changes – noisy receptive fields see a decrease in weight magnitude 

in the center, while well-formed receptive fields see little change. 
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3 Biologically Inspired Sleep Algorithm for Increased Generalization and Adversarial 

Robustness in Deep Neural Networks  

3.1 Abstract 

Current artificial neural networks (ANNs) can perform and excel at a variety of tasks 

ranging from image classification to spam detection through training on large datasets of labeled 

data. While the trained network may perform well on similar testing data, inputs that differ even 

slightly from the training data may trigger unpredictable behavior. Due to this limitation, it is 

possible to design inputs with very small perturbations that can result in misclassification. These 

adversarial attacks present a security risk to deployed ANNs and indicate a divergence between 

how ANNs and humans perform classification. Humans are robust at behaving in the presence of 

noise and are capable of correctly classifying objects that are noisy, blurred, or otherwise distorted.  

It has been hypothesized that sleep promotes generalization of knowledge and improves robustness 

against noise in animals and humans. In this work, we utilize a biologically inspired sleep phase 

in ANNs and demonstrate the benefit of sleep on defending against adversarial attacks as well as 

in increasing ANN classification robustness. We compare the sleep algorithm's performance on 

various robustness tasks with two previously proposed adversarial defenses - defensive distillation 

and fine-tuning. We report an increase in robustness after sleep phase to adversarial attacks as well 

as to general image distortions for three datasets: MNIST, CUB200, and a toy dataset. Overall, 

these results demonstrate the potential for biologically inspired solutions to solve existing 

problems in ANNs and guide the development of more robust, human-like ANNs. 

3.2 Introduction  

Although artificial neural networks (ANNs) have recently begun to rival human 

performance on various tasks, ranging from complex games (Silver et al. 2016) to image 



 

69 

classification (Krizhevsky, Sutskever, and Hinton 2012), ANNs have been shown to underperform 

when the testing data differs in specific ways even by a small amount from the training data 

(Geirhos et al. 2018). This lack of generalization presents two issues when ANNs are utilized in 

the real world. First, ANNs are often trained on curated datasets of images designed to best capture 

the image content, whereas in real-world scenarios, they may be tested on disturbed or noisy inputs, 

not observed during training. Second, ANNs are susceptible to adversarial attacks, or the deliberate 

creation of inputs designed to fool ANNs that may be imperceptibly different from correctly 

classified inputs (Szegedy et al. 2013). These two issues limit ANNs applicability in the real world 

and present potential security risks when deployed. 

There have been two main approaches for investigating ANN robustness: adversarial 

machine learning and training data manipulation (Ford et al. 2019). Adversarial machine learning 

aims to develop novel attack methods which perturb the input minimally while changing the 

ANN's classification outcome (Moosavi-Dezfooli, Fawzi, and Frossard 2016; Carlini and Wagner 

2017; Goodfellow, Shlens, and Szegedy 2014; Athalye et al. 2017; Nguyen, Yosinski, and Clune 

2015) as well as to design defense mechanisms which prevent these attacks from affecting ANN 

behavior (Papernot, McDaniel, Wu, et al. 2016; Goodfellow, Shlens, and Szegedy 2014; Huang et 

al. 2015). see (Yuan et al. 2019) for review). Training data manipulation research typically 

examines the impact of changing the input distribution during testing and observing the effect on 

ANN performance. (Geirhos et al. 2018) showed that ANNs trained on images with one type of 

distortion may not perform well when tested on other types of distortions, even if images with both 

distortions appear identical to the human eye. Likewise, ANNs trained on unperturbed images 

exhibit reduced performance when images in the test set are distorted, for example, through 

horizontal translations, blurring, or the addition of compression artifacts (Dodge and Karam 2016; 
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Vasiljevic, Chakrabarti, and Shakhnarovich 2016; Zhou, Song, and Cheung 2017).Although it has 

been proposed that adversarial and manipulation robustness can be increased through various 

mechanisms during the training phase, such as fine-tuning, recent research has shown that these 

methods are mostly ineffective or their effectiveness is inconclusive (Geirhos et al. 2018; Uesato 

et al. 2018; Athalye, Carlini, and Wagner 2018). 

It has been hypothesized that in the mammalian brain sleep helps to create generalized 

representations of an input learned during the awake state (Stickgold 2013; Lewis and Durrant 

2011). Sleep has been identified as being critical for memory consolidation - a process of 

converting recent memories into long-term storage (Rasch and Born 2013).. During sleep, there is 

reactivation of neurons involved in previously learned activity (Stickgold 2005a) and this 

reactivation is likely to invoke the same spatio-temporal pattern of neuronal firing as the pattern 

observed during training in the awake state (Wilson and McNaughton 1994). Sleep reactivation, 

or replay, serves to strengthen synapses involved in a learned task through local synaptic plasticity, 

such as Spike Time Dependent Plasticity (STDP). Plastic changes during sleep can increase a 

subject's ability to form connections between memories and to generalize knowledge learned 

during the awake state (Payne et al. 2009). In one study (Wamsley et al. 2010), subjects learned to 

find an exit to a maze in a virtual 3D environment. Subjects who were allowed to sleep exhibited 

a more complex understanding of the overall shape of the maze (Wamsley et al. 2010). Using 

biophysical model of a cortical network (Gonzalez et al. 2019; Wei et al. 2018) showed that sleep 

dynamics promotes reactivation and helps to create distinct representations for unique memories 

by devoting synapses to specific memory traces. This body of neuroscience work suggests that a 

sleep-like activity may be applied to ANNs to enable the network to extract the gist of the training 

data without being constrained by the statistics of a specific training data set. Our specific 
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hypothesis is that sleep phase could aid in reducing a neural network's susceptibility to adversarial 

attacks and to increase generalization performance by reducing the impact that imperceptible input 

changes can have on the task output.  

In this new work, we propose a sleep-inspired algorithm to defend against adversarial 

attacks as well as to increase ANN robustness to noise. We utilize the notion of sleep from biology 

and apply an off-line unsupervised "sleep" phase to modify the parameters of a fully connected 

ANN. We demonstrate a number of performance improvements over existing defense algorithms, 

such as fine-tuning or adversarial retraining and defensive distillation, on both adversarial and 

noise robustness. The contributions are summarized below: 

• We analyze how robust the proposed sleep algorithm is to four different types of 

adversarial attacks on three different datasets (MNIST, CUB200, and a toy dataset). 

For most conditions (MNIST, toy dataset), after sleep phase was applied, the attacks 

consistently resulted in adversarial examples that were more distinct from the 

original input compared to the adversarial examples designed for the original 

(before sleep) network. 

• We illustrate that the sleep algorithm creates a more robust network whereby 

performance on noisy and blurred inputs is higher compared to control or 

defensively distilled network and is more robust to the other types of distortions 

compared to ANNs that are fine-tuned on a single distortion. 

• We analyze the impact of the sleep algorithm on task representation and 

demonstrate that the algorithm creates decision boundaries that more closely 

resemble the true classes, effectively extracting the gist of the data. 
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3.3 Adversarial Attacks and Distortions 

Adversarial attacks aim to create minimal perturbations that, while imperceptible to the 

human eye, fool ANNs. These attacks range from white-box to black-box attacks, based on how 

much information they assume the attacker to possess about the network. White-box attacks 

assume that the attacker has access to the network architecture, training data and weights. These 

attacks can range from absolute information, such as gradient-based attacks which compute the 

gradient of the loss with respect to the input (Brendel, Rauber, and Bethge 2017), to score-based 

attacks which only utilize predicted scores of the model. Black-box attacks, which assume no 

knowledge about the network, solely rely on the decision made in order to craft adversarial 

examples. Attacks can be (a) targeted such that the attacker aims to create an adversarial example 

that the network would predict as a certain class or (b) untargeted where the attacker's goal is 

simply to cause any kind of misclassification (Biggio and Roli 2018). In this work we consider 

four types of adversarial attacks ranging from white-box to black-box attacks. We assume that the 

attacker solely wants to cause a misclassification, with no respect to the output class. We present 

a brief description of each of the four attacks below (see Figures for examples of images created 

by these attacks). 

3.3.1 Fast Gradient Sign Method (FGSM) 

FGSM (Goodfellow, Shlens, and Szegedy 2014) computes the sign of the gradient of the 

loss function (J) with respect to the original input x using the weights 𝜃 of the network and the 

target labels y.  

𝑥W = 𝑥 + 𝜀𝑠𝑖𝑔𝑛(∇7𝐽(𝜃, 𝑥, 𝑦)) 

This represents the direction to change each pixel in the original input in order to increase the loss 

function. Based on the value of 𝜀, the corresponding perturbation to the original image can range 
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from small to large. Thus, in this work we use the average of the smallest values of 𝜀 needed to 

create an adversarial example x’ (misclassified input) for each input in the testing set. 

3.3.2 DeepFool 

DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard 2016) is an iterative method which 

approximates the nearest decision boundary to the input at time t and moves the input xt in that 

direction to compute xt+1. This process is repeated until a misclassification is produced or the 

runtime of the simulation is exceeded. For this attack, we measure the L2-norm between the 

original input x and the adversarial input x’. Thus, successful defenses should result in a high L2-

norm for this algorithm. 

3.3.3 Jacobian-based Saliency Map (JSMA) 

JSMA (Papernot, McDaniel, Jha, et al. 2016) aims to craft adversarial examples that 

minimize the L0-norm of x – x’ by reducing the number of pixels that are altered. In summary, the 

algorithm computes the gradient, as done in FGSM but for all possible classes. These gradient 

values represent how changing each pixel contributes to the overall loss function, with large values 

indicating a significant effect on the loss. These values are used to create a saliency map, where 

each pixel's impact on the loss is modelled. The algorithm utilizes this saliency map to alter 

individual pixels, repeating the gradient and saliency map computation until an adversarial 

example is created. For this type of attack, we utilize the L2-norm to determine defense success. 

3.3.4 Boundary Attack 

The Boundary Attack (Brendel, Rauber, and Bethge 2017) is a black-box attack which 

relies solely on the decision of the ANN to craft an adversarial example. Given an input x, a random 

input x’0 is chosen such that f(x) != f(x'0), where f(x) is the label produced by the ANN. In our 

work, x'0 is chosen from a uniform distribution. The attack starts by moving x'0 toward x until it 
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reaches the point where f(x) = f(x'0), or the decision boundary in between f(x) and f(x'0). From 

here, the attack consists of two steps: an orthogonal perturbation and a forward perturbation. 

During the orthogonal perturbation, random points along the hypersphere around f(x't) are 

sampled. Those that are adversarial and closer to x than before are added to the queue for forward 

perturbation. During the forward perturbation, a small step is taken from x't to x as long as f(x) != 

f(x't). This process is repeated until a convergence criterion is met. For this attack, we utilize the 

L2-norm to define defense success. 

3.3.5 Distortions 

Although not specifically designed to attack an ANN, distortions negatively impact ANN 

performance. In this work we consider two simple distortion techniques: blurring and Gaussian 

noise. In first case, we perform 2-D Gaussian filtering with a blur kernel of varying standard 

deviation in order to blur the images. In second case, we add Gaussian noise with mean 0 and 

standard deviation 𝜎. These distortions are tested in the networks implementing the proposed sleep 

algorithm as well as using the adversarial defenses discussed below. 

3.4 Adversarial Defenses 

We compare our sleep algorithm with two existing adversarial defenses: defensive 

distillation and fine-tuning, or adversarial retraining. Defensive distillation (Papernot, McDaniel, 

Wu, et al. 2016) utilizes two training sessions in order to create a distilled network. First, an initial 

network is trained on (X,Y), where X is the training data, and Y is the one-hot encoded training 

labels. The activation function of this network is changed such that the softmax function of the 

output layer is computed using a temperature term T as follows: 

𝐹(𝑥) =
𝑒
X$Y
8

∑ 𝑒X%Y/8#:?
*M@

	 



 

75 

A higher T forces the ANN to produce larger probability values for each class, whereas lower T 

values support a similar representation as the one-hot encoded labels. After the first network is 

trained, the output of the network (probability values) is used to train a distilled network with the 

same softmax-temperature function. Previous work has shown this approach can be successful at 

preventing some types of attacks (Papernot, McDaniel, Wu, et al. 2016). However, others have 

shown that it is not successful at defending against modified versions of those attacks or novel 

attacks in general (Carlini and Wagner 2016; 2017). Based on the previous work which found that 

temperature values between 20 and 100 effectively prevent adversarial attacks (Papernot, 

McDaniel, Wu, et al. 2016), we use a temperature value of T = 50 in our implementation of 

defensive distillation. 

Adversarial retraining aims to fine-tune the network on adversarial examples with the 

correct labels as a form of regularization. Previous work has shown that adversarial retraining can 

mitigate the effectiveness of some adversarial attacks. (Goodfellow, Shlens, and Szegedy 2014) 

showed that adversarial retraining can reduce the error rate on MNIST, demonstrating greater 

ANN robustness after fine-tuning. Likewise, (Moosavi-Dezfooli, Fawzi, and Frossard 2016)  

showed that fine-tuning on DeepFool attacks can reduce the effectiveness of their attacks. 

However, they observed that fine-tuning on FGSM attacks has negative results, actually increasing 

the strength of the attack. This suggests that fine-tuning may overfit the network to certain attacks, 

while failing to extrapolate to other attacks, similar to results shown for generalization in ANNs 

(Geirhos et al. 2018). For the adversarial retraining procedure presented here, we train the network 

on the original input and then fine-tune the network on various adversarial attacks with a reduced 

learning rate.   
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3.5 Sleep Algorithm 

The basic intuition behind the sleep algorithm is that a period of offline activity, whereby 

network weights are modified according to an unsupervised learning algorithm, allows the 

parameters of the network to become more reflective of the underlying statistics of the task at hand, 

while not overfitting the statistics of the training data. The pseudocode is presented in Figure 3.1. 

In short, an ANN is trained using stochastic gradient descent and the standard backpropagation 

algorithm (exact parameters used for each of the datasets are shown in Table 3.3). After training, 

the network structure is converted into a spiking neural network (SNN). After building the SNN, 

we run a ’sleep’ phase which modifies the network connectivity based on spike-timing dependent 

plasticity (STDP). After the sleep phase, the SNN network is converted back into the ANN and 

testing is performed. 

3.5.1 Spiking Neural Networks 

SNNs seek to model closely temporal brain dynamics. In short, SNNs are composed of 

spiking neurons and model the information transformation and the dependence on exact timing of 

spikes that occurs in biological networks (Ghosh-Dastidar and Adeli 2009). Individual neuron 

models can range from simple integrate-and-fire type neurons which sum their inputs and produce 

an output (spike) if this exceeds some firing threshold to more complex Hodgkin-Huxley type 

neurons which model sodium-, potassium-, and chloride-channel kinetics (Abbott and Kepler 

1990). Recent work has shown that a near loss-less conversion between ANNs and SNNs can be 

achieved by propagating activity through a spiking neural network for a given input and counting 

the number of times that each output neuron fires (P. U. Diehl et al. 2015). 

To convert an ANN to SNN (Lines 1-3 of pseudocode), we assume the ANN utilizes ReLU 

neurons with no bias. This assumption is made so that the output neuron's activation can be treated 
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as a firing rate, either zero or positive, and that the thresholds of all neurons in a given layer are of 

the same scale. The weights from the ANN are directly mapped to the SNN. In our analysis, each 

unit in the SNN is modelled as an integrate-and-fire type neuron, computing the following 

equation: 

𝜏!
𝑑𝑣
𝑑𝑡 = 	−𝑣

(𝑡) +	f𝑤L ∗ 𝑠(𝑖)
#

LM?

 

Here, 𝜏! represents the decay constant of the membrane potential, v is the voltage at a given time, 

𝑤L is the weight connecting from neuron u, and 𝑠(𝑖) is the spiking activity of neuron i, either 1 or 

0. 

3.5.2 Plasticity and Sleep 

The key advantage of using a SNN is that biologically inspired training rules can be applied 

while the network is driven by noisy input. Empirical data suggest that the brain uses spike-timing 

dependent plasticity (STDP) (Song, Miller, and Abbott 2000), where weight updates depend on 

the relative timing of pre- and post-synaptic spikes. It has been shown that STDP results in 

balanced activity, where all neurons fire in equal proportions (Song, Miller, and Abbott 2000). 

Here we utilize a modified version of STDP: if a pre-synaptic spike induces a post-synaptic spike, 

then the weight between these neurons is increased. If a post-synaptic spike occurs, but the pre-

synaptic neuron does not spike, then the corresponding weight is decreased (in this case 

postsynaptic spiking may occur because of spiking in other neurons connecting to that post-

synaptic neuron).  

The sleep training phase we propose here can be described as following. First, inputs to 

each neuron of the input layer must be presented as spiking activity in order to propagate activity 

from the input layer to the hidden layers of the network. We convert inputs (real-valued pixel 
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intensities or features) to spikes by defining a maximum firing rate fmax with units spikes/sec and 

computing a Poisson-distributed spike raster, such that inputs with higher values (i.e. brighter 

pixels) will have higher rate than inputs with lower values, with no spike rates exceeding fmax. 

Next, activity is propagated through the network as spikes and the STDP rule is applied to update 

weights. In biological networks, increase of synaptic strength during slow-wave sleep leads to 

characteristic patterns of activity with repetitive periods of elevated firing (Up-states), when 

previously learned memory traces are spontaneously replayed. To simulate this dynamics, synaptic 

weights in SNN are up-scaled to induce high firing rates in later layers. Other important parameters 

include the threshold for each layer and the length of sleep. The parameters used for each dataset 

are presented in Table 3.2. 

3.5.3 Experiments and Datasets 

Below, we describe the general experimental setup as well as the datasets tested. First, we 

trained a control ANN using the training set for each of the main datasets used in this study. Next, 

we created a defensively distilled network using T = 50 for the temperature parameter to create the 

second test network. Then, we fine-tuned the control ANN on a specific attack or distortion method 

to create the third test network. Finally, we converted the control ANN to an SNN and applied the 

sleep algorithm as described above to create the fourth test network. We created adversarial 

examples for each of these four networks using the attacks we described above (fine-tuned 

networks are tested on the attacks they were fine-tuned on). Then, we analyze how successful each 

attack is to fool each of the four networks using the metrics defined above. For generalization (blur 

and noise), we performed the same setup as above creating four different networks. We then tested 

each network on varying levels of distortion. We tested networks fine-tuned on blurred and noisy 
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images to measure how performance generalizes across distortion methods. We averaged 

performance across a minimum of three networks for each attack and distortion. 

We used three datasets to compare performance: Patches (a toy dataset created simply for 

analysis), MNIST (Lecun et al. 1998), and CUB-200 (Welinder et al. 2010). Patches consists of 

four binary images arranged in a 10x10 square. Each image has its own label (1-4) and consists of 

25 bright pixels (value set to 1) and 75 dark pixels. The overlap of bright pixels among the four 

images (see Appendix) is chosen such that the task is not trivial. The MNIST dataset consists of 

70,000 28x28 greyscale images of handwritten digits, with 60,000 in the training set and 10,000 

in the testing set. CUB-200 is a high-resolution dataset of images of birds with 200 bird species, 

with very few (~30) images per class. For this dataset, we used previously extracted ResNet-50 

embeddings, where ResNet-50 was pre-trained on ImageNet (He et al. 2016). For CUB-200, we 

do not report results for blurring, since we are using extracted features, not images. 

3.6 Results  

We evaluate the sleep algorithm in two settings: (1) Adversarial attacks designed to fool 

neural networks and (2) generalization distortions designed to reflect imperfect viewing conditions 

or other types of noise. For adversarial attacks (other than FGSM), we utilize the following metric 

to evaluate the success of each defense. Let xi' be the adversarial example created for input xi. The 

total score SA for an attack is the median squared L2-distance for all samples, where N is the 

dimension of the space: 

𝑆. = 𝑚𝑒𝑑𝑖𝑎𝑛(
1
𝑁 |𝑥

W
L −	𝑥L|;;)  

For FGSM, we define the following metric which computes the median minimum noise 

level 𝜀 needed to produce a misclassification across all samples: 

𝑆ZB/5 = 𝑚𝑒𝑑𝑖𝑎𝑛(	min0𝜀L)	𝑠. 𝑡. 𝑓(𝑥L +	𝜀L𝑥WL)	! = 	𝑓(𝑥L)2	)	 
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For MNIST and CUB-200, we evaluate the attacks on all examples in the testing set. 

Examples that the networks get wrong before the attack was implemented are discarded from the 

analysis (in these cases |𝑥WL −	𝑥L|);= 0 and 𝜀L= 0 for all attacks). For FGSM and distortions, we 

also include plots of classification accuracy as a function of noise level. For DeepFool and JSMA, 

we report adversarial attack accuracy (number of examples where f(x) = y and f(x') ! =  f(x), where 

y is the correct label, over number of examples tested). Note that these algorithms would always 

produce an adversarial example if allowed to run forever. However, due to computational 

limitations, we included run-time limits on the number of iterations for these algorithms (see 

Appendix). Thus, a lower adversarial attack accuracy indicates that the attack would need more 

iterations to run to reach 100% accuracy. This is a similar measure as distance since more iterations 

would result in more distinct adversaries for all attacks implemented and the updates at each 

iteration have the same magnitude for each defense. 

3.6.1 Adversarial Attacks 

Here we report the scores for all different attacks and for the all datasets. For the FGSM 

attack, the sleep algorithm increases the median minimum noise needed for misclassification for 

all three datasets compared to the control network (also see Figure 2). For MNIST dataset, the 

amount of noise needed to fool the network after the sleep algorithm was almost double of that 

needed for either the fine-tuning or defensive distillation approaches. For the Patches dataset, both 

defensive distillation and fine-tuning increase the robustness of the network. However, on CUB-

200, only fine-tuning and sleep were able to defend, albeit marginally, against the FGSM attack. 

Looking at the classification accuracy of the network as a function of noise added (𝜀, Figure 2), 

we observe that in the Patches and CUB-200 dataset, sleep tends to have higher classification 

accuracy than the other methods for epsilon < 0.1. After this point, sleep tends to have equal 
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classification accuracies as compared to the other methods. For MNIST, the baseline classification 

accuracy on the original test set decreases slightly compared to the other methods (80% after 

sleep). However, the performance remains high longer than for the other defense methods on 

images that were correctly classified. We observed that performance continued to drop after a 

sufficiently large amount of noise was added. This is biologically plausible as adding more noise 

to an image should result in image degradation and misclassifications. In sum, these results 

indicate that a sleep phase can successfully mitigate FGSM, more so than a control network. 

Table 3.1: Adversarial Attack Scores (Best defense scores are bolded, lowest attack success rates are in 
blue). 

Patches Control Defensive 
Distillation 

Fine-tuning Sleep 

FGSM 0.0175 0.05 0.1425 0.2025 
DeepFool 0.0440 (95%) 0.036 (90%) 0.0201 (100%) 0.0125 (100%) 
JSMA 0.0049 (80%) 0.0135 (70%) 0.0450 (100%) 0.0541 (100%) 
Boundary Attack 0.2971 0.3124 0.1772 0.3515 
 
MNIST 

    

FGSM 0.0900 0.0900 0.1000 0.2200 
DeepFool 0.0042 (96.46%) 0.0043 (96.42%) 0.0074 (97.40%) 0.0484 (86.38%) 
JSMA 0.0477 (95.56%) 0.0347 (99.41%) 0.0530 (98.77%) 0.0059 (72.97%) 
Boundary Attack 0.0525 0.0525 0.0544 0.0488 
 
CUB-200 

    

FGSM 0.0550 0.0500 0.0650 0.0600 
DeepFool 0.0027 (82.23%) 0.0019 (84.16%) 0.0044 (83.02%) 0.0025 (83.12%) 
JSMA 0.0477 (95.56%) 0.0347 (95.88%) 0.0540 (95.38%) 0.0439 (95.15%) 
Boundary Attack 0.9751 0.9034 0.9976 0.9957 

 

For DeepFool, sleep has a significant effect on the defense score on the MNIST dataset, 

both reducing the attack success rate and increasing the distance between the adversarial example 

and the original input by an order of magnitude. For Patches and CUB-200 this effect is less 

pronounced, with fine-tuning or the control network performing better. We hypothesize that sleep 

was ineffective in preventing the DeepFool attack in tasks with very few exemplars per class 
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(Patches) or a large number of classes (CUB-200). In CUB-200, there is a large number of classes 

so the distance between the input and the nearest decision boundary is smaller (this is supported 

by the fact that JSMA, an L0 attack, does worse than DeepFool for CUB-200 and vice versa for 

MNIST, control networks). In this case, sleep is unable to move the decision boundary of one class 

without impinging on the decision space of another class. In MNIST, where the decision space for 

one class is presumably larger, sleep can alter decision boundaries in a way that has a minimal 

effect on other classes. 

Sleep successfully increases the network's robustness to the JSMA attacks on MNIST and 

Patches, reducing the attack success rate in the case of MNIST and increasing the distance needed 

to create an adversary for Patches. On CUB-200, there is a marginal reduction in the adversarial 

attack accuracy compared to the control network. Defensive distillation and fine-tuning also reduce 

JSMA's effectiveness. However, for these two defenses, in the case of MNIST, the networks were 

capable of finding an adversary for a higher percentage of the testing set. Thus, the effect of 

changing a small number of important pixels is mitigated after running the sleep algorithm. 

For the Boundary Attack, we found that no defense mechanism helps compared to the 

control in decreasing the attack's effectiveness on the MNIST dataset. However, for CUB-200 and 

Patches, the sleep algorithm results in a higher defense score than that for the control network. 

This lends support to the idea that sleep favorably alters decision boundaries so that it becomes 

harder to find an adversarial example that is close to the original image after the sleep phase. This 

also suggests that sleep is not simply obfuscating gradients, which has been a common criticism 

of several adversarial defenses (Athalye, Carlini, and Wagner 2018), which are tested on white-

box attacks. In fact, given the long run-time for convergence of this algorithm, if we define a 
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threshold for adversarial attack success (L2-norm > 1), then sleep successfully defends against this 

attack on the MNIST dataset (see Table 3.4).   

Why does sleep phase help? It has been shown that sleep tends to promote an increase in 

stronger weights while pruning weaker weights, thus increasing the width of the weights' 

distribution (Gonzalez et al. 2019). This results in the consolidation of strong memories at the cost 

of diminishing weak memories. From this point of view, a memory is a subspace or abstraction in 

the decision space corresponding to a given class. Sleep may result in enlarging the subspace the 

network allocates to a stronger category while shrinking weaker ones (Figure 3.6A). The process 

of strengthening the strong memory also results in making it robust and noise invariant, as seen in 

Figure 3.6B where the first 8 categories (numbers 0-7) are strengthened and become more invariant 

to the FGSM attack, while the last two digits are essentially forgotten and the network cannot 

confidently predict exemplars from these classes (Figure 3.6C). If the noise is less targeted, as in 

the case of random noise or blurring, sleep does not need to alter the decision space as much to 

produce better generalization and can maintain a high baseline accuracy, as we demonstrate in the 

next section. 

3.6.2 Distortions 

Figure 3.3 shows the network performance for noisy and blurry distortions of data for 

MNIST (A) as well as noisy distortions for the CUB-200 feature embeddings (B, see Figure 3.4 

for results on Patches). Overall, fine-tuning on an image distortion results in the best performance 

for that specific distortion. However, as was noted (Geirhos et al. 2018), fine-tuning on a specific 

distortion does not extend to other types of distortions. In our analysis, fine-tuning the network on 

blurred MNIST images results in high performance (>80%) on blurred images. However, for noisy 

images, this performance was only marginally above the control network. The sleep algorithm 
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increased performance for both distortion methods, since this approach is not tailored to any one 

representation of the training set. 

Finally we tested how sleep increases robustness on blur and noise distortions. In biological 

systems, sleep increases generalization through replay of memories learned during awake which 

leads to changes in synaptic weights. These changes entail both an increase in synaptic weights 

associated with a specific task and pruning of synapses involved in other tasks (Gonzalez et al. 

2019; Tononi and Cirelli 2006). Figures 3.12 and 3.13 show that correlations among like digits in 

the hidden layers of the network are greater after applying sleep than before for noisy and blurred 

images. Likewise, pairs of different digits usually become decorrelated after sleep, suggesting 

synaptic pruning. We also show that both normalized spiking activity and activations of digit-

specific neurons are higher after sleep than before (Figures 3.12 and 3.13, see Appendix for 

details). These results suggest that the sleep algorithm increases robustness through biologically 

plausible learning mechanisms involving replay of relevant activity during sleep phase. 

3.7 Conclusions and Future Directions 

In this work, we show that a biologically inspired sleep algorithm can increase an ANN's 

robustness to both adversarial attacks and general image distortions. The algorithm augments the 

normal (e.g., back-propagation based) training phase of an ANN with an unsupervised learning 

phase in the equivalent SNN modelled after how the biological brain utilises sleep to improve 

learning. We hypothesize that the unsupervised sleep phase creates more natural feature 

representations which in turn lead to more natural decision boundaries, thus increasing the 

robustness of the network. Although this robustness may come at a cost of overall accuracy, it has 

been shown that robustness may have multiple important benefits, such as more salient feature 

representations as well as invariance to input modifications (Tsipras et al. 2018). We also show 
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that the trade-off between robustness and accuracy does not always occur, particularly for image 

distortions such as noise or blur. Future work includes converting the sleep algorithm into a 

regularization technique to be applied in more standardized machine learning frameworks as well 

as understanding the theoretical basis for the beneficial role of spike based plasticity rules in 

increasing network robustness. 
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3.9 Appendix 

3.9.1 Training Parameters 

Here, we define the neural network parameters used for each of the three datasets as well 

as the sleep, defensive distillation, and fine-tuning parameters. Table 3.2 shows parameters used 

to train each of the control networks discussed in the paper. All neural networks were trained with 

ReLU neurons. Table 3.3 shows the parameters used during sleep for each of the three datasets. 

Note that these parameters for MNIST and CUB-200 were chosen by running a genetic algorithm 

to maximimize performance on the FGSM attack (performance was determined based on the 

training set so as not to overfit to the test set). For the other three attacks, parameters that 

maximized FGSM performance were used. Also, for noise and blur generalization, different 

parameters were chosen (not shown here). 
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Table 3.2: Parameters used to train the control network for each of the three datasets. 

Architecture refers to number of units per layer. For example, the MNIST network possessed 1 
input layer, 2 hidden layers with 1200 units, and an output unit with 10 units. 

 Patches MNIST CUB200 
Architecture [100, 

4] 
[784, 1200, 1200, 
10] 

[2048, 350, 300, 
200] 

Learning 
Rate 

0.1 0.1 0.1 

Momentum 0.5 0.5 0.5 
Dropout 0 0.2 0.25 
Epochs 1 2 100 

 
 
Table 3.3: Parameters used during sleep 

Input rate = Fmax, the maximum firing rate of input neurons, Sleep duration = length of sleep 
(number of images presented during sleep, Thresholds = neuronal firing thresholds for each layer 
of neurons, Synaptic AMPA current = factor to scale the weights by during sleep, Increase and 
Decrease factor = amount weights are modified on a STDP event. 

 Patches MNIST CUB200 
Input Rate 16 Hz 40 Hz 79 Hz 
Sleep Duration 3000 27105 11751 
Thresholds 1.0450, 0.7150, 

0.3850 
36.18, 23.36, 
36.38 

2.69, 4.61, 
2.63 

Synaptic AMPA 
current 

4.25 2.19 4.15 

Increase factor 0.0035 0.063 0.0016 
Decrease factor 0.0002 0.069 0.000209 

 

For the defensively distilled networks tested in the paper, we first train an initial network 

using a temperature of 50. Then, we use the training set to compute soft labels and finetune the 

initial network on these soft labels for the same number of epochs and with the same learning rate.  

For the fine-tuned networks, we take the control networks trained with the parameters 

shown in Table 3.1. The learning rate is reduced to 0.05 and the network is fine-tuned on a mixture 

of either adversarial attacks, blur or noise and the original images/features. For CUB-200, we 

perform fine-tuning for 10 epochs. 
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The Patches dataset represents an easily interpretable example where we can understand 

what happens to the weights after sleep. Figure 3.4A shows an example of the dataset. Here, we 

have 4 images each belonging to 4 different classes. 25 pixels are whitened in each image and the 

remaining 75 pixels are dark. There is a 15 pixel overlap, so that weights connecting from input to 

output layer must take this into account in order to separate the images.  Figure 3.4B illustrate the 

blur and noise distortions tested for this dataset and Figure 3.4C shows the results for the blur and 

noise distortions. 

After the network is trained, we can analyze the weights connecting from each of the 100 

input neurons to the 4 output neurons (see Figure 3.5, top row). We theorize that optimally robust 

behavior would occur when weights connecting from ON-pixels are positive, weights connecting 

from overlapping pixels are near 0, and weights connecting from OFF-pixels are negative. In this 

case, changing the value of overlapping pixels will have no effect on classification. Changing the 

value of OFF-pixels will cause the network to predict another class, where OFF-pixels may be 

ON-pixels or indicative of that class. Changing the value of ON-pixels will only have a negative 

impact if the brightness of the pixel is reduced significantly. Thus, in this circumstance, the 

network should behave robustly.  

In the control network, we observe that weights connecting from ON-pixels (pixel-value = 

1) increase while weights connecting from OFF-pixels remain at 0. Weights connecting from 

overlapping pixels remain near 0 or positive. Defensive distillation causes some weights 

connecting from overlapping pixels to decrease, likely because the soft labels used in defensive 

distillation cause overlapping pixel units to alter the probability values computed by the network 

in such a way that does not truly reflect the impact of the overlapping pixels. In the fine-tuned 

networks (both on blurred images and noisy images), we observe an increase in ON-pixel weights 
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and an increase in noisiness of OFF-pixel weights. Likewise, in the sleep network, OFF-pixel 

weights become negative while ON-pixel weights remain the same. In these cases, robustness is 

increased as weights become more similar to our hypothesized ideal weights. Essentially, the 

magnitude of input changes need to change classification increase since the spread between ON-

pixel weights and OFF-pixel weights increases. We quantify the spread in weights by taking the 

difference between the average weight connecting from ON-pixels and the average weight 

connecting from OFF-pixels. This represents the mean input that each correct output neuron 

receives. This result is shown in Figure 3.4D. Of note is that this weight spread is increased for 

both the sleep and finetuning-noise network, suggesting that these defenses bring the weights 

closer to their ideal values for computing robustness. 

3.9.1 Adversarial Attacks 

Here, we describe the general approach for implementing DeepFool, JSMA, and the 

Boundary Attack discussed in the paper. We also show examples of adversaries created for each 

of the defense networks from these attacks. 

3.9.1.1 DeepFool 

 
DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard 2016), as mentioned above, is an 

iterative algorithm that, at each iteration, aims to move the adversarial example in the direction of 

the closest decision boundary until it results in a misclassification. We based our implementation 

of that in (Rauber, Brendel, and Bethge 2017). We stopped running the algorithm when either an 

adversarial example is found or when 100 iterations have passed. Examples of DeepFool attacks 

on the MNIST dataset are shown in Figure 3.7A. At each iteration we compute a linear 

approximation of the loss function and take a step in the direction that would be result in a 

misclassification. The equations used and pseudocode can be found in the original DeepFool paper. 
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3.9.1.2 JSMA 

 
JSMA is also an iterative algorithm which computes the pixel that would change the loss 

function the most at each algorithm and changes this pixel, until a misclassification is produced. 

For this method, we set a run-time limit of 500 iterations. We also remove a pixel from the saliency 

map when it has been updated seven times, so the algorithm can focus on other pixels. We set the 

change to each pixel at a constant value, 0.1. This represents how much each pixel is updated (in 

the direction that results in a misclassification) at each iteration. Pseudocode can be found in the 

original publication (Papernot, McDaniel, Jha, et al. 2016). We show examples of adversaries 

created by JSMA in Figure 3.7B. 

3.9.1.3 Boundary Attack 
 

The Boundary Attack (Brendel, Rauber, and Bethge 2017) starts with an adversarial 

example and moves it closer to the decision boundary of the correct class. At each step of the 

algorithm, the method performs orthogonal and forward perturbations to move the adversary closer 

to the original image, thus reducing the distance between the adversary and the original image. We 

set both a distance convergence criterion (L2-norm = 1e-7) and a run-time limitation on the attack 

(1000 iterations). Example attacks are shown in Figure 3.7C. We note that sometimes the algorithm 

does not successfully produce an "imperceptible" adversarial example and instead produces a noisy 

output (the starting condition is a noisy image). If we define a threshold defining a successful 

adversarial attack (L2-Norm > 1), then we observe the results for MNIST in Table 3.4. 

 

 

Table 3.4: MNIST Boundary Attack with a threshold defining a successful adversarial attack 
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MNIST Control Defensive 

Distillation 

Fine-tuning Sleep 

Boundary Attack 0.0073 0.0074 0.0047 0.0094 

 
3.9.2 Generalization Analysis 

 
In this section, we analyze how sleep can aid in increasing ANN robustness. In biological 

networks, sleep extracts the gist of a task through replay (Lewis and Durrant 2011). We 

hypothesized that our sleep algorithm works in the same manner. First, we tested the ability of the 

sleep network to decorrelate distinct inputs by analyzing the effect of running sleep and testing on 

our two distortion techniques (see Figure 3.8). 

We computed the correlations of network activities in each of the hidden layers of the 

network before and after implementing our defense methods. For each pair of digits, we computed 

the average correlation of layer activities in the undistorted (Figure 3.9) , noisy (Figure 3.10) and 

blurred (Figure 3.11) conditions. Each figure reports the difference in digit pairwise correlations 

between the defense method and the control network for each set of inputs. For our sleep network, 

it is apparent that in layer 2 and layer 3, the correlations of the same digits (the diagonal) increases 

after sleep. Additionally, the correlation of distinct digits typically experiences negative change, 

representing decorrelation of distinct inputs. This analysis holds for defensive distillation and both 

of the fine-tuned networks. This suggests that the ANN representation of different exemplars of 

the same digit becomes more similar after sleep or after any of the defense networks when 

compared to the control. This is not simply due to an increased overlap of all inputs, since 

exemplars of different digits become decorrelated after applying a defense method. 
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Next, we performed the same correlation analysis on noisy and blurred images to see how 

the representation of distorted images changes after applying a distortion method. First, we note 

that fine-tuning on noisy images results in stronger correlation of the same (noisy) digit but weaker 

correlations of different (noisy) digits, as noted above. However, fine-tuning on blurred images 

does not have as strong an effect. Second, sleep seems to have a beneficial effect on the correlation 

matrices for both blurred and noisy images (comparing the right column of Figures 3.12 and 3.13). 

This illustrates the beneficial role of sleep in creating distinct representations of digits, where 

different neuronal ensembles encode different digits. This change in representation should result 

in increased robustness since changes to the input must be larger in order to recruit neuronal 

ensembles that represent other digits. 

On top of decorrelating the representation of distinct memories by pruning synapses, 

biophysical modelling suggests that sleep can also aid in strengthening connections thus making 

stronger the response of primary neurons involved in memory recall (Gonzalez et al. 2019). To 

test this hypothesis in our networks, we analyzed the firing rate and activations of digit-specific 

neurons before and after sleep. Before describing the analysis, we would like to note that SNNs 

can be used to performn classification and a near loss-less conversion between ANNs and SNNs 

has been achieved on the MNIST task (P. U. Diehl et al. 2015). To perform classification, a digit 

is presented (as a Poisson spike train) to the network and spikes are propagated throughout the 

network for a given time period (or number of presentations of the input). Analyzing network 

activity in the spiking domain can be easier than in the activation domain (ANNs) since spikes are 

oftentimes easier to interpret than neuronal activations.  

For this reason, we first analyze how spike rates of digit-specific neurons change before 

and after sleep in the spike domain. To do this we present all images of a specified digit to the 
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spiking network and count the number of spikes from each neuron (holding the weights constant). 

We define digit-specificity by looking at the 100 neurons with the highest firing rates in layer 2. 

In Figure 3.12, we show that the normalized firing rate of these neurons usually increases after 

sleep (normalized by dividing by the maximum firing rate observed from the SNN).  

Next, we perform the same analysis in the activation domain. Again, we define digit-

specific neurons by looking at the top 100 neurons with the highest activation for a specific digit. 

We look at the normalized mean activations of these neurons before and after sleep and note that 

for all digits this value is higher after sleep than before sleep (Figure 3.13). This suggests that the 

neurons in the network are responding more strongly to the presentation of the same digit, thus 

increasing the robustness of the network as more noise must be added in order to counter the effect 

of this stronger response. This also suggests that our algorithm works in a biologically plausible 

way: both by decorrelating distinct inputs and increasing the strength of similar inputs. 
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3.10 Figures 

 
Figure 3.1: Sleep Replay Algorithm for increased generalization and robustness 

 
Figure 3.2: FGSM classification accuracy as a function of noise added for three datasets. 
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Figure 3.3: Sleep increases robustness to general distortions 

(A) Generalization classification accuracy for 5 networks for noise and blur on the MNIST dataset. 
(B) Generalization classification accuracy for 4 networks for the noisy CUB-200 task. Note that there 

are only 4 networks because there is no blur task here. 
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Figure 3.4: Patches dataset analysis 

(A) Patches dataset example – four binary images with 25 pixels turned on in each image and 15 pixel 
overlap. 

(B) Types of images tested on for generalization for the Patches dataset. Top – images with Gaussian 
noise added with increasing variance (from 0 to 1.0 in steps of 0.2). Bottom – Gaussian blurred 
images with increasing sigma (from 0 to 2.5 in steps of 0.5).  

(C) Generalization accuracy for noise and blur of five different networks tested (Control, Defensively 
distilled, Fine-tuned-blur, fine-tuned-noise, and Sleep) for the Patches Dataset. 

(D) Weight spread for each of the 5 networks tested in C. 
 

A B

C D



 

96 

 
Figure 3.5: Patches weight analysis 

Weights for each of the 5 networks (Control, defensively distilled, finetuning on noise, finetuning on blur, 
and sleep) trained on the Patches dataset. Each column shows the weights value (y-axis) connecting from 
each of the 100 input neurons (x-axis) to the corresponding output neuron (i.e. the first column of graphs if 
the weights connecting from all input neurons to the first output neuron. Points are color-coded based on 
which of these pixels in the input layer correspond to ON-pixels, OFF-pixels, or overlapping pixels based 
on the input that should trigger that output neuron. 
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Figure 3.6: Binary classification example 

(A) Example function learned in a 3-layer neural network illustrates that sleep alters decision 
boundaries in favor of making one class (corresponding to black points) more robust while 
impinging on another class (blue points). 

(B) Average noise (epsilon) needed for FGSM attack for specific digits in MNIST dataset. 
(C) Output layer scores for each digit (rows) before and after sleep. Column represents average 

activation of each of the 10 output neurons. 
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Figure 3.7: Example adversarial attacks 

(A) DeepFool adversarial examples for each defense. The network’s prediction is shown above each 
image. 

(B) JSMA 
(C) Boundary Attack 
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Figure 3.8: Types of images tested on for generalization for the MNIST dataset. 

 
Figure 3.9: correlation differences between defense network and control network for 4 different defenses 

Correlations are computed based on the activations in each layer for each pair of digits (mean correlation). 
The difference between the correlation of the defense method (column) and the control network is plotted. 
Activations are computed based on undistorted test images. 
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Figure 3.10: Correlation differences on noisy images 
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Figure 3.11: Correlation differences on blurred images 

 
Figure 3.12: Normalized firing rates of neurons specific to individual digits when presented with noisy 
images is greater after applying sleep than before sleep. 

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

-0.4

-0.3

-0.2

-0.1

0

0.1

La
ye

r 2
La

ye
r 3

La
ye

r 4
SleepDefensive

Distillation
Finetune
Noise

Finetune
Blur



 

102 

 
Figure 3.13: Normalized activations of neurons specific to individual digits when presented with noisy 
images is greater after applying sleep than before sleep. 
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4 Sleep-like Unsupervised Replay Reduces Catastrophic Forgetting in Artificial Neural 

Networks 

4.1 Abstract 

Artificial neural networks (ANNs) are known to suffer from catastrophic forgetting: when 

learning multiple tasks sequentially, they perform well on the most recent task at the expense of 

previously learned tasks. In the brain, sleep is known to play an important role in incremental 

learning by replaying recent and old conflicting memory traces. Here we tested if implementing 

sleep-like phase in ANNs can protect old memories during new training and alleviate catastrophic 

forgetting. Sleep was implemented as off-line training with local unsupervised Hebbian plasticity 

rules and noisy input. In an incremental learning framework, sleep was able to recover old tasks 

that were otherwise forgotten. Previously learned memories were replayed spontaneously, forming 

unique representations for each class of inputs. Representational sparseness and neuronal activity 

corresponding to the old tasks increased while new task related activity decreased. The study 

suggests that spontaneous replay simulating brain dynamics can alleviate catastrophic forgetting 

in ANNs. 

4.2 Introduction  

Humans and animals have a remarkable ability to learn continuously and to incorporate 

new data into their corpus of existing knowledge. In contrast, artificial neural networks (ANNs) 

suffer from "catastrophic forgetting" whereby they achieve optimal performance on newer tasks 

at the expense of performance on previously learned tasks (McCloskey and Cohen 1989; French 

1999; McClelland, McNaughton, and O’Reilly 1995). This dichotomy between continual learning 

in mammals and catastrophic forgetting in machine learning models has given rise to the stability-

plasticity dilemma (Mermillod, Bugaiska, and Bonin 2013). On the one hand, a network must be 
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plastic such that the parameters in the network can change in order to accurately represent and 

respond to new tasks. On the other hand, a network must be stable such that it maintains knowledge 

of older tasks. Although deep neural networks (LeCun, Bengio, and Hinton 2015) can achieve 

supra-human level of performance on tasks ranging from complex games (Silver et al. 2018) to 

image recognition (Russakovsky et al. 2015), they lie at a sub-optimal point on the stability-

plasticity spectrum.  

Sleep has been hypothesized to play an important role in memory consolidation and 

generalization of knowledge in biological systems (Ji and Wilson 2007; Walker and Stickgold 

2004; Lewis and Durrant 2011). During sleep, neurons are spontaneously active without external 

input and generate complex patterns of synchronized activity across brain regions (Steriade, 

McCormick, and Sejnowski 1993; Krishnan et al. 2016). Two critical components which are 

believed to underlie memory consolidation during sleep are spontaneous replay of memory traces 

and local unsupervised synaptic plasticity (Wilson and McNaughton 1994; Stickgold 2005b; Wei, 

Krishnan, and Bazhenov 2016).  Replay of recently learned memories along with relevant old 

memories (Rasch and Born 2013; Lewis, Knoblich, and Poe 2018b; Hennevin et al. 1995; Mednick 

et al. 2011; Paller and Voss 2004; Oudiette et al. 2013) enables the network to form orthogonal 

memory representations to enable coexistence of competing memories within overlapping 

populations of neurons (Wei, Krishnan, and Bazhenov 2016; Wei et al. 2018; Golden et al. 2020; 

Gonzalez et al. 2019). Local plasticity allows synaptic changes to affect only relevant memories. 

While consolidation of declarative memories presumably depends on the interplay between fast-

learning hippocampus and slow-learning cortex (Rasch and Born 2013) ('Complementary 

Learning Systems Theory' (McClelland, McNaughton, and O’Reilly 1995)), several types of 

procedural memories (e.g., skills) are believed to be hippocampus-independent and still require 
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consolidation during sleep, particulartly during Rapid Eye Movement (REM) sleep  (McDevitt, 

Duggan, and Mednick 2015). These results from neuroscience suggest that sleep replay principles 

applied to ANNs may reduce catastrophic forgetting in machine learning models. In this new 

study, we focus on the hippocampus-independent consolidation of memories during REM sleep-

like activity. 

We show that implementing a sleep-like phase after an ANN learns a new task enables 

replay and makes possible continual learning of multiple tasks without forgetting. These results 

are formalized as a sleep replay algorithm (SRA) as follows. First, an ANN is trained using the 

backpropagation algorithm, denoted below as awake training. Next, spontaneous brain dynamics, 

similar to those found in sleep (Krishnan et al. 2016; Bazhenov et al. 2002), are simulated and we 

run one-time step of network simulation propagating spontaneous activity forward through the 

network. Next, we do a backward pass through the network in order to apply local Hebbian 

plasticity rules to modify weights. After running multiple steps of this unsupervised training phase, 

testing or further training using regular backpropagation is performed. We recently found that this 

sleep algorithm can promote domain generalization and improve robustness against adversarial 

attacks (Tadros et al. 2019). Here, we expand the algorithm to continual learning problem by 

limiting the amount of information available during sleep. We show that spontaneous reactivation 

of neurons during sleep engages local plasticity rules that can recover performance on tasks that 

were thought to be lost due to catastrophic forgetting after new task training. 

4.3 Methods 

4.3.1 Task Protocols 

To demonstrate catastrophic forgetting, we utilized an incremental learning framework, 

where groups of classes are learned in a sequential fashion. We utilized 5 datasets to illustrate the 
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prevalence of catastrophic forgetting as well as the beneficial role of sleep: a toy dataset termed 

“Patches”, MNIST, Fashion MNIST, CUB-200 and CIFAR-10 (Lecun et al. 1998; Xiao, Rasul, 

and Vollgraf 2017; Welinder et al. 2010; Krizhevsky and Hinton 2009). The Patches dataset 

consisted of binary patterns each belonging to its own class. The main advantage of this toy dataset 

is that it allows direct control over the amount of interference (number of overlapping pixels) in 

each of the binary patterns. This dataset was used to show the benefits of the sleep algorithm in a 

simpler setting and to reveal the exact weight changes which occur during sleep replay, which led 

to a reduction in catastrophic forgetting. To ensure generalizability of our approach, we tested the 

sleep algorithm on the MNIST, Fashion MNIST, CIFAR10, and CUB-200 datasets. The MNIST 

and Fashion MNIST datasets are widely used in machine learning, consisting of 60,000 training 

images of hand-written digits or fashion items and 10,000 testing images.  

CIFAR-10 is a similarly sized dataset with 10 classes of low-resolution natural images 

ranging from airplanes to frogs. For CIFAR-10, we used extracted features from a convolutional 

network with 3 VGG blocks. The first block consists of 2 convolutional layers with 32 3x3 filters 

in each layer, followed by a max pooling layer. The second block uses 2 convolutional layers with 

64 3x3 filters, followed by a max pooling layer. The last convolutional block consists of 2 

convolutional layers with 128 3x3 filters, again followed by a max pooling layer and a flattening 

operation. To train the convolutional model, we used two dense layers with 1028 and 256 units in 

each layer. For extraction, we took all inputs following the 3 convolutional blocks after the 

flattening layer, and used these input features to perform incremental learning. The original 

convolutional backbone was trained on the Tiny Imagenet dataset and CIFAR-10 images were fed 

through this network to extract intermediate feature representations (Le and Yang 2015). The 

network was trained on Tiny Imagenet for 200 epochs using stochastic gradient descent with the 
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following parameters: momentum = 0.9, learning rate = 0.005, batch size = 100, and the categorical 

crossentropy loss function. CUB-200 contains natural images of 200 different bird species, with 

relatively few images per class. For CUB-200, following work done by (Kemker and Kanan 2017), 

we used the pre-trained Res-Net 50 embeddings. Here, the Res-Net 50 architecture was pre-trained 

on the ImageNet dataset (Kemker and Kanan 2017; He et al. 2016). 

The ANN was trained sequentially on 5 groups of 2 classes for MNIST, Fashion MNIST, 

and CIFAR-10 and 2 groups of 100 classes for CUB200, following previous studies (van de Ven 

and Tolias 2018). In addition to testing the incremental MNIST and Fashion MNIST tasks (where 

2 classes are learned during each task in training), we also tested the Multi-Modal MNIST task 

where first either MNIST or Fashion MNIST is learned and then during task 2, the other dataset is 

learned. This task tests the network's ability to develop representations of both datasets, digits and 

clothing, without catastrophic forgetting. After training on a single task, we run the sleep algorithm 

as described below before training on the next task. 

4.3.2 Network Details 

Dataset specific parameters for training ANNs are shown in Table 4.1. This table includes 

the network architecture used to train the tasks in a sequential fashion (number of hidden units per 

layer), the learning rate used for each task, number of epochs per task, number of classes per task, 

as well as the dropout percentage used to train the network. The accuracy of the network on the 

entire dataset is listed in Table 4.2 in the main paper under "Parallel Training". This denotes the 

accuracy of the network trained with the parameters listed in Table 4.1 but when the network has 

access to all training data during training time. Additionally, the "Sequential Training" row in 

Table 4.2 illustrates the performance of the ANN architecture when it is trained in an incremental 
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fashion without the use of sleep or any other methods. These metrics serve both as an upper and 

lower bound, respectively.  

The same network architecture and training parameters were used in all comparisons. For 

the MNIST, Fashion MNIST, and Multi-modal MNIST tasks, we used a fully connected 

architecture with 2 hidden layers consisting of 1200 nodes in each layer, followed by a 

classification layer with 10 output neurons. The network was trained for 2 epochs per task, with 

mini-batch size of 100 images. For Multi-modal MNIST, the same network architecture was used, 

again with 10 output neurons. Thus, the same output neuron was used to represent both a digit and 

an article of clothing. For the CIFAR-10 dataset, we used extracted features from a convolutional 

network as denoted above.  Extracted features were fed into a fully connected network with 2 

hidden layers, with 1028 and 256 nodes in each hidden layer, respectively. These hidden layers 

also fed into a classification layer with 10 output neurons for each of the 10 classes in the dataset. 

This network was also trained for 2 epochs per task with mini-batch size of 100 images/feature 

vectors. For CUB-200, we used a network architecture consisting of 2 hidden layers with 350 and 

300 nodes, connecting to a classification layer of 200 units, following work done by (Kemker and 

Kanan 2017). The network was trained for 50 epochs per task.  

In all datasets, the ReLU non-linear activation function was used during awake training in 

all layers. Each neuron in the network was trained without a bias term, which aids in the conversion 

to a spiking neural network (with Heaviside-activation function) during the sleep stage (P. U. Diehl 

et al. 2015). The networks were trained using the basic stochastic gradient descent optimizer with 

momentum. Additionally, all networks were trained with the multi-class cross-entropy loss 

function. For incremental learning, this loss function was evaluated solely on the task being 

presented to the network during training time. For comparisons between different methods, such 
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as EWC and SI, the same training parameters and architectures were used. See Supporting 

Information for more details on these regularization methods used to alleviate catastrophic 

forgetting. 

Table 4.1: Neural network training parameters 
 

MNIST/f. MNIST CUB-200 CIFAR-10 
Arch. size 1200,1200,10 350,300,200 1028,256,10 
Learn Rate 0.065 0.1,0.01 0.1 
Epochs/task 2 50 2 
# class/task 2 100 2 
Momentum 0.5 0.5 0.5 
Dropout 0.2 0.25 0.2 

4.3.3 Sleep Replay Algorithm 

Here, we provide pseudocode (Figure 4.1) and more information about the sleep replay 

algorithm (SRA) described in the main text. The intuition behind the SRA is that a period of off-

line, noisy activity may reactivate network nodes that were responsible for representing earlier 

tasks. If network reactivation is combined with unsupervised learning, SRA will then strengthen 

corresponding pathways through the network. If information about previously learned tasks is still 

present in the synaptic weight matrices, then SRA may be able to rescue apparently lost 

information.  

We start in the Main procedure, where first a network is initialized, e.g., within PyTorch 

environment. Then, a task t is presented to the network and the network is trained, as usual, via 

backpropagation and stochastic gradient descent. After supervised training phase, SRA is 

implemented within the same environment. During the SRA phase, the network's activation 

function is replaced by a Heaviside function and weights are scaled by the maximum activation in 

each layer observed during last training. The scaling factor and layer-wide Heaviside activation 

thresholds are determined based on a preexisting algorithm (P. U. Diehl et al. 2015). During the 
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SRA phase, we start with a forward pass, when the noisy input is created and fed through the 

network in order to get activity (spiking behavior) of all layers. Following the forward pass, a 

backward pass is run to update synaptic weights. To modify network connectivity during sleep we 

use an unsupervised simplified Hebbian type learning rule, which is implemented as following: a 

weight is increased between two nodes when both pre- and post-synaptic nodes are activated (i.e., 

input exceeds Heaviside activation function threshold); and a weight is decreased between two 

nodes when the post-synaptic node is activated but the pre-synaptic node is not (in this case, 

another pre-synaptic node is responsible for activity in the post-synaptic node). After running 

multiple steps of this unsupervised training during sleep, the final weights are rescaled again 

(simply by removing the original scaling factor), the Heaviside-type activation function is replaced 

by ReLU, and testing or further supervised training on new data is performed.  This all is 

implemented by a simple SRA function call after each new task training. Code will be made 

available on Github with the exact parameters dictating neuronal firing thresholds and synaptic 

scaling factors for each dataset and each architecture. 

4.3.4 Stimulation During Sleep Phase 

During sleep phase, to ensure network activity, the input layer of the network is activated 

with noisy binary (0/1) inputs. In each input vector (i.e., for each forward SRA pass), the 

probability of assigning a value of 1 (bright or spiking) to a given element (input pixel) is taken 

from a Poisson distribution with mean rate calculated as a mean intensity of that input element 

across all the inputs observed during all of the preceding training sessions. Thus, e.g., a pixel that 

was typically bright in all training inputs would be assigned "1" more often than a pixel with lower 

mean intensity. Alternatively, the mean rate of the Poisson-distribution used to create inputs may 
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be chosen independently on the past ANN activation which still leads to the partial recovery of the 

old tasks. 

4.3.5 Including old data during training 

In addition to testing the basic SRA when only mean input activation across all previous 

tasks is saved, we also tested how SRA can be complementary to existing state-of-the-art 

generative/rehearsal methods. To test this, we performed two additional experiments: one denoted 

“rehearsal” and another based off of a near state-of-the-art method, iCaRL. The “rehearsal” method 

included a percentage of old task data during new task learning sessions. This is a simplification 

of current rehearsal methods, which commonly use a separate network to generate old data, rather 

than storing old examples, but it still illustrates the complementary effect of utilizing both explicit 

"replay" during training and implicit spontaneous replay during sleep. The exact images from old 

tasks were randomized and the fraction of old images stored was defined by degree of rehearsal. 

Thus, if task 1 has 5000 images and task 2 has 5000 images, then during training with 2% rehearsal, 

2% of task 1 images were stored (i.e., 100 random images and their corresponding hard-target 

labels were stored from task 1) and incorporated into the task 2 training dataset. When iCaRL 

method was tested, the fraction of  stored images was defined by memory capacity, K (Rebuffi et 

al. 2017) and these images were chosen based on the herding exemplar method used in iCaRL. In 

addition, iCaRL utilizes the nearest mean of exemplar classification scheme as well as a loss 

function incorporating distillation on old tasks and classification on new tasks. A more detailed 

description of other methods tested in the paper can be found in the Supporting Information or the 

original papers describing these methods. 
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4.3.6 Analysis of Replay 

For Figures 4.6 and 4.7 (main text), we defined the neurons that were specific to certain 

input classes. To define task-specific neurons, we presented inputs from each class for 25 forward 

passes in the sleep network and recorded the number of spikes (number of times each neuron 

exceeded its Heaviside-based activation threshold) in each neuron for each class of input. We 

ignored connections from the last hidden layer to the output layer in order to identify neurons that 

were more responsive to Task 1 or Task 2, while ignoring the actual classification component of 

the network. These spike counts were averaged across all input classes and sorted based on which 

input class maximally activated a given neuron. We defined task-specific neurons as the top 100 

neurons that responded to a specific class of inputs. After task-specific neurons were labelled, we 

performed SRA and analyzed the change in activation input before and after sleep and firing rates 

during sleep of these task-specific neurons to create Figures 4.6 and 4.7. 

4.4 Results  

4.4.1 Sleep replay prevents catastrophic forgetting in ANNs 

In animals and humans, spontaneous neuronal activity during sleep correlates with that 

during awake learning (Ji and Wilson 2007). This phenomenon, called sleep replay, along with 

Hebbian plasticity, plays a role in strengthening important and pruning irrelevant synaptic 

connections underlying sleep-dependent memory consolidation (Rasch and Born 2013; Tononi 

and Cirelli 2006). To integrate the effect of sleep into artificial neuronal systems, we interleaved 

incremental ANN training using backpropagation with periods of simulated sleep-like activity 

based on local unsupervised plasticity rules (see Methods for details). With this approach we were 

able to combine the "best of both worlds" - state of the art training performance delivered by 

modern deep neural network architectures (Kriegeskorte 2015) and important properties of 
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biological sleep, including local plasticity and spontaneous reactivation (Rasch and Born 2013). 

Importantly, our approach is fully executed within a standard machine learning environment, e.g., 

PyTorch or TensorFlow, and the sleep function can be easily added to any ANN type and any 

training algorithm.  

In order to implement a sleep replay phase with local plasticity rules (referred to as Sleep 

Replay Algorithm (SRA) below), the network’s activation function was replaced by a Heaviside 

function (to mimic spike-based communications that occur in the brain) and network weights were 

scaled by the maximum activation in each layer observed during last training, in order to increase 

activity during the sleep phase. The scaling factor and layer-wide Heaviside activation thresholds 

were determined based on preexisting algorithms developed to run trained ANNs on neuromorphic 

hardware, such as spiking neural networks (P. U. Diehl et al. 2015). To modify network 

connectivity during sleep phase we used an unsupervised, simplified Hebbian type learning rule, 

which was implemented as follows: synaptic weights between two neurons are increased when 

both pre- and post-synaptic neurons are activated sequentially; synaptic weights are decreased 

between two neurons when the post-synaptic node is activated but the pre-synaptic node is silent 

(does not reach activation threshold). Further, to ensure sufficient network activity during the sleep 

phase, the input layer of the network was activated with noisy binary inputs. In each input vector 

at each time step of SRA, the probability of assigning a value of 1 (bright or spiking) to a given 

input pixel is taken from a Poisson distribution with mean rate calculated as the mean intensity of 

that input element across all the inputs observed during all of the preceding training sessions. Thus, 

e.g., a pixel that was typically bright in all training inputs would be assigned "1" more often than 

a pixel with lower mean intensity. Therefore, the only old task information that needs to be stored 

for future SRA applications is the mean input layer activation across all the past tasks and this 
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information does not scale with the number of tasks. Importantly, no inputs representing specific 

memories were ever presented to the network during sleep; the state of the network (weight 

matrices) implicitly determined the patterns of reactivation and, ultimately, what was replayed 

during sleep. 

In this study we analyzed SRA in the context of both class-incremental learning and cross-

modal tasks. Class-incremental learning occurs when a network learns a series of classes (e.g. 

MNIST digits) incrementally without access to previously learned classes. In this case, 

performance is measured as the network's ability to classify and distinguish all classes. Cross-

modal tasks measure the network's ability to store two distinct tasks (e.g., MNIST digits and 

Fashion MNIST images) in the same parameter space. We first utilized a "toy" example of binary 

patterns to analyze how synaptic weights change during sleep to support incremental learning. We 

then tested SRA in an incremental learning framework on the MNIST, Fashion MNIST, CUB-200 

and CIFAR10 datasets (see Methods). For cross-modal tasks, we measured the ability of an ANN 

to learn sequentially both the MNIST and Fashion MNIST datasets when the network could only 

access one dataset during training time. 

4.4.2 SRA promotes consolidation of overlapping binary patches 

We first tested the sleep algorithm by training a small network with just an input and output 

layer to distinguish four binary 10x10 images (see Fig. 4.2A) presented sequentially as two tasks 

(Task 1 - first two images; Task 2 - second two images). The network was always tested on its 

ability to classify all 4 images using a softmax classifier. The amount of interference was measured 

as the number of overlapping pixels between images. Catastrophic forgetting should not occur 

when there is no interference between the images but, as the number of overlapping pixels 

increases, new task training can lead to forgetting. Our studies using biophysical models of the 
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thalamocortical network (Gonzalez et al. 2019; Golden et al. 2020) revealed that catastrophic 

forgetting occurs because the network connectivity becomes dominated by the most recently 

learned task, so input patterns for old tasks are insufficient to activate their respective output 

neurons; sleep replay can "re-balance" the network to allow correct recall of the old memories. 

After training on the first two images (denoted T1), the network could classify T1 images 

accurately but has not yet learned the other two images, so overall performance was 50% (Fig. 

4.2B, dashed blue line). Here, when, e.g., the first image was presented to the network, input to its 

corresponding output neuron was greater than the maximum input to the other output neurons (Fig. 

4.2C, left group of bars, 12 pixel overlap) - correct classification. After training on the second two 

images (denoted T2), the network either learned them without interference to T1 (performance 

increased to 100% - all 4 images are classified correctly), when there was little overlap between 

tasks (Fig. 4.1B, dashed red line, overlap is less than 10 pixels), or forgot the first two images 

(performance remained at 50% - T1 is erased and everything is classified as T2), when there was 

large overlap between tasks (Fig. 4.2B, dashed red line, overlap is more than 10 pixels). In the last 

case, presenting the first image resulted in greater activation of T2 output neurons (Fig. 4.2 C, red 

bar in middle group) than the first output neuron (Fig. 4.2C, black bar in middle group) - 

catastrophic forgetting. When SRA was applied following T2 (Fig. 4.2B, yellow line), T1 was 

recovered even for large overlaps between tasks (compare yellow and red lines for overlaps more 

than 10 pixels in Fig. 4.2B). Here, we observed that although input to the first class output neuron 

(upon first image presentation) remained unchanged (Fig. 4.2C, black bar in rightmost group), the 

input to the other output neurons decreased following SRA (Fig. 4.2C, red bar in rightmost group). 

Thus, after SRA, the network was able to withstand larger amounts of interference, indicating that 

SRA is beneficial in reducing catastrophic interference for this simplified task. It is worth 
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mentioning that after training T2, the input to correct T1 output neuron was reduced but did not 

become negative (Fig. 4.2C, black bar in middle group). Thus, T1 images would still activate T1 

output neurons, but not as strongly as they activate T2 output neurons - misclassification but not 

complete forgetting of the T1 weight structure, so it still can be resurrected by SRA.  

We next examined the synaptic weight changes after training the second task, and after 

SRA. Figure 4.2D shows histograms of synaptic weights from input layer neurons to four output 

neurons (T1 neurons on the left and T2 neurons on the right) for the 12-pixel overlap condition, 

which results in  catastrophic forgetting following T2 training and complete recovery following 

SRA. We separated weights from input neurons representing uniquely T1 and T2 pixels (Figure 

4.2D, green, orange), as well as overlapping pixels between T1 and T2 (purple). After T1 training 

(Figure 4.2D, top row), the weights from T1 pixels (both unique and overlapping) to T1 decision 

neurons increased (purple and green distributions on the left), while connections to T2 decision 

neurons became negative (purple and green on the right). After T2 training (Figure 4.2D, middle 

row), the weights from T2 pixels (both unique and overlapping) to T1 output neurons decreased 

(purple and orange on the left), while connection to T2 output neurons increased and became 

positive (purple and orange on the right). Strong input to T2 output neurons from T1 overlapping 

pixels (purple on the right) overcame input to T1 output neurons from unique T1 pixels (green on 

the left, see also Fig. 4.2C, middle group). This resulted in catastrophic forgetting of T1, as T1 

inputs led to higher activation of T2 output neurons. After SRA (Figure 4.2D, bottom), weights 

from T1 unique pixels to T2 output neurons became inhibitory (green distribution on the right) 

while most other categories of weights remained unchanged. Thus, before SRA, presenting T1 

images resulted in preferential activation of T2 output neurons and misclassification. After SRA 
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the same T1 inputs inhibited T2 output neurons, so T1 output neurons displayed relatively higher 

activation leading to correct classification.  

Since T1 neurons did not spike during sleep in this simple model, the weights to T1 output 

neurons did not change (compare Figure 4.2D left, middle vs bottom row); however, for more 

complex tasks and network architectures, all the weights could change after sleep phase. This 

simple model analysis revealed that SRA down-scales synaptic weights from task-irrelevant 

neurons, thereby reducing "cross-talk" between tasks. A more rigorous analysis of this toy model 

revealed that following training of T1-T2 the network weights have positive cosine similarity to 

the weights of the network trained on T1 alone (See Supporting Information, Section 1). This 

demonstrates that even when catastrophic forgetting is observed from classification perspective, 

the network weights preserve information about previous tasks. 

4.4.3 SRA reduces catastrophic forgetting on standard datasets 

ANNs have been shown to suffer from catastrophic forgetting for various standard image 

datasets including MNIST, CUB-200 and CIFAR-10 (Kemker and Kanan 2018). To test SRA for 

these datasets, we created 5 tasks (per dataset) for the MNIST, Fashion MNIST, and CIFAR-10 

datasets and 2 tasks for the CUB200 dataset. Each pair of items in the MNIST (e.g., digits 0 and 

1), Fashion MNIST and CIFAR-10 datasets was defined as a single task, and half of the classes in 

CUB200 was considered a single task. Tasks were trained sequentially, and each new task training 

was followed by a sleep phase until all tasks were trained. This mimics interleaving periods of 

awake training with periods of sleep in the mammalian brain. 

A baseline ANN with two hidden layers (see Methods for details) trained incrementally 

without sleep suffered from catastrophic forgetting, representing the lower bound on performance 

(Table 4.2, Sequential Training). The ideal accuracy of the same network trained on all tasks at 
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once represents the upper bound (Table 4.2, Parallel Training). We found a significant 

improvement in the overall performance compared to the lower bound (Table 4.2, SRA vs 

Sequential Training), as well as task specific performance (Figure 4.3) when SRA was 

incorporated into the training cycle. On CUB-200, the baseline ANN suffered from catastrophic 

forgetting after it was trained sequentially on two tasks (first task - 5%, second task - 95%). 

Incorporating SRA after each task training resulted in much higher and balanced classification 

accuracy (first task - 63.2%, second task - 45.4%). Similar results were found for CIFAR-10, where 

the network with SRA achieved overall accuracy values of 35%, significantly higher than the 

control ANN without SRA (~19%). Errors in Table 4.2 represent the standard deviation across 5 

trials with different network initialization and different task orders. Note that computational costs 

for running SRA are comparable with the costs of training each additional task (when task training 

is implemented in batches). However, sleep required much less inputs to pass through the network; 

thus, the computational performance of sleep phase can be likely improved by incorporating the 

idea of mini-batches (see Supporting Information, Figure 4.9 for more detail). 

We next tested the SRA using a cross-modal task, where the network first learned the 

MNIST and next the Fashion MNIST dataset. An ideal network trained on both datasets at once 

achieved a classification accuracy of around 90%. When trained incrementally, the baseline ANN 

failed to accurately classify the MNIST data, achieving overall classification accuracy of 47% 

(Table 4.2) Incorporating SRA into the training boosted overall classification accuracy to 61%. 

While we primarily tested a network with only two hidden layers, the analysis of 4-hidden layer 

networks on MNIST task revealed that SRA can be applied in deeper architectures to recover the 

same level of performance.  
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Table 4.2: Average test accuracy (± s.d) (averaged across different task orders) for baseline sequential 
training, Elastic Weight Consolidation, Synaptic Intelligence, Orthogonal Weight Modification, Sleep 
Replay Algorithm, Rehearsal with 2% of old data stored, Sleep Replay Algorithm + Rehearsal (2% of old 
data stored), and the ideal performance of a network trained on all data at once. 

Method Inc. 
MNIST 

Inc. Fashion 
MNIST 

Multi-modal 
MNIST 

Inc. CUB-
200 

Inc. 
CIFAR10 

Sequential Training 19.26 ± 
0.0001 

19.96 ± 
0.0001 

47.18 ± 
0.0020 

5.32, 
95.41 

18.81 ± 
0.0005 

EWC 20.03 ± 
0.77 

20.18 ± 0.29 74.55 ± 0.83 0.0, 63.85 18.13 ± 
0.0012 

SI 22.02 ± 
1.70 

22.05 ± 2.05 74.15 ± 0.80 0.07, 
60.01 

19.8 ± 
0.0049 

OWM 56.32 ± 
2.70 

49.33 ± 5.74 91.29 ± 1.05 71.4, 21.5 44.78 ± 
1.7957 

SRA 44.87 ± 
0.0630 

42.03 ± 
0.0175 

61.33 ± 
0.0150 

63.2, 45.4 34.56 ± 
0.0127 

Rehearsal (2\% 
data stored) 

46.5 ± 
2.987 

51.81 ± 0.767 86.48 ± 0.253 49.21, 
51.26 

30.86 ± 
0.726 

Rehearsal + SRA 64.812 ± 
2.91 

56.196 ± 5.64 86.74 ± 0.367 62.14, 
34.93 

41.58 ± 
0.974 

Parallel Training 94.19 ± 
0.0011 

83.48 ± 0.003 90.05 ± 
0.0028 

85.49, 
79.15 

67.36 ± 
0.0017 

 
Although we report here SRA performance numbers lower than those for some generative 

models (van de Ven, Siegelmann, and Tolias 2020a; Kemker and Kanan 2017), SRA was able to 

reduce catastrophic forgetting with only limited (average statistics) knowledge of previously 

learned examples and solely by utilizing spontaneous replay driven by the weights important for 

representation of old tasks. Among methods operating without access to old data, SRA surpassed 

regularization methods, such as Elastic Weight Consolidation (Table 4.2, EWC) and Synaptic 

Intelligence (Kirkpatrick et al. 2017; Zenke, Poole, and Ganguli 2017), on all incremental learning 

tasks (Table 4.2, SI) and revealed reduced performance only for multi-modal task (see Discussion 

and Supporting Information). However, a recently developed regularization method (Orthogonal 

Weight Modification, OWM) slightly surpasses performance of SRA on most tasks, suggesting 

that regularization methods can promote recovery of old tasks in a class-incremental learning 
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setting (Zeng et al. 2019). One implementation advantage of SRA over OWM is that SRA is an 

offline method, so it can be run after the normal training process is completed. Therefore, it can 

be complimentary to any other continual learning method. Furthermore, for tasks where it is 

unknown a priori if/when new training would be needed, SRA can be easily applied post fact, as 

only past average input would be needed to run SRA. In contrast, with OWM, one will need to 

feed all previous inputs through the network to compute projections. 

Ultimately, our results suggest that information about old tasks is not completely lost even 

when catastrophic forgetting is observed from the performance-level perspective. Instead, 

information about old tasks remains present in the synaptic weights and can be resurrected by off-

line processing, such as sleep replay. 

4.4.4 SRA is complementary to state-of-the-art rehearsal methods 

Many generative solutions aimed at solving catastrophic forgetting train a separate 

generator network to recreate and make use of (a fraction of) the old data during new training 

sessions - commonly called “replay” - to prevent forgetting (van de Ven, Siegelmann, and Tolias 

2020a; Kemker and Kanan 2017). We next tested the complementary effect of incorporating old 

training data during new training sessions (“replay”) along with SRA. In this scenario, we included 

a small percentage of old task data during new task training (see Methods and Supporting 

Information). The small amount of old task examples was alone (without SRA) insufficient to 

substantially increase the network’s classification accuracy on most tasks (Table 1, Rehearsal, 

Figure 4.4, gray lines). When SRA was included, this boosted the overall classification accuracy 

when compared to using a small fraction of old data alone (Table 1, Rehearsal+SRA vs Rehearsal, 

Figure 4.4) These results suggest that SRA can reduce the amount of data needed to be generated 

or stored with state-of-the-art rehearsal methods, while still obtaining near ideal accuracy.  Note 
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that the training time used in Table 4.2 was based on determining when a sequentially trained 

network reached its optimal performance on a single task. We, however, discovered that rehearsal 

methods and OWM may need longer training time in order to reach their optimal performance (see 

Supporting Information and Table 4.1).  Thus, we hypothesize that SRA could support these 

rehearsal methods by reducing the training time in addition to reducing memory capacity 

requirements. This point is explored below. 

From a neuroscience standpoint, this result predicts that learning new memories first by a 

separate (such as hippocampal) network, that would be storing new memories but also some high-

level information about old memories ("indexes" (Teyler and DiScenna 1986)), and subsequently 

training another (such as cortical) network using output of that hippocampal network, followed by 

cortical replay, gives an optimal solution to embed new memories in cortex and protect old 

memories. This is indeed how we believe brain learns hippocampus dependent declarative memory 

tasks (Rasch 2013). 

In this section, we show how incorporating SRA on top of a specific rehearsal method 

(iCaRL) can result in better continual learning performance than iCaRL alone (details on iCaRL 

can be found in Supporting Information or the original paper (Rebuffi et al. 2017) ). Table 4.3 

shows performance when different memory capacities (K, number of examples from previous 

classes that can be stored) are used. With a memory capacity of K and a network trained on t 

classes, m =K/t examples are stored from each class. The first two rows show a comparison of 

SRA vs. iCarl with K=100. SRA alone has equivalent memory capacity of K=1 since it stores only 

average input. We found that SRA alone showed significantly higher performance compare to 

iCaRL with K=100. Moving to K=1000, SRA was able to substantially improve the performance 

of iCaRL, by 10-40% on the different datasets, when combined together. Finally, moving to 
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K=20000, both iCaRL alone and iCaRL+SRA approached the accuracy of an ideal network, with 

iCaRL+SRA sometimes exceeding this (in the case of MNIST). In sum, SRA could support 

various rehearsal methods by a) reducing the amount of old data that are stored, or b) allowing 

only replay of the highest-quality generated examples. In all cases, this would reduce training time 

and alleviate catastrophic forgetting, while needing fewer data from old datasets during new 

training. 

Next, we discuss in more details how incorporating SRA on top of a state-of-the-art 

rehearsal method, iCaRL, can result in better continual learning performance than iCaRL alone 

(details on iCaRL implementation can be found in Supporting Information or the original paper 

(Rebuffi et al. 2017). Table 4.3 shows performance when different memory capacities ($K$, 

number of stored examples from previous classes) were used. In the case of MNIST, iCaRL with 

K = 100 achieved a performance of 65.502% after 10 epochs/task and iCaRL with K = 200 

achieved a performance of 76.856% after 10 epochs/task. iCaRL+SRA with K = 100 achieved a 

classification performance of 78.086% after 10 epochs/task. Thus, a higher accuracy can be 

obtained with iCaRL + SRA and it may even be achieved with a lower memory capacity. For 

MNIST, Fashion MNIST and CIFAR10 datasets, in almost all cases (except K = 2000 for MNIST) 

iCaRL + SRA had higher performance than iCaRL alone for the same memory capacity. We also 

observed that OWM could benefit from longer training times. However, the performance of iCaRL 

+ SRA with K = 100 always exceeded OWM performance, suggesting that rehearsal methods are 

still the state-of-the-art in class-incremental continual learning settings. 

Note that these experiments were run for a larger number of epochs/task as compared to 

Table 4.2. Thus, we hypothesized that in addition to lowering memory requirements, SRA could 

also reduce training time (denoted as number of epochs per task) needed to achieve optimal results. 
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Indeed, we found that iCaRL + SRA converges more rapidly than iCaRL alone. For example, for 

K = 50, iCaRL + SRA achieved after just one epoch/task of training the same accuracy as iCaRL 

alone after 10 training epoch/tasks. For K = 100, 4 epochs/task were required with iCaRL + SRA 

before the same 10 epoch/task accuracy was obtained with iCaRL alone.  For K = 1000, iCaRL + 

SRA after 8 epochs/task had a final accuracy of 87.698%, whereas iCaRL even after 10 

epochs/task only achieved a final accuracy of 87.32%. In general, the benefits of SRA were higher 

for lower values of K. We defined the training savings as the number of epochs/task after which 

iCaRL + SRA achieves a greater performance than iCaRL alone after 10 epochs/task. The training 

savings on all 3 datasets (averaged across all memory capacities and task orders) were: 3.73 

epochs/task for MNIST, 3.67/task epochs for Fashion MNIST, and 2.80 epochs/task for CIFAR10 

(see Supporting Information for example plots).  

In sum, we found that SRA can support various rehearsal methods by a) reducing the 

amount of old data that are stored (or allowing only replay of the highest-quality generated 

examples); b) reducing training time. 
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Table 4.3: SRA improves upon iCaRL method with different memory capacities 
 

K = 
50 

K = 100 K = 200 K = 500 K = 1000 K = 2000 

iCaRL, 
MNIST 

53.42
8  ±  
5.20 

65.502  ±  
4.66 

76.856  ±  
5.29 

87.326  ±  
1.30 

90.628 ± 
0.41 

92.850 ± 0.44 

SRA + 
iCaRL, 
MNIST 

69.97 
± 
3.74 

78.086  ±
3.16 

84.498 ± 
1.39 

88.862 ± 0.44 91.130 ± 
0.58 

92.742 ± 0.41 

iCaRL, 
Fashion 
MNIST 

49.34
2 ± 
6.83 

57.786 ± 
3.13 

62.828 ± 
2.97 

69.038 ± 2.78 73.972 ± 
1.58 

78.030 ± 0.62 

SRA + 
iCaRL, 
Fashion 
MNIST 

51.55
4 ± 
11.63 

61.916 ± 
5.25 

65.110 ± 
2.95 

69.798 ± 2.48 75.226 ± 
1.28 

78.542 ± 1.17 

iCaRL, 
CIFAR10 

35.15
6 ± 
3.41 

43.244 ± 
1.99 

49.102 ± 
2.07 

54.898 ± 1.49 59.528 ± 
0.77 

62.878 ± 0.65 

SRA + 
iCaRL, 
CIFAR10 

39.38
2 ± 
3.61 

46.002 ± 
2.07 

51.324 ± 
1.86 

57.504 ± 0.61 61.23 ± 0.88 64.018 ± 0.56 

   MNIST Fashion 
MNIST 

CIFAR10  

  Sequenti
al 
Training 

19.49 ± 
0.002 

19.67 ± 0.003 19.01 ± 
0.002 

 

  Parallel 
Training 

98.02 ± 
0.006 

87.86 ± 0.005 72.43 ± 
0.002 

 

  OWM, 
10 
epochs/ta
sk 

77.038 ± 
2.91 

58.35 ± 2.05 34.234 ± 
1.87 

 

4.4.5 SRA reduces catastrophic forgetting by replaying old task activity 

How does SRA work? From a neuroscience perspective, sleep reduces interference by 

replaying activity of recently learned tasks and old relevant (interfering) tasks (Rasch and Born 

2013). Using biophysical models of brain network and testing for simplified task of learning 
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overlapping memory sequences, we showed that sleep replay modifies the synaptic weights to 

create unique synaptic representation for each task (Gonzalez et al. 2019). Such differential 

allocation leads to reduced representational overlap and therefore diminishes catastrophic 

forgetting.  

To address how SRA works for ANNs, we examined a reduced class-incremental learning 

MNIST task. The network was first trained on digits 0 and 1 (Task 1), followed by sleep. Next, 

the network was trained on digits 2 and 3 (Task 2), leading to T1 forgetting, followed by second 

sleep phase. We then implemented the second sleep phase after T2 training and we then 

implemented and analyzed the second period of sleep that resulted in recovery of performance on 

the first task (overall accuracy on both tasks after SRA = 90%).  

To test if after SRA the neurons are differentially allocated to represent digits from 

different tasks, we first looked at the correlation of activities in the hidden layers. The ANN was 

presented with all inputs from the test sets of both tasks and we calculated the average correlation 

within the first and second hidden layers before and after application of SRA (Figure 4.5). In both 

layers, before SRA (when all inputs were classified as either 2 or 3), correlations of activity for 

digits from different classes were almost as high as correlations of activity for digits from the same 

class (with exception of classes 2 and 3 in the 2nd hidden layer) (Figure 4.5B, left). After SRA we 

observed decorrelation (near-zero correlations between representation of digits from different 

classes) and an increase in representational sparseness (where each stimulus strongly activates only 

a small subset of neurons) for all four digits (Figure 4.5, right and Figure 4.14). This suggests that 

SRA prevents interference between classes by allocating different neurons to different tasks, 

thereby creating a distinct population code for different input classes. 
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Decorrelation of activity alone may not explain the old task recovery. Indeed, if activity of 

neurons representing the earlier task remains lower than that for the later task, then catastrophic 

forgetting would still occur. Therefore, we next analyzed activation properties of the neurons 

representing individual tasks (Figure 4.6) In each hidden layer, we selected the top 100 neurons 

that were most active in response to Task 1 or Task 2 inputs (see Methods for details on selection 

process) and analyzed how input to these neurons changes after SRA. In the first hidden layer, 

both Task 1- and Task 2-neurons experienced a decrease in input strength, but the effect was 

generally higher for Task 2 neurons, reflecting a greater decrease in the weights connecting to Task 

2-neurons (Figure 4.6, left). More notably, in the second hidden layer, we observed an increase of 

the input to Task 1-neurons but a decrease of the input to the Task 2-neurons (Figure 4.6, right). 

This suggests that a relative increase in activity of Task 1-neurons along with an overall 

decorrelation of representations between the tasks explains recovery of performance on the old 

task. 

In the mammalian brain, sleep dependent memory consolidation occurs through memory 

replay, i.e., patterns of neurons activated during task learning are reactivated spontaneously during 

sleep (Ji and Wilson 2007). To test if replay happens during SRA, we looked at the firing activity 

of Task 1- and Task 2- neurons during sleep. To avoid possible bias from using task averaged 

input, here the network was stimulated during sleep by a completely random input. We calculated 

the average firing rates of neurons and we found in the first hidden layer that the top 100 most 

active neurons involved in representation of the previously learned individual digits had a higher 

average firing rate during sleep than a randomly selected subset of neurons (Figure 4.7A). In the 

second layer, this result was more pronounced for the most recently learned task (digits 2 and 3) 

(Figure 4.7B, Figure 4.13). To compare firing rates of digit-specific neurons, we concatenated the 
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firing rates of digit-2 and digit-3 (Task 2) neurons and compared them with the concatenated firing 

rates of digit-0 and digit-1 (Task 1) neurons.  We found that digit-2 neurons and digit-3 neurons 

were significantly more active in layer one (t(200) = 3.456, p = 0.004, 1-sided t-test, Bonferroni 

Correction) and layer two (t(200) = 5.215, p < 0.001, 1-sided t-test, Bonferroni Correction). This 

suggests that spontaneous firing patterns during sleep are correlated with activity observed during 

task learning, in agreement with neuroscience data (Ji and Wilson 2007; Rasch and Born 2013). 

Interestingly, sleep replay improved performance not only by increasing connectivity for the old 

tasks but also by reducing connectivity representing the most recent task.  

If replay indeed provides a mechanism of how sleep protects memories from interference, 

then for a single task, sleep replay should increase performance. Indeed, the most well-established 

in neuroscience effect of sleep on memory is either mapping memory traces from hippocampus to 

the cortex for declarative memory tasks or augmenting cortical traces for procedural memory tasks 

(Rasch and Born 2013). In this new study we typically observed some reduction in performance 

on most recent task. Do we have contradiction here? To test this, we tested effect of SRA on a 

single task memory performance as a function of the amount of initial training.  We found (see 

Figure 4.12) that when the network is undertrained, i.e., initial performance is low, SRA can 

greatly increase performance without involving any new training data. However, if memory is well 

trained, SRA cannot improve or even slightly reduces performance.  

4.5 Discussion 

We implemented an unsupervised sleep replay algorithm (SRA) for artificial neural 

networks and we showed that SRA can alleviate catastrophic forgetting for several different 

datasets, ranging from binary patterns to natural images. We found that SRA simulates properties 

of biological sleep replay: (a) spontaneous activation of neurons during sleep leads to replay of 
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previously learned activation patterns, (b) unsupervised Hebbian type plasticity modifies the 

connectivity matrix to increase task specific connections and to prune excessive connections 

between neurons. This increases sparseness of representations and reduces representational 

overlap amongst distinct input classes. Our results suggest that unsupervised Hebbian type 

plasticity combined with spontaneous activity during sleep can help alleviate catastrophic 

forgetting in an incremental learning setting.  

Existing approaches to prevent catastrophic forgetting generally fall under two categories: 

rehearsal and regularization methods (Kemker et al. 2018). Rehearsal methods combine previously 

learned data, either stored or generated, with novel inputs in the next training to avoid forgetting 

(Hayes, Cahill, and Kanan 2019; Robins 1995; van de Ven, Siegelmann, and Tolias 2020b; Shin 

et al. 2017). This approach includes models where distinct networks, loosely representing 

hippocampus and cortex, are used to generate examples from a distribution of the previously 

learned tasks (Kemker and Kanan 2017). As the number of previously learned tasks grows, this 

approach would require increasingly complex generative networks capable of potentially 

generating everything that was learned before. In contrast, brain networks are capable of 

spontaneously replaying previously learned memories during sleep simply by reactivating 

previously learned synaptic weights patterns. Thus, although rehearsal methods work well from 

an engineering standpoint, they unlikely capture the mechanisms that nature developed to enable 

continual learning. While current SRA performance, as we report here, is somewhat inferior 

compared to the state-of-the-art rehearsal techniques (van de Ven, Siegelmann, and Tolias 2020b; 

Hayes, Cahill, and Kanan 2019; Kemker and Kanan 2017), our approach does not require storing 

any task specific information or training new generator networks. SRA may be complementary to 

rehearsal methods by incorporating partial old data replay, reducing the amount of old data needed 
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for new task training. Importantly, SRA was also shown to perform other memory functions 

associated with sleep, such as promoting generalization and improving robustness against 

adversarial attacks (Tadros et al. 2019) . While actual training data were used for sleep replay in 

(Tadros et al. 2019), here we show that sleep replay can alleviate catastrophic forgetting on class 

incremental learning task by only having access to the basic input statistics. 

Regularization approaches (Li and Hoiem 2017) for reducing catastrophic forgetting aim 

to modify plasticity rules by incorporating additional constraints on gradient descent such that 

important weights from previously trained tasks are maintained. The Elastic Weight Consolidation 

(EWC) and Synaptic Intelligence (SI) methods penalize updates to weights deemed important for 

previous tasks (Kirkpatrick et al. 2017; Zenke, Poole, and Ganguli 2017). Although these studies 

report positive results in preventing catastrophic forgetting in various tasks (MNIST permutation 

task, Split MNIST, Atari games), they may not work well in a class-incremental learning 

framework, where one class of inputs is learned at a time (van de Ven, Siegelmann, and Tolias 

2020a). Since these approaches support continual learning by stabilizing weights that are deemed 

important for earlier tasks, high overlap in representation between tasks belonging to the same 

dataset may reduce their performance (see Supporting Information). In terms of memory 

constraints, SRA is similar to regularization methods since only a fixed amount of information, 

independent of the number of tasks trained, is needed to be stored, but SRA exceeds performanace 

of EWC and SI approaches in an incremental learning framework that is natural for biological 

systems. Orthogonal Weight Modification (OWM) improves upon these methods by computing a 

projector matrix for old tasks and only allowing weight updates in an orthogonal direction to this 

projector (Zeng et al. 2019). OWM was shown to be more successful than EWC and SI on class-

incremental learning tasks. 
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Our approach is implemented using a machine learning framework, where during the sleep 

phase we simply substitute in the Heaviside activation function and modify the learning rule. Since 

the idea of SRA is inspired by biological spiking networks (SNNs), we also tested SNN-only 

implementation by performing ”awake” training on MNIST data in an SNN via backpropagation 

(Yanguas-Gil 2020) and found that incremental learning can lead to catastrophic forgetting. When 

sleep phase was implemented after each new task training using noise driven spontaneous replay, 

this recovered the old task performance (see Supporting Information).  It remains open question if 

SRA would benefit convolution layers of the network, which were kept frozen in this study. Recent 

studies suggest that catastrophic forgetting does not occur in the feature extractor but takes place 

in the later layers, which motivated the use of SRA in these layers (Ramasesh, Dyer, and Raghu 

2020; Goodfellow et al. 2013). From neuroscience perspective convolutional layers are somewhat 

equivalent to the primary visual cortex which is less plastic beyond development and unlikely 

involved in significant rewiring during sleep replay, in contrast, e.g., to the associative cortices. 

Sleep replay helps to resurrect performance on tasks that were damaged after new training. 

This suggests that while ANN performance for old tasks is reduced, the network connectivity 

retains partial information about these tasks and spontaneous activity combined with unsupervised 

plasticity during sleep may reverse damage and reorganize connectivity to accommodate both 

tasks. Previously, it was shown that a wake-sleep algorithm developed for recurrent spiking neural 

networks, which does capture some principles of memory consolidation during sleep, can reduce 

the number of training examples needed to achieve optimal performance on single tasks (Thiele, 

Diehl, and Cook 2017). The wake-sleep algorithm for Boltzmann Machines was shown to be able 

to learn representations of inputs and highlighted the role of incorporating a sleep phase to improve 
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learning (Hinton et al. 1995). Our work further adds to this literature by exploring the role of sleep 

and local plasticity rules in overcoming catastrophic forgetting.  

Our study makes several predictions for neuroscience: (a) Synaptic dynamics during sleep 

remain poorly understood. Some studies suggest net reductions of synaptic weights (Tononi and 

Cirelli 2006), while others argue for net increase  (Igor Timofeev and Chauvette 2017). Our work 

(extending ideas of (Gonzalez et al. 2019)) predicts that sleep replay leads to complex 

reorganization of synaptic connectivity, including potentiation of some synapses and pruning of 

others with the goal of increasing separation between memories. We found that sleep replay may 

increase the "contrast" between memory traces by enhancing lateral inhibition, such that activation 

of one memory inhibits other "similar" memories to avoid interference (Lee et al. 1999). Recent 

studies suggest that local learning rules can orthogonalize memories with different temporal 

contexts (Bouchacourt et al. 2020; Saxe, Nelli, and Summerfield 2021). Our current (and recent 

(Gonzalez et al. 2019)) work agrees with this idea and further suggests that local learning rules 

and sleep can orthogonalize representation of interfering memories, even with limited contextual 

information. (b) Sleep increases the sparseness of memory representations, which is in line with 

previous theoretical ideas about the role of interleaved training (McClelland, McNaughton, and 

O’Reilly 1995). (c) Currently, sleep replay ideas are best developed for NREM sleep when 

neuronal activity is structured by oscillations. Our model predicts that sleep replay can be mediated 

by sparse patterns of excitation propagating through the network, which is typical for REM sleep 

(indeed, memory replay was also reported in REM sleep (Louie and Wilson 2001)). (d) Our model 

predicts the importance of neuromodulatory changes from learning (wake) to consolidation (sleep) 

phase, including strengthening of intracortical synapses and reduction of intrinsic excitability, as 

found in NREM sleep (Gil, Connors, and Amitai 1997; McCormick 1992). We suggest that these 
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changes effectively increase the "signal-to-noise" ratio in network dynamics to promote the 

stronger memories, that are replayed and consolidated, while allowing forgetting of the weaker 

memory traces.  

Catastrophic forgetting may be interpreted as asymmetry of the weights' configuration that 

became biased towards the most recent task after new training. From this perspective, SRA may 

be seen as a “symmetry-correcting” mechanism. Indeed, Hebbian learning has been shown to 

orthogonalize neural codes and our recent biophysical modelling work (Gonzalez et al. 2019), as 

well as results here, have shown that sleep orthogonalizes memories by “assigning” distinct 

weights to represent distinct memories. We found that rather than engage completion between 

memories, sleep allows chunks of competing memories to replay simultaneously, so each memory 

would reach its optimal representation, which can be seen as a way of recovering the symmetry of 

weight distribution across tasks. 

In sum, in this study we proposed an unsupervised sleep replay algorithm, inspired by the 

known role of biological sleep, to recover synaptic connectivity that otherwise would be forgotten 

after new training in ANNs. We tested a simplified model of sleep (noisy replay) and a Hebbian-

type plasticity rule. Future work may need to explore more complex patterns of sleep activity (e.g., 

sleep waves) and learning rules (e.g., (Gerstner et al. 2014)), which could further improve 

performance. 
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4.7 Supplementary Information 

4.7.1 Analysis of catastrophic forgetting and sleep in toy model 

In this section, we examine the cause of the catastrophic failure and the role of sleep in 

recovering from the forgetting in toy model. While this example is not intended to model all 

scenarios of catastrophic forgetting, it provides the intuition and explains how our algorithm 

prevents catastrophic forgetting. Let us consider the 3-layer network trained on two categories, 

each with just one example. Consider 2 binary vectors (Category 1 and Category 2) with some 

region of overlap. 

We consider ReLU activation since it was used in the rest of this work. We assume the 

output to be the neuron with the highest activation in the output layer. Let the network be trained 

on Category 1 with backpropagation using static learning rate. Following this, we trained the 

network on Category 2 using same approach. A 3-layer network we consider here has an input 

layer with 10 neurons, 30 hidden neuron and an output layer with 2 neurons for the 2 categories.  

Inputs are 10 bits long with 5 bit overlap. We trained with learning rate of 0.1 for 4 epochs. 

We can divide the hidden neurons into four types based on their activation for the two categories: 

A - those neurons that fire for Category 1 but not 2; B - those neurons that fire for Category 2 but 

not 1; C - those neurons that fire for Category 1 and 2; D - those that fire for neither category, 

where firing indicates a non-zero activation. Note that these sets may change during training or 

sleep. Let Xi be the weights from type X to output i. 

Consider the case where the input of Category 1 is presented. The only hidden layer 

neurons that fire are A and C. Output neuron 1 will get the net value A*A1 + C*C1 and output 
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neuron 2 will get the net value A*A2 + C*C2. For output neuron 1 to fire, we need two conditions 

to be held: (1) A*A1 + C*C1 > 0, (2) A*A1 + C*C1 > A*A2 + C*C2. The second condition above 

can be rewritten as A*A2 - A*A1 < C*C1 - C*C2, which separates the weights according to the 

hidden neurons. Using this separation, we give the following definitions: 

Define a to be (A2-A1)*A on pattern 1; b to be (A2-A1)*A on pattern 2; p to be (C1-C2)*C on 

pattern 1 and q to be (C1-C2)*C on pattern 2. (Note that p and q are very closely correlated since 

they differ only in the activation values of C neurons which are positive in both cases). 

So, on the input pattern 1, output 1 fires only if a < p; on input pattern 2, output 2 fires only if q < 

b. 

Following training on 2 categories, if the network can not recall Category 1, i.e., output 

neuron 1 activation is negative or less than that of output neuron 2, catastrophic forgetting has 

occurred (We confirmed this occurred 78% of times for the 3 layer network described above and 

100 trials). The second phase of training ensures q < b. This could involve reduction in q which 

would reduce p as well.  (Since A does not fire on input pattern 2, back-propagation does not alter 

a).  Reducing p may result in failing the condition a < p, i.e., misclassifying input 1. 

 Sleep can increase difference among weights (which are different enough to begin with) as 

was shown in (Wei, Krishnan, and Bazhenov 2016; Gonzalez et al. 2019). So, as the difference 

between A2 and A1 increases, this decreases a (as A1 is higher, a = A2  - A1 decreases). Occurrence 

of the same change to p is prevented as follows: it is likely that at least one of the weights coming 

to a C neuron is negative. In that case, increasing the difference would involve making the negative 

weight even more negative, resulting in the neuron joining either A or B (as it no longer fires for 

the pattern showing the negative weight), thus reducing p. (This is explained further in the 

supplement). When the neurons in C remains, we have a more complex case: here, a decreases, 
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but p may also decrease correspondingly; another undesirable scenario is when b decreases to 

become less than q. Typically sleep tends to drive synaptic weights of the opposite signs, or the 

weights of same sign but different by some threshold value, away from each other. There are 

conditions when the difference between weights is below threshold point to cause divergence. In 

those cases sleep does not improve performance. 

In our experiments, for majority of the cases, we found C to be empty after sleep, thus 

making p to become 0. For the instances when this was not a case, the initial values of A1, A2, B1 

and B2 were almost 0, i.e., the entire work of classifying the inputs is done by shared input. In such 

case, the network has no hidden information that sleep could retrieve (see Figure 4.8). 

4.7.2 Computational costs of SRA 

We can evaluate computational costs of SRA as combination of (a) number of images 

passed through the network (both forward and backward passes), and (b) storage costs. We first 

note that length of sleep is mostly related to the size of the network, not to the size of the training 

set. Thus, for larger datasets, while more images may be needed during training phase (in the 

“awake” state) in order for classification accuracy/loss to saturate, during “sleep” this is not 

necessarily true. Because of this, the computational cost of sleep is generally similar for networks 

trained on Imagenet, CIFAR, MNIST, etc (as long as the network size that sleep is applied to is 

the same, e.g., 2 hidden layers with the same number of units).  

As for number of iterations of sleep, we have observed that two parameters dictate how 

much sleep is necessary to recover performance on old tasks: the magnitude of weight changes 

(determines how much to increase/decrease weights when an STDP event occurs) and the input 

firing rate (that is the maximum firing rate for neurons in the first layer during sleep). Parameters 

can be set so that a very small amount of sleep is needed to recover old task performance. In the 
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(Fig 4.9) one can see that as the network learns all 5 MNIST tasks, only ~500 iterations (and thus 

~500 feedforward passes through the network) of sleep are needed to reach performance saturation. 

Each line shows the accuracy as a function of sleep duration on the entire dataset (all 5 tasks). 

Color indicates the sleep phase (e.g., after training task 1, task 2. etc.) 

If sleep requires 500 iterations to ultimately converge, this is equivalent to presenting 500 

“noisy” images. In contrast, during training, if we train each class for 2 epochs (as in the case with 

MNIST), 10,000 images are presented twice, i.e., 20,000 images fed through the network both 

forwards and backwards for a total of 40,000 passes. SGD is efficient so we do this in batches and 

we should divide the total number of passes (feedforward + backward) by the batchsize (100). This 

means the training computational time is 40,000/100 = 400 passes. This is on the same level as 

what is required during sleep (400-500 passes till convergence). The computational performance 

of sleep phase can be further improved (e.g., by incorporating the idea of mini-batches, etc.), just 

as how gradient descent has been heavily optimized.  

Lastly, in terms of memory constraints, there are scenarios where SRA reduces storage 

requirements (as shown with iCaRL) and scenarios where SRA requires more memory (as 

compared to regularization methods). However, regularization methods may be more 

computationally intensive, as they require computation of complex matrices, e.g. Fisher 

information matrix in EWC, or orthogonal projectors in OWM. 

4.7.3 Effect of input type during sleep 

One possible reason for digit-specific reactivation may be that the average image based 

input is applied during sleep. Thus, we performed the same analysis presented in the main paper 

with random inputs (drawn from a uniform distribution) presented during sleep. In Figure 4.7, we 

show the firing rates of digit specific neurons when presented with such noisy random inputs. We 
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still observe that digit-specific neurons are more likely to fire during sleep. This suggests that  the 

weight-matrices can support preferential activation of task-specific neurons during sleep. 

To further test this hypothesis, we tested SRA for incremental MNIST task with different 

types of inputs presented during sleep - random input, average input, specific inputs, each 

presented in 2 conditions (mask/no mask). For random inputs, we build a random uniform vector 

with the same size as the input space to determine input firing rates of neurons during sleep. For 

average input, the same input as described in the main paper is used, i.e., the average of all inputs 

seen so far determines the input firing rates. For specific inputs, we present Poisson distributed 

spike trains based on specific images (e.g., an image of a 3) during sleep. In the mask condition, 

during each iteration of sleep we randomly select a 10x10 portion of the input to present during 

sleep. In the no mask condition, the entire 28x28 vector is used to compute firing rates. 

Figure 4.10 shows the classification accuracy for each type of input. For specific inputs 

classification accuracy reaches ~60% in both the mask and no mask condition. For average inputs, 

we see a ~10% degradation when the entire image is presented (compared to specific inputs). 

However, with the mask condition, the degradation between moving from specific to average 

inputs is much smaller. Finally, looking at random inputs, we observe that when the entire random 

image is presented, the network is still able to mitigate catastrophic forgetting (task performance 

is ~30%). However, performance is much worse with random inputs, suggesting that task-specific 

information must be present for the network to optimally recover older tasks. 

4.7.4 Effect of task training length 

Our results suggest that the information about old tasks is not lost in the network after new 

task training, even if from a classification standpoint the old tasks are not classified correctly. One 

can expect, however, that as a new task training increases, the network may eventually lose all the 
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old task information. In order to verify this, we measured the classification accuracy before and 

after sleep in the simplified two task incremental setting for MNIST, Fashion MNIST, CIFAR10, 

and the crossmodal MNIST task.  For MNIST, Fashion MNIST, and CIFAR10, task 1 is the first 

two classes in the dataset and task 2 is the next two classes. For crossmodal MNIST, task 1 is the 

entire MNIST task, and task 2 is the entire Fashion MNIST task. We varied the length of training 

of task 2 in order to test the hypothesis that longer task 2 training would result in an inability for 

task 1 to be recovered after sleep since there is less information in the network pertaining to task 

1. 

Figure 4.11 shows classification accuracy on task 1 and task 2  before and after sleep, for 

all 4 datasets as a function of the length of task 2 training (in epochs). In all cases, T1 is mostly 

forgotten after T2 training (red dashed line), except in the case of Cross Modal MNIST, where T1 

accuracy is around ~20%. With light task 2 training, task 1 classification accuracy is recovered 

significantly. However, as we increase the length of task 2 training, task 1 recovery decreases. 

Nevertheless, it never becomes completely forgotten after sleep (solid red line is always above 

dashed red). Note that the reverse is true for T2. For light T2 training, T2 becomes more degraded 

after sleep. With longer T2 training, T2 performance remains unchanged after sleep (dashed gray 

line = solid gray line).  

These results also suggest that possibly effective training strategy would be to interleave 

multiple episodes of new task training and sleep. Indeed, this would well match biology, when 

new procedural task training in human brain happens slowly and involves multiple training 

sessions and multiple episodes of sleep between them. 
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4.7.5 Effect of SRA on single task performance 

From neuroscience standpoint the best studied effect of sleep on memory is an 

improvement of a single task performance after sleep. E.g., in experiments with new skill learning, 

comparing task performance following episode of training + sleep vs. training with no sleep reveals 

memory improvement when sleep is included. In fact, recent studies revealed an inverse 

association between learning performance and gains in procedural skill, i.e., good learners 

exhibited smaller performance gains after sleep than poor learners (Rångtell et al. 2017).  

To test if SRA can provide similar performance benefits for a single task learning and also 

show similar dependence on pre-sleep performance, we used the entire MNIST dataset and trained 

it in 4 conditions, that were different by the length of training. SRA was implemented after training 

in all 4 cases and we compared performance before vs. after sleep.   

Figure 4.12 shows the classifcation accuracy on the entire MNIST dataset before/after sleep 

in 4 training conditions. When training is short, i.e., pre-sleep performance is low, we found a very 

significant 20 percentage point increase in classification accuracy after SRA. When training is 

long, i.e., pre-sleep performance is high, we see a ~5 percentage point improvement. Finally, for 

very long training, we observed small reduction in performance after SRA. The last may be related 

to the reported SRA role in increasing generalization (Tadros et al. 2019). Indeed, requirements 

for robustness/generalization and classification accuracy are conflicting, so increase in 

generalization may explain observed reduction of accuracy after SRA even on recent tasks. These 

results suggest that replay during SRA can indeed capture some important elements of replay in 

the biological brain. 
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4.7.7 Implementation of other methods 

4.7.7.1 Elastic Weight Consolidation 

Elastic weight consolidation (Kirkpatrick et al. 2017) seeks to reduce the plasticity of 

weights that are deemed important for previously learned tasks, while utilizing less important 

weights to learn and represent the new task. Any updates to weights deemed important for 

previously learned tasks are penalized in the loss function, thus making it harder for any new 

training to impact the performance of old tasks. More formally, this is written as a regularization 

term added onto the loss function  

𝐿(𝜃) = 	𝐿C(𝜃) +	f
𝜆
2𝐹L(𝜃L − 𝜃.,L

∗ )
L

 

Here 𝐿C(𝜃) represents the normal loss function evaluated on the new training set B. The 

regularization term computes the product of the Fisher information matrix of parameter i with the 

difference between the proposed weight update 𝜃Land the original parameter when trained on an 

earlier dataset 𝜃.,L∗ . In this way, weight updates to parameters deemed important for task A are 

penalized. The lambda parameter determines how plastic the network should be. A high value for 

lambda suggests that weight updates should only occur when they are vital to achieving a high 

performance on the new task B. For our purposes, we performed a parameter sweep over lambda 

to find the best value of lambda for each specific task. 

In this work, we implemented elastic weight consolidation (EWC) as a benchmark to 

compare against the sleep replay algorithm. In the original work (Kirkpatrick et al. 2017), EWC 

was tested on the MNIST permutation task as well as a series of reinforcement learning games. In 

other works, it has been noted that EWC does not achieve optimal results on incremental learning 

tasks (when the classes in the dataset are learned incrementally) (van de Ven, Siegelmann, and 

Tolias 2020a). In this work, we corroborate these results. Mainly, EWC fails to perform continual 
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learning on the incremental learning tasks. However, on the Multi-modal MNIST task where the 

network must learn both the Fashion MNIST and MNIST datasets, EWC outperforms SRA. These 

results suggests that different methods can excel in certain areas of continual learning but fail in 

others and that combinations of different methods may provide an optimal solution that can be 

explored in future studies. 

4.7.7.2 Synaptic Intelligence 

The Synaptic Intelligence approach (SI) (Zenke, Poole, and Ganguli 2017) is similar to 

EWC with a slightly different regularization term. To penalize updates to important parameters, 

the SI method uses the following loss function: 

𝐿\W =	𝐿\ + 𝑐fΩL
\(𝜃LW −	𝜃L)^2

L

 

This regularization term is similar to EWC, where ΩL
\ keeps track of how important an individual 

parameter 𝜃L is to previously learned tasks. The parameter c is similar to the lambda parameter in 

EWC. We performed a parameter search over c to find the best value for each of the tasks tested 

in the paper. Given the similarities of the two approaches, we observed similar performances on 

the tasks tested in the paper between EWC and SI. Mostly, SI fails to perform class incremental 

learning but performs well on the Multi-modal MNIST task. 

4.7.7.3 Orthogonal Weight Modification 

The orthogonal weight modification (OWM) approach (Zeng et al. 2019) takes a different 

approach by trying to force weight updates in a direction that is orthogonal to the subspace spanned 

by all previously learned inputs. First, a projector P is constructed to find the direction orthogonal 

to the input space: 𝑃 = 𝐼 − 𝐴(𝐴8𝐴 + 	𝛼𝐼):?, where A consists of all previously trained inputs as 

columns. Weight modifications are then done by ∇𝑊 = 	𝜅𝑃∇𝑊C%. We used a values of 

0.9*(0.001^l), 0.1^l, and 0.6 in each of the 3 hidden layers. Here, $l$ represents the progress made 



 

145 

through the training of the current task. For CIFAR-10, we used 0.9*(0.0001^l), 0.1^l, and 0.006 

as the a parameters. The authors in the original paper use an iterative method to construct P so not 

all inputs must remain stored. In the tasks tested in the paper, OWM performs significantly better 

than the other two regularization methods: EWC and SI. 

Note that in the manuscript we discuss two different versions of OWM - one with shorter 

training and another one with longer training. Table 1 in the manuscript shows OWM performance 

when trained with 2-4 epochs/task (the same as for all other methods) on MNIST, Fashion MNIST 

and CIFAR10. Table 2 shows OWM performance when trained with 10 epochs/task on all datasets. 

We discovered that OWM takes longer to converge than most of the other methods tested in this 

manuscript and so we present data over a range of training duration  (see Figure 4.15). The results 

with longer training are in line with other implementations of OWM except for in the case of 

CIFAR-10 (Zeng 2019). We hypothesize that this disparity occurs because our study only applies 

OWM to the fully connected layers, not in an end-to-end fashion, as done in Zeng 2019. Since our 

extracted features for CIFAR10 images were based on Tiny Imagenet, they are likely not 

maximally informative. If we use extracted features from a network trained on CIFAR10 instead 

of Tiny Imagenet, we could improve OWM performance on CIFAR10 (when trained sequentially) 

from 34% to 42%. This suggests that OWM may work better in scenarios where the feature 

extractor can also be fine-tuned on the dataset. 

4.7.8 Discussion of regularization approaches 

Table 1 in the main paper illustrates that the first two regularization (SI and EWC) 

approaches fail to prevent catastrophic forgetting in the incremental tasks. However, on the Multi-

modal MNIST task, these regularization approaches come close to reaching the ideal accuracy. 

Here, we briefly discuss why these methods may succeed in some domains and fail in others. In 
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the paper outlining EWC, the authors tested the algorithm on the MNIST permutation task and 

reinforcement learning tasks (Kirkpatrick et al. 2017). For SI, the algorithm was tested on the 

MNIST permutation task as well as the split MNIST and CIFAR tasks (Zenke, Poole, and Ganguli 

2017).  

The MNIST permutation task defines a single task as one representation of the input space. 

During subsequent tasks, this representation is permuted (so that pixel i of all images now appears 

in a new location in the image). During incremental learning, the network must be able to 

distinguish all 10 digits in previously learned permutations, while also learning the newest 

permutation. Since a lot of the information in MNIST images is present in the center of the image, 

we hypothesize that when a new permutation of the images is created, the pertinent information is 

likely moved to distinct regions of the image. These regions have a relatively small amount of 

overlap with the old permutations, so when EWC or SI are applied, important weights connecting 

from the center of the image may be preserved, while the weights that connect from the new 

important regions of the image are updated.  

For split MNIST/CIFAR tasks, the classes in the dataset are divided into subsets (i.e. pairs 

of digits or images), and the network learns to distinguish each image in the pair. During task 1, 

the network may learn to distinguish 0 and 1. Then, during task 2, the network may learn to 

distinguish 2 and 3, utilizing the same two output neurons as were used for task 1. In this scenario, 

regularization approaches may work well by allocating distinct pathways through the network for 

each binary classification task learned. Thus, when task 2 is learned, old pathway through the 

network is preserved for task 1, and a new pathway is created to represent task 2. In incremental 

learning settings, activity to certain output neurons is cut off during new task training, as is the 

case with the incremental tasks tested in the paper. Thus, when training on a new task (e.g., digits 
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2 and 3), output neurons representing old memories (e.g., digits 0 and 1) should not receive any 

activity to achieve a suitable loss on the new task. We hypothesize that the regularization term 

added by EWC and SI is insufficient to maintain activity to these output neurons representing older 

classes. 

Nevertheless, we found that EWC and SI work well for the multi-modal MNIST task 

(where the network must learn MNIST and Fashion MNIST incrementally). In this task, during 

both phases of learning, all output neurons remain active. Additionally, the MNIST and Fashion 

MNIST datasets may maintain information in distinct parts of the image. Therefore, regularization 

approaches may consolidate the two tasks into the network, solely by preserving weights that are 

significantly important for the old task and using the relatively less important weights to represent 

the new task. 

4.7.9 Incremental Classifier and Representation Learning (iCaRL) 

Here, we describe our implementation of the iCaRL method and differences with the main 

paper (Rebuffi et al. 2017). The main idea of the iCaRL algorithm is to utilize a fixed memory 

capacity (capacity K, where K represents number of examples stored from previous classes) in an 

efficient way to prevent catastrophic forgetting. Specifically, it selects which K examples to store 

from previous classes (m = K/t images per class, where t is the number of classes seen so far) by 

adding examples to the memory bank which cause the average feature vector over all exemplars 

(m images in the memory bank) to approximate the average feature vector over all training 

examples (all images of the relevant class). These images are sorted in the exemplar set based on 

how well they approximate the average feature vector over all training examples. When a new 

class is learned, the exemplar set for a certain class is reduced (now m = K/(t+1) by removing the 

least informative (of the average feature vector) examples. 
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In addition to introducing an efficient exemplar management, the learning rule and 

classification scheme are modified in the original iCaRL implementation  (Rebuffi et al. 2017). 

Specifically, the learning rule incorporates both soft-target distillation over examples from 

previous tasks as well as cross-entropy loss from the newest task. The labels for the new images 

are binary one-hot encoded vectors with the correct classifications. However, the labels for the old 

images are computed by passing these images through the network and storing the output from the 

network. In addition, the classification scheme is changed to use the Nearest Means of Exemplar 

classification strategy, where test inputs are fed through the network and their representation in the 

last hidden layer (before the classification layer) is used to compute the classification for that test 

example. Its label is determined by finding the nearest-class-mean using the exemplar set and all 

class labels which have been learned so far. In our implementation of iCaRL, we used the Nearest 

Means of Exemplar classifier as well as soft-target distillation. 

As with OWM, we found that iCaRL can benefit from longer training times (see Figure 

4.16). We, however, showed that even with longer training times, SRA can still improve upon 

iCaRL performance, especially for lower values of K. Furthermore, SRA can reduce the training 

time needed to achieve maximal performance of iCaRL (Figure 4.16). We characterize the savings 

in the training time by the difference in epochs/task when iCaRL + SRA achieves the same 

accuracy as iCaRL alone after 10 training epochs. These results are reported in the main 

manuscript. 

4.7.10 Implementation of both training and sleep replay within SNN 

Sleep replay algorithm presented in this study was implemented for artificial neural 

networks. In addition, we tested another implementation when both training and sleep were 

implemented using spiking neural networks (SNNs). SNNs recently received attention from the 
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neuromorphic hardware community for their ability to perform power-efficient computing 

(Ghosh-Dastidar and Adeli 2009), particularly during inference phase (P. U. Diehl et al. 2015; 

Zhang et al. 2019; Davidson and Furber 2021). However, SNNs are still inferior to ANNs on 

complex data training (Wu et al. 2019).  Nevertheless, the question is raised of whether or not the 

entire wake-sleep pipeline could be performed within a spiking network architecture as well as 

what implications this may have for neuroscience and computer science.  

Table 4.4: Catastrophic forgetting is observed when sequential training is performed in an SNN 
architecture 

SRA is able to produce more balanced classification accuracy on both tasks (T1 = digits 0-1, T2 = digits 
2-3 in MNIST dataset). Each value represents the average of 5 trials. 

Phase T1 Performance T2 Performance 
T1 awake training 99.6 0.6 
Sleep 84.8 2.9 
T2 awake training 0 85.9 
Sleep 71.8 51.3 

 
To address this question, we implemented both awake training and sleep replay withing 

SNN architecture.  We performed "awake" sequential training on MNIST data in an SNN via 

backpropagation (Yanguas-Gil 2020). This method works by approximating the discontinuity in a 

neuron's non-linear spiking function so as to make it differentiable when performing 

backpropagation. Our goals were (a) to verify that catastrophic forgetting occurs in an SNN trained 

through backpropagation; (b) to test the effect of SRA in overcoming catastrophic forgetting. 

Table 4.4 illustrates the classification accuracy for two task incremental training on the 

MNIST dataset (T1 = digits 0-1, T2 = digits 2-3). The SNN trained here had the same number of 

neurons in each layer as the ANNs used in the main paper (2 hidden layers with 1200 neurons 

each). After training on T1, SNN was able to classify images in T1 with 99% classification 

accuracy (averaged over 5 trials). After training on T2, catastrophic forgetting occurred, as 

classification accuracy on T1 dropped to 0%. This illustrates that catastrophic forgetting is not 
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unique to ANNs but can occur in SNNs due to the interference between the tasks. (Indeed, our 

recent studies suggest that catastrophic forgetting can occur in a spiking network even with 

biologically realistic local learning rules (Gonzalez et al. 2019; Golden et al. 2020) when tasks 

with a high amount of overlap are learned incrementally.) After sleep, performance on T1 was 

mostly recovered while performance on T2 was partially reduced. Overall, this experiment 

demonstrates that catastrophic forgetting does occur in SNNs and sleep can reduce the impact of 

catastrophic interference. 

4.7.11 Analysis of sleep replay 

To evaluate replay of the old and new tasks during sleep, we compared the neurons that 

spiked frequently during sleep with the average activation in the ANN for each specific image 

(Figure 4.13) When an image was presented to the ANN (before SRA is applied), we recorded the 

activation vectors in each hidden layer 𝑎?,L,4, 𝑎;,L,4, for hidden layers 1 and 2, respectively, for each 

image i of class j. For two tasks, we recorded values for 𝑎?,L,@ through 𝑎?,L,<, and 𝑎;,L,@ through 

𝑎;,L,< to store activation vectors for each class of digits learned, 0 through 3. Then, we tested for 

the overlap between neurons that had non-zero activation values in ANN (before SRA) for a 

specific input and neurons which had non-zero firing rates during subsequent sleep (during SRA). 

This serves as a proxy to measure the extent to which a specific input is replayed during sleep. As 

a control group, we performed the same calculations but using ANN activation vectors obtained 

in response to an image created with uniformly-distributed random noise.  

Figure 4.13A shows the average amount of reactivation for each digit in each hidden layer, 

normalized by the reactivation of the control group. In layer 1, for each digit, we observed 

reactivation values that were greater than reactivation for a random input. Most notably, digit 1 

(from the old task) seems to be reactivated the most, followed by digits 2 and 0. Analysing the 
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confusion matrices before and after sleep for this specific network (Fig 4.13B), we observed that 

the classification accuracy for digit 1 was particularly improved after sleep, and when a network 

predicted an image incorrectly, it often misclassified it as digit 1. This suggests that the digit-

specific reactivation correlates well with the network classification performance and further steps 

to improve reactivation during sleep may lead to further SRA performance improvements. In Layer 

2 (Fig 4.14A, right), we observed that all digits were reactivated greater than expected for a random 

input image. However, the ratio of reactivation for each digit was about equal. Overall, these 

results suggest that previously learned tasks are replayed during sleep phase and amount of replay 

positively correlates with classification performance on the old digits that otherwise would have 

been forgotten. 

In addition to reactivation, we also measured the effect of sleep replay on the representation 

of distinct digits in the network. Work by (McClelland, McNaughton, and O’Reilly 1995) shows 

that during training, representations of distinct image classes can become more dissimilar and 

sparser. We perform a similar analysis here by plotting the activation of a group of 40 randomly 

selected neurons before and after sleep, when presented with each of the 10 MNIST digits (Fig 

4.15) Before sleep, the representation of all digits is very similar (with the exception of digits 8 

and 9, which were more recently learned). After sleep, every digit has a unique representational 

code, along with much sparser activity. 



 

152 

4.8 Figures 

 
Figure 4.1: Sleep Replay Algorithm pseudocode for catastrophic forgetting 
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Figure 4.2: SRA reduces catastrophic forgetting for sequential task training 

(A) Example of four binary images with 15 pixel overlap divided into task 1 (T1, images #0,1) and task 
2 (T2, images #2,3). T2 was trained after T1.  

(B) Classification accuracy as a function of number of overlapping pixels (interference) after training 
T1 (blue), T2 (red), and SRA (yellow). The network was always tested for all 4 images. Note, that  
performance is significantly higher after SRA than before in the range of pixel overlap 10-20.  

(C) Input to Output Neuron 0 when presented with Image 0 (black) and max input to Output Neurons 
2 and 3 when presented with image 0 (red) after subsequent stages of training and sleep.  

(D) Distribution of weights connecting to T1 (left) or T2 (right) output neurons. Color is based on 
category of connections: Unique - connections from neurons representing pixels unique for T1 or 
T2; Overlapping - connections from neurons representing overlapping pixels between T1 and T2. 
Rows show subsequent stages of training and sleep. 
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Figure 4.3: Interleaving new training with sleep results in recovery of old task performance on MNIST 
dataset 

Sleep phase (S) was implemented after each new task training (T). Task 1 - 0/1, Task 2 - 2/3, Task 3 - 4/5, 
Task 4 - 6/7, Task 5 - 8/9. Each column shows performance for all tasks after either new task training or 
sleep as labeled below. 
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Figure 4.4: SRA is complementary to replay methods which store/generate old examples and combine new 
data with these examples during training 

The classification accuracy as a function of percent of old data included is shown for A) MNIST, B) Fashion 
MNIST, C) Cross Modal MNIST, and D) CIFAR10. Error bars represent standard deviations across 5 
training sessions with different task orders. 

MNIST Fashion MNIST

Cross Modal MNIST CIFAR10

C
la

ss
ifi

ca
ti
on

 A
cc

ur
ac

y
  
  
  
  
  
  
(%

)
A B

C D

Fraction of Old Data Included Fraction of Old Data Included
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

100

80

60

40

20

80

60

40

20

20

30

40

50

6090

80

70

60

50

Replay with sleep
Replay without sleep

C
la

ss
ifi

ca
ti
on

 A
cc

ur
ac

y
  
  
  
  
  
  
(%

)



 

156 

 

 
Figure 4.5: SRA reduces correlations between image classes while maintaining strong correlations within 
classes 

Correlation matrices of activations in hidden layer 1 (A) and layer 2 (B). Labels (0-3) indicate image class: 
Task 1 - 0/1, Task 2 - 2/3. Note that before SRA (left) correlations between classes, e.g., 1 and 2 images, 
are almost as high as correlations within classes, e.g., images of 1. 
 

 
Figure 4.6: SRA changes input to the hidden layer neurons to favour old tasks 

In layer 1 (left), input to the neurons representing old task is  reduced less than input to the neurons 
representing most recently learned task. In layer 2 (right), SRA increases input to the neurons representing 
old task while decreasing input to the neurons representing most recently learned task. 
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Figure 4.7: Spiking activity of digit-specific neurons during sleep is greater than activity of a random subset 
of neurons in both first (A) and second (B) hidden layers. 

Neurons are activated by random (not average) inputs to the input layer. Error bars represent standard 
deviation. p-values computed from two-sided t-test comparing firing rates of digit-specific neurons vs. 
random subset of neurons with Bonferroni Correction. 
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Figure 4.8: Example of binary vector analysis 

In the left graph, we show the structure of the network. A - fires only for input 1. B - fires only for input 2. 
C - fires for both inputs. D - fires for neither input 1 nor input 2. Green arrows represent desirable 
connections and red arrows indicate incorrect connections. Blue arrows are mixed depending on the input. 
The equations on the graphs on the right compare the difference between green and red arrows to the 
difference. 
 

 
Figure 4.9: Accuracy as a function of sleep iteration for MNIST (left) and CIFAR10 (right) datasets 

Each line represents the application of SRA after a specific training phase (e.g., after training T1, T2, etc). 
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Figure 4.10: Classification accuracy on class-incremental MNIST task with different types of inputs 
(average, random, specific) with 2 conditions (mask/no mask) 

 

 
Figure 4.11: Classification accuracy as a function of length of task 2 training (in epochs) for 2 task 
MNIST, Fashion MNIST, and CIFAR 10 as well as the Cross Modal MNIST task 

Solid red - T1 accuracy after sleep, dashed red - T1 accuracy before sleep (after T2 training), dashed gray 
- T2 accuracy before sleep (after T2 training), and solid gray - T2 accuracy after sleep. 
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Figure 4.12: Undertrained MNIST classification accuracy 

Classification accuracy on the MNIST dataset before (black) and after (red) sleep when trained for 10, 20, 
or 40, 150 epochs. Scaling of top 2.5% of weights by 1% shown in grey. 
 

 
Figure 4.13: MNIST digit-specific reactivation analysis 

During sleep, digit-specific activations are replayed more often than would be expected by chance. A) Digit-
specific reactivation in layer 1 (left) and layer 2 (right) for each digit. Each value is normalized by a control 
group so values greater than 1 indicate there is more reactivation than would be expected for a randomly 
generated image. B) Confusion matrices before (left) and after (right) sleep for the two tasks. 
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Figure 4.14: SRA results in sparsification of task representation 

Average activation of 40 randomly selected neurons before (left) and after sleep (right) when presented 
with digits from each class. Overall, less neurons respond to each digit suggesting a sparser representation 
 

 
Figure 4.15: Analysis of OWM performance as a function of number of epochs per task on MNIST (left), 
Fashion MNIST (middle) and CIFAR10 (right) datasets 

 
Figure 4.16: Analysis of iCaRL performance with (red) and without (gray) SRA as a function of number 
of epochs per task on MNIST (left), Fashion MNIST (middle) and CIFAR10 (right) dataset 
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