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Transverse resistive wall instability in the two-beam accelerator 

David H. Whittum and Andrew M. Sessler 

Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 

V. Kelvin Neil 

Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 

The transverse resistive wall instability in the Two-Beam Accelerator (TBA) is investigated 

analytically and numerically. Without any damping mechanism, we find one to four e-folds in 100m, 

depending on the design. It is found that Landau damping, due to energy spread within a beam slice, is 

'not effective, due to rapid synchrotron oscillations in the PEL ponderomotive well. Damping due to an 

energy sweep along the beam is also considered and it is found· that a small variation in energy along 

the beam, decreasing from head to tail, can significantly reduce growth. We conclude that the resistive 

wall instability is not a severe design constraint on a TBA. 

I. INTRODUCTION 

The next generation of linear colliders will require accelerating gradients of 
100 MeV I m or more to achieve Te V energies in a machine of reasonable length.l,2 
Such a gradient corresponds to an rf power of more than 100 MW produced per 

·meter. A number of additional considerations, including the high luminosity 

requirement, alignment tolerances, bunch length requirements, final focus criteria, 

and rf breakdown thresholds conspire to constrain the range of operating 
frequencies for such a linac to 10-30 GHz),3 In this range of frequency, the free

electron laser (FEL) and the relativistic klystron (RK) have demonstrated the power 

levels required,4,5 and they have been proposed as microwave power sources for a 
TeV collider,6,7 in a configuration dubbed the "Two-Beam Accelerator" (TBA). 

In the TBA, a mildly relativistic, high current electron beam is transported 

through perhaps one-hundred FEL wigglers or RK cavities. This "drive" beam is 

alternately reaccelerated by induction cells, and deaccelerated through its interaction 

with the RK or FEL units. The microwave power is extracted and coupled into a 

- slow-wave structure where it accelerates an extremely relativistic, low current 

electron beam. The conceptual layout of a single period of an FEL/TBA is depicted in 

Fig. 1. 

1 



Because of reacceleration, the TBA is capable of approaching 100% efficiency 

of conversion of beam power into rf power. It is this high efficiency, in addition to 

the practicality of using a proven power source, which motivates the TBA concept. 

However, there are a number of problems which arise due to reacceleration. These 

problems include drive beam loading due to the longitudinal wake of the induction 
cells,8 rf phase-control,9 rf extraction,lO and transverse beam break-up (BBU) of the 

drive beam. Beam break-up is driven by the transverse wake of the induction cells,11 

and the wake of the resistive surfaces on the beam line (the pipe wall and the 

wiggler magnet pole faces).12 
All of these issues have been addressed in detail elsewhere, except for the 

transverse resistive wall instability, the subject of this paper. In Sec. II we describe 

the model we use to study the instability, and we derive analytic results. In Sec. Iii, 

numerical results are exhibited, and, in Sec. IV, conclusions are offered. Detailed 

calculations are relegated to Appendices A and B. Table I lists the parameters we will 

consider for numerical examples. 

II. TRANSVERSE RESISTIVE WALL INSTABILITY 

A relativistic electron beam injected off-axis into a beamline will have an 

electrostatic dipole moment. The axial current associated with this dipole moment 

will couple to the axial electric fields of the various structures along the beamline. 

The associated transverse Lorentz force will give a kick to beam slices to the rear, 

displacing them farther off-axis. In this way, an instability obtains. 

This "cumulative" beam break-up instability is described by an equation of 
the form13 

(
a a 2 ) Js I('t') az yi('t,z) az + Yi(-r,z) k13 i(-r,z) ~i(-r,z) = 

0 

d't' ~W (-r- 't',z) ~('t',z) 

' 
(1) 

where 't=t-Z/Vz, indexes beam slices, Vz-C is the axial beam velocity, and C is the 

speed of light. The integral extends from -r'=O (the beam head) to -r'=-r. The beam tail 

is located at 't='tm, with 'tm the pulse length. Beam electrons remain at a fixed 't, as 
they advance in z, down the beamline. 

The beam current is I(-r) and will be assumed constant in 't ("d.c. beam").14 

IA=mc3/e-17 kA is the Alfven current, where m is the electron mass and -e is its 

charge. W(-r--r'), the wake potential,15 is the Green's function which determines the 
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Lorentz force on an electron at a distance Vz't from the beam head, as it arrives at z. 

This Lorentz force is due to the electric and magnetic fields generated by beam 

segments to the front --- i.e., with 't'< 't. 

The term in the integrand is given by 

1 N 
~( i,z) = N L; i( i,z) 

i=l , (2) 

where the index i labels the N macroparticles (used to model beam electrons 

numerically) located at the same 't and z. ;i('t,z), 'Yi('t,z), and k~i('t,z) are, respectively, 

the transverse displacement, Lorentz factor, and betatron wavenumber of the i-th 

macroparticle. (For a cold beam, where N=1, ;1 is just the beam centroid and will be 

denoted ;.) Wiggler focussing is assumed.16 The sum on the right side represents an 

average over the N macroparticles located in the slice at 't and z, and is proportional 

to the dipole moment of the axial current density. 

Bodner, et al.,17 have shown that, for a beam propagating down a smooth 

cylindrical pipe of radius b, with walls of conductivity, cr, the wake potential is given 
by18 

(3) 

where 'to=47tcrb2 I c2. 

This wake drives the "resistive wall instability" and arises from the diffusion 

of the dipole component of the beam magnetic field into the pipe. Caporaso, et al.,19 
have shown that, for a cold beam (N=l), the solution for the beam centroid is given 
asymptotically by, 

e < 't) 1 . 
;('t,z) =. ~ v 3 exp (Y R)sm(~z + Y1) 

v 31t (A/2) (4) 

where 
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y ='l_(A/ 2)213+ .J3 (A/2)
413 

_2,.(_A_)2 
R 2 kz 3 kz ' 

~ ~ 

(A/2)413 
y __ ~ '3 (A/2 )213 _ 27t 
~- 2V.5 kz +3' 

~ (5) 

and 

( 
I ) 112 

A= yiA ( 1t'tcr) ( k~3 ). 
(6) 

This result assumes a constant beam energy, betatron wavelength, and pipe radius. 

In addition, in Eq. (5), certain corrections have been added to the result of Ref. 19, as 

derived in Appendix A. 

The initial condition assumed in deriving Eqs. (4)-(5) is a unit displacement at 

z=O, i.e., ~(z=O,'t)=S('t), where 9 is the step function. A typical solution for ~('t,z), is 

depicted in Fig. 2, for b=l em. The envelope of ~' will be denoted x, and the 

maximum of x, over all 't, at the TBA exit (z=zm) will be referred to as the growth. 

Growth for z=100 m and a range of pipe radii is depicted in Fig. 3. 

For simple estimates, growth may be taken to vary approximately as x-exp 
(z/Lg)2/3, with20 

(7) 

From Eq. (7) it is evident that growth depends critically on the pipe radius, b, (the 

number of e-folds varies as 1 /b2 ). This may also be seen by comparing Figs. 4(a) and 

4(b), which depict ~('t,z) for b=l em and b=O.S em. 

Evidently, control of BBU favors the largest b possible. On the other hand, b is 

constrained by the Halbach limit21 which requires a narrow wiggler pole gap. (When 

the pole separation is large, the wiggler magnetic field strength is diminished.) Thus 

typical TBA designslO assume b in the range of 1 to 2 em. From Eq. (4), this 

corresponds to BBU growth in the range of 4.5 to 0.5 e-folds, and this is acceptable. 

However, this analytic result will be modified by variations in energy within a beam 

slice, along the beam, and along the beamline. The need to incorporate such 

complicating effects motivates the numerical work of the next section. 
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III. NUMERICAL RESULTS 

In this section, we examine numerical results from the code, "RW ALL", 

which solves Eq. (1).22 Numerical data are represented in Figs. 5-8 by solid dots and 

are interpolated smoothly. Each dot corresponds to one RWALL run and represents 

the maximum over all 't, of the centroid envelope, at z=100 m. In general, y may 

vary according to 

(8) 

Eq. (10) states that the y of the i-th macroparticle within the beam slice at 't, at 

position z, is given by the average beam y at z, y(z), plus a term corresponding to 

variation within a beam slice, along the beam, and along the beamline, oyi('t,z). Four 

types of y variation are of interest in a TBA. 

A. Variation in y due to reacceleration 

The behavior of y(z) in the TBA will be roughly a sawtooth. This is because 

energy is extracted over a TBA period, L- 1.3 m, via the FEL interaction, and then 
restored to the beam in a much shorter length of order millimeters to centimeters in 

crossing the induction cell gap. y(z) is then modelled, for 0 < z < L, by 

(9) 

and this is extended periodically, with period L, and is independent of 't. 

Growth for (y++yJ/2 = 20, with several different values of lly=y+-Y-, and with 

oyi('t,z)=O, is depicted in Fig. 5. For example, for lly=1, corresponding to a 5% sweep in 

y through each period, growth is 4.51 e-folds, rather than 4.46, corresponding to a 

decrease in Lg by 1.5 % from 10.6 m to 10.4 m. Although the effect of this periodic 

variation in y is to increase growth, the increase is fairly negligible, and we will hold 

? constant in z for the remaining examples. 

B.Spread in y within a beam slice 
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High current electron beams typically have some spread in energy within a 

beam slice. Such a spread in"{ within a beam slice may be modelled by 

(10) 

where 8.y denotes the spread in values of "{ and the <l>i are phases distributed 

uniformly from -1t to 1t. 8.y and <l>i are independent of 't and z, so that O"fi('t,z) is also 

independent of 't and z. This spread in "{ results in a spread in betatron periods 

among the macroparticles composing one beam slice. The centroid displacements of 

these macroparticles oscillating with different periods will then add incoherently in 

the wakefield driving term on the right side of Eq. (1) (phase-mixing). Intuitively, 

one expects that significant damping of growth will occur, provided the phase

mixing occurs in less than a growth length. If 8.k/k is the fractional spread in 

betatron wavenumbers and Lg is the growth length, the condition for phase-mix 

damping is then 8.k/k-8.y/y;> 1 /kLg. 

This simple estimate agrees qualitatively with Fig. 6, which depicts resistive 

wall growth, with Landau damping. Evidently, even a small spread in energy can 

virtually eliminate growth. However, these considerations neglect the effect of 

synchrotron motion. 

C. Synchrotron oscillations in"{ 
As the FEL signal power grows, electrons become trapped in the 

"ponderomotive well" of the signal field, and oscillate longitudinally, much as in 

an rf linac.23 We model this synchrotron motion numerically by assuming all 

electrons are deeply trapped in the ponderomotive well and have a constant 

synchrotron period, so that 

8yi('t,z) =8."{ sin(ksynch z+ <I>) , (11) 

where ksynch=21t/Asynch,24 and 8.y is the spread in values of "f· <l>i is the initial 

synchrotron phase (at the wiggler entrance) of the i-th macroparticle and the <l>i are 

distributed uniformly from -1t to 1t. Again, 8.y and <l>i are independent of 't and z, so 

that O"fi('t,z) is independent of 't, but oscillates in z, with period Asynch· If the 

synchrotron oscillations are rapid on the A.~ scale, then, on average, all particles will 

experience the same phase advance. Intuitively, one expects in this case that phase-
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mixing will be negligible and that growth will not be damped. This effect was first 
investigated analytically by Takayama,12 and is confirmed by Fig. 7, which depicts 

growth versus synchrotron period. 
In Appendix B, we show that the condition for effective Landau damping 

with synchrotron motion is that ll:yly be an appreciable fraction of A.~/Asynch·25 This 

cannot be satisfied for typical TBA designs, since FEL efficiency requires a small 

spread in y, within a slice, while its utility as a microwave source depends on a high 

output power, and therefore a short Asynch (typically, A.~/Asynch > 50%). 

D. Sweep in 'Y along the beam 

Previous work on energy and ponderomotive phase evolution through 

multiple TBA periods9 indicates that a sweep in energy along the beam may arise in 

a natural way, due to variation in current along the beam. We model such a spread 

in 'Y along the beam by 

oy < t ,z > = ll. 'Y (-t- - l) 
· 'tm 2 

' 
(12) 

where ll.y is the variation in 'Y from head to tail. Thus O"fi(t,z) is constant in z, but 

varies linearly in t. Such a sweep in energy was first considered by Balakin, 

Novokhatsky and Smirnov (BNS) as a means of reducing growth of the beam break
up instability in linear accelerators.26 For the long pulse considered here, this sweep 

produces phase-mixing from head to tail. Intuitively, one expects that phase-mixing 

in less than a growth length will reduce growth. This condition is ll.y/y> 1 /kLg· 

This expectation is confirmed in Fig. 8. A 2% sweep in 'Y along the length of 

the beam, decreasing toward the tail, reduces the growth from 4.5 e-folds to 2.3, 

. corresponding to an increase in the growth length, Lg of 180%, from 10.5 m to 29.4 

m. The dramatic effect of energy sweep is further illustrated by comparison of Figs. 9 

and 2. 

A striking feature of the BNS effect is the asymmetry in ll.y, first noted in Ref. 

26. Growth is markedly reduced when the beam head is higher in energy than the 

tail (ll.y<O). For ll.y>O growth actually increases for some range of z. Physically, this 

effect arises from a partial cancellation (reinforcement) of the wake driving term by 

the relativistic mass shift due to energy sweep, when ll.y<O (ll.y>O) . However, for 

larger z, phase-mixing dominates, and growth will be reduced regardless of the sign 
of ll.y.27 
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In contrast to the condition for effective Landau damping, the condition for 

reduction in growth due to energy sweep is not stringent. In principle, BNS 

damping is achievable in an FEL, without degradation of efficiency. This may be 

understood by noting that the FEL instability is electromagnetic, and travels at a 

high group velocity, slipping little from a fixed beam slice. However, the resistive 

wall instability is cumulative, with zero group velocity. Efficiency of the FEL 

interaction depends on the quality (small energy spread) of the beam slice. The 

efficiency of the resistive wall instability depends on the quality and coherence of 

transverse motion of the beam as a whole. For the FEL, the effect of a sweep in 

energy is merely to cause the beam slices to sample different parts of the gain curve. 

IV. CONCLUSIONS 
From these examples, it is clear that the periodic variation in y due to 

reacceleration will have little effect on resistive wall growth. In addition:, the effect 

of Landau damping will be negligible due to rapid synchrotron motion. However, 

BNS damping does offer the possibility of reducing growth significantly. Further 

work is required to determine realistic energy sweeps consistent with the 

longitudinal dynamics of the FEL. 

On the other hand, even without BNS damping, growth is tolerable, if non

negligible. For typical designs, we can expect from one to four e-folds in 100 m, 

depending largely on the pipe radius. BNS damping will reduce this even further. 
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APPENDIX A: 

ASYMPTOTIC GROWTH OF THE TRANSVERSE RESISTIVE WALL INSTABILITY 

In Eq. (5), certain corrections have been added to the result of Ref. 19. In this 

Appendix, these corrections are derived. The motivation for this calculation is a 

discrepancy uncovered in comparing the numerical results of RWALL, and the 

analytic results of Ref. 19. 
We begin with Eq. (10) of Ref. 19, the exact solution of Eq. (1), for the wake of 

Eq. (3), 

i-

1 J 1 ~('t,Z) =8 ('t) 41ti dp-p{exp (f+) + exp (L)} 
-ioo . ' (A.1) 

where p is the Laplace transform variable conjugate to 't, and the contour is to the 

right, in the complex p-plane, of all poles of the integrand. Other notation is 

f±(p) = pA 2 ± iBg(p) , 

g(p) = Jt- Bp2'" ' 

B= ~z, 

and A is defined in Eq. (6). 

(A.2) 

We proceed to calculate the integral of Eq. (A.1), using steepest descents. We 

set f' ±(p)=O to find the stationary points, Pr' 

(A.3) 

or 

(A.4) 
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where, r= exp(i7t/3), exp(-i7t/3) and exp(i7t). Eq. (A.4) is a sixth-order polynomial for 

Prl/2. We approximate the roots by expanding them in the small parameter 

£=(4A)2/3 /B. This expansion converges provided £<<1, which is always true for 

sufficiently large z, since £varies as z-1/3. However, it is necessary to keep terms 

through the third order in£, as will become apparent shortly. 

Iteration of Eq. (A.4) gives 

(A.S) 

where ~=E/r1/2=±Eir. Only the roots p±, corresponding to r=exp(±i7t/3) contribute to 

the steepest descent calculation. We use the contour of Fig. 3, Ref. 19, and obtain 

(A.6) 

where J.1(p±)=(7t- arg f"(p±) )/2, or J.1(p+)=27t/3 and J.1(p_}=7t/3. 

We substitute Eq. (A.6) into Eq. (A.1) and take all quantities to lowest order in 

£, except in the exponent. Eq. (A.1) becomes, 

9() 1/224/.3{ ~ (t,z) = 
4 

t. 7t exp [ f +(p) + i7t/3] + exp [ L(p +) + i7t/3] 
~ 1t 1 31 12 A 1!3 

-----7 + exp [ f+(p-) + i2x/3] + exp [ L(p-) + i2x/3]} 

' 
(A.7) 

where, 

10 
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A 2/3 r 4' . . 
f.,(p.,) =(2-) tf<J, + 3exp [i<J 2lt/3] 

. l 
lCJ 1£ . • 5 ~ 

~- 2exp[-t<J,1t/3]- ue'+ ... J 

' (A. B) 

with CJ1 =±1, cri=±l. 
Evidently, we may drop the last two terms in Eq. (A.8),. if we are interested 

only in the leading order growth in 

In(~)= z 213 { 1 + 0( z;/3) + 0 <zJ13 ) + ... } 
(A.9) 

' and this is the approximation of Ref. 19. However, to accurately estimate the 

absolute magnitude of~' we must keep the zl/3 and constant terms in the exponent. 

The final result is, after some algebra, 

(A.lO) 

where 

4/3 

y =~(A/ 2)2/3+ .y'3 (A/2) -~(_A_)2 
R 2 kz 3 kz ' JJ JJ 

correction 

4/3 
y = _ ~ .y'3 (A/2)213 _ (A/2) + 2 1t 

1 2 k~z 3 ' 

correction (A.ll) 

Eqs. (AlO) and (All) are just Eqs. (4) and (5). The uncorrected result of Ref. 19 is 

compared to the numerical result in Fig. Al (a), and the corrected result is compared 

to the numerical result in Fig. Al (b). Evidently the corrections are significant and 

produce good agreement with the numerical result. 
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To clarify the origin of these corrections, we consider the solution to Eq. (1) in 

the absence of energy spread, or acceleration , 

1- I W(p) } 
I A '¥~ 

· (A.12) 

where W(p) is the Laplace transform of the wake (the "impedance"). The 

approximation of Ref. 19 corresponds to an expansion of the square root keeping 

only the term of first order in W. (This is equivalent to the strong focussing 

approximation). In general, this is accurate only in the sense that the ratio of the 

logarithm of the analytic amplitude to the logarithm of the actual amplitude 

approaches 1 for large z. For full accuracy (so that the ratio of the amplitudes 

converges) more terms must be kept. For example, for W(p) oc p-r, [r-1+ 1] terms must 

be kept for full accuracy, where [x] 'is the greatest integer less than or equal to X. In the 

case that r-1+ 1 is an integer~ the last term will be indepe~dent of z. 
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APPENDIXB: 
EFFECf OF SYNCHROTRON MOTION ON LANDAU DAMPING 

In this Appendix, the condition for effective Landau damping in the presence 

of synchrotron motion is derived. We start from the Eq. (1) and express the center of 

mass displacement of the i-th macroparticle, ~i' in terms of a complex amplitude or 

eikonal, Xi, 

(B. I) 

We assume that the synchrotron oscillations are not fast on the scale of a betatron 

wavelength ksynch<k~, and that the growth length satisfies Lg > A.~. (the "strong 

focussing" approximation). In this case, the macroparticle eikonal Xi varies slowly 

on the A.~ length scale and satisfies 

2 i r ,k, 
0a~· ( <,Z) = L ! ds' w ( <- <') (X;(<' ,z)exp ( i l <I<o; - J<o,) dz' )) 

1 (B.2) 

where <>j indicates an average over j. Since k~i does not vary in 't, we may Laplace 

transform in 't to find 

2 i y0k 0 °0~'(p,z)= :. W(p >( x1(p,z)exp(il (J<o 1- J<o,ldz' )) 
} . (B.3) 

Next, we replace the discrete index i, with a continuous phase variable q,, in which 

particles are uniformly distributed and take k~(<l>)=ko+8ksin(ko z+<j>), 

abbreviating ksynch by k5 • Equation (B.3) then redu<;:es to 
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It 

aaxzi (z,<j>) = 1 I W 211t f d<l>'x. (z,<j>') 
2 i 'Y ok o I A -It 

--> ex~H ~{(sin (k.z' + ~) - sin (k,z' _.: $)) dz' J 
(B.4) 

where the variable,_ p, is suppressed for brevity, 'and we ha~~: used the fact "that k~y = 

k0 y0 is the same for each particle.16 Eq~ (B.4) then simplifies to · 

(B.S) 

· Expanding x in a Fourier series in <j>, 

x<z,<j>) = L y m(Z) exp (i m<j>) 
m (B.6) 

it is straightforward to show that the Fourier coefficients Ym satisfy, 

dy m ( 1 I ) ( k Z) w 'Ln. J m<11> J n<11> y n<z>exp i <m. - n>-2s 
dz - 2i 'Yoko, lA . . , (B.7) 

where 11=2(.1k/ks)sin(ksz/2). 

Next, we specialize to the case ksz>>l. In this limit, the harmonics Ym are 

decoupled, due to the rapid rotation in phase represented by the ksz term in Eq. (B.7). 

Since Ym~o<<yo at z=O, the Ym~ are small for all z and 

(B.8) 

Assuming .1k/ks<<1, this simplifies to 

Yo(z)= Yo(O)exp(2. 1 k II 
1 'Yo o A 

W z[ 1- ( f )'(I- si::~z) )]) 
' 

(B.9) 

14 
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Noting that x -yo, the solution for the envelope of the centroid motion is, 

(B.10) 

and the p-dependence has been restored for clarity. 

From Eq. (B.10), it is evident that the cold-beam steepest descents calculation 

for the amplitude X(t,z) goes through, yielding the usual asymptotic growth, except 

that z/Lg is replaced by z/L' g where 

L = L 1 

g g (& )2 
1-

ks 

with Lg as defined in Eq. (7). 

(B.11) 

This result is quite general and applies to BBU due to an arbitrary wake. 
Growth as computed from Eq. (4), with Lg' substituted for Lg, is depicted in Fig. B1, 
together with the numerical data. Agreement is good, with a noticeable discrepancy 

as As approaches L, and the k5z >> 1 approximation breaks down. 
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FIG. 1. One superperiod of an FEL Two-Beam Accelerator. 

FIG. 2. Center of mass displacement versus 't and z, with no energy spread, forb= 1 em. 

FIG. 3. Resistive wall growth at z=100 m, versus pipe radius, with 'Y constant within the beam and in z. 

FIG. 4. Center of mass displacement versus 't and z, with no energy spread, for (a) b=l em and (b) b=O.S 

em, for 0<z<10 m. 

FIG. 5. Resistive wall growth at z=100 m, for a sawtooth variation (due to reacceleration) in the 

average y, from 'Y+ toy_, with ("f++yJ/2=20, for several values of Ay/y=(y+-y_)/20. Evidently, periodic 

acceleration and decceleration increases growth, albeit only slightly. 

FIG. 6. Resistive wall growth at z=lOO m, versus Ay/y, the fractional spread in y within a beam slice. 

The reduction in growth illustrates the effect of Landau damping. 

FIG. 7. Resistive wall growth at z=100 m, versus Asynch' with a spread in 'Y within a beam slice, !:J:yty =1 %. 

The lack of damping at shorter Asynch illustrates the deleterious effect of rapid synchrotron motion. 

FIG. 8. Resistive wall growth at z=lOO m, versus Ay/y, the fractional spread in y along the beam. The 

reduction in growth illustrates the BNS effect. 

FIG. 9. Envelope of the rms center of mass displacement, with BNS damping, corresponding to Ay/y=-

4.0%, (an rms sweep of about -1%), to be compared to Fig. 2. 

FIG. At. Comparison between analytic and numerical results for asymptotic growth of the resistive 

wall instability, at z=lOO m, (a) without the corrections indicated in Eq. (A.11) and (b) with the 

corrections. 

FIG. Bl. Comparison between analytic and numerical results for the effect of synchrotron motion on 

Landau damping of the resistive wall instability. This is Fig. 7, with the analytic result superimposed. 

18 



" 

Table I. FEL TBA design parameters considered for the examples. 

Aw=wiggler wavelength- 27 em 

A.~=betatron wavelength - 1 m 

Asynch=synchrotron period-2m 

l=beam current - 3 kA 
cr=wall conductivity - 1x1Q17 sec-1 

b=pipe radius - 0.5 - 2 em 
y=E/mc2- 20 

tm =pulse length - 50 ns 

Zm=overall TBA length-100m 
L=TBA period length- 1.30 m 
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