
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Computational characterization of the role of an attention schema in controlling 
visuospatial attention

Permalink
https://escholarship.org/uc/item/1516x0js

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Piefke, Lotta Marlen
Doerig, Adrien
Kietzmann, Tim
et al.

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1516x0js
https://escholarship.org/uc/item/1516x0js#author
https://escholarship.org
http://www.cdlib.org/


Computational characterization of the role of an attention schema
in controlling visuospatial attention

Lotta Piefke (lotta.piefke@gmx.com)
Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany

Adrien Doerig (adoerig@uos.de)
Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany

Tim Kietzmann (tkietzma@uos.de)
Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany

Sushrut Thorat (sthorat@uos.de)
Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany

Abstract

How does the brain control attention? The Attention Schema
Theory suggests that the brain explicitly models its state of
attention, termed an attention schema, for its control. How-
ever, it remains unclear under which circumstances an atten-
tion schema is computationally useful, and whether it can
emerge in a learning system without hard-wiring. To address
these questions, we trained a reinforcement learning agent with
attention to track and catch a ball in a noisy environment. Cru-
cially, the agent had additional resources that it could freely
use. We asked under which conditions these additional re-
sources develop an attention schema to track attention. We
found that the more uncertain the agent was about the location
of its attentional window, the more it benefited from these ad-
ditional resources, which developed an attention schema. To-
gether, these results indicate that an attention schema emerges
in simple learning systems where attention is important and
difficult to track1.

Keywords: attention; control; consciousness; normative mod-
els; neural networks; computational cognitive systems

Introduction
Attention is a process through which the brain selects,
and preferentially processes, parts of externally-driven
or internally-generated information relevant to its behav-
ior (Hommel et al., 2019). In the visual domain, one type
of attention - spatial attention - is often operationalized as
a spotlight within which stimuli are processed with an en-
hanced signal relative to noise (Posner, 1980; Eriksen &
St. James, 1986). How is the deployment of such atten-
tion controlled? Systems such as the fronto-parietal network
and the superior colliculus are involved in attentional con-
trol (Szczepanski, Konen, & Kastner, 2010; Corbetta & Shul-
man, 2011; Krauzlis, Lovejoy, & Zénon, 2013). However, the
computations underlying attentional control are poorly under-
stood (Petersen & Posner, 2012).

Inspired by model-based control theory (Conant &
Ross Ashby, 1970) and primate motor control stud-
ies (Graziano & Botvinick, 2002; Holmes & Spence, 2004),

1Training/analysis scripts to reproduce our results can be found
at: https://github.com/KietzmannLab/Attention-Schema-Analysis

one account - the Attention Schema Theory (AST) - pro-
poses that the brain controls its attention by building a de-
scriptive and predictive model of attention (termed “attention
schema”) (Graziano & Webb, 2015; Graziano & Kastner,
2011). This theory is supported by human studies showing
that when the model of attention is disrupted, endogenous
control of attention is affected (Webb, Kean, & Graziano,
2016). Normative modeling approaches have provided pre-
liminary evidence that such an “attention schema” aids in at-
tentional control (van den Boogaard, Treur, & Turpijn, 2017;
Wilterson & Graziano, 2021; Liu, Bolotta, Zhu, Bengio, &
Dumas, 2023). To test the usefulness of the schema in atten-
tion control, in Wilterson and Graziano (2021) a reinforce-
ment learning agent was trained to track a ball in a noisy
environment and move a paddle to catch it (see Figure 1a).
They compared agents with or without an attention schema.
This attention schema was hard-wired to explicitly encode the
attentional state, i.e., the spatial location and extent of the at-
tention spotlight. They found that the schema was essential in
learning attentional control. However, it was unclear (a) if the
system required a hard-wired attention schema to track atten-
tion or if it could learn such a schema, and (b) what aspects
of the environment and the agent made the schema essential.

To answer these questions, we conducted experiments in a
setting adapted from Wilterson and Graziano (2021), allow-
ing the agent to access additional resources decoupled from
the input that it could learn to use as it wished. Importantly,
we also decoupled the additional resources from the atten-
tional state. This is a crucial departure from Wilterson and
Graziano (2021), who hard-wired these additional resources
to track the attentional state. We found that the agent au-
tonomously learned to use the additional resources to track
its attentional state better. As the stimulus already provided
some information about the attentional state, the schema did
not need to be a copy of the attentional state but only to pro-
vide further hints about the location of the attentional state.
Relatedly, we found that the usefulness of the schema was
proportional to how poorly the attentional state can be in-
ferred solely from the stimulus, given the noise in the envi-
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ronment. In sum, we characterized when an attention schema
emerges (when it is essential in attentional control) and the
information therein (hints about the attentional state).

Methods
The agent and its environment
We adapted the setup from Wilterson and Graziano (2021).
The environment is schematized in Figure 1a: the starting
(top row) and end (bottom row) column positions of the ball
(which is a black pixel) are randomly chosen. The ball moves
diagonally downwards until its column position aligns with
the end position and then it moves vertically down. At each
timestep, the grid is flooded with random noise - each pixel
has a probability p to be turned black, independently at each
timestep. p was set to 0.5 in the original study. An atten-
tion window is initialized around the ball at the start of the
trial, inside which noise is absent, simulating visuospatial at-
tention (referred to as “attended stimulus”). The objective of
the agent is to move its attention window such that it can keep
track of the ball, and move the paddle at the bottom such that
it can catch that ball. The agent can make use of an additional
resource to keep track of its attentional state.

To assess the emergence of an attention schema, we
consider a simple deviation from the original setting. In
Wilterson and Graziano (2021), the attentional schema was
hard-wired to be a copy of the attentional window. In our
setup, we decoupled the attention window from the additional
resource. We set the additional resource to contain a black
square with the same extent as the attention window while al-
lowing the agent to move the square, as seen in Figure 1b. The
square was initialized at the location of the attention window
at the start of each trial.

The agent is schematized in Figure 1c. Instead of the
Deep Q Network (Mnih et al., 2013) used in Wilterson and
Graziano (2021), we used the more recent Proximal Pol-
icy Optimization (PPO) algorithm (Schulman, Wolski, Dhari-
wal, Radford, & Klimov, 2017). In Wilterson and Graziano
(2021), the agent remembers the past by storing each input
frame in a memory bank, but we removed the memory bank to
reduce computational complexity. PPO is an actor-critic algo-
rithm. Here, the actor-network has four layers, and the critic
network has three layers, with 1000 units per layer. The agent
has to perform three kinds of actions: 1) move the paddle, 2)
move its attention window, and 3) decide what to do with
its additional neural resources. In Wilterson and Graziano
(2021), the attention window has 8 possible actions, as seen
in Figure 1a. As our setup required the introduction of actions
for the additional resources, to make learning easier for the
agent, we restricted the attention window and additional re-
sources action spaces to 3 actions each: down, down-left, and
down-right, as seen in Figure 1b (this makes sense, since the
ball always moves down at every timestep). At each timestep,
if the ball was within the attention window, the agent ac-
crued a 0.5 ball-tracking reward (TR), and if it was not then
a penalty of 0.5 was accrued. If the paddle caught the ball at

the end of the trial, the agent received a ball-catching reward
(CR) of 2, else it received a penalty of 22.

All agents were trained until convergence of TR+CR near
the optimum (max = 6) i.e. the mean reward of the last 200
test epochs was greater than 5.953. For our analysis, each
agent’s behavior was observed over 2000 new trials with ran-
dom start/end positions for the ball and random noise.

Analysis
We assessed whether an attention schema emerges in the ad-
ditional resources. In other words, we tested if the agent
learned to use the additional resource to track the location
of its attention. The additional resource is defined to contain
an attention schema if it contains information about the atten-
tional state, analogous to the definition of a body schema (de
Vignemont, Pitron, & Alsmith, 2021). Additionally, if such
a schema needs to be a copy of the attentional state, we rea-
soned the agent could learn a 1-to-1 mapping between the
location of the square and the attention window.

One agent was trained per noise probability (Figure 3a).
For all the agents and further manipulations (e.g. ablation of
the additional resource), the mean accrued rewards, on the
test set, are reported with 95% bootstrap confidence intervals
of the mean over 10000 samples, sampled with repetition.

To diagnose how much information the agent could contain
about a variable (e.g. the attentional state), we trained net-
works with the same architecture as the actor-network (which
is used by the agent in its behavior) to infer the variable from
the desired input (e.g. solely from the attended stimulus).
In the classification analysis, where inference about the at-
tentional state is made using various inputs, the mean of the
cross-validation (10-fold) accuracies are reported.

Results
Attention schema emerges for attentional control
Wilterson and Graziano (2021) showed that their hard-wired
attention schema was essential in controlling attention and
performing the task. We assessed a) if our agent also re-
lied on its additional resource to perform its task, and b)
if it used the additional resource to track attention. For
noise probability p = 0.5, we observed that our trained
agent accumulated a mean ball-tracking reward (TR) of
3.74[3.70,3.79] (max = 4) and a ball-catching reward (CR) of
1.73[1.68,1.77] (max = 2). When we removed the additional
resource, the mean TR dropped to −0.82[−0.93,−0.70], and
the mean CR dropped to −0.89[−0.97,−0.81]. A better,
i.i.d., control is randomizing the actions of the resource,
as the agent was never trained to work without the addi-
tional resource. Randomizing the actions of the resource
also led to the mean TR dropping to 0.93[0.81,1.05], and

2Preliminary experiments revealed that the task is learnable with-
out the ball tracking reward but it takes much longer to achieve good
performance - after 80k epochs, CR ∼ 1.25

3The number of epochs for the agents trained (in environments
with different noise probabilities) is as follows: 379 (p = 0), 11486
(p = 0.25), 5797 (p = 0.5), 5090 (p = 0.75), 222 (p = 1)
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Figure 1: The agent and its environment. Agents were trained
to track a ball (highlighted here in teal) with an attention win-
dow (highlighted here in red), that removed noise inside it,
and catch it with a paddle (highlighted here in blue). It could
avail of an additional controllable resource to perform its task.
(a) In Wilterson and Graziano (2021), the additional resource
was coupled with the attention window i.e. it was hard-wired
as an attention schema. (b) In our setup, the black square
in the additional resource had its own set of learnable ac-
tions (highlighted here in orange), so we could assess if an
attention schema was essential, if it emerged, and what infor-
mation it carried. (c) The input-output details of the Proxi-
mal Policy Optimization (PPO) agent are shown. The 4-layer
actor-network is depicted.

the mean CR dropping to −0.03[−0.12,0.06]. Furthermore,
training the agent without the additional resource4 led to
a mean TR of −0.39[−0.52,−0.26] and a mean CR of
−0.84[−0.92,−0.76]. These results suggest that the agent re-

4The training did not converge according to our criterion. We
report the performance after training the agent for a similar number
of epochs as the agent trained with the additional resource.

lied on the additional resources to perform the task. Without
the additional resources, the agent could not properly track or
learn to track the ball to catch it.

How did the agent use the attentional resource? The At-
tention Schema Theory suggests an attention schema is es-
sential. Thus, we assessed if this useful additional resource
carried explicit information about the attentional state i.e. is
it an attention schema? We trained a network with the same
architecture as the actor-network to infer the location of the
center (64 locations; 8 rows × 8 columns) of the attention
window from the additional resource, across timesteps and
trials. The attentional state could be inferred given the addi-
tional resource (Test accuracy: 61%, chance: 1.6%, random-
ized actions: 40%). We also assessed if this inference was
solely driven by the row correspondence between the atten-
tion window and the black square in the additional resource,
as they both move down one pixel per timestep. The column
of the attentional state could also be inferred given the addi-
tional resource (Test accuracy: 60%, chance: 12.5%, random-
ized actions: 40%). This result suggests that, in learning to
use its additional resources for performing its task, the agent
acquired an attention schema.

Is this schema actually useful in allowing the agent to infer
its attentional state - does it provide more information about
the attentional state than the attended stimulus does? To an-
swer these questions, we trained a network with the same ar-
chitecture as the actor-network to infer the location of the cen-
ter of the attention window from either the attended stimulus
alone or the full input (the attended stimulus and the addi-
tional resource), across timesteps and trials. The attentional
state could be inferred better with the inclusion of the addi-
tional resource (stimulus - 60%, stimulus + resource - 81%,
chance - 1.6%). Thus, the agent can improve knowledge of
its attentional state by using the attention schema in the addi-
tional resource.

Given that the additional resource resembles an attentional
schema, we asked whether the learned attention schema con-
tains an explicit copy of the attentional state, similar to the
hard-wiring by Wilterson and Graziano (2021). Visualiz-
ing the agent’s behavior (Figure 2a) indicated that the black
square in the additional resource did not move exactly like
the attention window did, i.e., the attention schema was not
an exact copy of the attention location. To quantify this obser-
vation, we assessed whether the attention schema had a 1-to-
1 correspondence with the location of the attention window.
As the rows would always correspond since both the atten-
tion window and the black square move down one pixel per
timestep, we focused on the columns. In Figure 2b, we plot
the relative frequency of observing the centers of the black
square in the additional resource and the attention window
across columns, across timesteps and trials. We did not ob-
serve a 1-to-1 correspondence. This dovetails with our find-
ing that although the attentional state can be inferred from
the additional resources, the inference is not perfect. In sum,
the emergent attention schema does not have a 1-to-1 corre-
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spondence with the attentional state. Instead, it contains in-
formation that can provide hints to the agent to improve the
attentional state inference.

Given that the additional resource contained a schema that
did not perfectly signal information about the attentional state
we asked whether this was the case due to the agent’s per-
formance being worse than if the schema was hard-wired.
An agent for which the additional resource contained a hard-
wired attention schema, as in Wilterson and Graziano (2021),
was trained. It accumulated a mean ball-tracking reward
(TR) of 3.73[3.68,3.78] and a ball-catching reward (CR) of
1.77[1.726,1.808], which was not significantly higher than
our agent (TR: 3.74[3.70,3.79], CR: 1.73[1.68,1.77]). These
results suggest that an explicit copy of the attentional state is
not essential for attentional control - hints can suffice.

(a)

(b)

Figure 2: Characterizing the emergent attention schema. (a)
An example trial of the trained agent. The square in the addi-
tional resource does not precisely track the attention window
(highlighted here as the light grey box) that contains the ball
(highlighted here as the black pixel), although it is essential
for directing the attention window. (b) There is no 1-to-1 cor-
respondence between the column of the black square of the
additional resource and the attention window. Instead, the
additional resource only provides hints about the location of
the attention window.

Attention schema is useful when the attentional
state cannot be inferred from the stimulus

In the previous section, we saw that the attention schema was
essential in attentional control when the environment had a
noise probability of 0.5. We now assess whether the useful-
ness of the attention schema is dependent on the noise in the
environment. To quantify the usefulness of the schema, we
monitor the ball-tracking reward (TR) and the catching re-
ward (CR). Usefulness is measured as the reward deficit cre-
ated when the learned actions for the additional resource are
randomized: if the randomization reduces TR and CR, then
the schema is useful. We assessed the accrued rewards as a
function of the noise probability in the environment, where
the agent was trained, and whether the learned additional re-
source actions were left intact or randomized. As seen in Fig-
ure 3b-c, the usefulness of the attention schema was maximal
for 0.5 noise probability. The deficit in TR and CR caused
by randomizing the additional resource actions (quantifying
the usefulness of the schema) is reduced with lower or higher
noise probabilities.

To understand why the usefulness of the schema was max-
imal for intermediate noise probabilities, we asked if the use-
fulness was related to how easy the attentional state inference
was solely given the noise probability in the environment. For
example, when p = 1, the entire environment is filled with
black pixels (see Figure 3a), except the attention window,
which makes the attentional state inference trivial, and pos-
sibly reduces the need for an attention schema. We trained
a network with the same architecture as the actor-network to
predict the column position of the attention window from the
stimulus alone (no additional resource provided as input), or
to predict the same given the stimulus and the additional re-
source. We focussed on the column position as the row posi-
tion always increases by 1 with each timestep for both the ad-
ditional resource and the attention window, which would pos-
itively bias the inference. The difficulty of attentional state
inference is measured as the deficit created by omitting the
additional resource. We assessed how the difficulty of atten-
tional state inference varied with noise. As seen in Figure 3d,
the difficulty was maximal for a noise probability of 0.25 and
decreased for higher or lower noise. Qualitatively compar-
ing Figure 3d with Figure 3b-c suggested that the deficit in
attentional state inference due to the absence of the attention
schema co-varied with the usefulness of the attention schema,
across noise probabilities.

Next, we tested whether the agent developed a better at-
tention schema when it was useful in performing the task.
We trained a network with the same architecture as the actor-
network to predict the column position of the center of the
attention window from the additional resource alone (with
the learned actions or randomized actions). We assessed how
the inference of attentional state varied with noise. First, as
seen in Figure 3e, the information about the attention window
was higher given the learned additional resource actions than
given the randomized actions. This implied that the corre-
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(a)

(b) (c)

(d) (e)

Figure 3: Usefulness of the attentional schema as a function of the noise probability. (a) Examples of the environment con-
taining varying noise probabilities are shown. With the additional resource, the agent can acquire (b) near-perfect attention
tracking (max. reward = 4) and (c) near-perfect ball tracking (max. reward = 2). When the actions of the additional resource
are randomized, the agent suffers the most in intermediate noise probabilities i.e. the additional resource is most useful in
environments with intermediate noise probabilities. (d) Under intermediate noise probabilities, the additional resource adds the
most information to the stimulus in inferring the attentional state, as shown by the difference in the accuracies in classifying
the position of the attention window given the stimulus alone or the stimulus and the additional resource. (e) Under intermedi-
ate noise probabilities, the additional resource also provides the most information about the attentional state, as shown by the
accuracies in classifying the position of the attention window given the additional resource alone.
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spondence between the additional resource and the attentional
state was higher due to an emergent schema. Second, the in-
ference was best for a noise probability of 0.5 and decreased
slightly for higher or lower noise probabilities. Qualitatively,
this suggests that the increase in correspondence between the
additional resource and the attentional state is higher for noise
probabilities where the additional resource is also useful (in-
termediate noise probabilities). In other words, the schema
seems to contain better information about the attentional state
when the schema is more useful for the task. However, it
is interesting to note that the attentional state could be in-
ferred better from the learned additional resource even when
the noise probability was 1, while randomization of the ad-
ditional resource actions did not substantially reduce the per-
formance of the agent. This indicates the additional resource
acquires an attention schema even if it is marginally essential.

Together, our results suggest that an attention schema nat-
urally emerges and aids attentional control in cases where the
attentional state cannot be inferred solely from the attended
stimulus due to noise.

Discussion
Previous work (Wilterson & Graziano, 2021) showed that
agents controlling visuospatial attention to track and catch a
ball in noisy environments require an attention schema. In
this study, we replicated and extended these findings with a
modified agent. We find that an attention schema does not
need to be hard-wired. It can emerge through learning, given
additional resources. Moreover, it does not need to be a copy
of the attentional state but only to provide hints that improve
attentional state inference. We also found that the attention
schema is more useful when the inference of the attentional
state solely from the attended stimulus is harder.

The primary deviation from Wilterson and Graziano (2021)
in the current study was the decoupling of the additional
resource actions from the attention window actions. After
training on the tracking and catching task in a noisy envi-
ronment, the additional resource contained information about
the attentional state i.e. an attention schema existed in the
additional resource. One limitation is that we still applied
several constraints to the additional resource that the agent
used to learn the attention schema (namely, the additional re-
source still contained a single 3x3 square, and only 3 actions
were allowed to move it). Future research will endow the
agent with an unstructured resource to check whether an at-
tention schema emerges in this unconstrained computational
resource, too.

The usefulness of the attention schema in attentional con-
trol was found to be higher when the environment contained
intermediate noise probabilities. In such cases, the attentional
state could not be inferred well solely from the input, which
made the hints provided by the schema essential. The abil-
ity of the agent to infer the attentional state from the input
might improve with larger networks, or if the agent has access
to an explicit memory, as it did in Wilterson and Graziano

(2021) (alternatively, such a memory might also emerge in an
actor-network if the network is recurrent, allowing for the in-
tegration of information across time). Such dependence of the
usefulness of the attention schema on factors such as network
size and memory should be studied to further characterize the
need for an attention schema.

In the current setting and in Wilterson and Graziano
(2021), the noise outside the attention window is not affected
by the attention mechanism. However, in the brain, visuospa-
tial attention leads to suppression of activity outside the atten-
tional spotlight (Posner, 1980; Desimone & Duncan, 1995).
If such a mechanism is implemented in the current environ-
ment, potentially the inference of the attentional state given
solely the attended stimulus would be easier, making the at-
tention schema less important. However, in naturalistic set-
tings, objects present outside the attentional spotlight can be
salient enough to drive neural activity leading to distraction,
which can be counteracted with sustained attention (Kim &
Hopfinger, 2010; Demeter & Woldorff, 2016). In such natu-
ralistic settings, inference of the attentional state might again
be harder solely given the attended stimulus and might require
an attention schema.

In summary, in this study, the additional resource contains
a schema that provides partial information about the atten-
tional state. This is sufficient for the agent as the attended
stimulus also provides some information about the attentional
state. It is a priori unclear why the attention schema needs to
be a perfect copy of the attentional state, unless attentional
state inference, as required by the task, is not possible at all
from the attended stimulus. This notion that the attention
schema does not need to be a copy of the attentional state
raises questions about the content of awareness in primates.
The Attention Schema Theory (Graziano & Webb, 2015) pro-
poses that the content of awareness draws upon the informa-
tion contained in the attention schema. If the schema only
contains partial information about the attentional state, per-
haps that is also what we can be aware of during the task.
Studying the content of the attention schema in agents op-
erating in naturalistic environments might provide more spe-
cific Attention Schema Theory hypotheses for the content of
awareness. This would allow for better tests of the validity of
the Attention Schema Theory as a theory of consciousness.
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