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Abstract 

Causal systems often include mutually exclusive events: events 
which cannot occur simultaneously. However, when events in 
a causal system are exclusive, the normative properties of the 
whole system change substantially. Are adults sensitive to the 
consequences of exclusivity for causal reasoning? Here, we 
systematically manipulated common-effect causal systems to 
have either exclusive or non-exclusive causes while holding all 
other factors constant. Adults showed a rich understanding of 
exclusive systems in making both predictive (Experiment 1) 
and diagnostic (Experiments 2 and 3) causal inferences. 
Adults’ success in these tasks suggests that exclusivity is an 
important dimension in human causal reasoning.  

Keywords: exclusivity; independence; causal reasoning; 
predictive; diagnostic 

Introduction 

Many real-world events exclude the occurrence of others. If 

it is raining outside, it cannot also be clear, or snowing. If an 

ion is negatively charged, it cannot also be neutral, or 

positively charged. Indeed, the world is replete with such 

mutually exclusive events, and they appear in most complex 

causal systems, impacting everything from our everyday 

planning to our scientific theories.  

The exclusivity of events also has consequences for the 

causal properties of the system to which they belong. 

Exclusivity, by definition, licenses the inference from the 

presence of one event to the absence of the other (e.g., if it is 

raining, then it is not sunny). However, exclusivity also 

informs inferences about causally related events. For 

instance, both rain and sun cause pedestrians to carry 

umbrellas (to keep dry or shaded, respectively). In this causal 

system, two exclusive causes bring about a common effect.  

In such a system, exclusive causes are subject to different 

normative rules than non-exclusive, independent causes1. If 

the causal parameters of a system (i.e., causal powers and 

base-rates) are held constant, exclusive generative causes will 

                                                           
1 Throughout the paper, we contrast exclusivity with non-

exclusivity. However, our non-exclusive systems always feature 

independent causes. Independent causes are, by definition, non-

exclusive, but it is worth noting that non-exclusive causes need not 

yield greater effect likelihoods than non-exclusive generative 

causes (see Equations 1 vs. 2). Different calculations are also 

required when reasoning from effects to causes. For non-

exclusive causal systems, the presence of an effect will 

always enhance the causes’ likelihood. The same is not true 

for exclusive causes (see Equations 3 vs 4). Instead, the 

presence of an effect will reduce the likelihood of any weaker 

cause’s occurrence. In principle, then, exclusivity plays a 

critical role in causal reasoning. 

Despite this clear theoretical distinction between exclusive 

and non-exclusive causal systems, the latter has received 

substantially less attention. Much of the research on multi-

cause causal systems has focused on independent causes: that 

is, causes that are appropriately modeled as i.i.d. random 

variables (for a review, see Rottman & Hastie, 2014). Indeed, 

causal independence has become a common assumption in 

models of causal reasoning (e.g., Cheng, 1997; Glymour, 

2001; Griffiths & Tenenbaum, 2005).  

However, recent work has challenged this assumption in 

certain circumstances, specifically for modeling mutually 

exclusive causal events. Fenton et al. (2016) reviewed a range 

of different approaches to modeling exclusivity in causal 

Bayes nets, finding that each has substantial weaknesses. 

Most approaches struggle either to guarantee that the events 

cannot co-occur or to maintain each event’s prior probability. 

To address these issues, Fenton et al. instead proposed a 

novel solution, featuring a constraint and auxiliary node. 

Their solution has been successfully applied to several legal 

scenarios (Fenton, Neal, & Lagnado, 2013; Vlek et al., 2016). 

It is an open question, however, to what extent mutual 

exclusivity plays a role in human causal reasoning. Recently, 

Meder and Mayrhofer (2017) demonstrated that people 

reason accurately about exclusivity in the context of disease 

diagnosis. However, most studies relating to exclusivity have 

focused on the use of categories in causal reasoning. For 

instance, Waldmann & Hagmayer (2006) demonstrated that 

adults use existing exclusive categories to structure learning 

be independent. Some non-exclusive causes still share some degree 

of dependence (e.g., age and income). Thus, while we adopt the 

terms “exclusive” and “non-exclusive” for clarity, our work truly 

contrasts exclusive causal systems with independent causal systems. 
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of a new causal system—even when doing so results in sub-

optimal causal predictions. However, while research into the 

intersection of categories and causality often employs 

exclusive categories, few studies have directly assessed the 

specific contribution of exclusivity to people’s causal 

reasoning. 

The most promising research on exclusivity comes from 

studies of category-based induction. Inductive inferences are 

often interpreted to be a special case of causal reasoning (e.g., 

Rehder & Hastie, 2001). Early work conducted by Murphy 

and Ross (1994, 1996) suggested that adults struggle to make 

inductive inferences about individuals who might belong to 

any one of several, mutually exclusive categories (e.g., a 

painting that could be either a Monet or a Renoir). Adults’ 

inferences tended to reflect only the most likely category, 

rather than reflecting the consideration of information from 

all possible categories. This finding has been extended to 

include both artificial and natural stimuli across a range of 

paradigms (e.g., Malt, Ross, & Murphy, 1995).  However, 

recent work reveals several situations in which adults do 

consider multiple, exclusive categories. Hayes and Newell 

(2009) found that adults could successfully integrate 

information from exclusive categories to make predictive 

inferences when the cost of neglecting the less likely 

alternative was made clear, e.g., by associating the less likely 

category with greater rewards or more serious negative 

outcomes. In addition, Chen, Ross, and Murphy (2014) 

extended this research into the realm of decision-making, 

asking how uncertain categorization affects binary decisions, 

rather than probabilistic inductive inferences. Here, adults 

proved more willing to consider multiple, exclusive 

categories in their reasoning. Interestingly, however, they did 

so even under conditions of high certainty—when 

consideration of multiple categories was non-normative. This 

suggests their consideration of multiple exclusive causes was 

not grounded in a deep understanding of the causal system 

but rather in a tendency to focus on given alternatives. In 

short, while recent evidence has struck a more optimistic tone 

about adults’ capacity for exclusive category-based 

reasoning, the evidence remains decidedly mixed.  

In the present study, we directly test whether adults reason 

accurately about exclusive causal systems and whether they 

can appropriately distinguish them from non-exclusive causal 

systems. Specifically, we present participants with either 

exclusive or non-exclusive systems in a classic, probabilistic 

causal inference task for two-cause, common-effect systems. 

By holding constant all aspects of the system except for the 

exclusivity of the two causes, we isolate the contribution of 

exclusivity to causal reasoning. In Experiment 1, we ask 

whether adults consider exclusivity in their predictive 

reasoning. In Experiments 2 and 3, we extend this result by 

examining the impact of exclusivity on adults’ diagnostic 

reasoning.  

                                                           
2 Pilot testing indicated that participants had difficulty 

understanding exclusivity when the exclusive causes were 

represented as separate components. Thus, to ensure participants 

Experiment 1 

In this study, participants were introduced to either exclusive 

or non-exclusive common-effect causal systems and asked to 

make predictive inferences about them, reasoning from cause 

to effect.  

 

Method 

 

Participants Forty-five participants from Northwestern 

University participated in this study in exchange for course 

credit. Four participants failed the check question (see below) 

and so were excluded from analysis. 

  

Procedure   Each participant was assigned to either the 

Exclusive (n = 21) or Non-exclusive condition (n = 20). In 

each condition, participants read a description of a novel 

contraption built by Prof. McNutt (Edwards & Rips, 2013). 

Both contraptions represented common-effect systems. For 

example, in the Non-exclusive condition, participants were 

told the device had three components, A, B, and E, each of 

which could be either on or off. Critically, participants were 

also informed that components A and B (the causes) were 

each independently capable of turning on component E (the 

effect). However, at a given time, A and B could both be on, 

both be off, or only one of them could be on (i.e., they were 

independent). In contrast, participants in the Exclusive 

condition were informed that the device had two components, 

A and E, but that A always had either positive or negative 

polarity—but never both.2 Importantly, component A’s 

ability to turn on E varied as a function of its polarity (see 

Figure 1). 

 

 

Figure 1:  Diagram of the non-exclusive (a) and exclusive (b) 

causal systems.  

 

Next, we presented all participants with information about 

the frequency with which each cause turned on (base-rate) 

and the likelihood that they would turn on component E when 

on (causal power). This information was held constant across 

both conditions. The parameters that participants received are 

given Table 1. In the Exclusive condition, for instance, 

participants were told the following:  

 

“Here is how the contraption behaves: 

understood that the causes were exclusive (could not co-occur), we 

adopted the already widely known exclusive distinction between 

positive and negative polarity.    
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- Part A has positive polarity in 65% of the trials. 

- On the trials Part A has positive polarity, it turns on 

Part E in 80% of those trials. 

- Part A has negative polarity in 35% of the trials. 

- On the trials Part A has negative polarity, it turns 

on Part E in 90% of those trials.” 

 

Importantly, this describes an exhaustive exclusive system. 

That is, Part A always has either negative or positive polarity; 

there are no possible alternatives. While it is also possible to 

reason about non-exhaustive, exclusive causes, we focus on 

exhaustive causes here for the sake of simplicity. 

 

Table 1: Experiment 1 Exclusive and Non-exclusive 

System Parameters and Normative Calculations  

 

Cause Base-

Rate 

Causal 

Power 

Exclusive 

Norm 

Non-exclusive 

Norm 

A/Apos .65 .80 
.835 .671 

B/Aneg .35 .90 

 

Participants in the Non-exclusive condition were given the 

same information, except it was attributed to the non-

exclusive components (e.g., “Part A turns on for 65% of the 

trials”, “Part B turns on for 35% of the trials.”, etc.). 

Finally, participants made a predictive inference about the 

system based on the information they had just read. 

Specifically, they were asked, “Imagine McNutt runs 100 

trials on the contraption. Please indicate the number of times 

you believe Part E would turn on.” Participants provided their 

answer using a slider with 0 and 100 as endpoints.  
We compared the accuracy of people’s causal predictions 

with normative values calculated from the given parameters. 

For exclusive systems, the likelihood of E turning on can be 

thought of as the union of two mutually exclusive events in 

probability theory: 

 

(1)  𝑃(𝑒) = 𝑅𝐴_𝑝𝑜𝑠𝑊𝐴_𝑝𝑜𝑠 + 𝑅𝐴_𝑛𝑒𝑔𝑊𝐴_𝑛𝑒𝑔 

where R is the base-rate and W is the causal power of the two 

exclusive causes. The normative likelihood of E is 83.5% 

(.65*.8 + .35*.9 = .835). The formula for non-exclusive, 

independent systems is similar but the intersection of these 

two events (i.e., instances in which both causes turn on E at 

the same time) is subtracted, under a noisy-OR assumption. 

 

(2) 𝑃(𝑒) = 𝑅𝐴𝑊𝐴 + 𝑅𝐵𝑊𝐵 − (𝑅𝐴𝑊𝐴𝑅𝐵𝑊𝐵) 

Thus, the normative likelihood of E turning on in the non-

exclusive system is only 67.1% (.65*.8 + .35*.9 – 

[.65*.8*.35*.9] = .671). If participants are attending to causal 

exclusivity, predictive likelihoods for E in exclusive causal 

systems should be greater than non-exclusive causal systems. 

At the end of the experiment, participants answered a check 

question assessing whether they believed the two causes 

could co-occur or not. Participants who answered incorrectly 

were excluded from analysis. 

Results and Discussion 

Participants’ effect likelihood ratings suggested they did 

consider the causes’ exclusive or non-exclusive status in 

making predictive inferences (see Figure 2). Participants in 

the Exclusive condition (M = 79.5, SD = 5.1) rated the effect 

as more likely to occur than participants in the Non-exclusive 

condition (M = 60.4, SD = 22.1), t(39) = 3.82, p < .001, d = 

1.19. 

Notably, both groups slightly underestimated the 

normative likelihood. While the Non-exclusive condition’s 

mean rating did not differ from the normative estimate of 

67.1% likelihood, t(19) = 1.36, p = .19, d = .30, participants 

in the Exclusive condition gave estimates significantly below 

the normative estimate of 83.5% likelihood, t(20) = 3.12, p = 

.005, d = .68. Importantly, participants’ predictive inferences 

were substantially more variable in the Non-exclusive 

condition, ranging from 16% to 85%, than in the Exclusive 

condition, which ranged only from 66% to 86%. In addition, 

participants may simply have been reluctant to give effect 

likelihoods at near-ceiling levels. 

A more fine-grained analysis of participants’ responses 

suggests that far more participants gave a normatively correct 

response (operationalized as within 2.5 points of the 

normative answer) in the Exclusive condition (12 

participants) than in the Non-exclusive Condition (2 

participants), χ2(1) = 10.12, p = .001. That is, over half the 

participants in the Exclusive condition gave a normative 

answer, compared to only 10% of those in the Non-exclusive 

condition. This is likely because calculating the normative 

answer for the non-exclusive system requires an additional 

mathematical step (subtracting the causes’ intersection). 

Nevertheless, this disparity emphasizes the facility with 

which adults reason about exclusive causal systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Predictive inference scores from Experiment 1. 

Error bars show +/- 1 SE. 

 

Experiment 2 

While Experiment 1 suggests that adults do consider causal 

exclusivity when reasoning predictively, it remains an open 

question whether adults do so when reasoning diagnostically 
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as well. Diagnostic reasoning is a common form of causal 

inference, in which we reason from the presence of an effect 

to the presence of one of its causes. For instance, we might 

make inferences about diseases based on symptoms, or the 

temperature based on people’s attire. 

The calculations for normative diagnostic inferences, like 

predictive inferences, differ for exclusive and non-exclusive, 

independent causal systems. Both formulas use Bayes’ rule, 

but the exclusive system does not consider situations in which 

both causes occur. This is reflected in the denominator of (3). 

 

(3) 𝑃(𝐴𝑝𝑜𝑠|𝑒) = 1 − (1 − 𝑅𝐴_𝑝𝑜𝑠)
𝑊𝐴_𝑛𝑒𝑔

𝑅𝐴_𝑝𝑜𝑠𝑊𝐴_𝑝𝑜𝑠+𝑅𝐴_𝑛𝑒𝑔𝑊𝐴_𝑛𝑒𝑔
 

 

For instance, the presence of an abnormal heart rhythm might 

indicate the presence of either hyperkalemia (excess 

potassium) or hypokalemia (insufficient potassium)—but 

certainly not both. On the other hand, for non-exclusive 

causal systems, the causes might co-occur. For instance, a 

lawn becoming wet might be due to rain, sprinklers, or both. 

Such inferences require a different normative rule: 

 

(4) 𝑃(𝐴|𝑒) = 1 − (1 − 𝑅𝐴)
𝑅𝐵𝑊𝐵

𝑅𝐴𝑊𝐴+𝑅𝐵𝑊𝐵−(𝑅𝐴𝑊𝐴𝑅𝐵𝑊𝐵)
 

 

In Experiment 2, we ask whether adults’ diagnostic 

inferences reflect this normative distinction between 

exclusive and non-exclusive causal systems. 

  

Method 

 

Participants Forty-seven participants from Northwestern 

University participated in this study in exchange for course 

credit. Seven participants failed the check question and so 

were excluded from analysis. 

  

Procedure As in Experiment 1, participants were randomly 

assigned to either the Exclusive (n = 20) or the Non-exclusive 

(n = 20) condition. The descriptions of the contraptions in 

each condition were identical to Experiment 1. However, the 

information about each cause’s base-rate and causal power 

was altered slightly to ensure both causes yielded a 

substantial difference between the normative answers for the 

exclusive and non-exclusive systems (see Table 2). 

 

Table 2: Experiment 2 Exclusive and Non-exclusive 

System Parameters and Normative Values 

 

Cause Base-

Rate 

Causal 

Power 

Exclusive 

Norm 

Non-exclusive 

Norm 

A/Apos .40 .80 .372 .529 

B/Aneg .60 .90 .628 .814 

 

Next, participants made a diagnostic inference for each 

cause. For instance, participants in the Non-exclusive 

condition were asked, “Imagine Prof. McNutt runs the 

contraption until Part E turns on 100 times. Of these 100 trials 

where E turned on, how many times do you believe Part 

[A/B] was on?” Participants again used a slider to record their 

answer. 

For the Non-exclusive condition, the normative answers 

were 52.9% for Part A and 81.4% for Part B. In contrast, the 

normative responses in the Exclusive condition were 37.2% 

(positive polarity) and 62.8% (negative polarity). Thus, the 

normative difference between exclusive and non-exclusive 

responses is similar for the weak (Part A/positive polarity) 

and strong (Part B/negative polarity) causes: 15.7% and 

18.6%, respectively. 

Finally, participants completed the same check question as 

Experiment 1, asking if the two causes could co-occur.  

 

Results and Discussion 

We submitted participants’ diagnostic inferences (see Figure 

3) to a mixed 2 (Exclusive vs. Non-exclusive) x 2 (Weak vs. 

Strong Cause) ANOVA. This analysis revealed a significant 

effect of condition: participants attributed higher diagnostic 

likelihoods to causes in the Non-exclusive condition, F(1,38) 

= 5.21, p = .028, η2
G = .11. As expected, participants also 

showed a main effect of cause, F(1,38) = 247.05, p < .001, 

η2
G = .45. However, there was no interaction between cause 

and condition, F(1,38) = .32, p = .58, η2
G = .001. Indeed, 

planned comparisons revealed a significant effect of 

condition for both the weak cause, t(38) = 2.15, p = .04, d = 

.68, and the strong cause, t(38) = 2.13, p = .04, d = .67. 

These ratings show a strong adherence to normative rules 

(see Table 2). In the Exclusive condition, neither the weak (M 

= 38.7, SD = 3.6) nor the strong (M = 61.7, SD = 4.1) cause’s 

likelihoods differed from the normative response, ps > .05. In 

the Non-exclusive condition, participants’ inferences did not 

differ from normative levels for the weak cause (M = 47.9, 

SD = 18.9), p > .05, but were significantly below normative 

for the strong cause (M = 69.4, SD = 15.5), t(19) = 3.47, p = 

.003, d = .78. Thus, participants showed a largely normative 

pattern of responding, especially in the Exclusive condition. 

 

 

 

 

 

 

 

 

 

 

  

Figure 3: Diagnostic inference scores for both weak  

(A/Apos) and strong (B/Aneg) causes in Experiment 2.  

Error bars show +/- 1 SE. 
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However, the normativity of these averaged responses is 

somewhat deceptive. Only 7 of the 40 participant responses 

(including both causes) in the Exclusive condition fell into a 

normative range (+/- 2.5 points) that excluded the cause’s 

base-rates. Moreover, only 1 of the 40 answers in the Non-

exclusive condition was in the normative range. This 

decrease in normative responding relative to Experiment 1, 

particularly in the Exclusive condition, is likely a result of the 

heightened mathematical difficulty of the diagnostic 

calculation. Participants may have become overwhelmed and 

fallen back on the base-rate as a clear-cut answer.  

While participants’ individual answers may have been 

largely non-normative, their diagnostic inferences 

nevertheless revealed a normative tendency. Participants 

attributed higher diagnostic likelihoods to non-exclusive 

causes than to matched exclusive causes, suggesting adults 

accurately distinguish between exclusive and non-exclusive 

systems in diagnostic reasoning.  

  

Experiment 3 

Normatively, diagnostic reasoning across exclusive and non-

exclusive causal systems differs not just in degree but in kind. 

Experiment 2 suggests that at least on average, adults are 

sensitive to the difference in degree, giving higher diagnostic 

inferences for non-exclusive causes. However, when 

exclusive causal systems are exhaustive, as in Experiments 1 

and 2, they always present a difference in kind as well: the 

diagnostic likelihood of the weakest cause is lower than its 

base-rate. That is, the occurrence of the effect makes it less 

likely that the weakest cause has occurred whereas in non-

exclusive causal systems, the occurrence of the effect will 

always increase the likelihood of its causes. Importantly, 

understanding this rule requires little computation, only an 

understanding of exclusivity and its causal implications.  

Therefore, in Experiment 3, we assess whether adults 

possess an intuitive understanding of the difference between 

these two systems. We employ the same causal systems as in 

Experiment 2, but instead of generating a diagnostic 

inference, participants were asked to compare a cause’s 

diagnostic likelihood with its base-rate. 

 

Method 

 

Participants Forty participants from Northwestern 

University participated in this study in exchange for course 

credit. All participants passed the check question. 

 

Procedure  The procedure was identical to Experiment 2 

with one exception. After learning about the exclusive (n = 

20) or the non-exclusive (n = 20) causal system, participants 

were not asked to provide a diagnostic likelihood. Instead, 

participants were asked whether the diagnostic likelihood 

would be higher or lower than the cause’s base-rate. For 

instance, for the weak cause, the base-rate was 40%. As such, 

participants in the Exclusive condition were asked:   

 

“Imagine Prof. McNutt runs the contraption until Part E 

turns on 100 times. Of these 100 times where Part E turned 

on, which scenario is more likely:  

- Part A turns on more than 40 times 

- Part A turns on less than 40 times” 

 

If adults possess a normative understanding of exclusivity, 

then they should select the “less” option for the weaker 

exclusive cause, and the “more” option for the stronger 

exclusive cause. On the other hand, for the non-exclusive 

causal system, they should select the “more” option for both 

causes. 

 

Results and Discussion 

Responses were analyzed by condition. In the Exclusive 

condition, participants selected the “more” option 

significantly more often for the strong cause than the weak 

cause, McNemar’s χ2(1) = 9.1, p = .003. While 90% of 

participants believed the strong cause would occur at above-

base-rate levels in the presence of the effect, only a minority 

of participants (35%) believed the weak cause would do so.  

In contrast, participants in the Non-exclusive condition did 

not differ in their beliefs about the weak and strong causes, 

McNemar’s χ2(1) = 1.1, p = .29. In particular, 75% of 

participants indicated the strong cause would occur at above-

base-rate levels, and 50% of participants indicated the weak 

cause would do so.  

Notably, this null result is normative: in the non-exclusive 

causal system, both causes should increase in likelihood in 

the presence of an effect. However, it is striking that only half 

of participants endorsed the weaker cause’s enhanced 

diagnostic likelihood. There are two potential explanations 

for this finding. First, the rough split in responses may reflect 

general confusion about the computational steps required to 

make such inferences. Indeed, the greater complexity for 

non-exclusive systems is reflected in (4). Alternatively, some 

people may mistakenly believe that diagnostic inferences for 

non-exclusive causal systems follow the same principles as 

exclusive systems. Findings that show preference for singular 

causal explanations over multivariable explanations 

(Liljeholm & Cheng, 2007; Lombrozo, 2007) may provide 

additional evidence for this explanation. 

Importantly, adults accurately make the seemingly 

unintuitive judgment that only a stronger exclusive cause, not 

a weaker one, is more likely to occur in the presence of its 

effect. This result suggests that adults possess a rich 

understanding of exclusivity in causal systems.  

 

General Discussion 
 

The aim of this paper was to assess whether people are 

capable of distinguishing between exclusive and non-

exclusive causal systems. Across three experiments, we 

examined patterns in people’s predictive and diagnostic 

causal reasoning, looking at both their fine-tuned causal 

inferences and broad understanding of statistical principle. 

Experiment 1 demonstrated that participants distinguished 
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between the two systems when reasoning predictively, 

providing greater likelihoods for effects in exclusive causal 

systems. In addition, Experiments 2 and 3 demonstrated that 

people’s diagnostic inferences were also sensitive to the 

causal implications of exclusive systems. People indicated 

that causes in exclusive systems were less likely to occur than 

those in non-exclusive systems, and most recognized that in 

exclusive systems, weaker causes are actually less likely to 

occur when the effect is present. In sum, adults accurately 

distinguish between exclusive and non-exclusive causal 

systems across a variety of causal reasoning tasks.  

Moreover, our findings suggest adults are at least as 

accurate—if not more accurate—in their reasoning about 

exclusive systems as non-exclusive systems. Variance in 

participants’ inferences is substantially lower across all 

experiments for the exclusive systems, and more individual 

responses fall into the normative range. In Experiment 3, 

participants’ inferences were largely normative for the 

exclusive system but showed signs of confusion for the non-

exclusive system, despite the clear normative answer and the 

fact that no calculation was required. Thus, adults’ causal 

reasoning may be, if anything, more attuned to exclusive 

causal systems than non-exclusive causal systems.  

Notably, exclusive causal systems can pose a challenge for 

computational models of causal reasoning, which typically 

assume causal independence (c.f. Fenton et al., 2016). Our 

findings emphasize the importance of developing new 

modeling strategies for incorporating exclusivity, as well as 

other non-independent causal structures, into causal models.  

More broadly, our results illustrate the need for more 

psychological research on alternative causal structures (c.f., 

Lucas & Griffiths, 2010; Meder, Mayrhofer, & Waldmann, 

2014). Exclusivity is only one of many dimensions which 

adults may use to reason effectively about causal systems. 

Theories of human causal reasoning stand to benefit 

substantially from taking such dimensions into account. We 

believe the findings presented here are a step in that direction.  
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