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Abstract

We examine a model of network formation in single-layer and multiplex networks in which
individuals have positive incentives for social ties, closed triangles, and spillover edges. In
particular, we investigate the influence of shocks to the network in which the cost of social ties
changes after an initial equilibrium. We highlight the emergence of structural entrenchment:
the retention of structural features, such as closed triangles and spillover edges, which are
formed under historically different conditions from those currently driving network evolution.
This work has broad implications for understanding path dependence in the structure and
dynamics of single-layer and multiplex networks.
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1 Introduction

The formation and persistence of social ties is dictated by the incentives and

opportunities to do so on the part of the individuals involved. Those individual

incentives can shape the emergent structure of the networks that subsequently

form. For example, when social ties are preferentially made with already well-

connected individuals, the resulting networks exhibit a scale-free structure that is

quite different from networks formed at random (Barabási & Albert, 1999). In the

formation of social ties, many types of incentives may operate simultaneously,

based on the psychology and economics of social connection, as well as the

sociological benefits of participating in a rich network. These incentives include

the raw costs or benefits of maintaining social relationships (Granovetter, 1973;

Seeman, 1996; Holt-Lunstad et al., 2010; Cacioppo & Hawkley, 2009), the costs

or benefits of closing triangles (Coleman, 1988, 1990), and the costs or benefits

of having what have been called “spillover ties”—ties with the same individuals
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2 P. E. Smaldino et al.

across multiple contexts, which, among other things, can save on transaction

costs and provide new social affordances (Long, 1958; Hinde, 1976; Putnam,

2000; Ashmore et al., 2004; Smaldino, 2018). The kinds of network structures

that result from such incentives acting in concert are important to understand,

but have not been extensively studied, particularly for cases involving multiplex

networks.

Moreover, incentives for social ties may not be constant over time. In some cases,

the process of network formation is not path-dependent; ties formed between nodes

early on have little impact on later tie-formations. In such cases, the structure of

the current network will reflect the present incentives that drive individual behavior.

On the other hand, consider scenarios in which incentives at one time induce the

formation of structural features. These features may be maintained even when

the original incentives change, even if they could not have arisen de novo under

the second set of incentives. A concrete example of this process involves incentives

and costs associated with friendship formation at different stages in life. Young

adults may find it beneficial to form friendship triangles (the friend of my friend

is my friend), as well as some more isolated friendships. When time constraints

increase (due to work, marriage, children, etc.), they will often need to restructure

their friendships. In such cases, maintaining existing triangular friendships may

be more economical than maintaining the isolated friendships, and thus clustered

friend groups will persist. If, however, friendships are initially formed under high

time-constraints, there may not be sufficient time to facilitate friendship clusters.

We refer to this type of phenomenon as structural entrenchment: the persistence

of structural features formed under different conditions or incentives than those

currently prevailing, which would not have formed had the current conditions

always existed.

We investigate three questions in the present study:

1. How do social networks reorganize following shocks, defined as drastic changes

in tie-costs? In particular, we investigate the following:

2. What is the relationship between different tie-formation incentives and network

resilience following shocks?

3. To what extent do shocks in one layer of a multiplex network affect the

reorganization of another layer of the multiplex?

To do so, we study a dynamic model of social network formation on single-

layer and multiplex networks with structural incentives that can vary over time.

Accordingly, we examine a two-layer multiplex network on which incentives ex-

ist for social ties, closed triangles, and spillover ties. We consider changes to

incentives in the form of system-wide shocks, such that all individuals in the

network experience drastic changes to the cost of forming or maintaining social

ties. Our model is not meant to reproduce any particular social system, but

rather to intuit implications for a broad class of systems. Abstract models, even

unrealistic ones, have proven quite valuable in forming intuitions of this sort

(Wimsatt, 1987; Epstein, 2008; Smaldino, 2017).
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Resilience by structural entrenchment 3

1.1 Social ties and triangles

Social connections are incentivized in many ways. Social connections provide

psychological and health benefits (Seeman, 1996; Holt-Lunstad et al., 2010; Cacioppo

& Hawkley, 2009), and opportunities for cooperation (Smaldino, 2018; Apicella et al.,

2012; Cohen & Haun, 2013), learning (Lazer & Friedman, 2007; Derex & Boyd,

2015; Centola, 2015), and economic activity (Granovetter, 1973; Jackson & Watts,

2002; Schweitzer et al., 2009). Consider, for example, social ties in the context of

friendship. One friend may provide companionship, information about unfamiliar

social conventions, and lodging when traveling far from home. Another friend may

help with technical projects and, through conversation, in the development of a

stronger sense of empathy. Thus, we may simply say that social ties can carry

benefits. There are, however, limits to how those benefits can accrue (Saramäki

et al., 2014). One cannot have 10,000 close friends (no matter what some avid

social media fans claim), because of the cognitive, temporal, and pragmatic costs

associated with maintaining all of those relationships. Furthermore, the benefit to

social relationships may have diminishing marginal returns. If you have no friends,

making one is of tremendous importance. If you have 40 friends, adding a 41st

may carry few benefits unless your new friend brings something quite unique to

the table. In our model, we will consider benefits to social ties with diminishing

marginal returns. Although many factors influence the value of forming a social

tie with one individual rather than another, for simplicity, we assume that, all else

equal, the value of a social tie is insensitive to the identities of the individuals

involved.

It can also be of importance that one’s friends are friends with each other. If

your relationship with one friend weakens, the other can help repair it. If three of

you work well together, new synergistic forms of cooperation can emerge that are

impossible with only two. The point is that there are important benefits to closing

triangles—e.g., for your friends to be friends with each other—beyond the first-order

benefits to social ties (Coleman, 1988, 1990). In our models, we consider benefits to

closed triangles that exist independently of the direct benefits to social ties.

1.2 Multiplexity and spillover ties

The majority of research on social networks has been on single-layer networks,

defined by a set of nodes and a set of ties between them. Yet, the multi-relational

nature of human interaction has long been a consideration (Long, 1958; Hinde, 1976;

Palla et al., 2005; Cai et al., 2005). That is, for a given set of nodes (representing

individuals), there may exist multiple contexts for each of which a different set of

ties describes the structure of social relationships, and in which each set of ties is

known as a layer. Recently, a body of work has arisen to study formal properties

of multiplex networks, which both extends traditional network theory to multiplex

networks and also explores unique properties of networks with more than one

layer and interdependencies between or among layers (Lubell, 2013; Vijayaraghavan

et al., 2015; Brummitt et al., 2015; Kivelä et al., 2014; Boccaletti et al., 2014; Nicosia

et al., 2013; Kim & Goh, 2013; Cardillo et al., 2013; Gómez-Gardeñes et al., 2015;

Bianconi, 2013; Batiston et al., 2016).
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4 P. E. Smaldino et al.

As an example of a multiplex, consider a set of individuals for whom we can

construct a neighborhood network indicating residential contiguity among people.

Two people are connected if they live on the same block. Consider also a friendship

network in which people are connected if they are friends. Finally, consider an

organizational network in which two people are connected if they participate

together in formal social settings such as work or volunteer organizations. Individual

behaviors on any of these networks are not necessarily independent of the other

networks. You might become friends with your neighbors or the people you work

with, and in doing so create opportunities that do not exist for friends who are

not neighbors or neighbors who are not friends. Influence between layers of a

multiplex network is sometimes known as spillover (Vijayaraghavan et al., 2015). In

our model, we consider a spillover effect in a two-layer network: nodes get a bonus

from forming a tie with a node in one layer if they already have a tie with the same

node in the other layer.

1.3 Changing incentives

The costs for forming or maintaining ties may change dramatically over time.

The relative cost to forming new social ties may be low for childless urban

twenty-somethings, but rather high when some of those individuals grow older

and acquire demanding jobs, romantic partners, and children. However, although

one may lose some friends as one’s time becomes more constrained, one rarely

loses all of them. Social relationships formed when younger and more carefree

may become structurally entrenched by acquiring additional benefits, such as those

enjoyed by a tight-knit group of friends who look out for one another’s interests,

which can outweigh the increased costs of maintaining relationships later in life

when demands on one’s time have increased (Palchykov et al., 2012; Hruschka,

2010). Although changes to the incentives for forming and maintaining social ties

often occur gradually, they can also occur rapidly. For example, the birth of a

child, the death of a family member, or the loss of a job can very rapidly alter the

incentives for forming and maintaining social relationships.

Similar dynamics are also possible when the nodes of a network are institutional

conglomerates, such as tribes, corporations, or nation-states, rather than individual

people. For example, trade agreements between corporations may form under

supportive economic conditions, such as those enjoyed among EU nations. Relations

of this sort may become structurally entrenched, as when multiple businesses share

suppliers or distributors and also trade with one another. Dramatic changes to

relational incentives, such as a sudden increase in tariffs, may damage some existing

relationships and hinder new ones from forming, but leave intact those that are

structurally entrenched.

We model changes to the cost of social ties, leaving constant the benefits of

ties, triangles, and spillover ties. We refer to these changes as shocks, because they

are sudden, system-wide changes to the system. We are interested both in shocks

that increase costs—which may reduce the capacity of the network to maintain

structure in the form of social ties—are well as in shocks that decrease costs—which

may increase the capacity of the network to maintain such structure. We explore
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Resilience by structural entrenchment 5

conditions under which the network exhibits resilience and maintains structure after

a shock.

2 Model

Nodes represent individuals (or agents), and ties represent an ongoing social relation-

ship between those individuals. For simplicity, all edges are assumed to be undirected

and unweighted. Our model is adapted from a study by Burger & Buskens (2009),

who explored network formation on a single-layer network in response to incentives

for ties and closed triangles. In their model, nodes in an empty network could

bilaterally add ties when such an addition increased the utility of both parties, and

drop ties unilaterally if doing so would increase either node’s utility. We extend this

to a two-layer multiplex in which there can be additional incentives for spillover

ties. We then examine network formation and explore the effects of exogenous

shocks, which occur after the network has reached an equilibrium. A shock is

operationalized here as a system-wide change in the cost of social ties. Burger &

Buskens (2009) restricted their analysis to small six-node networks. Our analysis

differs in that we consider networks of arbitrary size. Our dynamics also differ from

theirs in that agents in our model are able to consider in their decisions the total

utility resulting from rewiring—that is, simultaneously dropping one tie and adding

a different tie—whereas their model required all individual add or drop actions to

be utility-increasing.

2.1 Utility

An agent’s utility results from three aspects of the social structure of an individuals’

local network. First, ties have intrinsic benefits and costs. Each agent receives a

direct benefit for each tie it holds with another agent. However, maintaining ties is

also costly due to constraints on time, attention, and transaction costs (Burger &

Buskens, 2009; Simon, 1990; Smaldino & Lubell, 2011). We assume that benefits

accrue linearly with the number of ties, while the costs accrue at a faster rate.

Our functional form, therefore, represents diminishing marginal returns to adding

additional social ties. Other functional forms that accomplish similar diminishing

marginal returns are of course possible.

Second, closing triangles may yield additional benefits. We focus on scenarios

in which local network closure is an important form of social capital, such as

through reducing the costs of information search and facilitating the coordination

on social norms (Coleman, 1988, 1990). In other scenarios, closed triangles may be

undesirable, as utility is gained through bridging structural holes (Burt, 1992). Such

scenarios are also of interest, but for simplicity we do not consider them in the

present analysis.

Third, we consider the benefit of spillover ties across layers of the multiplex.

Specifically, we consider scenarios in which having a tie with an individual in

multiple layers (or contexts) carries an additional benefit. For example, being friends

with your neighbor may carry benefits beyond the sum of benefits from having a

friend and having a neighbor. We refer to the benefits and costs of ties, triangles,

and spillover in aggregate as the structural incentives of the network. The basic
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6 P. E. Smaldino et al.

Fig. 1. A schematic of the model system, here shown as a four-node multiplex with

two layers. The three leftmost nodes are part of a closed triangle in Layer 1 (blue)

but not in Layer 2 (red). The three bottommost nodes have spillover ties (ties with

the same nodes in both layers), depicted in bold. (Color online)

assumption is that nodes act to maximize their marginal utility, that is, they choose

ties that maximize the net benefits from their structural incentives.

Our analysis is restricted to a two-layer multiplex (Figure 1). We operationalize

utility by extending the functional form introduced in Burger & Buskens (2009) to

a two-layer multiplex and including spillover benefits. The utility to agent i, with

tiℓ ties and ziℓ closed triangles in each layer ℓ and vi spillover ties is given by the

following function:

ui =
∑

ℓ∈{1,2}

(
btiℓ − ct2iℓ + dziℓ

)
+ evi (1)

where b and c are the benefits and costs of maintaining a tie in either layer, d

is the benefit to a closed triangle in either layer, and e is the benefit of spillover

ties. The benefits to social ties accrue linearly while the costs of social ties accrue

quadratically, which operationalizes the idea that the marginal returns to additional

social ties will diminish, and eventually become negative, as ties continue to be

added (assuming c < b).

For simplicity, we mostly focus on cases in which the structural incentives are

the same in each layer, though we do explore one case in which tie costs can vary

between layers. Our model is, therefore, a special case of a more complex model in

which each layer has different structural incentives. Without loss of generality, we

set b = 1 for all simulations.

2.2 Network formation dynamics

Agents add new ties and drop existing ties in order to increase their utility. Time

is discrete and occurs in rounds. Each round, each agent has the opportunity to

proactively add one new tie and delete one existing tie, though neither action is
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Resilience by structural entrenchment 7

obligatory. We say “proactively,” because agents may also gain or lose ties through

the actions of others. At the beginning of each round, each agent, in random order,

samples p other agents in the network. For all our analyses, we use p = 10. We keep

this number constant across network sizes to reflect constraints on the cognitive and

temporal limits to agent observations.

On its move, an agent i considers all possible ties not already held to each of the

p sampled nodes in each layer of the multiplex, and identifies the tie with node j in

layer ℓ whose addition would provide the largest increase in utility, ∆u+
ijℓ. If multiple

ties have equally high value, one is selected at random. If ∆u+
ijℓ > 0, agent i proposes

the tie. If ∆u+
jiℓ > 0, that is, if the addition of the tie would also increase j’s utility,

then the tie is formed, otherwise it is not. Agents can only propose one new tie each

round, regardless of whether their proposal is accepted.1

If the straightforward addition of any new tie will not increase the agent’s utility,

the agent then examines whether it could increase its utility by rewiring, considering

only those p nodes sampled. In other words, could the agent increase its utility by

dropping a currently held tie with node h and replacing it with a tie with node

j? Here, the agent considers all such pairings, and identifies the pair (h, j) such

that dropping its existing edge with h and adding a new tie with j has the largest

marginal utility. If that marginal utility is larger than zero, the agent proposes a tie

with node j. If that tie is acceptable to j (i.e., it increases j’s utility), the tie is made,

and the agent then drops its edge with node h. Otherwise, no action is taken. The

newly added tie need not be in the same layer as the dropped tie, corresponding to

agents’ ability to differentially allocate resources across contexts.

If no current tie has been dropped, the agent then considers all its current ties,

excluding any just added, and identifies the tie for which dropping would lead to the

largest marginal utility gain. If that gain is larger than zero, the agent drops the tie.

This process of network formation continues until a stable network equilibrium

has been reached. We operationally define an equilibrium after five complete rounds

in which no ties are added or dropped.

2.3 Noise

We focus our analysis on a version of the model in which decisions are deterministic:

agents attempt to add only those ties that correspond to the largest gain in utility.

Proposed ties are accepted and existing ties dropped only when they strictly increase

an agent’s utility. However, we also examine the model’s robustness to stochastic

noise, governed by the parameter ν. When choosing a new tie to propose, the agent

chooses a node to connect with in a utility-maximizing manner (as described above)

with probability 1 − ν, and with probability ν, the agent selects an (unconnected)

node and layer at random. Such proposals are accepted without regard for utility

with the same probability. Similarly, an agent drops an existing tie at random with

probability ν. Unless otherwise stated, simulations used ν = 0.

1 Our model assumes that nodes are not aware of the local networks and corresponding utilities of other
nodes. If they were, they could selectively offer ties only to those nodes likely to accept them. This
informational constraint is likely to apply for some systems and not others.
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8 P. E. Smaldino et al.

2.4 Shocks

Once the network reaches a state of equilibrium, a shock occurs. A shock is an

exogenous event that simultaneously changes tie costs for all agents. We restrict our

analysis to two costs, denoted clow and chigh. For all simulations, clow = 0.2, and,

unless otherwise stated, we use chigh = 0.6. After a shock, new structural changes

(i.e., adding new ties or dropping existing ties) may result in a utility increase for

some agents.

Our framework allows for two shock conditions to be compared: low–high (LH)

and high–low (HL). These are contrasted with corresponding control conditions

in which no change in cost occurs: low–low (LL), and high–high (HH). The first

word (letter) denotes the pre-shock tie cost, and the second word (letter) denotes

the post-shock tie cost. We examine two variations of shock-related effects. In the

first, we examine cases in which changes in costs (i.e., shocks) occur in both layers

of the multiplex. In the second, shocks occur only in one layer. This latter variation

enables us to study how spillover benefits can cause shocks to propagate across

layers.

Our analysis focuses on the extent to which network structure under the low-

cost scenario is maintained after a shock in which tie costs increase—we refer to

this extent as the network’s resilience. This is most obviously useful for studying

LH shocks, but we find it can also be informative about HL shocks, particularly

under mixed effects (in which both triangles and spillover ties are incentivized

simultaneously). In the latter case, resilience can be interpreted as the extent

to which the network structure under low tie costs can be fully realized when

the initial structure evolved under high costs. There are, of course, many ways

in which network structure can be characterized. Due to its importance across

many areas of network science, its simplicity, and its common interpretation as a

measure of network density, we focus on average degree. Resilience is operationalized

as:

δs =
ks − kHH

kLL − kHH
(2)

where ks is the average degree of the network at post-shock equilibrium, and

s ∈ {LH,HL} is the shock condition. It is also possible to generalize this mea-

sure of resilience to any network-level metric by substituting that metric for

average degree, though as noted we have not analyzed other measures of this

type.

For most of our multiplex network analyses, the two layers of the multiplex are

statistically identical, so for convenience we measure the average degree of Layer 1

only. In cases where the two layers are subjected to different shocks, we compare

the average degree of each layer post-shock to Layer 1 of the pre-shock network;

in this case each layer will have a unique level of resilience.

2.5 Single-layer and multiplex networks

We were specifically interested in network formation and the effects of spillover

in multiplex networks. However, our findings regarding the path dependency of

network formation on the timing of shocks have implications on the type of

CA5��1D1��12�5�1%�8%%"A��((( 31�2#��75 !#7�3!#5�%5#�A �8%%"A���!� !#7��� ����� (A ���� �	
�!( �!1�5��6#!��8%%"A��((( 31�2#��75 !#7�3!#5 ��335AA�"1���2)�%85�0,�/5#35��.�2#1#)��! ����/1#������1%����
����AC2:53%�%!�%85�,1�2#��75�,!#5�%5#�A�!6

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2017.35
https://www.cambridge.org/core


Resilience by structural entrenchment 9

Fig. 2. Isolated effects for (A, B) triangle benefits only (e = 0) and (C, D) spillover

benefits only (d = 0). (A, C) Average node degree ± SD for each of the four

shock conditions on a 40-node network. (B, D) Average resilience for LH condition,

showing robustness across a range of network sizes. (Color online)

single-layer networks that have more traditionally been studied in network science.

Therefore, we also present results on single-layer networks. In these runs, all

interactions are restricted to a single layer, and the influence of spillover is undefined

(and so e = 0).

Java code for our agent-based model is available at http://www.openabm.org/
model/5148/.

3 Results

Here, we describe the varieties of network organizations that emerge under the

incentives we describe above, under low and high tie costs and after the shocks that

take a system at equilibrium from one tie cost to the other. Under a wide range

of conditions, much of the network structure facilitated under low costs can be

preserved even after the costs significantly increase—structure that could not arise

de novo under high tie costs. As a quantitative metric, we focus on the average

degree. For most runs, all incentives were identical for each layer of the multiplex,

and so network statistics were effectively identical for each layer. As such, we only

present data for Layer 1 of the multiplex unless otherwise indicated. Our simulations

cover networks of sizes ranging from 20 to 80 nodes; results are shown in main text

are for a 40-node network unless otherwise stated. In the Supplementary information

(SI) appendix, we show that our results are generally similar across these different
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network sizes (see also Figure 2). All data is from 100 simulation runs for each

parameter condition unless otherwise stated.

3.1 Isolated effects

We first examine single-layer networks (for which no spillover is possible) in which

there are additional benefits to closed triangles. For our high cost scenario, we

purposefully chose an extreme case in which triangles would not emerge due to

the prohibitively high costs of maintaining two-stars. However, our main result is

robust, if less stark, for lower tie costs in which triangles do emerge in the high-cost

condition (see Figure 2(B) and (D) and SI appendix).

Under low costs, many triangles form, and the average degree of the network

increases as triangles are incentivized more (Figure 2(A)). This is because closed

triangles scaffold the creation of addition triangles by providing affordances (e.g.,

new two-stars), forming a cascade. Such a cascade does not go on indefinitely, as the

costs of ties can set a practical limit, especially when each new edge must yield an

increase in utility. The HL condition closely tracks the LL condition, because both

conditions result from dynamics under low tie costs.

For values of d below a critical threshold, the LH condition tracks the HH

condition. That is, there is no resilience by structural entrenchment. This is because

the shock in which tie costs increase causes agents to drop ties, and triangles cannot

be maintained. Past the critical threshold (d = 0.8 in our runs), some amount of

resilience occurs. Some edges are dropped following the shock, but the resulting

network is denser than networks that began with high tie costs. This first threshold

occurs when the benefit of a closed triangle can offset the higher tie cost, so that a

node in a closed triangle need not drop any ties. Past a second threshold (d = 1.2

in our runs), when the benefits to closed triangles are high enough, networks in

the LH condition are indistinguishable from networks in the LL condition. See SI

appendix for a derivation of these thresholds and for additional statistics regarding

the dynamics of single-layer networks.

For all subsequent results, we consider a two-layer multiplex. Like incentives for

closed triangles in a single-layer network, incentives for spillover ties can provide a

minimal model of structural entrenchment in a multiplex network, as seen in the

absence of triangle benefits (d = 0). In general, we observe a similar pattern of

resilience for spillover as we did for triangles (Figure 2(C)). Unlike with triangles,

however, the average degree under low tie costs does not continue to increase

with the benefit to spillover ties, but rather plateaus. This is because spillover ties

do not scaffold the creation of additional spillover ties, as closing triangles does.

Nevertheless, our results show that a benefit for spillover ties can facilitate network

resilience by structural entrenchment even in the absence of benefits to clustering.

The network structures that emerge from spillover incentives are quite different

from those that emerge from triangle incentives (see SI appendix). Under low tie

costs, incentives for triangles created several tightly clustered but completely discrete

communities. Incentives for spillover, on the other hand, tended to create fully

connected graphs that exhibit low levels of triadic closure. Additionally, unlike the

case of triangle benefits, these networks are not fully resilient until a much higher

spillover benefit has been reached as compared with the triangle case (e = 2 in our
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Fig. 3. Representative networks (Layer 1 only) under low costs (LL) that emerge

as a result of varying incentives for closed triangles and spillover ties. Unconnected

nodes do occasionally occur but are not represented in these plots. These data are

based on networks of size N = 40; however, similar patterns emerge for networks

of larger size (N = 60, 80). (Color online)

runs; see Figure 2(C)). This is because each tie can only confer one unit of spillover

benefit, whereas a single tie can be part of many triangles. See SI appendix for

derivation of critical thresholds and for additional analyses on the isolated effects

of both triangle and spillover benefits.

3.2 Mixed effects

Our focus here is on cases where structural incentives (for triangle closure and

spillover) can combine to yield a wide variety of networks. In Figure 3, we plot

representative networks that emerge when both closed triangles and spillover ties

are incentivized. The combined incentives produce structures that are quite different

from what we see when each incentive is considered in isolation (see Figures S2

and S4). In particular, these combined incentives give rise to large, tightly clustered

communities connected via a single brokering node, especially when both incentives

are strong.

Although we study a two-layer multiplex, only one layer is presented in these

network diagrams. In all runs presented so far, incentives in each layer are identical,

so statistically both layers are identical. However, this does not capture the ways in

which the two layers are connected to each other. When spillover benefits are strong
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relative to triangle benefits, most or all edges will be spillover ties. Otherwise, about

half of all ties are spillover edges (see Figure 5).

We can again quantify the emergent network structure by using average degree

and resilience. Figure 4(A) shows the average degree at equilibrium for cases in

which no shock occurred. Under high costs, average degree is largely unaffected

by structural incentives. Supporting the visual inspection (see Figure 3), we see

that under low tie costs, the effects are largely additive, yielding quite dense

networks when strong incentives for both closed triangles and spillover ties are

present.

Figure 4(B) shows the resilience for both shock conditions. Our main result

is captured by the LH condition (and applies as well to the isolated effects

cases): structural incentives create resiliency in networks, and allow the retention

of structural complexity after an increase in tie costs. This complexity could not

possibly arise if costs were very high to begin with. As Figure 2(A) documents,

with sufficiently high incentives for triangle closure, the average degree of “shocked”

(low–high and high–low) network matches closely those of the un-shocked (low–low)

networks. We also find that as long as the triangle benefit is high enough, additional

spillover benefits do not influence average degree, though they do influence other

aspects of network structure (Figure 3). For low values of d, stronger incentives

for spillover ties can compensate to create resiliency, and similarly for low values

of e and incentives for closed triangles. Indeed, the effects of these incentives are

additive in the model: resilience under mixed effects occurs whenever the sum of

d + e exceeds a critical threshold (see SI appendix for derivation).

For HL shocks, there is a regime under high structural benefits in which resilience

is actually lower than under smaller benefits (Figure 4(B), bottom row). That is,

when tie costs are initially high, the presence of strong structural incentives prevents

the network from becoming as dense as it would have otherwise been once tie costs

are lowered, compared with the density of comparable network in which initial tie

costs are low. To explain this, observe that, in the regime of e > 0.8, all ties will be

spillover ties (see Figure 5). In the regime of d, e > 0.8, the large structural incentives

mean that any time an agent has the opportunity to add a new tie that either closes

a triangle or completes a spillover at the expense of a current tie that does not

do those things, it will do so. This also means that networks can become highly

clustered across both layers, including the formation of two-layer triangles, even

while tie costs are still high. An illustration of this is given in the SI appendix (see

Figure S8). This in turn means that, for a given node, the opportunities for forming

new ties when costs are lowered will be more constrained, and as such the emergent

network structures may have fewer overall connections than if the network had

been initialized with low tie costs. In contrast, when ties are consistently low, more

two-stars will form by chance before their triangles are closed, leading to higher

overall degree.

For most of the results presented thus far, data from only one layer of the two-

layer multiplex was presented. This is justified because the initialization conditions

and structural incentives are identical for each layer, so they will be statistically

identical in structure. In terms of the overall network structure, the additional

features involving spillover ties are not present. Figure 5 shows the proportion of

all ties that are spillover ties as a function of the structural incentives. This is
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Fig. 4. Mixed effects. (A) Average degree for the LL and HH (no-shock) conditions. (B) Resilience for HL and LH shock conditions. (C)

Resilience for shock conditions in which only Layer 1 experienced a shock, so that tie costs in Layer 2 remained as they were before the

shock. Comparison for resilience is to Layer 1 of the network shown in subfigure (A). (Color online)
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14 P. E. Smaldino et al.

Fig. 5. Heatmaps showing the proportion of all ties that are spillover under all

four shock conditions. These data are averaged from 10 runs for each parameter

condition. (Color online)

calculated by doubling the number of spillover ties and then dividing by the sum

of the total number of ties in each layer. We see that, for low costs, most if not all

edges will be spillover ties whenever spillover benefit is strong relative to triangle

benefit. Otherwise, about half of all ties are spillover edges. In the case of high

tie costs, spillover ties were relatively rare until e > 0.8, which is when the benefit

of a spillover tie became strictly larger than the utility a single, non-spillover tie.

Therefore, a node that could drop its current tie in favor of a new one involving a

spillover edge was suddenly incentivized. See SI appendix for further discussion of

spillover and network structure.

3.3 Mixed effects with shocks in only one layer

In all cases presented so far, we assumed that shocks occurred in both layers of the

multiplex. In some cases, however, changes to structural incentives might occur in

only one layer. However, what happens in one social context can influence social

behaviors in other contexts (Lubell, 2013; Brummitt et al., 2015). To explore this

idea with our model, we ran simulations in which the shock occurred only in one

layer (always Layer 1). In other words, for LH (HL) shocks, both layers began with
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low (high) tie costs. After an initial equilibrium was reached, the cost of ties in Layer

1—but not Layer 2—increased (decreased).

For LH shocks—that is, in cases where tie costs increased—results were largely

unaffected by spillover (Figure 4(C), top row). The un-shocked layer was not different

in its average degree than either layer of the baseline network that received no

shock (Figure 4(A), top row). Therefore, the resilience of the un-shocked layer was

uniformly high regardless of the type of incentives at work. The shocked layer was

similar to the baseline layer that did receive a shock (Figure 4(B), top row).

More interesting is the case of the HL shock, in which tie costs decreased from

high to low (Figure 4(C), bottom row). For low values of e, the benefit to spillover,

each layer resembled the non-shocked network with the corresponding final cost.

When e > 0.8, however, we did observe a spillover effect in which the shocked layer

grew more similar to the un-shocked layer and vice versa, relative to baseline. This

is because under such structural incentives and high tie costs, all ties are spillover

ties (Figure 5). This means that all new edges formed initially after the shock will

exist in one layer only, creating more opportunities to complete the spillover tie

in the corresponding layer. The addition of new non-spillover links in the shocked

layer after the shock creates incentives for some agents to then add a corresponding

tie in the un-shocked layer, once the payoff for doing do outweighs the cost of

adding a new edge. In contrast, there will be no spontaneous edge formation in

the un-shocked layer, and so the amount of new ties in the shocked layer will be

diminished relative to the baseline case in which both layers are shocked.

3.4 Lower costs

To maximize clarity and illustrate stark differences between conditions, we purpose-

fully chose a value for high tie costs (chigh) that would minimize emergent network

structure. In this condition, triangles never form, because forming a triangle requires

closing a two-star, the formation of which is never incentivized with such high costs.

Agents in our model are unable to sacrifice short-term costs for long-term gain. Very

short chains of three nodes do sometimes form under large incentives for spillover

tie, because the cost of one additional tie can be overcome by the added benefit of

the spillover tie it forms. This condition permits a clear contrast with our low-cost

scenario, which does permit the formation of triangles and long chains. As such, we

can show exactly the extent to which structural incentives provide resilience to the

network once tie costs become high after a shock.

That being said, it is important to illustrate that our main effect is robust to

cases where some complex network structures emerge even under high costs. To test

this, we repeated our mixed effects simulations (in which shocks affected both layers

of the multiplex), but with chigh = 0.3. In this case, triangles and chains formed

even under high costs, though the average degree of the network was still lower

than under low costs (still set at clow = 0.2). These results are described in the SI

appendix (see Figure S11). We find that, although the zone of intermediate resiliency

(in which δs is less than one but greater than zero) is much smaller than it is when

chigh = 0.6, there are still clear zones of zero resilience when d and e are small and

total resilience when they are large.
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3.5 Noise

Our main results concerning resilience are entirely a consequence of the stable

nature of structural features like triangles and spillover edges. Our model assumes

that individuals will always act to maximize their utility and will never take an

action that decreases their utility. The path-dependent nature of structural features

induces (sometimes high) levels of resilience in networks undergoing shocks. Under

conditions of deterministic rationality and path-dependence, many social ties can

remain incentivized even when tie costs increase. However, if one starts with an

empty network, it is very much a case of “you can’t get there from here,” to borrow

a favorite New England colloquialism.

This matters, because if noise or poor decision making were to destroy those

incentivized structural features of the network, it is doubtful that they could be

recovered. Under high tie costs, when noise leads to the suboptimal adding or

dropping of ties, it is only the HH equilibria that are truly stable. The equilibria

that result from LH shocks, which we have shown to demonstrate resilience, are

only metastable. An important question then becomes: how susceptible to noise

are those LH equilibria (really pseudoequilibria under noise). This can be posed by

asking how quickly following a shock, in which tie costs increase, does a network

initialized with low costs revert to the state of network initialized with high costs.

We find that, for a noise rate ν, the number of rounds required for this to occur was

approximately 1/ν (see SI appendix and Figure S8). This is reassuring. If decisions

are often made randomly or deviate significantly from optimality, path dependence

will not matter a great deal to network formation. However, as long as levels of

noise are reasonably low, path dependency appears to have a substantial effect on

network resilience. Specifically, with low levels of noise, it takes a network a long

time to lose its pre-shock structural features.

4 Discussion

We see that quite interesting and varied networks can form under combined

incentives for social ties, triangles, and spillover ties. More importantly, we have

shown that when there exist sufficiently high incentives for closed triangles, spillover,

or both, networks can be quite resilient to shocks due to structural entrenchment.

Our results indicate how network structures can emerge and respond differently to

local incentives for the formation and dissolution of social ties at different points in

the network formation process. Moreover, the existence of spillover effects between

layers of multiplex networks shows that historical events in one layer can change

the structure of other layers. Our investigation, therefore, has broad implications for

understanding the formation and evolution of complex social networks in many real

world contexts. In particular, it highlights processes that induce dramatic changes

in individual incentives, as well as processes that involve spillover between different

social contexts.

Further extensions of our model may be useful for understanding a wider range of

behaviors on multiplex networks in relation to shocks and resilience. For example,

the addition of node-level heterogeneity would allow for the inclusion of homophilic

or parochial behavior. Heterogeneity could also be applied to incentives, allowing
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different subsets of the population or different social contexts (corresponding to

different layers of the multiplex) to vary in systematic and realistic ways. We

assumed in the present analysis that all nodes in a layer experienced shocks at

the same time. Exploring the implications of shocks affecting only a subset of

nodes will be important for understanding how local events can propagate influence

throughout a multiplex. In addition, we have only analyzed relatively small networks

of 80 nodes or less. Although our analysis indicates that our results are likely to

hold for networks within an order of magnitude or more in size, exploration of the

dynamics of substantially larger networks may be useful to test of the boundaries

of our findings.

Most real world systems are quite a bit more complex than the system expressed

in our model. However, understanding the nature of resilience through structural

entrenchment, as well as the influence of spillover in multiplex networks, may help

guide both the analysis and collection of social network data in a wide variety

of domains, from international relations to internet applications to the study of

social ties across range of human cultures. Moreover, one can always add more

complexity to a model in the name of increased realism. However, simple models

such as ours, which are easier to understand and analyze, can nevertheless yield

important insights of their own, and also provide a baseline from which to perform

richer explorations (Wimsatt, 1987). In this case, such parsimony allowed for the

discovery and exploration of a novel network phenomenon.
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I. EXPLORATION OF ISOLATED EFFECTS

A. Isolated e↵ects: Triangle benefits only

We first examine single-layer networks (for which no
spillover is possible) in which there are additional bene-
fits to closed triangles. Network statistics are presented
in Fig. 1. Under low costs, many triangles form, and the
average degree of the network increases as triangles are
incentivized more (Fig. 1A). This is because closed trian-
gles sca↵old the creation of addition triangles by provid-
ing a↵ordances (e.g., new two-stars), forming a cascade.
Such a cascade does not go on indefinitely, however. The
costs of ties can set a practical limit, especially when
each new edge must yield an increase in utility. The HL
condition closely tracks the LL condition, because both
conditions result from dynamics under low tie costs.

For values of d below a critical threshold, the LH con-
dition tracks the HH condition. This is because the shock
in which tie costs increase causes agents to drop ties, and
triangles cannot be maintained. Past the critical thresh-
old (d = 0.8 in our runs), some amount of resilience oc-
curs. Some nodes are dropped, but the network is denser
than networks that began with high tie costs. This first
threshold is when the benefit of a closed triangle can
o↵set the higher tie cost, so that a node in a closed tri-
angle need not drop any ties. Past a second threshold
(d = 1.2 in our runs), when the benefits to closed trian-
gles are high enough, networks in the LH condition are
indistinguishable from networks in the LL condition. See
below for a derivation of these thresholds. Examining
the average clustering of the network mirrors this finding
(Fig. 1B). When triangles are incentivized and tie costs
permit their closure, clustering maximizes fairly rapidly.
Fig. 2 illustrates the types of network structures that
emerge under each shock condition and varying benefits
to closed triangles. Examining the average node util-
ity at equilibrium, we also observe that resilience allows
post-shock LH nodes to maintain higher utility even after

⇤
paul.smaldino@gmail.com

costs increase than they would if costs had always been
high.

B. Isolated e↵ects: Spillover benefits only

We next consider a two-layer multiplex (and will do
so for all subsequently presented results). Like incen-
tives for closed triangles in a single-layer network, incen-
tives for spillover ties provide a minimal model of struc-
tural entrenchment in a multiplex network. In general,
we see a similar pattern of resilience for spillover as we
did for triangles (Fig. 3). Unlike with triangles, however,
the average degree under low tie costs does not continue
to increase with the benefit to spillover ties (Fig. 3A).
Rather, it plateaus. This is because spillover ties do not
sca↵old the creation of additional spillover ties, as clos-
ing triangles does. In other words, the existence of a
spillover tie does not provide new opportunities for ad-
ditional spillover ties. The critical threshold for some
resilience in the LH condition is the same for spillover as
for triangles, which is unsurprising when the benefit of
a spillover tie can prevent a node from needing to drop
a tie due to increased costs. Unlike with triangles, the
network is not fully resilient until a much higher spillover
benefit has been reached as compared with the triangle
case (e = 2 in our runs). This is because each tie can only
confer one unit of spillover benefit, whereas a single tie
can be part of many triangles. See below for derivation
of critical thresholds.

Past the first critical threshold, the average degree of
the HL condition is slightly lower than for the LL condi-
tion. This is because all ties will be spillover ties under
high costs and large e. This ends up making it more dif-
ficult for some nodes to find partners who would accept
their o↵er to form a tie. The reason is that fewer would-
be partners stand to increase their utility from adding a
tie. Interestingly, the average utility received by a node
at equilibrium in the LH condition is not any higher than
that of a node in the HH condition. That is, nodes who
end up in a high-cost environment experience no benefits
nor costs, in the short run, on the basis of whether tie
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FIG. 1. Isolated e↵ects: triangle benefits only (e = 0). (A–C) Average results for each of four shock conditions on a 40-node
network. (A) Average node degree ± SD, (B) Average node clustering ± SD, (C) Average node utility at equilibrium ± SE,
(D) Average resilience for LH condition, showing insensitivity to network size.

costs were initially high or low. This contrasts the case
where we examine variations in triangle benefits. The
di↵erence is due to the fact that the benefit of additional
spillover ties is compensated by the higher costs of more
ties.

The network structures that emerge from spillover in-
centives are quite di↵erent from those that emerge from
triangle incentives (Fig. 4). Under low tie costs, incen-
tives for triangles created several tightly clustered but
completely discrete communities. Incentives for spillover,
on the other hand, tends to create fully connected graphs
that exhibit low levels of triadic closure (Fig. 3B). This
structure is not fully recovered in the LH shock condition.
Rather, an intermediate structure emerges composed of
several isolated chains or circles.

II. EXPLANATION OF TRANSITION POINTS

A. When resilience begins.

Here we derive conditions for when, on average, kLH >
kHH . We consider only the isolated e↵ects conditions for
clarity. In addition, we focus on a minimal type of re-
silience observed in our simulations: when two or more
edges are not possible under high tie costs but are present
following a shock to high costs from initially low tie costs.

Di↵erent types of resilience for di↵erent degree thresholds
are also possible, as shown in later sections of this Ap-
pendix.

First, let us condition only triangle benefits (e = 0) un-
der a single-layer network. Figure 5 indicates the thresh-
old parameter values for additional ties. We see that
under low tie costs, there is always the incentive to have
at least two social ties, while under high costs, only one
tie is incentivized. Under low tie costs, the utility for
two and three ties is identical, and so adding a third tie
only occurs if d > 0, which is what we observed (main
text, Fig. 2). When tie costs increase from low to high,
we see that the triangle benefits must be quite high to
maintain three ties, unless the individual node already
has three triangles. Thus, there is often a reduction from
four or three ties to two. However, two ties can be stable
as long as d � 0.8 and the agent is in a closed trian-
gle, because only when it is below this threshold is there
a strict increase in agent utility from dropping an edge.
More generally, this minimal level of resilience between
two and one network ties will be seen when the following
two conditions are met: (1) a second edge will never be
added de novo under high tie costs but will always be
favored under low tie costs, and (2) the benefit to trian-
gles ensures that, if a closed triangle exists, dropping an
edge, and hence losing the triangle, will not be favored
under either ties cost level.
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LH, d = 0, e = 0
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LH, d = 0.2, e = 0 LH, d = 1.0, e = 0 LH, d = 1.6, e = 0

HL, d = 0.2, e = 0 HL, d = 1.0, e = 0 HL, d = 1.6, e = 0

HH, d = 0.2, e = 0 HH, d = 1.0, e = 0 HH, d = 1.6, e = 0

FIG. 2. Isolated e↵ects: triangle benefits only (e = 0). Representative single-layer networks that emerge as a result of varying
incentives for closed triangles, d. Unconnected nodes do occasionally occur but are not represented in these plots.

Condition 1 is met when

1 � clow < 2 � 4clow,

or when clow < 1/3, and, correspondingly, chigh � 1/3.
Condition 2 is met when

d � 3chigh � 1.

Under the value we used, chigh, the threshold value of d is
0.8, which is exactly what we observed in our simulations.

The logic of this analysis is easily extended to the case
of spillover benefits only (d = 0, e > 0), although there
are are a greater number of relevant ego networks, mak-
ing the transition diagram quite complicated. See Figure
6. The presence of a spillover benefit for either of a node’s
ties allows a second tie to be maintained after a shock
from low to high tie costs. This logic also explains the
diagonal threshold line seen in Figure 4B (main text) in
the LH shock condition. The resiliency e↵ects of triangle
and spillover benefits are additive, such that if an agent

possesses both a spillover edge and a closed triangle, it
is resilient to shocks as long as the total d + e is greater
than the threshold, which in this case is 0.8.

B. When resilience is perfect.

When does kLH = kLL? In our simulations, we observe
that, when triangle or spillover benefits are su�ciently
large, resilience is perfect, and the average degree of the
network does not diminish when a network formed under
low tie costs experiences a sudden increase to tie costs.
What this means is that the incentives are such that a
stable state reached under low tie costs will not become
unstable when tie costs are suddenly made high.

This is most easily illustrated by considering the case
of spillover benefits only (d = 0; see Figure 6). Under
low tie costs, nodes will often reach degree 4 (Note that
this is the average degree for Layer 1 only. When the
layers have the same incentives, network statistics are
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FIG. 3. Isolated e↵ects: spillover benefits only (d = 0). (A–C) Average results for each of four shock conditions on a 40-node
network. (A) Average node degree pm SD, (B) Average node clustering ± SD, (C) Average node utility at equilibrium ± SE,
(D) Average resilience for LH condition, showing insensitivity to network size. All but (C) are from Layer 1 only.

the same for both layers.). However, such a high degree
is unstable unless all edges are spillover edges. And be-
cause it is not always possible to increase the degree of
a node and increase the number of spillover edges simul-
taneously, degree 3 (and even degree 2) is the common
and stable network state for low tie costs (see main text
Figures 4 and 5). Although degree 3 is stable under low
tie costs, it is unstable after post-shock high tie costs
unless e � 2.0, which is the threshold point for perfect
resilience. If e is less than this, a node’s degree will de-
crease to k = 2 if e � 0.8 (partial resilience), and k = 1
otherwise (no resilience). This argument can be extended
for all shock-related network dynamics for any incentive
parameter values.

C. When complete spillover occurs in HH
condition.

Under constant high tie costs (HH condition), there is
a threshold value of the spillover benefit, e, above which
all ties are spillover ties (see Figure 8 in the main text).
For our simulations, this value is e > 0.8. Such a state
occurs when the cost of adding a new tie that completes a
spillover edge is favored, but subsequently dropping any
non-spillover ties is also favored. This is illustrated in
Figure 7.

III. PROBABILITY OF SPILLOVER PAIRS
FROM RANDOM PAIRING

Earlier in this Appendix, we calculated the threshold
transition parameter for when all ties will be spillover
ties. Before that, our simulations indicate that a smaller
number ties are spillover ties, except with e = 0, for
which spillover ties are rare. In such a case, spillover
ties are rare due to the fact that they will only occur
by chance, and the number occurring may be less than
expected in a purely random model due to high numbers
of isolated clusters that form when only triangle benefits
are present. In other cases, spillover ties follow a pattern
in which they are weakly incentivized, and therefore the
proportion corresponds to numbers higher than should
be expected by chance. What is this number?

We can calculate this for the special case in which each
node has degree of 1, which occurs under high tie costs.
Under random pairing, each node chooses the name node
as its neighbor in each layer with probability 1/(N � 1),
and this is equal to the expected proportion of edges
that will co-occur in both layers, i.e., the proportion of
spillover edges. For a 40-node network, as was used in
most simulations presented in the main text, this approx-
imately equal to 0.026.
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e =  0 e =  0.2 e =  1.0 e =  1.6
LL, d = 0, e = 0
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HH, d = 0, e = 0.2 LL, d = 0, e = 1.0 LL, d = 0, e = 1.6

HL, d = 0, e = 0.2 HL, d = 0, e = 1.0 HL, d = 0, e = 1.6

HH, d = 0, e = 0.2 HH, d = 0, e = 1.0 HH, d = 0, e = 1.6

FIG. 4. Isolated e↵ects: spillover benefits only (d = 0). Representative networks (Layer 1 only) that emerge as a result of
varying incentives for spillover ties, e. Unconnected nodes do occasionally occur but are not represented in these plots.

IV. EXPLANATION OF FIG. 4B IN THE MAIN
TEXT

Figure 4B, bottom row, in the main text shows a
curious result: the resilience of under HL shocks is
lower when structural benefits are significantly high—
specifically when d, e > 0.8. To explain this we note that
under such high structural incentives, many nodes will
form triangles even under high tie costs. Thus, when tie
costs are lowered, there are fewer new connections that
will be incentivized. Figure 8 provides an illustration of
how this can occur.

V. SUPPLEMENTAL SIMULATION RESULTS

A. Sensitivity to noise

When network dynamics exhibit resilience, post-shock
equilibria are metastable in LH conditions, befitting the

path-dependent nature of the equilibria (i.e., the net-
work states cannot be obtained from an empty network).
As such, random events—adding or dropping edges at
random—will eventually eliminate resilience, causing the
system to settle into a state resembling those obtained
under high initial tie costs. The key word here is eventu-
ally. To investigate the time scale of these dynamics, we
ran simulations in which adds and drops occurred with
probability ⌫ (see details in main text). We found that
after shocks from low to high tie costs, the system moved
from the metastable (LH) higher-degree state to the sta-
ble (HH) low-degree state at a timescale that was approx-
imately t ⇠ 1/⌫. This was confirmed for ⌫ 2 [10�4, 10�1].
Our results therefore hold as long as most events are
strictly utility-increasing, relative to the characteristic
timescale of dynamics.
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FIG. 5. Individual utilities for triangle benefits only (e = 0), for di↵erent number of ties and triangles (�), and utility-increasing
state transitions under LH shock conditions. Precise values are given for low tie costs, clow, and high tie costs, chigh, in blue and
red, respectively. Blue arrows indicate when adding (or dropping) an edge would result in a utility increase under low tie costs.
Red arrows indicate where dropping an edge would be incentivized under a post-shock tie-cost increase. Solid lines indicate a
move that is always favored (sometimes only when d > 0), dashed lines indicate moves dependent on the triangle benefit, d.
For the transition between 3 and 4 ties, only a subset of transition lines are shown for clarity. The remaining transitions can
be easily calculated with the values shown.

B. Sensitivity to population size

Our results were very robust to changes in population
size. This is largely because the numerical values of indi-
vidual incentives operated on the tie capacity of nodes,
independent of the size of the network. Larger network
created few shortages for social ties, and the so the aver-
age degree of agents tended to be slightly higher in larger
networks than in smaller networks, but this a↵ect was
minimal (Figure 10). Average clustering was similarly
robust (Figure 11). For triangle benefits only, clustering
was slightly higher in very small networks, due to more
triangles forming through random chance as a result of
the small population. The same was true for the spillover
benefits only case. In this case, incentives tended to push
the network away from clustering. When network size
was very small, some additional clustering happened as

a result of change connections. This e↵ect disappeared
for larger networks.

C. Sensitivity to tie costs

The results shown in the main text used parame-
ters chosen for maximal clarity. For example, when tie
costs were always high (HH condition), the equilibrium
degree was exactly one. However, the broader prin-
ciple of our results—namely, resilience from structural
entrenchment—should hold for a wide range of parame-
ters. To demonstrate this, we rand simulations for which
the “high” cost of social ties was su�ciently low to gen-
erate higher degree networks, and thus the possibility
of triangles. Figure 12 illustrates that, although the re-
silience e↵ects are less stark, there are similar patterns
of resilience as seen with more extreme tie cost values.
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FIG. 6. All 34 possible ego networks (centered on the grey node) and corresponding utilities for spillover benefits only (d = 0).
Ties in layer 1 are indicated by solid blue lines, ties in layer 2 are indicated by dashed red lines. Utility values are given for
low tie costs (uL) and high tie costs (uH), based on the values for clow and chigh used in the main text. A transition diagram
for these networks under each cost and shock condition (LH, HL), similar to that shown in Figure 5, can be derived from these
states and corresponding utilities, though it will be considerably more complicated.
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FIG. 7. The dynamics of spillover under high tie costs. Consider an agent A who has a tie with agent C in layer 1 and a tie
with agent B in layer 2 (top row).The agent can add a tie in one of the two layers to complete a spillover edge; in this case
with agent B in layer 1 (middle row). Such a move is favored if the utility gained from the new spillover tie is great enough
to compensate the added costs of the second tie in layer 1; in our case, this occurs when e > 0.8. Once this new tie is formed,
it is then always beneficial to agent A to drop its previously held tie with agent C in layer 1 (bottom row). Thus, under
high tie costs, we observe a threshold value of e above which the average degree does not change (it remains k = 1), but for
which the proportion of spillover edges increases to unity. Below this threshold, there are still more spillover ties than expected
from random assortment, due to limited incentives to form spillover ties. Utilities calculated assume our simulation value of
chigh = 0.6.
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FIG. 8. (A) Eight distinct ego networks (for the grey node) under high tie costs (chigh = 0.6), with utilities indicated. Edges
can exist both in layer 1 (blue) and layer 2 (red) of the multiplex. (B) Transitions between the states indicated in subfigure
A. Black arrows indicate transitions that are always favored. Blue arrows indicate transitions that are sometimes favored; the
required condition for each transition is shown in blue text. The grey dashed arrow between state 6 and state 7 indicates that
the presence of state 6 centered on an adjacent node is required for ego to transition from state 3 to state 7. The red dashed
line indicates that this transition is never favored under the indicated cost condition.
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FIG. 9. Sensitivity to noise. Temporal dynamics of representative simulation runs. Under initially low tie costs, average degree
increases to a dynamic equilibrium of about 3 or 4. A shock to high tie costs occurs at t = 40, after which we see a decrease
in average degree. In the absence of noise, this stabilizes to an average degree of just under 2. The more noise is present, the
more quickly the system goes from the metastable LH condition (black line) to the stable HH condition (grey line).
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FIG. 10. Sensitivity to network size: average degree.
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FIG. 11. Sensitivity to network size: average clustering.
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FIG. 12. Average degree for all four shock conditions when chigh = 0.3 and clow = 0.2.




