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Abstract—Large scientific collaborations often have multiple
scientists accessing the same set of files while doing different
analyses, which create repeated accesses to the large amounts
of shared data located far away. These data accesses have
long latency due to distance and occupy the limited bandwidth
available over the wide-area network. To reduce the wide-area
network traffic and the data access latency, regional data storage
caches have been installed as a new networking service. To study
the effectiveness of such a cache system in a scientific application,
we examine the Southern California Petabyte Scale Cache for
a high-energy physics experiment. By examining about 3TB of
operational logs, we show that this cache removed 67.6% of file
requests from the wide-area network and reduced the traffic
volume on wide-area network by 12.3TB (or 35.4%) a day on
average. The reduction in the traffic volume (35.4%) is less than
the reduction in file counts (67.6%) because the larger files are
less likely to be reused. Due to this difference in data access
patterns in this application, the cache system has to implement
special policy to avoid eviction of the smaller files by requests to
larger files. We also build a machine learning model to study the
predictability of the cache behavior. Tests show that this model
is able to predict the cache accesses, cache misses, and network
throughput with good accuracy, making the model useful for
further studying the resource provisioning and planning.

Index Terms—in-network caching, data throughput, transfer
performance, data access trends

I. INTRODUCTION

Large scientific projects often involve thousands of scientists
sharing a massive data collection [1]. These projects, such as
the Large Hadron Collider (LHC), have collaborators around
the world, each with their own analysis tasks, accessing a
different portion of the data collection, transferring data files
over long distances, and causing high demand over the limited
wide-area network. While efficient tools for data movement
over wide-area network are available, there is a new network-
ing service, in-network storage caches, that could remove a
significant portion of the traffic on wide-area network. These
caches take advantage of the geographical sharing of data
accesses as there are overlapping in data accesses among the
colleagues in the same institution who often work on related
scientific objectives. In particular, the High Energy Physics
(HEP) community has been exploring such a caching system
under the term of regional “data lakes” [2] as a part of their

federated data storage infrastructure [3]. There are evidences
that a regional data cache could improve data accesses [4]-
[6]. However, real-world deployment sometimes bring up
unexpected challenges. This work studies the effectiveness of
one such in-network deployment to see how to address the
challenges encountered.

This work studies the operational logs of a large-scale
deployment of storage cache nodes. These logs are from the
Southern California Petabyte Scale Cache (SoCal Repo) [7]
developed for High-Energy Physics (HEP) analysis jobs,
where the wide-area network traffic is primarily carried by
the Energy Sciences Network (ESnet) [8]. There have been
some reports about the performance characteristics including
number of file requests, cache misses, and data volumes [9],
[10]. The first objective of this work is to understand the
networking characteristics such as network traffic reduction,
data throughput performance, and so on. We expect this part
of the study to confirm that SoCal Repo significantly reduce
the traffic over the wide-area network. Nevertheless, there are
surprises due to a special user access patterns.

The second objective of our work is to understand the
predictability of the network utilization patterns in order to
plan for additional deployment of in-network caches in the
science network infrastructure. For this purpose, we developed
a machine learning model to predict the network utilization
metrics for the regional storage cache. Despite the high
variability in the cache usage, as shown in Figure 1, it is
still possible to model the cache requests with accuracy. Our
model takes the SoCal Repo performance characteristics as the
input time series and learns the performance patterns through
a recurrent neural network architecture known as the Long
Short-Term Memory (LSTM) [11], [12]. The errors of the
predictions are significantly less than the standard deviation of
the original values. With accurate predictions, we could plan
for days with unusually high network demands and maximize
the overall system performance.

II. BACKGROUND AND XCACHE LOG FILES

SoCal Repo is a storage cache supporting computing jobs in
Southern California for US Compact Muon Solenoid (CMS)



experiment, a HEP collaboration with participants around the
world [3], [13]. The analysis jobs involve files of different
types, for example, analysis object data (AOD), MiniAOD,
or NanoAOD files, where the information content per proton
collision differs by more than O(10) each going from AOD
to MiniAOD to NanoAOD. NanoAOD is thus O(10,000)
smaller than AOD. More than 90% of analyses work with
either MiniAOD or NanoAOD [14], [15]. The analysis work
mostly starts with exploration of MiniAOD files. In a number
of cases, after scientists have determined the most useful
algorithms and found the most promising collision events for
their analysis work, they might apply the algorithms on the
larger data file formats (which has more detailed information
about the selected events) to produce the final results. This
data usage pattern effectively creates two types of accesses,
one type touches small file formats frequently and the other
retrieves large infrequently. The analysis jobs requiring large
file formats might take a considerable amount of time because
the file transfers, including potentially retrieval from tape
archives, and computation both are time consuming.

The SoCal Repo has approximately 2.5PB of total storage
with 24 federated caching nodes. There are 11 nodes at Caltech
with storage sizes ranging from 96TB to 388TB, 12 nodes
at UCSD with 24TB each node, and one node at ESnet
Sunnyvale endpoint with 44TB of storage. Furthest distance
to the cache node from the computing resources is about 500
miles from UCSD to ESnet Sunnyvale endpoint, with an RTT
of about 10ms. The measurement data has been collected from
July 2021 through June 2022, consisting of 8.7 million data
accesses where 67.6% are satisfied with files in cache, see
Table I for additional summary statistics. Among the 12.7 PB
requested, 4.5 PB (35.4%) could be served from the cache,
while 8.2 PB needs to be transferred over wide-area network.
The difference between 67.6% and 35.4% is one of the issues
we seek to resolve.

TABLE I
SUMMARY OF DATA ACCESS FROM JULY 2021 TO JUNE 2022. ABOUT
67.6% OF FILE REQUESTS ARE SATISFIED BY THIS CACHE, WHILE 35.4%
REQUESTED BYTES ARE IN THE CACHE.

# of cache miss cache hit number of number of

accesses size (TB) size (TB) cache misses cache hits
[ Total [ 8713894 [ 821078 | 449944 ] 2,822,014 [ 5,891,880 |
| Daily || 23,308 | 2243 | 12.29 | 7,710 | 16,098 |

Cache misses occur when the client’s requested data file
is not in any of the cache nodes and needs to be transferred
from a remote storage over the wide-area network. When the
client’s requested data is in one of the cache nodes, it is a
cache hit, and the data is served from the cache without a
wide-area data transfer. The network traffic reduction comes
from these cache hits.

The cache nodes run on XCache software [7], [16], [17].
The information used in this study is extracted from XCache
log files. We’ve processed 8,433 log files amounting to about
3 TB, and extracted information about the request sizes, how
the request is satisfied, etc. From such information, we derived

(a) Fraction of daily file requests: cache misses (in orange) and
cache hits (in blue)

(b) Fraction of daily requested bytes: cache misses (in orange)
and cache hits (in blue)

Fig. 1. Cache miss rates versus cache hit rates based on (a) files requested
and (b) bytes requested.
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(a) Daily file requests (count): cache misses (in orange) and
cache hits (in blue)
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(b) Daily traffic volume: cache misses (in orange) and cache
hits (in blue)

Fig. 2. Daily network traffic statistics: (a) files requested and (b) bytes
requested. Note that only file requests that miss the cache trigger remote
network file transfers.

cache hits, cache misses, along with network performance
information such as remote transfer throughput that are are
used in later sections.

III. NETWORK TRAFFIC REDUCTION

In this section, we show how much wide-area network traffic
is actually saved by SoCal Repo. Figure 1 shows the daily
cache hit rate and cache miss rate, where Figure la shows



these rates based on the file request counts and Figure 1b based
on bytes requested.! Cache misses trigger wide-area network
traffic. We show the cache miss rates with bright orange in
Figure 1 and Figure 2

Overall, the cache miss rates based on files requested (in
Figure 1a) are more stable than those based on bytes requested
in Figure 1b. In particular, there is a 5-month long period
between Oct. 2021 and Feb. 2022, where the majority of bytes
requested are cache misses. An examination of the number
of files requested and number of bytes requested in Figure 2
provides more information.

Figure 2a shows the number of files requested, separated
into those could be satisfied with files in the cache (hits, in
blue) and those require wide-area network transfers (misses,
in orange). Across all 24 cache nodes in the SoCal Repo, an
average day sees about 16,000 file requests as hits along with
8,000 misses. In terms of bytes requested, Figure 2b shows that
about 12.3 TB per day are served out of the cache during the
whole year. In the early part of the year, between Jul. 2021 and
Sep. 2021, the wide-area network traffic is reduced by about
13 TB per day, and between March 2022 and May 2022, the
wide-area network traffic is reduced by about 29TB per day.

In the middle of our observation period, for example January
13, 2022, there are about 60,000 cache misses amounting
to about 200TB of wide-area traffic. On average each of
these files is over 3.3GB, which means they are large among
CMS data files. This observation from the cache statistics
conforms to the usage patterns involving large files described
in Section II. We also received additional confirmation from
the site operators that these are indeed a small number of data
analyses involving large files.

This particular usage pattern involving large files has the
potential of evicting the smaller files (that are used more
frequently)? and reducing the overall effectiveness of the cache
system. The operators of SoCal Repo recognized this usage
pattern and have separated and limited the accesses to the
cache nodes based on file types, which effectively prevents
cache pollution. In cases where one couldn’t differentiate
the cache usages based on simple known characteristics, an
alternative strategy could be to have these requests bypass the
cache system [18].

IV. MODELING TRANSFER THROUGHPUT

Now that we know the storage cache is effective in reducing
the traffic on wide-area network, and there are strategies to
mitigate the impact of special access patterns that pollute the
cache, we’d like to see how to provision additional storage
cache nodes in the future. For this purpose, we start to
model the current cache usage and network performance. More
specifically, we build machine learning models for the hourly
and daily average data throughput performance as well as
statistics about cache misses. The data throughput is defined as
the data transfer size over the transfer time. This information
is useful for anticipating the time needed for file transfers.

IThere are two narrow gaps in Figure 1 due to brief periods of down time.
2This is colloquially known as cache pollution.

TABLE II
HYPER-PARAMETERS OF THE LSTM MODELS
# of activation | dropout # of
LSTM unit function rate epochs
[ 128 [ twnh [ 004 | 50 |
TABLE III

RMSE OF DAILY/HOURLY LSTM MODEL RESULTS FOR NETWORK
STORAGE CACHE PERFORMANCE. THE RELATIVE PREDICTION ERRORS
(INSIDE PARENTHESES) ARE MEASURED AGAINST THE STANDARD
DEVIATIONS. NOTE THAT ALL SIX ROWS ARE ABOUT CACHE MISSES.

Training Testing standard

H RMSE ‘ RMSE deviation ‘
Daily cache misses 4306.01 3637.39 (.32) 11317.08
Hourly cache misses 175.11 99.31 (.17) 595.81
Daily volume 9.75 14.54 (.49) 29.46
Hourly volume 0.19 0.49 (.35) 1.42
Daily average throughput 33.20 23.49 (.21) 110.43
Hourly average throughput 27.08 22.79 (.19) 121.36

We have decided to use a neural network architecture called
LSTM [11], [12] because it is effective in capturing time
series patterns. Our model includes the following features:
cache miss count, cache miss size, cache hit count, cache
hit size, aggregate throughput for cache misses on all nodes,
aggregate throughput on cache hits for all nodes, average
throughput for each cache miss, and average throughput for
each cache hit. In the remaining of this section, we discuss the
information relates to cache misses, which are more relevant to
the wide-area network performance. The training data comes
from the first 80% of the whole monitoring period, and
the testing data comes from the last 20%. Table II shows
hyper-parameters chosen after exploring about 1400 different
parameter combinations.

As an overall performance measure, Table III shows the
root-mean-square error (RMSE) of both the daily and hourly
models for the data volume and average (wide-area) network
transfer performance. The column labeled “standard deviation”
is the standard deviation of the input data values. It provides
a reference for us to judge how large are the errors of
predictions. The ratios of testing RMSE and standard deviation
are shown inside parentheses. In all cases shown, this relative
error is less than 0.5, indicating the predictions are pretty
accurate.

In all three sets of measures shown in Table III, the LSTM
models are more accurate with the hourly time series than
with the daily time series as both absolute and relative error
are smaller. The most likely reason might be there are more
training data records for the hourly time series. Next, we look
into more details of these prediction models.

Figure 3 and Figure 4 show LSTM model output for the
number of cache misses and their associated data volumes. In
these cases, we see the predictions on the hourly time series
are indeed closer to the actual values in the last period of time
than the predictions with daily time series, even thought the
hourly time series often shows stronger spikes.

Figure 5 shows the LSTM model performance with daily
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hourly miss counts
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Fig. 4. Bytes in cache misses

and hourly average throughput values. From figure 5a, we see
that during the middle of the observation period (10/21 — 2/22),
the wide-area network traffic throughput are quite high because
the network transfers are dominated by relatively large files
that are typically better able to utilize the network capacity.
In the other time periods, the average throughput is relatively
low due to small files being transferred.

In the hourly model from Figure 5b, there are significant
number of spikes during late March and early May. Examining
Figures 3b and 4b, we see that these spikes occur during
time periods with very few cache misses, i.e., very few wide-
area file transfers. We are interested in exploring these spikes

I)H‘Mh JW L\b

202107 202109 202111 202201 202203 202205 202207

(a) Daily throughput of wide-area transfers

hourly average throughput for misses

(b) Hourly throughput of wide-area transfers

Fig. 5. Average throughput of wide-area file transfers
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(a) Network throughput with 24-hour moving average

hourly average throughput for misses

202107 202109 202111 202201 202203 202305 202207

(b) Network throughput with 168-hour moving average

Fig. 6. Modeling hourly average wide-area throughput on smoothed time
series.

further in the future. For modeling network performance, it
is not necessary for us to capture such spikes precisely. We
could use the moving average method to smooth out the spike
to obtain a performance model for the general trends.

Figure 6 shows two different versions of Figure 5b with
two different moving-averaged hourly throughput measured
by the cache misses. We clearly see that LSTM results match
the moving-averages much better than the original time series
shown in Figure 5b. The testing error (RMSE) of the LSTM
predictions on the 24-hour moving-averages is 15.05 (i.e.,
model in Figure 6a) and corresponding error on the 168-



hour moving average is 14.56. Both of these errors are less
than 22.79 on the original hourly throughput time series.
Even though the 24-hour moving averages look like the
daily throughput time series shown in Figure 5a, the LSTM
predictions matches the 24-hour moving averages much better
based on visual inspection. The RMSE of 15.05 (Figure 6a)
is noticeably smaller than 23.49 (Figure 5a). For anticipating
future network performance, the LSTM model based on the
moving averages is likely to work better.

V. CONCLUSION

In this study, we set out to understand the effectiveness
of in-network storage cache used by a distributed scientific
collaboration. The source information is from about 3TB of
operational logs from the XCache servers on SoCal Repo.
The data analysis operations of the collaboration commonly
involve two types of files, the smaller sized ones are used
frequently with more reuse, while the larger sized ones are
invoked infrequently with less reuse. We observed that SoCal
Repo could on average serve about 67.6% of files from its
disk cache, while on average only 35.4% of bytes requested
could be served from the cache, because the large files are less
often reused. To avoid cache pollution from this usage pattern
of large files, the system operators have adopted the separate
policies with different storage nodes. During the period where
fewer large files are requested (3/2022 — 5/2022), the wide-
area network traffic is reduced by about 29TB per day. Over
the whole period of observation, there is a five-month period
where the large file requests are noticeably high. The average
reduction of wide-area network traffic by this cache over the
whole observation period is still about 12.3TB per day, which
is quite significant.

This work also explores an option to model the network
performances with a neural network architecture known as
LSTM. Tests show that the prediction error (measured as
RMSE) are quite small. In a case where the original time
series has large variations, we also show that the LSTM model
could work quite well on moving-averaged versions of the time
series. With this model, we plan to consider how to provision
future deployments of in-network caches. We are also planning
to study other storage caches currently under deployment to
gain better understanding of in-network caches.
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