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Abstract

This paper proposes a convergent t-statistic for spurious regressions. The new
t-statistic is based on the heteroscedasiticity and autocorrelation consistent (HAC)
standard error estimate with the bandwidth equal to the sample size. Using au-
tocovariances of all lags, the so-defined HAC estimator is capable of capturing the
high persistence of the regressor and regression residuals. It is shown that the new
t-statistic converges to a non-degenerate limiting distribution for all cases of spurious
regressions considered in the literature. This finding suggests that inferences based
on the new t-statistic and asymptotic theory developed in this paper will not result
in the finding of a significant relationship that does not actually exist.
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1 Introduction

Since the first Monte Carlo study by Granger and Newbold (1974), much effort has
been taken to understand the nature of spurious regressions. Phillips (1986) devel-
oped an asymptotic theory for a regression between (1) processes, showing that the
usual t-statistic does not have a limiting distribution but diverges at the rate of v/T
as the sample size T increases. Extending Phillips’ (1986) approach, Durlauf and
Phillips (1988) and Marmol (1995, 1998) found that the usual t-statistic diverges at
the same rate in a regression between an I(1) process and a linear trend and between
two nonstationary I(d) processes. More recently, Tsay and Chung (2000) found that
the usual t-statistic diverges, albeit at a slower rate, in a regression between two
stationary I(d) processes, as long as their memory parameters sum up to a value
greater than 0.5. The divergence of the usual t-statistic seems to be a defining char-
acteristic of a spurious regression. In this paper, we show that the divergence of the
usual t-statistic arises from the use of a standard error that underestimates the true
variation of the OLS estimator. We propose a new estimator of the standard error
and use it to construct a new t-statistic. We show that the new t-statistic converges
in distribution to a non-degenerate random variable.

The new estimator of the standard error is based on the heteroscedasiticity and
autocorrelation consistent (HAC) variance estimator that uses the full bandwidth
(the bandwidth or the truncation lag is equal to the sample size). This sharply
contrasts with the usual HAC estimator in that the bandwidth is usually taken to
grow at a slower rate than the sample size. The optimal rate of growth depends on
the shape of the underlying spectral density. In a linear regression model in which the
regressors and errors are independent AR(1) processes with the same autoregressive
parameter v, Andrews (1991) showed that the optimal bandwidth increases with ~.
This result suggests that the bandwidth should be larger for more persistent processes.
In a spurious regression, both the regressors and the regression residuals are highly
persistent. It turns out that the bandwidth needs to be as large as the sample size
to capture the high autocorrelation. In other words, we use auto-covariances of all
lags and construct the HAC estimator without truncation.

We show that when the OLS estimator is scaled by the new standard error, the
resulting t-statistic converges to a well-defined distribution. This is true for regres-
sions between two independent fractional processes, stationary or nonstationary, and
between a fractional process and a linear trend. For all the cases considered, the lim-
iting distributions depend on the kernel used and the persistence of the underlying

processes. They are nonstandard and their probability densities can be estimated



by simulations. Our findings suggest that inferences based on the new t-statistic
and critical values obtained via simulations will not lead to the finding of a spurious
relationship.

The HAC estimator with the bandwidth equal to the sample size has been sug-
gested by Kiefer and Vogelsang (2002a, 2002b) in other settings. Specifically, they
considered this type of estimator in hypothesis testing in the presence of nonparamet-
ric autocorrelation. Their motivation is to develop asymptotically valid tests that are
free from the bandwidth selection and have good size and power properties. Other
papers that use or investigate the HAC estimator without truncation include Jansson
(2002), Phillips, Sun and Jin (2002) and Sun (2002).

The rest of the paper is organized as follows. Section 2 considers the spurious
regressions with nonstationary fractional processes and linear trends. It establishes
the asymptotic distributions of the new t-statistics. Section 3 extends the results in
Section 2 to stationary fractional processes. Section 4 provides kernel estimates of
the probability densities of the limiting t-statistics in Sections 2 and 3. Section 5
concludes. All proofs are given in the appendix.
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Throughout the paper, “ = " signifies convergence in the D[0, 1]* space endowed

with the Skorohod topology which renders the space complete and separable.

2 Spurious Regressions with Nonstationary Fractional

Processes

In this section, we consider the spurious regression between two independent nonsta-
tionary I(d) processes and that between a nonstationary I(d) process and a linear
trend.

Let z; and y; be two independent nonstationary I(d) processes with d > 1/2. We
assume that the following functional central limit theorem (FCLT) holds:

Tﬁ(2dz*1)/2$[T'r} = waw(T)a Tﬁ(zdyil)my[Tr] = wy‘/;/(r)a re (07 1]7 (1)

Va(r) = ﬁ /0 " — 8= AW (), Vi) = ﬁ / - mlaw(s), ()

W2(s) and W¥(s) are standard Brownian motions. The FCLT holds under a wide
range of primitive conditions (e.g. Akonom and Gourieroux 1987; Marinucci and
Robinson 2000). When z; or y; is a unit root process, the limiting process reduces

to a scaled Brownian motion. For a general, nonstationary fractional process, the



limiting process is a type II fractional Brownian motion (Marinucci and Robinson
1999).

Consider regressing ¢ on a constant and T,
yt:&+3xt+ﬂt,t:1,...,T. (3)

The ordinary least squares estimate of § is given by

B _ Zle(xt —Z)(ye — ¥)
Sz — T)?

where T = Zle x¢/T and § = Zle y¢/T. The heteoscedasiticity and autocorrelation

: (4)

consistent t-statistic is tAg = B/ 03,m, where G5 s is the HAC estimator defined as

T -1 T -1
5% 0 = (Z(mt - @)2> Ty (Z(xt - 5)2) , (5)

t=1 t=1
where
R T—-1 ] R
G = > kGPTG), (6)
j=—T+1
By = { T2 @y =Dl @ —F)  forj 20 0
%zf’:ijﬂ (Teyj — T) Upsy Tz (2, — F) for j <0

and k(-) is a kernel function and M is the bandwidth parameter.

The usual approach is to let M — oo such that M /T — 0 to get a consistent
estimate of the long run variance of (z; — z) uy. However, (x; — &) u; is nonstationary
and the variance of ST, (x; — Z)@/v/T does not converge. In other words, the
sum » 7° IIT(;)|| is infinite with the probability approaching one as T — co. The
infiniteness of this sum invalidates the usual truncation argument. Therefore, we let
M = T throughout the paper and use the full bandwidth to estimate the long run
variance.

To ensure the positive definiteness of QM, we assume that the kernel function

belongs to the following class:
K={k(-):[-1,1] — [0,1] | k(x) = k(—z), k(0) =1, and K (A\) >0,VAeR}, (8)

where

1
K(\) = / k() exp(—iAz)da. )

~1
For a kernel function k(x) € K, we have fil fil k(r — s)f(r)f(s)drds > 0 for any
square integrable function f(x). In other words, the functions in K are positive

semi-definite.



The following theorem establishes the asymptotic distributions of B, 8%’T and the

resulting t-statistic fg. The theorem uses the following notation:

and

Vye(r) = Vy(r) — < /0 1 Vm(r)%(r)dr> B < /0 1 Vm(r)xz,(r)dr> Ve(r).  (12)

Theorem 1 Assume that x¢ and y; satisfy the functional central limit theorem in
(1). Let k(x) be a continuous function in IC, then

T (%Z) (/01 %(r)f?y(r)dT) (/ 72(r)dr )1,
7252 Z_g% ( / ) / / (Y — )V, () Vo (s)drds,
B> ( /0 RAGL ) ( / / (P)k(r — s)?y,x(sm(s)drds> o

Theorem 1 shows that a t-statistic does not necessarily diverge, as long as a proper

(13)

variance estimator is used. The conventional variance estimator (also called OLS vari-
ance estimator), which is 7! Zle u? (2:{21 (¢ — £)2>_1 , is not only inconsistent
but also underestimates var(ﬁ) by an order of magnitude. This is because both
the regressor and the regression residuals are highly persistent in a spurious regres-
sion while the conventional variance estimator ignores this autocorrelation structure.
When the OLS estimator is normalized by the conventional standard error estimate,
the resulting t-statistic is bound to diverge. The rate of divergence is v/T, as shown
by Phillips (1986) and Marmol (1998). In contrast, the new HAC estimator incor-
porates autocovariances of all lags and delivers a standard error estimate that is of
the same stochastic order as B Based on such a HAC estimate, the new t-statistic is
stochastically bounded and converges to a well-defined distribution.

Now we consider the spurious regression between a nonstationary I(d) process
and a linear trend. The data generating process for 1 is the same as before so that
the invariance principle in (1) holds for 7-(2dv—1)/ 2y[TT]. The data generating process
for z; is replaced by x; = t so that T_(2dz_1)/2x[Tﬂ — r for d, = 3/2. We regress y;

on a constant and x; and construct the new t-statistic as before. Using the arguments
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similar to the proof of Theorem 1, we can prove the following theorem immediately.
The details are omitted.

Theorem 2 Assume x; = t and y; satisfy the functional central limit theorem in
(1). Let k(x) be a continuous function in IC, then

~ 1 -~
Td“*dyﬂ = 12w, (/ rVy(r)dr> ,
0
1 ~ -
T2d172dy3»23’T = 144w§ (/0 /0 (r—1/2)Vyt(r)k(r — s)Vyi(s)(s — 1/2)drds> ,

By ( /0 1 r%(r)dr) ( /0 1 /0 = 12T — )T (3)(5 — 1 /2)drds> o
(14)

where

dy = 3/2 and V,,(r) = V, (r) — (/01 r%(r)dr) (121 — 6). (15)

Theorem 2 shows the new t-statistic is convergent, as in the case of a regression
between two nonstationary fractional processes. In contrast, the usual t-statistic
diverges at the rate of /T (for the unit root case, see Phillips and Durlauf 1988).
This finding is consistent with a result by Phillips (1998), who considered regressing
a unit root process on a complete orthnomal system in Lo[0,1]. He showed that
the t-statistic based the usual HAC standard error with bandwidth M is of order
O, (/M ) 2) . For the new and usual t-statistics, the bandwidths are M = T and
M = 1, respectively. The former is thus stochastically bounded while the latter
diverges at the rate of VT.

Together with Theorem 1, Theorem 2 shows that the new t-statistic converges in
distribution in the spurious regression with nonstationary fractional processes. This
finding implies that the new t-statistic will not point to a significant relationship

between two independent processes.

3 Spurious Regressions with Stationary Fractional Pro-

cesses

In this section, we consider the regression between two independent stationary I(d)
processes and that between a stationary I(d) process and a linear trend.

Consider two Gaussian processes x; and y; with the following spectral densities

fz(A) and fy(A) :
fo(X) = A2, (M) and fy(A) = AW, (), (16)
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where 0 < dz, dy < 0.5, ¢, (A) and ¢, () are continuous functions with ¢, (0) = w2 €
(0,00) and ¢, (0) = w; € (0,00). Given the above spectral densities, 2; and y; have
spectral representations:

o= [ explIN AW and g = [ eGP0, (17
t=1,2,...,T, where W,(-) and W,(-) are complex-valued, Gaussian random measures
satisfying EWg(d\)W,(dp) = 0,

W, (d\) = W,(—dX), EW,(d)\) = 0,for z = z, vy, (18)
and
EW,(dNW,(dp) = 1{\ = pu}dA, for z =z, y, (19)

where 1{-} is the indicator function.

The spectral representations help establish the following lemma, which will be
used extensively in proving the asymptotic properties of the OLS estimator and the
new t-statistic. Before stating the lemma, we introduce some notation. Define the

random vector element

Sr(r) = (St(r), S7(r), S7'(r))

[Tr] [Tr] [Tr]
T (dm+1/2)z$ T (dyH/Q)Zy T dyZZL‘tyt . (20)
p t=1

Note that Sr(r) € D[0,1]3, the product space of all real valued functions on [0, 1]
that are right continuous and possess finite left limits. We endow the product space
with the product o-algebra, which is generated by the open sets with respect to the
metric that induces the Skorohod topology on the component space. The so-defined

product o-algebra makes D[0,1]® complete and separable.

Lemma 3 Let x; and y; be the time series defined by (17). If dy,dy, € (0,1/2)
and dy +d, > 1/2, then

Sr(r) = (medm (r),wdey (r),wmwyZ(T)) , (21)
where )

Ba(r) = [~ SPEDS g awe), (22)

B (r) = [~ SO e aw ), (23)
and

exp(i+mr) =1, —a, -a,
/ / i(€+n) €] 1] dWx(f)dWy(n). (24)



Note that Bg,(r) and By, (r) are spectral representations of type I fractional
Brownian motions (Samorodnisky and Taqqu 1994; Marinucci and Robinson 1999).
Lemma 3 shows that the partial sum of a fractional process converges to fractional
Brownian motion. This result is not new and has been proved by several authors
including Davydov (1970, Theorem 2), Avram and Taqqu (1987, Theorem 2 with
n = 1), Chan and Terrin (1995, Theorem 3), and Davidson and de Jong (2000).
Lemma 3 also shows that the partial sum of the product process z;y; converges to
the non-Gaussian process Z(r). This result was obtained by Fox and Taqqu (1987)
and Chung (2002) but under the stronger assumption that both d, and d, are greater
than 0.25 and less than 0.5. The aforementioned papers considered either the partial
sums of fractional processes or that of the product process, but not both (the only
exception is Chung (2002)). Lemma 3 fills in this gap by considering them jointly
and develops unified representations of the limiting processes.

Using Lemma 3 and following the same steps as the proof of Theorem 1, we can
establish the asymptotic distributions of 3 and 8%3,T (defined in (4) and (5)) and the
t-statistic in the following theorem.

Theorem 4 Let x; and y; be the time series defined by (17). Assume that k(x) is a
twice continuously differentiable function in KC. If dg, dy € (0,1/2) and dy+dy > 1/2,
then

™ -1 roo poo
105w ([T 000) [T [ e ) e i dweaw, o),

1 =2 1 pl

T2 22 ( / fx(A)dA> / / K (r — )U(r)U (s)drds,
0 0 0

= /aan = ([ [ e 0l - W aw, o)

1/2

« < /0 1 /0 . s)U(r)U(s)drds>_ , (25)

exp(i(§+m)r) — 1 exp(i&r) — Lexp(inr) — 1
1/)(577777") - Z(§+’l’]) - ZE ”} )

v = | h / T € r) — e 1) [ ) AW ©dWy (). (27)

where

(26)

The most important finding in the above theorem is the convergence of the new
t-statistic. In contrast, Tsay and Chung (2000) showed that the t-statistic based
on the OLS standard error diverges at the rate of T%t4% =05 Ag a consequence,

the slope coefficient in the regression between two stationary long memory processes



can be spuriously significant. The convergence of the new t-statistic has profound
implications. Note that the OLS estimator 3 is consistent, the R? converges to zero,
and the DW statistic does not approach zero (Tsay and Chung 2000). The behaviors
of ﬁ, R? and DW are thus the same as in the case of no spurious effect. The only
qualitative difference is the divergence of the usual t-statistic. Therefore, when the
new t-statistic is used in place of the conventional one, all of the statistics behave
as in the case of usual regression. Hence, inferences based on the new t-statistic will
not result in the finding of a significant relationship that does not actually exist. We
may conclude that there is no spurious effect between two stationary long memory
processes, as long as a proper t-statistic and correct critical values are employed.

The above theorem assumes that the kernel function is twice continuously dif-
ferentiable. This excludes the widely used Bartlett kernel and the sharp kernels
studied by Phillips, Sun and Jin (2002). The sharp kernels are defined by k(z) =
(1 — |z|)P1{|x| < 1}, where p is the sharpness index. These kernels, as so defined,
exhibit a sharp peak at the origin and include the Bartlett kernel as a special case.
It can be shown that the sharp kernels are positive semi-definite. In the stationary
framework, Kiefer and Vogelsang (2002a,b) showed that the Bartlett kernel delivers a
class of test with the highest powers within a group of popular kernels. Subsequently,
Phillips, Sun and Jin (2002) showed that the sharp kernels can deliver more powerful
tests than the Bartlett kernel. Thus, it is of interest to consider the sharp kernels in
the present context.

The following theorem establishes the asymptotic distributions of B, 3»231 and the

t-statistic when the sharp kernels are employed.

Theorem 5 Let x; and y; be the time series defined by (17). If k(z) = (1 —
|z|)P1{|z| < 1}, dp,dy € (0,1/2) and dy + dy > 1/2, then the results of Theorem
4 hold with fo fo —k"(r — s)U(r)U(s)drds replaced by

2 — — —r— —2U(s)drds
2,0/U()d7" 1//{0”2 J(1—|r — )P 2U(s)drds,  (28)

where the second term is defined to be zero when p =1 and ff[g 12 indicates that the

integration on the diagonal r = s is excluded.

Tsay and Chung (2000) showed that when a stationary I(d,) process is regressed
on a linear trend, the usual t-statistic diverges at the rate of T%. We proceed to
investigate whether the new t-statistic shares this property. To this end, we assume
that y; satisfies the functional central limit theorem as before:

(Tr]

T—(dy+1/2) Zyt = By, (r). (29)
t=1

8



Using sum by parts and the continuous mapping theorem, we have

(Tr]

T—(dy+3/2)Ztyt:>rde(r)/ Ba, (s)ds. (30)
0

t=1

Let

G) = = )Ba) ~ [ Bu(o)ds ~ B, (1) ( /0%51/2)615)

— <6de(1) —12 /01 de(s)d,s) /0 (5 — %>2ds. (31)

Then we can prove the following theorem using (29) and (30) and the arguments
similar to the proof of Theorem 4. Details are omitted.

Theorem 6 Let y; be the time series defined by (17) with dy € (0,1/2) and x; be the

linear trend: xy =t. If k(x) is a twice continuously differentiable function in K, then

T3/2—dyB = wy <6.de(1) —12 /1 de(s)d8> s (32)
0

1 1
T3_2dya%7T = 144&):[2// / _k//(r _ S)G(T’)G(S)d?”ds, (33)

%:»(%deu)/ By, (s )(/ / K —s) ()G(s)dm5>1/2.(34)

If k(x) = (1 — |z])P1{|z| < 1} for some integer p > 1, then (32), (33), and (34) hold
provided that fo fo —K"(r — s)G(r)G(s)drds is replaced by

1 1!
2 /0 G2(rydr — p(p— 1) / L GO b=y Gras, (35)

where the second term is defined to be zero when p = 1.

Theorem 6 shows that the OLS estimator is consistent and the new t-statistic
converges as in other cases. Therefore, detrending a stationary fractionally integrated
process will not lead to the spurious effect of finding a significant trend, as long as a
proper t-statistic is employed and critical values from the correct limiting distribution

are used.

4 Kernel Estimates of Asymptotic Distributions

The limiting distributions of tAﬂ in (13), (14), (25) and (34) are nonstandard. In this

section, we use Monte Carlo simulations to approximate their probability densities.



Note that the limiting distributions are invariant to w, and wy. It suffices to
simulate simple fractionally integrated processes. Specifically, we generate the frac-
tional processes x; and y; according to (1 — L)dzxt = g4 and (1 — L)dyyt = ey,
where €44 ~ iid(0,1), ey¢ ~ id(0,1) for t > 0, €5t = €y = 0 for ¢ < 0, and {eg}
is independent of {e,:}. We let k(-) be the sharp kernels with the sharpness in-
dex p = 1,4,8. The simulated estimates use 2000 replications and a sample size of
1000. For spurious regressions between nonstationary I(d) processes, we consider
(dg,dy) = (0.6,0.6),(0.6,1), (1,0.6), or (1,1); and for those between stationary ones,
we let (dg,dy) = (0.3,0.3),(0.4,0.2) or (0.2,0.4).

We first consider spurious regressions with nonstationary fractional processes.
Figure 1 reports the kernel estimates of the probability densities for the case x; ~
I(d;), y¢ ~ I(dy) with d, = d, = 0.6. The qualitative results for other (d,d,)
combinations are similar. The probability densities appear to be symmetric and are
apparently more dispersed than the standard normal density. For example, when the
Bartlett kernel is used, the 95% quantile of the limiting distribution is 4.153, which
is larger than 1.645, the 95% quantile of the standard normal distribution. Inter-
estingly, the larger the sharpness index, the less dispersed the limiting distribution.
For example, when p = 8, the 95% quantile becomes 2.463, which is quite close to
1.645. In this case, the probability of ﬁ\g’ > 1.96 is 30.30%. Therefore, when p = 8
and the new t-statistic is used to test the significance of the slope coefficient, we will
erroneously reject the null 30.30% of the times when the wrong critical value is used.
In contrast, when the usual t-statistic is employed, the rejection probability goes to
one as the sample size increases. When T = 1000, the rejection probability is 75.9%,
as shown by simulations. Hence the use of the new t-statistic reduces the spurious
effect substantially.

Figure 2 presents the same graph when g, is an 7(0.6) process and x; is a linear
deterministic trend. The qualitative observations made for Figure 1 apply. However,
the limiting distributions become more dispersed than those in Figure 1.

We next consider spurious regressions with stationary fractional processes. Figure
3 graphs the density estimates with (ds,d,) = (0.4,0.2). The density estimates for
the other two cases turn out to be close to the case (d,dy) = (0.4,0.2). The figure
shows that the limiting distributions are more concentrated around the origin than
in the nonstationary cases. For example, the 90% quantiles when the sharpness index
p=1,4,8 are 2.677,1.736, and 1.556, respectively. The corresponding 95% quantiles
are 3.647,2.339, and 2.064. Simulation results show that the limiting distribution
becomes closer to the standard normal when p is larger. For example, when p = 8§,
the probability of ‘%\g‘ > 1.96 is 12.90%, which is very close to 10%, the size of the

10



test when 74 is standard normal. In other words, when the new t-statistic is used to
test the null of 5 = 0, the probability of wrong rejection is only 12.90% even if the
critical value does not come from the true limiting distribution. To a great extent,
the new t-test eliminates the spurious effect.

Figure 4 graphs the density estimates when y; ~ I(0.3) and x; = t. Again, we
find that the densities are more concentrated than in the nonstationary cases and
become more concentrated as p increases. Another feature of Figures 3 and 4 is that

the densities appear to be slightly negatively skewed (skewed to the left).

5 Conclusion

This paper has proposed a new t-statistic that is convergent in all the cases of spurious
regressions considered in the literature. This new t-statistic is based on the HAC
estimator using a truncation lag or bandwidth equal to the sample size. The paper
argues that the usual t-statistic diverges because the OLS standard error does not
take into account the high persistence of the regressor and regression residuals. The
paper reinforces the warnings that hypothesis testing using the OLS standard error
can lead to misleading inference. This is true even if the underlying processes are
stationary (Granger, Hyung and Jeon 2001). To avoid or alleviate this problem,
a pre-whitening HAC standard error or a HAC standard error with the truncation
lag growing with the persistence of the underlying processes may be used (Andrews
1991; Andrews and Monahan 1992). It turns out that in a spurious regression, the
truncation lag needs to be as large as the sample size or at least proportional to the
sample size.

In view of the papers by Kiefer and Vogelsang (2002a, 2002b), Phillips, Sun and
Jin (2002) and Sun (2002), the new t-statistic converges to a well-defined distribution
in the usual regressions with stationary covariates and regression errors, cointegrating
regressions and spurious regressions. Therefore, it has the potential to deliver a
unified inferential framework. The advantage of the new t-statistic is that it converges
in distribution without any normalization. In contrast, to make an asymptotically
valid inference, the usual t-statistic has to be normalized by T, where x depends
on unknown memory parameters that characterize the persistence of the underlying
processes.

The paper is a first step towards the asymptotic properties of the new t-statistic
with highly persistent, possibly nonstationary time series. It can be extended in
several directions. First, the results of the paper are readily extended to the multiple

regression with two or more regressors. Second, the bandwidth does not have to be

11



the sample size to deliver a convergent t-statistic. It suffices that the bandwidth is
proportional to the sample size. Finally, the limiting distributions depend on the
kernel used. Therefore, it is desirable to investigate whether there exists an optimal

kernel according to a certain criterion, such as the power of the t-test that it delivers.

12



0.2

0.18 |- .
fet
i\
0.16 - N . n
.', \
7 \:
A
. v
0.14 1 ' b
; H —— Bartlett Kernel
012 |- i i — Sharp Kernel, p=4 .
> i "‘ -«-- Sharp Kernel, p=8
S 0.1 i 7
o i \
0.08 - b
0.06 - b
0.04 - N
0.02 - N
2. >
0 per g N '\'-? P .
-20 -15 -10 -5 0 10 15 20
Figure 1. kernel estimates of densities of £3 when x; ~ I(0.6) and y; ~ I1(0.6)
0.14
0.12 | 1
A
1 5
: :
0.1 Hi % b
i v
A \.i- —— Bartlett Kernel
0.08 L ;’ 1 — — Sharp Kernel, p=4 | |
= i | S PP Sharp Kernel, p=8
2 J \
) ]
a \
0.06
0.04
0.02
0
-20

Figure 2. kernel estimates of densities of g when x; = t and y; ~ I(0.6)

13




Density

Density

T
L ::/\"c' -
0.25 AN
H A
_-'I \
i v
L : v :
0.2 j’ v
] “ —— Bartlett Kernel
] \ = = Sharp Kernel p=4
0.15 - I, ‘\ Sharp Kernel p=8 -
]
0.1 T
0.05 T
0
-10 -8 -6 -4 -2 0 2 4 6 8 10

0.2

0.16 -

0.14 -

0.12 -

—— Bartlett Kernel
- = Sharp Kernel p=4
----- Sharp Kernel p=8

0.1 -

0.08 -

0.06 -

0.04

0.02 -

0 ‘
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 4. kernel estimates of densities of tAg when x; =t and y; ~ 1(0.3)

14



6 Appendix of Proofs

Proof of Theorem 1. Combine the functional central limit theorem with the

continuous mapping theorem, we have

T 1 _
TS = )~ ) = way | Vlr) () (36)
t=1 0
and
T 1
T2 Z(wt —-7)= wi/ V2(r)dr. (37)
t=1 0
Hence

T~y S (2 — 2) (3 — 7))
T-2d= S (20 — )2

S (wywn) ( /O 1 Vm(r)f?y(r)dT) ( /O 1 i@?@«)m«) - (39)

7—(2dy—1)/25; Urn = 7—(2dy—1)/2 (y[Tﬂ _ gj) _ szfdyBTf(Zdzfl)/Z(x[Tr] — z)

= w,V,.(r). (39)

Td=dy 3

As a consequence,

Now write 72% =254 1 as

T ~ _
Ty — X 2 Ty — T r—38 Ug Ts— X
(Esr) r s s e i

:@JMWWQAA%WWWmemwm (10)

where the last line follows from the continuous mapping theorem. In view of (38)
and (40), we have

T T T s —-1/2
Ag = (Z(ﬂit —Z)(yt — y)> (Z Z(ﬂ:t T)uk( T Yus(zs — x))
t=1 s=1

t=1

—-1/2

- (/01‘7”” )(/ / (TS)%,w(S)?w(s)dms> . (41)

This completes the proof of the theorem. m

Proof of Lemma 3. We first prove the tightness of Sp(r). From Lemma A.3
of Phillips and Durlauf (1986), we know that the necessary and sufficient condition
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for the tightness of Sp(r) is that each element of Sp(r) is tight in the respective
component space. But several authors (Davydov (1970, Theorem 2), Avram and
Taqqu (1987, Theorem 2), Davidson and de Jong (1998)) have proved that the partial
sum processes S%(r) and S%.(r) converge weakly to fractional Brownian motions. It
follows from a theorem of Prohorov (Billingsley (1999), Theorem 5.1, p. 59) that,
since D0, 1] is complete and separable, both {S%(r)} and {S%(r)} are tight. It
remains to show the tightness of {S7”(r)}. In view of Theorem 13.5 of Billingsley
(1999), it suffices to show that, for almost all sample paths, some constant C' > 0
and 0<ry <r<ry<l1,

P (|57%(r) = §7%(r1)| =

() = ST ()] = A) SCA My — )™, (42)

where A > 0 and v > 1/2. By the Markov inequality, we have

P (|S7¥(r) = SF(r1)| = A, |S7¥ (r2) — S77(r)| = ) (43)
Ty Ty 2 xy Ty 2
< PORO- SO0 E O ) -0 "

Note that, for a generic constant C' that may be different across lines,

E (S%(r) — S%¥(r1))”

(Tr]
_ p2de-2dy Z Ty
t:[T’r‘l}-‘rl
(Tr] (Tr] [Tr]
_ ety S S (Buay) (Byg) + TS (Bad) (By?)
t_[TT1}+1 T=t+1 t:[TT1}+1
() [T+] — [Tr]
_ —2d,—2d 2dm+2d -2 1-2d;—2dy - 1
= CT vy Z +CT ()
t=[Tr1]+1 7=t+1
Tr] — [T
< C / ( / )22y 2dT> at -+ o2 L) T[ 1l
= o \2dg+2dy 1
(2dx+2dy—1)(2dx+2dy)(T ) +oll)
< C(r—rp)?t2h, (45)

where we use the fact that Exiz, < C(1 — t)%%=~1 and Eyy, < C(r — t)*W—L
Combining (43) with (45) yields

P (|S5E(r) — S (r1)| = A, | S5 (ra) — S ()| > A)
< C/\74(7" o r1)2dz+2dy (7.2 _ 7,,)2d1+2dy < C/\74(7'2 _ T1)4dz+4dy, (46)
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Therefore (42) holds and {S7¥(r)} is tight.

It remains to prove the finite dimensional (fidi) convergence of Sy (7). From Theo-
rem 3.3 of Chan and Terrin (1995), we know that the fidi distribution of (S%(r), S¥(r))
converges to that of (w, Bg, (r),wy By, (r)). The fidi convergence of S7¥(r) follows from
Theorem 7.4 of Giraitis and Taqqu (1999). Put in our context, this theorem says that

if x; and y; follow linear processes with the same iid innovation sequences, then

(T'r]

m dyz‘”tyt;‘/ [ S @ ) 40

for any r € (0, 1]. To see this, we use the notation in Giraitis and Taqqu (1999), and
set i = 1,m; = n; = 1,1 = 2,00 = 2d,,a(4?) = 2d,, N = T, b(r) = 1{r = 0}. For

these special parameter and function specifications,

1 [Tr]

Qv = Z > bt — 8) Py, (21, 35), (48)

t=1 s=1
the partial sum process considered by Giraitis and Taqqu (1999), becomes

[T'r]

Q[Tr Z TtYt, (49)

and the limiting process can be shown to be wgyw,Z(r) (Note that they use Z(-)
for the orthogonal Gaussian measure where we use W (-)). Our case differs from
the above special case of Giraitis and Taqqu (1999) only in that we assume that
x; and y; are independent processes where Giraitis and Taqqu assume that x; and
y¢ share the same innovation sequences. Nevertheless, their proof goes through for
the independent case with obvious and minor modifications. Finally, the joint fidi
convergence of (S%.(r), S¥(r)) with S7¥(r) follows from the fact that they are defined
as stochastic integrals of deterministic functions with respect to the same Gaussian
measures Wy (-) and Wy(-). =

Proof of Theorem 4. By ergodicity, we have

. 1 2
phmT—on ;xt =/ fw( )dA, and phmT_,ooT th = 0. (50)
Therefore .
plimy_ T af — (1) = [ fa(N)dA. (51)

—Tr
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Combining (51) with Lemma 3 yields

T T !
Tl-de—dy§ — da—dy (Z(«Ttyt - Tjg)) (T—l fo - (@2)
t=1 t=1

sy ([T ) [ [T v b a6

We next consider the limiting distribution of

T T s
SN (e — x) Uk =)l (25 — 7). (53)
t=1 s=1
Let vy = (z¢y — Z) uy and Sp(r) = I[STTI} vy, for r > 1/T and S} (r) =0, for 0 < r <
1/T. Then
(T] [Tr]
TETSR) = TR Y 8) =)~ TR (o)
t=1
~ “’”“"y/ / W(&m,7) = TB(E,m, 1)) €7 [n ™ AW (E)dW, (n)  (54)

= wawyU(r),

where we have used

T —L[17]
plimp_, (Z T — T ) Z (20— )2 =1 (55)

t=1

Using a well-known formula, we have

T T
_od, v~ T _
T~ 2da—2dy g E (r¢ — ) utk(TT)uT (xr — )

t=11=1
T-1T-1
=1 t=1
T-1
SO A e

T=1

| —2ds—2dy {Z Su.(t/T) ( t T) k(t_TT_H)> 55)“(1)‘1‘55)“(1)5%(1)}

T-1T-1

= 5 ZZT de—dy G (t/T)TQDT( )T de=dy S (1 /T), (56)

=1 t=1
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where t t t 1 t +1
-7 -7 —T— -7
s B (e 67)
and the last line follows from the identity that S(1) = 0. Note that when 7" — 0
such that (t —7)/T — r — s, we have

Dy (

t —
72D

) — —k"(r — s). (58)

Combining (54), (56), and (58), and invoking the continuous mapping theorem, we

get
Iz t—T
—2d,—2d o LT T~ e
T y;;(xt Z) urk( T Vur (zr — )
1,1
= wiwi/ﬂ /0 U(r)K" (r — s)U(s)drds. (59)
Therefore

70—2d1—2dy8%11

T -2 T T t T
( Z Tt — T 2) Tﬁ2dzi2dy ZZ Tt — i‘) atk(T)aT (I'T - i')

t=11=1

= —wiw ( / fe(A d/\> / / (r)K" (r — s)U(s)drds. (60)

Combining (52) with (60) yields the limiting distribution of the t-statistic. This
completes the proof of the theorem. m

Proof of Theorem 5. For the Bartlett kernel, we have, after simple calcula-

tions,
t—T1 2

Dr(—=) = =1(t =7).

Hence

T T
t — T\~ -
T—2dz—2dy Z Z Ty — :L' TT)U’T (1'7_ —_ l‘)

t=11=1

S

-1

Nl

1
T20:=2y 53,1 T S3(1/T) = 22 / U2(r)dr. (61)
1 O

\]
Il

For other sharp kernels k(x) = (1 — |z|)?{|z| < 1} for p > 2, we have,

T

)= =plp =11~ |r = 5?2

t —
lim 72D
im 7( 7

T—o0
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provided that limyr_,o (t —7) /T = r — s # 0. When limr_,o (t —7) /T = 0, it is
easy to see that

hmTDT( L )—01ft—77é0 (62)
and
. t—7 .
Thm TDrp( )=2p, ift—7=0. (63)
Therefore
T T -
T—2dz—2dy ZZ Ty — ) T)@T (zr — T)
t=1 =1
| Tl T
= Y Y TSR/ T sy T)
T=1t=1t#71
-1
$20 S T2 g T) S} T)
T T
=1
= ii(Qp/ U(r)dr — p —1//01 r)(1— |r—s|)P72U(s )drds).

(64)

The theorem now follows from (61), (64) and the steps in the proof of Theorem 4. m
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