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Choosing splitting parameters and summation limits in the

numerical evaluation of 1-D and 2-D periodic Green’s functions

using the Ewald method

Ferhat T. Celepcikay,1 Donald R. Wilton,1 David R. Jackson,1 and Filippo Capolino2

Received 26 December 2007; revised 14 April 2008; accepted 5 May 2008; published 30 September 2008.

[1] Accurate and efficient computation of periodic free-space Green’s functions using the
Ewald method is considered for three cases: a 1-D array of line sources, a 1-D array of
point sources, and a 2-D array of point sources. A limitation on the numerical accuracy
when using the ‘‘optimum’’ E parameter (which gives optimum asymptotic convergence)
at high frequency is discussed. A ‘‘best’’ E parameter is then derived to overcome
these limitations. This choice allows for the fastest convergence while maintaining a
specific level of accuracy (loss of significant figures) in the final result. Formulas for the
number of terms needed for convergence are also derived for both the spectral and the
spatial series that appear in the Ewald method, and these are found to be accurate in almost
all cases.

Citation: Celepcikay, F. T., D. R. Wilton, D. R. Jackson, and F. Capolino (2008), Choosing splitting parameters and

summation limits in the numerical evaluation of 1-D and 2-D periodic Green’s functions using the Ewald method, Radio Sci., 43,

RS6S01, doi:10.1029/2007RS003820.

1. Introduction

[2] In applying numerical full wave methods like the
Method of Moments (MoM) or Boundary Integral
Equations (BIE) to periodic structures involving con-
ducting or dielectric electromagnetic scatterers, fast and
accurate means for evaluating the free-space periodic
Green’s function (FSPGF) are often needed. This type
of Green’s function arises in a wide variety of applica-
tions, ranging from microwaves to optics, to the study
of metamaterials and nanostructures. The Ewald method
is one of the fastest methods for calculating the FSPGF.
In the Ewald method, the FSPGF is expressed as the
sum of a ‘‘modified spectral’’ and a ‘‘modified spatial’’
series. The terms of both series possess Gaussian decay,
leading to an overall series representation that exhibits a
very rapid convergence rate. The convergence rate is
optimum when the ‘‘optimum’’ value of the Ewald
splitting parameter is used [Jordan et al., 1986],
denoted here as Eopt. (For some applications, such as
when using a periodic Green’s function in a MoM

solution with full-domain basis functions, one may
not wish to have a balanced convergence between the
two series, as explained in Mathis and Peterson [1996]
and Mathis and Peterson [1998]. However, when using
subdomain basis functions and performing the integra-
tions over the basis and testing functions in the spatial
domain, the objective is to minimize the computation
time of the periodic Green’s function, and this is
accomplished by using Eopt. In this case the singular
integrals involved in evaluating the matrix elements can
be handled by specially designed numerical quadrature
rules [Khayat and Wilton, 2005].)
[3] However, the numerical accuracy of the Ewald

method degrades very quickly [Kustepeli and Martin,
2000] with increasing frequency (i.e., when the periodicity
becomes large relative to a wavelength). This is due to a
catastrophic loss of significant figures in combining the
contributions of the two series, wherein the leading terms
(and to a lesser extent, other nearby terms) in each series
become very large but nearly equal and opposite in sign.
[4] The method proposed and studied here limits the

size of the largest terms in the series relative to that of
the total Green’s function by modifying the value of the
splitting parameter E to avoid undue loss of accuracy.
Increasing the E parameter limits the size of the
largest terms in both series at the expense of decreas-
ing the convergence rate. Hence, there is a tradeoff
between the size of the largest term allowed, which
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determines the number of significant figures lost, and the
series convergence rate. A value EL of the Ewald splitting
parameter is then obtained based on the number of
significant figures L that may be lost. This ‘‘best’’ value,
EL, then yields the fastest convergence of the Ewald
series while limiting the loss of significant figures to the
user-defined value L.
[5] A preliminary and intuitive analysis for the ‘‘best’’

choice of the Ewald splitting parameter was performed in
Capolino et al. [2005] for the case of 1-D array of line
sources, and in Capolino et al. [2007] for the case of a
1-D array of point sources. The case of a 2D-array of
point sources has been treated in detail in Oroskar et al.
[2006]. Here we extend the analysis of the last paper to
the two other cases, and provide a unified formalism for
the choice of the Ewald splitting parameter and the
summation limits that is valid for all three cases.

2. Spectral, Spatial, and Ewald Green’s

Function Representations

[6] Three different FSPGF cases are considered: a 1-D
array of line sources with interelement period d, a 2-D
array of point sources on a general skewed lattice, and a
1-D array of point sources with interelement spacing d.
The geometries are depicted along with relevant coordi-
nate systems and geometrical definitions in Figures 1, 2,
and 3, respectively. An interelement phase shift along the
array direction(s) is assumed. Both spatial and spectral
representations of each Green’s function exist in the
general form

G r; r0ð Þ ¼X1
m¼�1

Gm ¼
X1
p¼�1

~Gp; 1� Darray

X1
m¼�1

X1
n¼�1

Gm;n ¼
X1

p¼�1

X1
q¼�1

~Gp;q; 2� Darray

8>>>>><
>>>>>:

ð1Þ

where the terms of the spatial representations are

Gm ¼ e�jkx0md
1

4j
H

2ð Þ
0 kRmð Þ; 1� Darray of line sources

Gm ¼ e�jkx0md
e�jkRm

4pRm

; 1� Darray of point sources

Gm;n ¼ e�jkt00�rmn
e�jkRmn

4pRmn

; 2� Darray of point sources

ð2Þ

whereas those of the spectral representations are

~Gp ¼ 1

d

e�jkxp x�x0ð Þ

2jkzp
e�jkzpDz; 1� Darray of line sources

~Gp ¼ 1

4jd
e�jkxp x�x0ð ÞH

2ð Þ
0 krpr
� �

;

1� Darray of point sources

~Gp;q ¼ 1

A

e�jktpq � r� r0ð Þ
2jkzpq

e�jkzpqDz;

2� Darray of point sources

ð3Þ

where Dz � |z � z0| and an ejwt time dependence is
assumed and suppressed. In the above, (x, y, z) and (x0, y0, z0)
denote the observation and reference-element source points,
respectively. For the 1-D cases, the periodicity is along x
with a period of d (see Figures 1 and 2), and

kxp ¼ kx0 þ
2pp
d

;

kzp ¼ krp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2xp

q

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� z0ð Þ2þ x� x0 � mdð Þ2

q
1� Darray of line sourcesð Þ;

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� z0ð Þ2þ y� y0ð Þ2þ x� x0 � mdð Þ2

q
1� Darray of point sourcesð Þ;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y0ð Þ2þ z� z0ð Þ2

q
1� Darray of point sourcesð Þ:

For the 2-D array with lattice vectors s1, s2 (see Figure 3),
the parameters are defined as

r ¼ xx̂þ yŷ; r0 ¼ x0x̂þ y0ŷ; rmn ¼ ms1 þ ns2;

Rmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� z0ð Þ2þ r� r0 � rmnj j2

q
;

kt00 ¼ kx0x̂þ ky0ŷ;

ktpq ¼ kt00 þ
2pp s2 � ẑð Þ

A
þ 2qp ẑ� s1ð Þ

A
;

kzpq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ktpq � ktpq

q
; A ¼ ẑ � s1 � s2ð Þ:

The transverse phasing wave vector kt00 = x̂k sin q0 cos f0 +
ŷk sin q0 sin f0 defines the interelement phasing for the 2-D
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array in terms of the propagation angles q0, f0 of the (0, 0)
Floquet mode. For 1-D arrays, this quantity becomes the
scalar phasing kx0 = k cos q0, where q0 is measured with
respect to the x-axis. Physically the FSPGF is the time-
harmonic scalar potential produced by the associated array of
phased sources.

[7] For a lossless medium the square root for the wave
numbers krp and kzpq is that which gives a positive real
number or a negative imaginary number, corresponding
to waves that propagate outward or decay away from the
sources, respectively. For a lossy medium the wave numb-
ers are complex and it suffices to require the imaginary part
of the wave numbers to be negative. Henceforth, it will be
assumed that the medium is lossless, but the formulas can
be extended to the lossy case.

[8] When employing the Ewald method for the eval-
uation of the FSPGF, the Green’s function is expressed as
a sum of two series [Ewald, 1921] of the form

G r; r0ð Þ ¼

X1
m¼�1

GE
m þ

X1
p¼�1

~G
E

p ; 1� Darray

X1
m¼�1

X1
n¼�1

GE
m;n þ

X1
p¼�1

X1
q¼�1

~G
E

p;q; 2� Darray:

8>>>><
>>>>:

ð4Þ

The terms that appear in the three different cases may be
found in Capolino et al. [2005], Capolino et al. [2007],
and Oroskar et al. [2006], for the 1-D array of line
sources, the 1-D array of point sources, and the 2-D array
of point sources, respectively. Summarizing, the terms of
the modified spatial representations are

GE
m ¼ 1

4p
e�jkx0md

X1
q¼0

k

2E


 �2q
1

q!
Eqþ1 R2

mE
2

� �" #

1� D array of line sources;

GE
m ¼ 1

2

e�jkx0md

4pRm

e�jkRmerfc RmE � j
k

2E


 ��

þ ejkRmerfc RmE þ j
k

2E


 ��
1� D array of point sources;

GE
m;n ¼ 1

2

e�jkt00�rmn

4pRmn

e�jkRmnerfc RmnE � j
k

2E


 ��

þ ejkRmnerfc RmnE þ j
k

2E


 ��
2� D array of point sources;

ð5Þ

where erfc(z) is the complementary error function and
Eq(z) denotes the exponential integral function of order

Figure 1. One-dimensional array of line sources parallel
to the y-axis, periodic with period d along the x-axis. The
observation point and reference line source are shown.

Figure 2. One-dimensional array of point sources,
periodic with period d along the x-axis. The observation
point and reference source point are shown.

Figure 3. Two-dimensional array of point sources
parallel to the xy-plane, periodic with lattice vectors
s1 and s2. The observation point and reference source
point are shown.
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q. The terms of the modified spectral representations
are

~G
E

p ¼ 1

2d

e�jkxp x�x0ð Þ

2jkzp
e�jkzpDzerfc

jkzp

2E
�DzE


 ��

þ ejkzpDzerfc
jkzp

2E
þDzE


 ��
1� Darray of line sources;

~G
E

p ¼ 1

4pd
e�jkxp x�x0ð Þ

X1
q¼0

rEð Þ2q �1ð Þq

q!
Eqþ1

�k2rp

4E2

 !" #

1� Darray of point sources;

~G
E

p;q ¼
1

2A

e�jktpq� r�r0ð Þ

2jkzpq
e�jkzpqDzerfc

jkzpq

2E
�DzE


 ��

þ ejkzpqDzerfc
jkzpq

2E
þDzE


 ��
2� Darray of point sources: ð6Þ

For the 1-D array of point sources, the exponential
integral function that appears may have a negative
argument, depending on the frequency. In this case the
argument is interpreted as being infinitesimally above
the branch cut of the exponential integral function on
the negative real axis, corresponding to an infinitesimal
amount of loss.

3. Splitting Parameter (E)

[9] In equations (5) and (6) the spatial and spectral series
both involve a ‘‘splitting’’ parameter E. The ‘‘optimum
value’’ Eopt for the splitting parameter [Jordan et al.,
1986] balances the asymptotic rate of convergence of the

spatial and spectral series, and consequently minimizes
the overall number of terms needed to calculate the total
FSPGF. The optimum value is found to be

Eopt ¼

ffiffiffi
p

p

d
; 1� Darrayffiffiffi

p
A

r
; 2� Darray:

8>><
>>: ð7Þ

However, numerical difficulties are encountered when
the lattice separations (periods) become large relative to a
wavelength. This was first discovered in Kustepeli and
Martin [2000], and subsequently also discussed in
Capolino et al. [2005], Oroskar et al. [2006], and
Capolino et al. [2007]. This happens because, for large
arguments, both the complementary error function and
the exponential integrals contribute terms of the form
exp[(k/(2E))2] that produce extremely large initial terms
(and to a lesser extent, large nearby terms) in both the
spatial and the spectral series. The resulting series then
each converge to very large, but nearly equal and
oppositely signed values, resulting in a total sum of
moderate value but with a catastrophic loss of significant
figures when the two series are combined. Exponential
overflow is another potential concern as well, due to the
large initial values in each series.
[10] To circumvent the problem, it is desirable to limit

the size of the largest terms of each series by choosing an
E value larger than the ‘‘optimum’’ value, which reduces
the maximum values of both the complementary error
function and the exponential integrals. As a result, one
avoids loss of accuracy in adding the two series, and a
more accurate result for the total Green’s function is
obtained [Kustepeli, and Martin, 2000] at the expense of
slower convergence.

Table 1. Definition of Parameters Appearing in the Iterative Equation for Determining EL

z K c1 F(z)

1-D array of line sources Spatial k

2Espatial

kR0

2
10L4p|Gest| c1z2

Spectral
kz0

2Espectral

kz0Dz

2
10L2

ffiffiffi
p

p
kz0d|G

est| c1
z z2 þ K2

z2

� �
1-D array of point sources Spatial

k

2Espatial

kR0

2
10L4(p)

3
2 R0|G

est| c1
z
K

� �
z2 þ K2

z2

� �
Spectral

kr0

2Espectral

kr0r
2

10L4pd|Gest| c1z2

2-D array of point sources Spatial
k

2Espatial

kR00

2
10L4(p)

3
2 R00|G

est| c1
�
K

� �
z2 þ K2

z2

� �
Spectral

kz00

2Espectral

kz00Dz

2
10L2

ffiffiffi
p

p
kz00A|G

est| c1
z z2 þ K2

z2

� �
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[11] In the following sections, a recipe for finding the
best choice for E, called EL, that achieves the fastest
convergence under the constraint of limiting the loss of
significant figures to L digits, is obtained for a general
source and observation point, for all three cases.

4. Choice of the Splitting Parameter

[12] The strategy is to limit the size of the largest terms
relative to the value of the total Green’s function, with
the largest terms in each series being the initial (0) or (0, 0)
terms in 1-D or 2-D, respectively. The value of E = EL is
obtained by enforcing the following conditions:

~G
E

0

��� ���; GE
0

�� ��; 1� Darray

~G
E

0;0

��� ���; GE
0;0

��� ���; 2� Darray

9=
; < a 10L Gestj j ð8Þ

where Gest is a closed-form estimate of the FSPGF, and
the integer parameter L indicates (roughly) the number of
significant figures one is willing to sacrifice in the
calculation. For a strict bound, the factor a in (8) should
be chosen as 1/2 to ensure that each of the two initial
terms in (8) (one from the spatial series and one from the
spectral series) contributes no more than half the total
error limit. However, it is found in each of the three cases
that one of the initial terms (either the spatial one or the
spectral one, depending on the case) is significantly
larger than the other, and a factor of a = 1 therefore
becomes more appropriate, and this is adopted here. It
suffices to use a rough estimate of the Green’s function
on the right-hand side of (8), which may be obtained by
examining the most nearly singular terms from both the
spatial and the spectral series. (This is an improvement
over the previous derivations, as in Oroskar et al. [2006],
where only the spatial term was used.) This yields the
following magnitude estimate for the overall Green’s
function:

Gestj j 

max
H

2ð Þ
0 kRmð Þ

��� ���
4

;
1

2 kzp
�� ��d

0
@

1
A; 1� Darray of line sources

max
1

4pRm

;
H

2ð Þ
0 krpr
� ���� ���
4d

0
@

1
A; 1� Darray of point sources

max
1

4pRmn

;
1

2A kzpq
�� ��

 !
; 2� Darray of point sources: ð9Þ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

In (9), the indices p, q, m, n that produce the smallest
values for Rm, Rmn, krp, kzp, and kzpq must be determined;
although this may be done analytically, it is also very
easy to find these values from a simple numerical search.
[13] To proceed with the derivation of EL, we replace

the terms on the left hand side of (8) by their high-
frequency asymptotic estimates. The complementary
error function terms are estimated by using the
asymptotic relation

erfc zð Þ � e�z2ffiffiffi
p

p
z
; ð10Þ

valid for large arguments. In addition, in (5) and (6)
series of exponential integral functions appear. The
simplest way to asymptotically evaluate these series is to
re-cast them back into their integral forms. The integral
forms are equation (15) in Capolino et al. [2007] and
equation (11) in Capolino et al. [2005], which are
reproduced below:

Z1
1= 2Eð Þ2

e�
r2

4u
þ krpð Þ2u

u
du ¼

X1
q¼0

�1ð Þq

q!
rEð Þ2qEqþ1

�k2rp

4E2

 !

ð11Þ

Z1
E

e
�R2

ms
2þ k2

4s2

s
ds ¼ 1

2

X1
q¼0

k

2E


 �2q
1

q!
Eqþ1 R2

mE
2

� �
: ð12Þ

The integrals that appear in the above identities may be
asymptotically evaluated for k!1 via integration by
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parts [Felsen and Marcuvitz, 1994; Bleistein and
Handelsman, 1986] (see case 1a and case 2a of
Appendix A for further details), yielding

Z1
1= 2Eð Þ2

e�
r2

4u
þ kr0ð Þ2u

u
du � � e� rEð Þ2þ

kr0
2E

� �2
kr0
2E

� �2 ð13Þ

Z1
E

e� R0sð Þ2þ k
2sð Þ2

s
ds � e� R0Eð Þ2þ k

2Eð Þ2

2 k
2E

� �2 : ð14Þ

Applying (9)–(14) in (8), as detailed in Oroskar et al.
[2006] yields in each case (spectral and spatial) a
transcendental equation of the form

z2 � K

z


 �2

¼ ln F zð Þð Þ; ð15Þ

where the constant K and the function F in (15) are
defined in Table 1 (in each case the function F contains a
factor c1 that is also shown). Solving the quadratic form
for z on the left-hand side of (15) puts the equation into
the following form that may be efficiently solved
iteratively, due to the slow variation of the ln function:

z iþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnFi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnFið Þ2þ4K2

q
2

vuut
; ð16Þ

where Fi = F(z i).
[14] The solution of (15) yields the parameter z, which

(see Table 1) is inversely proportional to the desired
Ewald parameter E. Two E values, Espectral and Espatial,
result from this procedure. To properly bound both
series, E should then be chosen as

EL ¼ max Eopt; Espectral; Espatial

� �
: ð17Þ

The resulting value is the smallest value of E that ensures
that the largest term in both the spectral and the spatial
series (see equation (8)) is limited in magnitude to avoid
losing more than L significant figures when the two
series are combined. At low or moderate frequency,
where the initial terms of the spectral and spatial series
are not large, EL = Eopt since Eopt will be the largest of
the three terms in (17).

5. Number of Terms Needed for

Convergence

[15] Having determined the ‘‘best’’ value of the E
parameter EL as a function of frequency, the next goal
is to determine how many terms should be summed in
each series (modified spatial and modified spectral) in
(4) to achieve convergence. (One could, of course, check
convergence as the series are summed, but we eventually
want to select between the Ewald and alternative
methods for computing the FSPGF that may be more
efficient in some situations; for that an a priori estimate
of the number of series terms and their relative
computational cost is required.) Recall that a given
value of L, the number of significant figures sacrificed in
the calculation, has been assumed. For the resulting
value of E = EL we must then determine how many terms
in each series are needed to guarantee convergence of the
Green’s function to S significant figures. A method is
developed here to calculate the series index limits ±P,
±Q, ±M, and ±N for the series indices p, q, m, and n,
respectively (Q and N only apply for the 2-D geometry).
If the accuracy of the arithmetic is limited to T significant
figures due to the machine precision (or, more likely in
practice, limited by the accuracy of the complementary
error function and exponential integrals), the value of S
specified should be limited to S < T � L in order to avoid
unnecessary computation.
[16] Owing to the Gaussian convergence, a rough esti-

mate of the truncation error for both the spectral and
spatial series is obtained by using the sum of the largest of
the first neglected terms along each principal sum index in
the series. Limiting the convergence error in each series to
one half of the total, we thus require that

GE
Mþ1

�� ��þ GE
�M�1

�� ��; 1� Darray

GE
Mþ1;0

��� ���þ GE
�M�1;0

��� ��� þ GE
0;Nþ1

��� ���þ GE
0;�N�1

��� ���; 2� Darray

9=
; < 10�S Gestj j 1

2


 �
b ð18Þ

~GE
Pþ1

�� ��þ ~GE
�P�1

�� ��; 1� Darray

~GE
Pþ1;0

��� ���þ ~GE
�P�1;0

��� ��� þ ~GE
0;Qþ1

��� ���þ ~GE
0;�Q�1

��� ���; 2� Darray

9>=
>; < 10�S Gestj j 1

2


 �
b: ð19Þ
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The error in stopping the summations is approximated in
the above equations as the sum of the two (four) values
that give the largest contributions to the summed values
for 1-D (2-D) arrays. The factor b is introduced to allow
for an empirical adjustment of the summation limits.
Using b = 1 corresponds to a strict error bound based on
the assumed asymptotic approximations, and therefore
usually represents a worst-case error bound. However,
factors of b = 2 and b = 4 have been found to work well
for the 1-D and 2-D cases, respectively. If we assume
that the contributions of the positively indexed terms on
the LHS of inequalities (18) and (19) are dominant, the
choice of the limits amounts to choosing M, N, P, Q such
that

GE
Mþ1

�� ��; ~G
E

Pþ1

��� ��� < 10�S Gestj j 1

4


 �
b; 1� Darray

GE
Mþ1;0

��� ���; GE
0;Nþ1

��� ���; ~G
E

Pþ1;0

��� ���; ~G
E

0;Qþ1

��� ��� < 10�S Gestj j 1

8


 �
b; 2� Darray

(The dominance of the positively indexed terms may be
assumed without loss of generality, by placing absolute
values on the spatial displacements and phasing wave
numbers, as seen in (22)–(25).) Using the asymptotic
estimates of Table A1, case 1b and case 2b, which
assume large values of M, N and P, Q for the terms in
(20) above, yields a transcendental equation of the form

e�D

D
¼ W ; ð21Þ

where D = x2 + c2
2, and the constants c2 andW in (21) are

defined in Table 2.
[17] Equation (21) must be solved numerically for x,

which, as seen in Table 2, is the only term involving the
indices. Equation (21) may be efficiently solved
iteratively for the parameter D as outlined in Oroskar
et al. [2006].
[18] Once D and thus x are determined, the indexed

quantities defined in the x column of Table 2 may be used
to determine the index limits m =M + 1, p = P + 1 for 1-D

arrays, and the index pairs (m, n) = (M + 1, 0), (0,N + 1) and
(p, q) = (P + 1, 0), (0, Q + 1) for the 2-D array.
[19] The results for the case of a 1-D line source array are

M ¼ Int
j x� x0 j

d
þ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
E


 �2

� z� z0ð Þ2
s0

@
1
A;

P ¼ Int
j kx0 j d

2p
þ d

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2Exð Þ2

q
 �
: ð22Þ

For the 1-D point source array the results are

P ¼ Int
j kx0 j d

2p
þ d

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2Exð Þ2

q
 �
;

M ¼ Int
j x� x0 j

d
þ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
E


 �2

� y� y0ð Þ2� z� z0ð Þ2
s0

@
1
A:

ð23Þ
For the 2-D point source array the result is (restricting the
result to the case of the rectangular lattice s1 = ax̂, s2 = bŷ
for simplicity):

P ¼ Int
j kx0 j a
2p

þ a

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2Exð Þ2�k2y0

q
 �
;

Q ¼ Int
j ky0 j b
2p

þ b

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2Exð Þ2�k2x0

q
 �
; ð24Þ

Table 2. Definition of Parameters Appearing in the Summation Limit Equation

x c2 W

1-D array of line sources Spatial RmE 0 10-S e�(k/(2E))2|Gest|pb

Spectral
kzp
�� ��
2E

jEDz 10-S
ffiffiffi
p

p
dE|Gest|e�2c2

2

b

1-D array of point sources Spatial RmE k
2E

10-S (p)
3
2 |Gest|e�2c2

2

b/E

Spectral
krp
�� ��
2E

0 10�S e(rE)
2jGestjpdb

2-D array of point sources Spatial RmnE k
2E

10-S (p)
3
2|Gest|e�2c2

2

b/(2E)

Spectral
kzpq
�� ��
2E

jEDz 10-S
ffiffiffi
p

p
AE|Gest|e�2c2

2

b/2

ð20Þ
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M ¼ Int
x� x0j j
a

þ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
E


 �2

� y� y0ð Þ2� z� z0ð Þ2
s0

@
1
A;

N ¼ Int
y� y0j j
b

þ 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
E


 �2

� x� x0ð Þ2� z� z0ð Þ2
s0

@
1
A:

ð25Þ

In these final results, noninteger solutions of (21) for the
summation limits should be rounded up to the next larger
integer to obtain M + 1, etc., or equivalently, rounded
down to obtainM, etc., as assumed in (22)–(25), in which
the Int function truncates to the next lower integer.
[20] One note regarding (22)–(25) should be made in

connection with the square roots. Depending on the
geometry of the problem and the specified convergence
accuracy, it may occur that the argument of one of the
square roots is negative, yielding a complex value for the
summation limit. This occurs because the asymptotic
approximation used to estimate term magnitudes
becomes invalid when the series actually needs only a
few terms to converge, corresponding to a summation
limit of zero or one. The problem is circumvented by
always using a summation limit that is at least unity.

6. Results

[21] In this section results are presented for the three
cases: 1-D line sources, 1-D point sources, and 2-D point

sources. For all results, free-space conditions are as-
sumed (k = k0 and l = l0). For the 1-D cases, d =
0.5 m. The 2-D results are shown for a square lattice (a =
b = 0.5 m). As a result, the optimum splitting parameter
is Eopt = 3.5449 for all three cases. A zero progressive
phase shift is assumed (all source elements are in phase).
The reference source element is located at the origin and
the observation point is located at (0, 0, Dz) with the
vertical distance from the source plane set atDz = 0.05 m.
For brevity’s sake, only the magnitude of the Green’s
function terms are shown in the results.
[22] For each case, three tables are shown. For the 1-D

array of line sources, Tables 3a–3c are shown; for the
1-D array of point sources, Tables 4a–4c are shown; and
for the 2-D array of point sources, Tables 5a–5c are
shown. The first tables in each case (part (a)) illustrate
that the values of ~G0,0

E and G0,0
E become enormous at high

frequency. For these tables the number of lost significant
digits is set to L = 3. (The calculations of the special
functions were performed with sufficient accuracy to
ensure that T > S + L in all cases.) The value of EL limits
the size of the largest of the (0, 0) terms, namely G0,0

E , to a
value on the order of 103 times the exact Green’s function
G (denoted ‘‘G Exact’’ in the tables), as expected. The
numerically exact Green’s function has been calculated
using a pure spectral method, shown in (3).
[23] The second tables shown for each case (part (b))

show the values of G0,0
E and ~G0,0

E using EL obtained for

Table 3b. One-Dimensional Line Source Array: G0
E and ~G0

E

for Various Values of L, Keeping the Frequency Fixed at d =

5.5l0

L Eopt EL G0
E Using EL

~G0
E Using EL G Exact

1 3.544906 15.795788 1.0881778 0.2137888 0.147732
2 3.544906 12.793900 11.564017 2.9467840 0.147732
3 3.544906 11.045671 115.39839 34.849919 0.147732
4 3.544906 9.8719462 1142.9574 391.50175 0.147732
5 3.544906 9.0139223 11330.598 4287.8952 0.147732
6 3.544906 8.3508864 112514.12 46237.312 0.147732

Table 3c. One-Dimensional Line Source Array: Calculated and

Actual Values of the Summation Limits for Various Values of

Sspec, Keeping the Frequency Fixed at d = 5.5l0, Using b = 2 as a

Factora

Sspec Pcal Pact Mcal Mact Sact

1 5 4 0 0 2.01
2 6 5 0 0 4.32
3 6 6 0 0 4.32
4 7 6 0 0 6.60
5 7 7 0 0 6.60
6 7 7 0 0 6.60

aAlso shown is Sact, the actual number of significant figures achieved
when using the calculated summation limits.

Table 3a. One-Dimensional Line Source Array: G0
E and ~G0

E Obtained Using Eopt and EL, Compared With G, the Exact Value of

the Green’s Functiona

d/l0 EL
~G0
E Using Eopt

~G0
E Using EL G0

E Using Eopt G0
E Using EL G Exact

10.5 20.58585 5.8979E+146 12.427708 5.9065E+146 75.871153 4.802E-002
5.5 11.04567 1.5269E+038 34.849919 1.5351E+038 115.39839 0.1477323
4.5 9.038645 5.1934E+024 47.653662 5.2355E+024 129.29622 0.1585821
3.5 7.013830 1.493E+14 70.176014 1.063E+014 147.89049 0.1619304
2.5 4.981864 1.356E+06 116.96534 1.395E+06 175.14480 0.1584406

aResults are shown for various frequencies (period relative to a wavelength) with L = 3.

RS6S01 CELEPCIKAY ET AL.: NUMERICAL EVALUATION OF EWALD METHOD

8 of 11

RS6S01



Table 4a. One-Dimensional Point Source Array: G0
E and ~G0

E Obtained Using Eopt and EL, Compared With G, the Exact Value of

the Green’s Functiona

d/l0 EL
~G0
E Using Eopt

~G0
E Using EL G0

E Using Eopt G0
E Using EL G Exact

10.5 19.93035 1.181E+147 304.98277 1.1830E+147 1803.7876 1.3718050
5.5 10.51319 3.070E+038 592.50339 3.08691E+038 1863.0479 1.8099522
4.5 8.556454 1.047E+025 730.06634 1.05567E+025 1869.2320 1.7889326
3.5 6.595795 2.127E+013 948.12325 2.15716E+013 1870.9950 1.7072650
2.5 4.645090 2.791E+06 1344.7252 2.87365E+06 1866.7076 1.5862856

aResults are shown for various frequencies (period relative to a wavelength) with L = 3.

Table 4b. One-Dimensional Point Source Array: G0
E and ~G0

E

for Various Values of L, Keeping the Frequency Fixed at d =

5.5l0

L Eopt EL G0
E Using EL

~G0
E Using EL G Exact

1 3.544906 14.70097 20.70892 4.545456 1.8099522
2 3.544906 12.07276 195.6083 53.04047 1.8099522
3 3.544906 10.51319 1863.048 592.5034 1.8099522
4 3.544906 9.452852 18043.82 6467.390 1.8099522
5 3.544906 8.670248 176616.1 69600.95 1.8099522
6 3.544906 8.060855 1739616.1 741610.1 1.8099522

Table 4c. One-Dimensional Point Source Array: Calculated

and Actual Values of the Summation Limits for Various Values of

Sspec, Keeping the Frequency Fixed at d = 5.5l0, Using b = 2 as a

Factora

Sspec Pcal Pact Mcal Mact Sact

1 5 5 0 0 0.21
2 5 5 0 0 2.21
3 6 6 0 0 4.67
4 6 6 0 0 4.67
5 7 7 0 0 7.23
6 7 7 0 0 7.23

aAlso shown is Sact, the actual number of significant figures achieved
when using the calculated summation limits.

Table 5a. Two-Dimensional Point Source Array: G0,0
E and ~G0,0

E Obtained Using Eopt and EL, Compared With G, the Exact Value of

the Green’s Functiona

a/l0 EL
~G0,0
E Using Eopt

~G0,0
E Using EL G0,0

E Using Eopt G0,0
E Using EL G Exact

10.5 19.93034 1.1795E + 147 51.74205 1.18302E+147 1803.787 0.4739999
5.5 10.51319 3.0538E + 038 189.1693 3.08691E+038 1863.047 2.6124583
4.5 8.556453 1.0386E + 025 286.2788 1.05567E+025 1869.231 3.5952074
3.5 6.595794 2.0987E + 014 482.4770 2.15710E+014 1870.995 1.0027102
2.5 4.645089 2.7137E + 06 972.9746 2.87365E+06 1866.707 1.4841352

Table 5b. Two-Dimensional Point Source Array: G0,0
E and ~G0,0

E

for Various Values of L, Keeping the Frequency Fixed at a =

5.5 l0

L Eopt EL G0,0
E Using EL

~G0,0
E Using EL G Exact

1 3.544906 14.70096 20.70891 0.956796 2.6124583
2 3.544906 12.07275 195.6083 14.43552 2.6124583
3 3.544906 10.51319 1863.047 189.1693 2.6124583
4 3.544906 9.452851 18043.82 2323.698 2.6124583
5 3.544906 8.670248 176616.1 27471.14 2.6124583
6 3.544906 8.060855 1739616. 316496.5 2.6124583

Table 5c. Two-Dimensional Point Source Array: Calculated

and Actual Values of the Summation Limits for Various Values

of Sspec, Keeping the Frequency Fixed at a = 5.5 l0, Using
b = 4 as a Factora

Sspec Pcal, Qcal Pact, Qact Mcal, Ncal Mact, Nact Sact

1 5, 5 5, 5 0, 0 0, 0 2.07
2 5, 5 5, 5 0, 0 0, 0 2.07
3 6, 6 6, 6 0, 0 0, 0 4.53
4 6, 6 6, 6 0, 0 0, 0 4.53
5 6, 6 7, 7 0, 0 0, 0 4.53
6 7, 7 7, 7 0, 0 0, 0 7.09

aAlso shown is Sact, the actual number of significant figures achieved
when using the calculated summation limits.

RS6S01 CELEPCIKAY ET AL.: NUMERICAL EVALUATION OF EWALD METHOD

9 of 11

RS6S01



different values of L, keeping the frequency fixed fairly
high such that d = a = 5.5 l0. It can be seen that the largest
of the (0, 0) terms, G0,0

E , has a magnitude on the order of
10L times the magnitude of the total Green’s function, as
expected.
[24] If the number of significant digits desired for conver-

gence Sspec is specified, the calculated summation limits
for the spectral series, Pcal and Qcal, and the calculated
summation limits for the spatial series, Mcal and Ncal, can
be calculated using the formulae derived previously.
These values are shown in part (c) of the tables for each
case, along with the actual values Pact, Qact and Mact,
Nact needed to achieve convergence to Sspec significant
figures, obtained numerically. Also shown is Sact, the
actual number of significant digits to which the Ewald
method has converged using the formula

Sact ¼ � log10
G� GE

tot

G

����
����; ð26Þ

where Gtot
E = GE + ~GE is the value obtained from the

Ewald method after summing the two series using Pcal,
Qcal, Mcal and Ncal. The frequency is again fixed such
that d = a = 5.5 l0. For the spectral and the spatial series,
the adjustment factor b = 1 works in all cases but is
excessively conservative. A factor of b = 2 was assumed
for the 1-D cases, and b = 4 for the 2-D cases. The
agreement between the actual and specified values of S is
good, especially for larger values of S, with Sact > Sspec in
all cases except one (the 2-D case with Sspec = 5).

7. Conclusions

[25] The Ewald method is a very efficient method for
calculating the periodic free-space Green’s function for
three different cases: a 1-D array of line sources, a 1-D

array of point sources, and a 2-D array of point sources.
However, as noted in Kustepeli and Martin [2000] the
method suffers from accuracy problems at high
frequency due to a loss of significant figures that occurs
from a cancellation when combining the spectral and
spatial series that appear in the method. The method
proposed here determines the ‘‘best’’ value of the
splitting parameter E that appears in the method to yield
the fastest convergence of the Ewald sums while limiting
the number of lost significant digits to a specified level L.
The derivation has been presented in a unified fashion so
that all three cases are treated together, with Table 1
giving the parameters needed for the different cases. The
predicted loss of significant digits is verified through
numerical simulations and the results illustrate the
accuracy of the proposed formula.
[26] Approximate expressions for the summation limits

required to achieve a specified convergence accuracy to
S significant figures for the Green’s function were also
formulated and tested for the three different cases. In
these expressions the value of S is arbitrary, except that it
should satisfy the constraint that S < T � L, where T is the
number of digits in the arithmetic. Again, a unified
derivation has been presented, with Table 2 summarizing
the parameters to be used for each of the three different
cases. The specified number of significant digits S
desired for convergence was compared to the actual
number of significant digits of the resulting series and
found to be in good agreement in almost all cases,
thereby validating the formulas.

Appendix A

[27] In this appendix we summarize the asymptotic
evaluation of the exponential-integral series that appear

Table A1. Definitions of the Integrals and Parameters Appearing in the Four Cases, and the Final Results of the Asymptotic

Evaluation

Case 1a Case 1b Case 2a Case 2b

I =
R1
E

e� R0sð Þ2þ k
2sð Þ2

s
ds

R1
E

e� Rmsð Þ2þ k
2sð Þ2

s
ds

R1
�1= 2Eð Þ2

e
�2

4s
� k�0ð Þ2s

s
ds

R1
1= 2Eð Þ2

e�
�2

4s
þ k�pð Þ2s

s
ds

s0 E E �1/(2E)2 1/(2E)2

W k2 Rm
2 (kr0)

2 �(krp)
2

f(s)
e� R0sð Þ2

s

e
k
2sð Þ2

s

e
�2

4s

s

e�
�2

4s

s

g(s)
1

2sð Þ2
�s2 �s �s

I~
e� R0Eð Þ2þ k

2Eð Þ2

2 k
2E

� �2 e� RmEð Þ2þ k
2Eð Þ2

2 RmEð Þ2
� e� �Eð Þ2þ

k�0
2E

� �2
k�0
2E

� �2 � e� �Eð Þ2þ k�p
2E

� �2
k�p
2E

� �2
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in the 1-D point-source spectral series and the 1-D line
source spatial series. The asymptotic evaluation of the
terms involving the complementary error function that
appear in the 1-D point-source spatial series, the 1-D line
source spectral series, and the 2-D point-source spatial
and spectral series, uses (10) and is straightforward.
[28] In performing the asymptotic evaluations of the

exponential-integral series that appear in (5) and (6), the
series have been cast back into their integral forms,
namely the forms shown in equation (15) in Capolino
et al. [2007] and equation (11) in Capolino et al. [2005].
These are the forms appearing in (11) and (12),
respectively. In the following, case 1 denotes the 1-D
line source array and case 2 denotes the 1-D point-source
array. For each of these two cases, part (a) is defined as
the subcase involving the determination of the splitting
parameter, whereas part (b) is the subcase involving the
determination of the summation limit. To determine the
splitting parameter, either k or kr0 is the large parameter
in the asymptotic evaluation. To determine the summa-
tion limits, either Rm or the wave number krp is the large
parameter in the asymptotic evaluation. In (11), we made
the substitution s = -u for case 2a. For case 2b we then
used the notational change s = u for consistency. (Note
that in (11) the upper limit denotes the complex point at
infinity, which has been taken as positive infinity for the
derivation in case 2b and negative infinity for the
derivation in case 2a).
[29] In all four cases, each of the integral expressions

can be put into the form

I Wð Þ ¼
Z1
s0

f sð ÞeWg sð Þds; ðA1Þ

where W is a real positive parameter that becomes large.
The terms s0, W, and the functions f(s) and g(s) are
defined in Table A1 for each of the four cases. For largeW
we use the integration-by-parts asymptotic approximation
[Felsen and Marcuvitz, 1994; Bleistein and Handelsman,
1986] to obtain

I Wð Þ � � f s0ð Þ
Wg0 s0ð Þ e

Wg s0ð Þ: ðA2Þ

Table A1 summarizes for each of the four cases the
integral to be evaluated (the first row), the final asymptotic

results (the last row), and all of the parameters that appear
in (A1).
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