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Controlling volume fluctuations for studies of critical phenomena in nuclear collisions1
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We generalize and extend the recently proposed method [1] to account for contributions of sys-9

tem size (or volume/participant) fluctuations to the experimentally measured moments of particle10

multiplicity distributions. We find that in the general case there are additional biases which are not11

directly accessible to experiment. These biases are, however, parametrically suppressed if the mul-12

tiplicity of the particles of interest is small compared to the total charged-particle multiplicity, e.g.,13

in the case of proton number fluctuations at top RHIC and LHC energies. They are also small if the14

multiplicity distribution of charged particles per wounded nucleon is close to the Poissonian limit,15

which is the case at low energy nuclear collisions, e.g., at GSI/SIS18. We further find that mixed16

events are not necessarily needed to extract the correction for volume fluctuations. We provide the17

formulas to correct pure and mixed cumulants of particle multiplicity distributions up to any order18

together with their associated biases.19
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I. INTRODUCTION20

One of the main goals of studying relativistic heavy-ion collisions is to explore the structure of the QCD phase21

diagram. Fluctuations of observed particles carrying quantum numbers of conserved charges, baryon number (B),22

electric charge and strangeness, represent a powerful tool for this endeavor as the cumulants of their distributions23

measure the derivatives of the grand-canonical partition function, and thus the pressure (P ), with respect to the24

associated chemical potentials. For example, for a thermal system of volume V and temperature T , the cumulants of25

the net baryon number distribution, within the Grand Canonical Ensemble (GCE), are given by [2]26

κn[B] =
∂n(lnZ)

∂ (µB/T )n
=

V

T

∂nP

∂ (µB/T )n
,

where Z is a GCE partition function and µB is a baryon chemical potential. Any nontrivial structures in the equation27

of state such as a possible phase transition [3–6] will result in potentially large derivatives of the pressure and thus in28

large values of the cumulants of conserved charges. In addition, as cumulants are derivatives of the pressure, they are29

accessible (at vanishing or small values of chemical potential) to Lattice QCD calculations [7, 8], which in principle30

enables a direct comparison of results from ab initio QCD calculations with experiment. For example, as pointed out31

in Ref. [9], the measurement of higher-order cumulants close to vanishing chemical potential may test the remnants32

of chiral criticality.33

Measurements of fluctuations have meanwhile been carried out by many experiments. The STAR collaboration has34

measured cumulants of the net-proton number up to sixth order over the entire energy range available at RHIC [10, 11].35

The HADES experiment has measured cumulants of proton number up to forth order at the low energy of
√
sNN =36

2.4GeV [12] and ALICE has measured the second- and third-order net-proton number cumulants at
√
sNN = 2.7637

and 5.02TeV [13, 14].38

When comparing cumulants measured in experiment with those obtained from lattice QCD or other field theoretical39

calculations [15] one needs to be aware of several key differences. While theoretical calculations are typically done40

in the grand canonical ensemble where charges can be exchanged with a heat bath and are only conserved on the41

average, in experiment charges are explicitly conserved on event by event basis and one has to account for global42

as well as local charge conservation [16–20]. Also, in experiments one usually is restricted to the measurement of43

net protons whereas theory can only calculate cumulants of the net baryon number. In the presence of many pions44

this difference can be corrected for [21]. Finally, and this will be the topic of the present paper, in experiment45

the size of the particle emitting system is not constant. Even under the tightest centrality selection criteria, this46

gives rise to so-called volume fluctuations [22] or, equivalently, fluctuations of the number of wounded nucleons [23].47

Moreover, there is a strong correlation between the event activity, i.e., charged particle multiplicity and the size48

of the system, e.g., within the model of independent particle sources [24]. To ensure accurate measurement of49

the fluctuation of conserved charges, it is crucial to separate the particles used for determining these fluctuations50

from those used for centrality determination. This separation is necessary to avoid autocorrelations, which can51

introduce artificial modifications to the fluctuation signals being measured [23]. One effective method to achieve this52

separation is to perform centrality selection using detectors that cover different rapidity intervals than those used53

for fluctuation analysis [12, 13]. Alternatively, another approach involves excluding the particles of interest, such as54

protons in net-proton analysis, from the centrality determination process [25]. However, even with this exclusion,55

some autocorrelation effects may persist. This persistence is partly due to strong correlations between pions and56

protons, which arise from the decays of baryonic resonances [23]. Moreover, volume fluctuations can significantly57

impact the measurements, particularly at lower energies. At these energies, the multiplicity of charged particles58

is predominantly made up of primordial protons, which can limit the resolution of centrality selection that can be59

achieved. This limitation underscores the importance of carefully considering the effects of volume fluctuations in60

the analysis. In Ref. [1] a novel and promising method based on event mixing has been proposed to experimentally61

determine and subtract the contributions to the cumulants caused by volume fluctuations. In the present work we62

will further elaborate on this topic, generalize the results, and provide the formulas for corrections of any higher-order63

cumulants.64

This paper is organized as follows. In the next section we define the notation. We then present an analytical65

formulation of event mixing as proposed in Ref. [1]. We find that the cumulants of the the mixed events have66

additional bias terms which were assumed to vanish in the original work of [1], and we discuss the magnitude of67

these corrections for various scenarios. Next we extend our study to cumulants of higher order before we discuss and68

summarize our results.69
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II. NOTATION70

In this paper we will mostly work within the wounded-nucleon model [24] to discuss volume or participant fluc-
tuations. However, as we shall show later, the formalism can be easily applied also to the situation where one has
generic volume fluctuations, as for example discussed in Refs. [22, 23]. Let us start with the expression of the particle
number cumulants κj [N ] in the presence of wounded-nucleon fluctuations (for details see Appendix A):

κ1[N ] = ⟨Nw⟩κ1[n] = ⟨Nw⟩ ⟨n⟩ = ⟨N⟩ (1)

κ2[N ] = ⟨Nw⟩κ2[n] + ⟨n⟩2 κ2[Nw] = κ̄2[N ] + ⟨N⟩2 κ2[Nw]

⟨Nw⟩2
(2)

κ3[N ] = ⟨Nw⟩κ3[n] + 3 ⟨n⟩κ2[n]κ2[Nw] + ⟨n⟩3 κ3[Nw] = κ̄3[N ] + 3 ⟨N⟩ κ̄2[N ]
κ2[Nw]

⟨Nw⟩2
+ ⟨N⟩3 κ3[Nw]

⟨Nw⟩3
(3)

κ4[N ] = ⟨Nw⟩κ4[n] + 4 ⟨n⟩κ3[n]κ2[Nw] + 3κ2
2[n]κ2[Nw] + 6 ⟨n⟩2 κ2[n]κ3[Nw] + ⟨n⟩4 κ4[Nw]

= κ̄4[N ] + 4 ⟨N⟩ κ̄3[N ]
κ2[Nw]

⟨Nw⟩2
+ 3κ̄2

2[N ]
κ2[Nw]

⟨Nw⟩2
+ 6 ⟨N⟩2 κ̄2[N ]

κ3[Nw]

⟨Nw⟩3
+ ⟨N⟩4 κ4[Nw]

⟨Nw⟩4
(4)

Here N refers to the particles of interest, say protons, and n to the number of these particles arising from one wounded71

nucleon; thus ⟨n⟩ is the average number of particles per wounded nucleon. The cumulants of the wounded-nucleon72

distribution are denoted by κj [Nw] while the cumulants for the distribution of particles stemming from one wounded73

nucleon are κj [n]. The corresponding relations for cumulants of any order can be obtained with the provided software74

package [26].75

The cumulants of interest are those at a fixed number of wounded nucleons. They reflect the true density fluctuations76

in a system at constant volume. We denote these cumulants for a system with fixed, i.e. non-fluctuating, number of77

⟨Nw⟩ wounded nucleons as78

κ̄j [N ] = ⟨Nw⟩κj [n],

Below we will also deal with factorial cumulants, which we shall denote by Cj . Factorial cumulants, which measure
the deviation from Poisson statistics, tell us about the true correlations in the system. As discussed in the Appendix B,
they are linear combinations of the regular cumulants. For the first four orders we have

C1[N ] = κ1[N ] = ⟨N⟩ ,
C2[N ] = −κ1[N ] + κ2[N ],

C3[N ] = 2κ1[N ]− 3κ2[N ] + κ3[N ],

C4[N ] = −6κ1[N ] + 11κ2[N ]− 6κ3[N ] + κ4[N ].

The expressions for the particle number factorial cumulants are similar to Eqs. 1- 4

C1[N ] = ⟨Nw⟩C1[n] = ⟨Nw⟩ ⟨n⟩ = ⟨N⟩ , (5)

C2[N ] = C̄2[N ] + ⟨N⟩2 κ2[Nw]

⟨Nw⟩2
, (6)

C3[N ] = C̄3[N ] + 3 ⟨N⟩ C̄2[N ]
κ2[Nw]

⟨Nw⟩2
+ ⟨N⟩3 κ3[Nw]

⟨Nw⟩3
, (7)

C4[N ] = C̄4[N ] + 4 ⟨N⟩ C̄3[N ]
κ2[Nw]

⟨Nw⟩2
+ 3C̄2

2 [N ]
κ2[Nw]

⟨Nw⟩2
+ 6 ⟨N⟩2 C̄2[N ]

κ3[Nw]

⟨Nw⟩3
+ ⟨N⟩4 κ4[Nw]

⟨Nw⟩4
. (8)

Similar to the cumulants, we denote by79

C̄k[N ] = ⟨Nw⟩Ck[n]

the factorial cumulants for a system at constant volume or number of wounded nucleons, ⟨Nw⟩.80

III. MIXED EVENTS81

In Ref. [1] a mixed event is constructed such that it has the same total multiplicity as a given real event but each82

particle (track) is drawn from a different event, so that, by construction, the mixed events follow the same total83
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multiplicity distribution as the original events. This is done in order to preserve volume flucutations as in real events.84

Since each particle (track) is chosen randomly from a random event, the distribution of particle species will follow a85

multinomial distribution with the Bernoulli probabilities pi = ⟨Ni⟩ / ⟨M⟩ for particles of type i. Here ⟨Ni⟩ denotes86

the mean number of particles of type i and ⟨M⟩ the mean total multiplicity. Hence, the probability to find A particles87

(successes) of type A and B particles of type B is given by the trinomial probability B3(A,B,M ; pA, pB) and so on.88

Here M denotes the multiplicity of the event under consideration. Thus the distribution, Pmix (A,B), of particles of89

species A and B in the mixed events is obtained by folding the multiplicity distribution PM (M) with a trinomial (in90

general multinomial) distribution:91

Pmix (A,B) =
∑
M

B3(A,B,M ; pA, pB)PM (M)

with92

pA =
⟨A⟩
⟨M⟩

, pB =
⟨B⟩
⟨M⟩

.

and

B3(A,B,M ; pA, pB) =
M !

A!B!(M −A−B)!
pAA pBB (1− pA − pB)

M−A−B (9)

The factorial cumulant-generating function for this distribution is

gF,mix (zA, zB) = ln

∑
A,B

Pmix (A,B) (zA)
A(zB)

B


= ln

[∑
M

[h3 (zA, zB)]
M

PM (M)

]
= GF,M (h3 (zA, zB)) (10)

where zA and zB are auxiliary variables and h3 (zA, zB) defined as93

h3 (zA, zB) =
∑
A,B

B3(A,B;M = 1; pA, pB)(zA)
A(zB)

B = (1− pA − pB + pAzA + pBzB)

is the factorial moment-generating function for the trinomial distribution with one trial (M = 1).94

The variables zA and zB facilitate the computation of factorial cumulants by taking the appropriate derivatives of95

the factorial cumulant-generating function for the multiplicity distribution GF,M (h3 (zA, zB)) (see Eq.(B2))96

97

Cmix
i,j [mix] =

∂(i+j)

∂(zA)i∂(zB)j
GF,M (h3 (zA, zB))

∣∣∣∣
zA=zB=1

= piAp
j
BCi+j [M ] ,

with Ck[M ] being the kth-order factorial cumulant. Using the expression for the factorial cumulants of the multiplicity
distribution derived in Appendix C, Eq. C5, we get within the wounded-nucleon model

Cmix
1 [A] = κmix

1 [A] = pA ⟨Nw⟩ ⟨m⟩

Cmix
2 [A] = p2AC2[M ] = p2A

[
κ2 [Nw] ⟨m⟩2 + ⟨Nw⟩C2[m]

]
Cmix

1,1 [A,B] = pApBC2[M ] = pApB

[
κ2 [Nw] ⟨m⟩2 + ⟨Nw⟩C2[m]

]
. (11)

For the corresponding cumulants up to second order we get accordingly

κmix
1 [A] = Cmix

1 [A] = pA ⟨Nw⟩ ⟨m⟩

κmix
2 [A] = Cmix

2 [A] + Cmix
1 [A] = p2A

[
κ2 [Nw] ⟨m⟩2 + ⟨Nw⟩ (κ2[m]− κ1[m])

]
+ pA ⟨Nw⟩ ⟨m⟩

= p2A

[
κ2 [Nw] ⟨m⟩2 + ⟨Nw⟩ (κ2[m]− ⟨m⟩)

]
+ pA ⟨Nw⟩ ⟨m⟩

covmix [A,B] = Cmix
1,1 [A,B] = pApB

[
κ2 [Nw] ⟨m⟩2 + ⟨Nw⟩ (κ2[m]− ⟨m⟩)

]
. (12)
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With ⟨m⟩ denoting the mean number of total particles emitted by a wounded nucleon, we get ⟨a⟩ = pA ⟨m⟩ and98

⟨b⟩ = pB ⟨m⟩ for the mean number of particles per wounded nucleon of type A and B, respectively, and recover the99

results of Ref. [1]. For that we have to assume that the multiplicity distribution per wounded nucleon is Poissonian,100

i.e. that C2[m] = κ2[m] − ⟨m⟩ = 0. This has been an implicit assumption in Ref. [1], which however is not valid in101

general as we shall discuss below.102

The main benefit of the event mixing is to be able to relate the factorial cumulants of the various multiplicity103

distributions, as can be seen from Eq.11. All that enters is the second-order factorial cumulant, C2[M ]. The binomial104

probabilities, pA and pB, are in the sense trivial as they can be determined without any mixed events. Thus we105

may express the fluctuations of the wounded nucleons in terms of the factorial cumulant of the track multiplicity106

distribution107

⟨N⟩2 κ2[Nw]

⟨Nw⟩2
=

⟨N⟩2

⟨M⟩2
(C2[M ]− ⟨Nw⟩C2[m]) =

⟨N⟩2

⟨M⟩2
(
C2[M ]− C̄2[M ]

)
, (13)

where C̄2[M ] = ⟨Nw⟩C2[m] is the second-order factorial cumulant for a system of ⟨Nw⟩ wounded nucleons without108

wounded nucleon fluctuations and N stands now for the multiplicity of the particles of interest, i.e., either A or109

B. While the factorial cumulant of the multiplicity distribution, C2[M ], is accessible to experiment, that of a non-110

fluctuating system, C̄2[M ], is not. Let us, therefore define a bias term, ∆2, as111

∆2 ≡ ⟨N⟩2

⟨M⟩2
C̄2[M ]. (14)

In case of a Poissonian multiplicity distribution for one wounded nucleon the bias term vanishes, i.e., ∆2 = 0, since112

C̄2[M ] = ⟨Nw⟩C2[m] = 0 in this case, and we recover the results of Ref. [1]. Let us furthermore define the corrected113

cumulant, κcorr
2 [N ], which is based on measurable quantities only114

κcorr
2 [N ] = κ2[N ]− ⟨N⟩2

⟨M⟩2
C2[M ]. (15)

Following Eq. 2 and using Eq. 6, the cumulant of the system without wounded nucleon fluctuations, κ̄2[N ], is given
by

κ̄2[N ] = κ2[N ]− ⟨N⟩2 κ2[NW ]

⟨NW ⟩2
= κcorr

2 [N ] + ∆2. (16)

The bias, ∆2, while not directly measurable, may be constrained by a fit to the track multiplicity distribution115

within the wounded-nucleon model [24], as it is commonly done [11, 27, 28]. In addition, we note that for protons at116

very high collision energies we have ⟨Np⟩ ≪ ⟨M⟩ so that ∆2 is suppressed parametrically. This behavior can indeed117

be illustrated with simulations as presented in Sec. V. Since cumulants scale with the system size, or in our case with118

the number of wounded nucleons, ⟨Nw⟩, it is instructive to scale the (factorial) cumulants with the mean number of119

particles120

κ̄2[N ]

⟨N⟩
=

κ2[N ]

⟨N⟩
− ⟨N⟩

⟨M⟩

(
C2[M ]

⟨N⟩
− C̄2[M ]

⟨N⟩

)
=

κcorr
2 [N ]

⟨N⟩
+

∆2

⟨N⟩
(17)

The scaled bias is then given by121

∆2

⟨N⟩
=

⟨N⟩
⟨M⟩

c̄2[M ], (18)

where c̄2[M ] = C̄2[M ]/ ⟨M⟩ is a scaled factorial cumulant. Typically, the scaled cumulants are of order unity,122

κj [N ]/ ⟨N⟩ ∼ O(1). In addition, the scaled factorial cumulants, ck[N ] = Ck[N ]/ ⟨N⟩, are expected to depend only123

weakly on the multiplicity. Therefore, the scaled bias should be much smaller than one, ∆2/ ⟨N⟩ ≪ 1, for the volume124

correction to be reliable.125

Finally, one may express the bias term ∆2 also in terms of cumulants by using the relation between cumulants and
factorial cumulants (see Appendix B), C2[M ] = κ2[M ]− ⟨M⟩ and so forth. This gives,

∆2 =
⟨N⟩2

⟨M⟩2
(κ̄2[M ]− ⟨M⟩) (19)
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A note of caution may be useful in this context. One might be inclined to express the fluctuations of the wounded126

nucleon directly using the cumulants of the multiplicity distribution, in which case one would get127

⟨N⟩2 κ2[Nw]

⟨Nw⟩2
=

⟨N⟩2

⟨M⟩2
(κ2[M ]− ⟨Nw⟩κ2[m]) .

And since ⟨NW ⟩κ2[m] = κ̄2[M ] is not directly accessible to experiment, one may further assign the bias to be128

∆2 = ⟨N⟩2

⟨M⟩2 κ̄2[M ]. This, however, would considerably overestimate its true value, Eq. 19, as cumulants always contain129

a “trivial” component proportional to the number of particles, which in principle is measurable.130

IV. HIGHER-ORDER RESULTS131

Let us now discuss the corrections for volume fluctuations up to fourth order. Given the discussion in the previous
section the strategy is straightforward. First we express the fluctuations of the wounded nucleons in terms of factorial
cumulants of the multiplicity distribution. Then we identify the parts which are experimentally accessible and those
which are not. The latter will be the bias while the former will be subtracted from the expression for the cumulants
in order to remove most of the effect of volume fluctuations. The terms involving cumulants of the wounded-nucleon
distribution as they appear in the expressions for the cumulants as κj [Nw]/ ⟨Nw⟩j , see Eqs. (6-8) are:

κ2[Nw]

⟨Nw⟩2
=

C2[M ]− C̄2[M ]

⟨M⟩2
(20)

κ3[Nw]

⟨Nw⟩3
= −3

C̄2[M ]

⟨M⟩2
κ2[Nw]

⟨Nw⟩2
+

C3[M ]− C̄3[M ]

⟨M⟩3
(21)

κ4[Nw]

⟨Nw⟩4
= −6

C̄2[M ]

⟨M⟩2
κ3[Nw]

⟨Nw⟩3
− 4C̄3[M ]⟨M⟩+ 3C̄2[M ]2

⟨M⟩4
κ2[Nw]

⟨Nw⟩2
+

C4[M ]− C̄4[M ]

⟨M⟩4
(22)

We note that binomial efficiency corrections do not affect the results as both, numerators and denominators of the132

right hand side of the above expressions, scale with the same power of the efficiency.133

Inserting these expressions into Eqs. (2-4) for the cumulants κj [N ], we can solve for the cumulants of the system134

with fixed number of wounded nucleons, namely the κ̄j [N ]. The results are given in the following general form135

κ̄j [N ] = κcorr
j [N ] + ∆j [N ] (23)

with κ̄j [N ] the cumulant of order j for a system with fixed Nw nucleons, κcorr
j [N ] the cumulant including the mea-

surable corrections for volume fluctuations, and ∆j the corresponding bias due to quantities that are not measurable.
The second-order result we already derived in Sec. A, Eqs. (15) and (14), namely

κcorr
2 [N ] = κ2[N ]− ⟨N⟩2

⟨M⟩2
C2[M ]

∆2 =
⟨N⟩2

⟨M⟩2
C̄2[M ]. (24)

For the third order we have

κcorr
3 [N ] = κ3[N ]− 3C2[M ]κ2[N ]⟨N⟩

⟨M⟩2
+

3C2[M ]2⟨N⟩3

⟨M⟩4
− C3[M ]⟨N⟩3

⟨M⟩3

∆3 = C̄2[M ]

(
3κ2[N ]⟨N⟩

⟨M⟩2
− 3C2[M ]⟨N⟩3

⟨M⟩4

)
+

C̄3[M ]⟨N⟩3

⟨M⟩3
. (25)
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And the fourth order result reads

κcorr
4 [N ] = κ4[N ]−

(
6κ2[N ]⟨N⟩2

(
C3[M ]⟨M⟩ − 3C2[M ]2

)
⟨M⟩4

+
4C2[M ]κ3[N ]⟨N⟩

⟨M⟩2

+
3C2[M ]κ2(N)2

⟨M⟩2
+

⟨N⟩4
(
−10C3[M ]C2[M ]⟨M⟩+ 15C2[M ]3

)
⟨M⟩6

+
C4[M ]⟨N⟩4

⟨M⟩4

)

∆4 = C̄2[M ]

(
−18C2[M ]κ2[N ]⟨N⟩2

⟨M⟩4
+

15C2[M ]2⟨N⟩4

⟨M⟩6
− 4C3[M ]⟨N⟩4

⟨M⟩5
+

4κ3[N ]⟨N⟩
⟨M⟩2

+
3κ2[N ]2

⟨M⟩2

)
+ C̄3[M ]

(
6κ2[N ]⟨N⟩2

⟨M⟩3
− 6C2[M ]⟨N⟩4

⟨M⟩5

)
+

C̄4[M ]⟨N⟩4

⟨M⟩4
. (26)

The corresponding relations for correction and bias terms of any order can be obtained with the provided software136

package [26]. A Python package is provided to derive analytical formulas for both mixed and pure cumulants of137

multiplicity distributions, including participant/volume fluctuations. The correction formulas and their bias terms138

can be derived as well. The package, including a dedicated graphical user interface, can be downloaded via Ref. [26].139

Equivalent expressions for the factorial cumulants, Cn[N ], and their related biases, ∆n,F , may then be obtained by
using the relation between factorial cumulants and regular cumulants

Ccorr
n [N ] =

n∑
j=1

s (n, j)κcorr
j [N ],

∆n,F =

n∑
j=1

s (n, j)∆j ,

with s (n, j) denoting Stirling numbers of the first kind (cf. Eq. B6)140

The results for the corrected factorial cumulants are given in Appendix E.141

V. SIMULATIONS142

Experimental data are usually analyzed in centrality percentiles by introducing selection criteria on, e.g., the energy143

deposited in a forward detector system covering typically the projectile (target) spectator region or the multiplicity144

of charged particles emitted from the mid-rapidity region, with an acceptance reaching close to the projectile (target)145

rapidity regions in case of low beam energies [27, 28]. For the latter, care must be taken to ensure that the evaluated146

particles are not simultaneously used to determine the critical fluctuations [25]. The respective distributions, like147148149

e.g., the forward energy deposit or the charged particle multiplicity, are commonly modelled using the Glauber150

Monte Carlo Model [29]. The model provides event by event and for a given impact parameter the number of151

projectile/target nucleons which are “wounded” and responsible for the event activity (multiplicity), and those, which152

proceed nearly undisturbed into the phase space region covered by the forward detectors. To determine centrality using153

charged particle multiplicity the respective distribution is generally modelled assuming that particles are “produced”154

independently from distinct sources following a negative binomial distribution (NBD). Its probability mass function155

is defined as156

P (n;µ, k) =
Γ(n+ k)

Γ(n+ 1)Γ(k)

(µ
k

)n (µ
k
+ 1
)−(n+k)

, (27)

where µ denotes the mean of the NBD, while the combination of µ and k determines its higher-order cumulants157

κNBD
n =

∂n lnM(t)

∂tn

∣∣∣∣
t=0

, (28)

with158

M(t) =

∞∑
n=0

etnP (n;µ, k) =

(
k

k + µ(1− et)

)k

(29)
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Figure 1. The NBD of charged particles per source (nch) adjusted to HADES (a) [27], STAR (b) [11], and ALICE (c) [28] is
presented with blue lines. For the HADES and STAR data, corresponding Poisson distributions are also presented (red lines).
The parameters used are listed in Table I.

being the moment-generating function of the NBD. The first four cumulants read

κNBD
1 = µ, (30)

κNBD
2 =

µ(k + µ)

k
, (31)

κNBD
3 =

µ(k + µ)(k + 2µ)

k2
, (32)

κNBD
4 =

µ(k + µ)(k2 + 6kµ+ 6µ2)

k3
, (33)

The parameters of the NBD are fixed in each experiment by the fitting procedure. In a first step the number of159

particle-emitting sources ns is determined according to [11, 28]160

ns = fNw + (1− f)Ncoll, (34)

where NW and Ncoll are the numbers of wounded nucleons and binary collisions, respectively. Sampling impact161

parameters according to dσ = b db a list of number of sourses,ni
s, is generated, with i ∈ [1, · · · , NEvent]. Then, for each162

event i, NBD is sampled ni
s times and the parameters of the NBD, µ, k and f , are adjusted such that the obtained163

multiplicity distribution agrees with the corresponding experimental one. The mixing parameter f is introduced to164

improve the description by accounting also particles produced in hard (prompt) processes.165166

Panel (a) of Fig. 1 represents the NBD distribution as observed by the HADES experiment for Au+Au collisions at√
sNN = 2.4GeV, with parameters µ = 0.24, k = 20.34, and f = 1 taken from [27]. For comparison, we also present a

Poisson distribution with the same mean, µ. Similar distributions from the STAR [11] and ALICE [28] experiments
are presented in panels (b) and (c). Figure 1 shows that at the HADES energy the fitted NBDs are very close to
Poisson distributions. Quantitatively this can be seen by evaluating the cumulants of the HADES NBD (µ = 0.24,
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Figure 2. Distribution of wounded nucleons in Au+Au collisions at
√
sNN = 2.4 GeV for four selected centrality classes, as

obtained from the Glauber Monte Carlo simulations.

k = 20.34)

κNBD
1 (HADES) = 0.24 (35)

κNBD
2 (HADES) = 0.2428, (36)

κNBD
3 (HADES) = 0.2486, (37)

κNBD
4 (HADES) = 0.2602. (38)

For a Poisson distribution all cumulants are equal to its mean and the HADES data are indeed close to fulfilling this167

condition. The statement, to a lesser extent, is also valid for the STAR Au+Au data at 3 GeV (see Fig. 1). The168

corresponding ALICE distribution, however, is much wider compared to the Poissonian baseline, but the ALICE NBD169

is obtained for very different acceptance than that used for the cumulant analysis. In Table I we also provide the NBD170

parameters as obtained by the STAR and ALICE collaborations for Au+Au and Pb+Pb collisions at
√
sNN = 3GeV171

and 2.76 TeV, respectively.172

experiments µ k f

HADES 0.24 20.34 1
STAR 0.31 5.66 0.94
ALICE 29.3 1.6 0.8

Table I. NBD parameters as extracted from Glauber fits to particle distributions observed in different experiments. For
simulations, the distributions should be folded within the experimental acceptance in which the cumulants are measured.

In the following we test the proposed method using two different simulations referred to as Model A and Model B.173

While the sampling of wounded nucleons is the same for both models, in Model A we sample different particle species174

independently while in Model B we introduce correlations between pions and protons via resonance production and175

decay. For both models A and B, we use the Glauber model to extract the distributions of wounded nucleons176
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sampled according to Eq. 34. n1 and n2 show particle species used to sample emission from a single source. The distributions
per single source can be chosen arbitrarily. See models A and B discussed below.
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Figure 4. Left panel: Mean number of simulated protons used in model A as a function of centrality, adjusted to multiplicities
measured by HADES in Au-Au collisions at

√
sNN = 2.4GeV [12]. Right panel: Second-order cumulants of protons in model A

including volume fluctuations (black stars), corrected with Eq. 24 (blue stars) and reconstructed with Eq. 23 (open red stars).
The results are normalized to κ̄2[p]sim, corresponding to the second-order cumulants of protons in the absence of volume
fluctuations.

corresponding to four different centrality classes in Au+Au collisions at
√
sNN = 2.4GeV. They are presented in177

Figure 2. Particles are produced by independent sources. (cf. Eq. 34). We note that other sources of correlation,178

such as those stemming from the reconstruction of closely spaced tracks and/or non-binomial efficiencies, were not179

considered in these simulations. The simulation process is schematically illustrated in Fig. 3.180

We will concentrate on the HADES data but also briefly discuss the high-energy limits, which concern the ALICE181

and STAR experiments. For the HADES data the extracted number of binary collision is zero (f = 1, see Table I),182

the number of sources per event are tehrefore sampled exclusively from the wounded nucleon distributions presented183
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Figure 5. Left panel: Third order cumulants of protons in model A including volume fluctuations (black stars), corrected with
Eq. 25 (blue stars) and reconstructed with Eq. 23 (open red stars). The results are normalized to κ̄3[p]sim, corresponding to
the second-order cumulants of protons in the absence of volume fluctuations. Right panel: Fourth order cumulants of protons
in model A including volume fluctuations (black stars), corrected with Eq. 26 (blue stars) and reconstructed with Eq. 23 (open
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Figure 6. The normalised bias terms in model A.

in Fig. 2.184

VI. MODEL A185

In model A we first generate the charged-particle multiplicity for individual events using the NDB distribution as186

extracted by experimental measurements. In doing so we sample the NBD distribution ns times. Different particle187

species are then taken as fractions of the total number of charged particles. For example, from a randomly sampled188

NBD distribution a respective fraction is assigned to protons. From the remaining charged particles another fraction189

is assigned to positively charged pions and the rest is taken as negatively charged pions. These fractions are chosen190

such that the overall probability of having protons, positively and negatively charged pions correspond to 75%, 9%191

and 16 % of all charged particles, respectively, based on the actual HADES measurement in Au+Au collisions (see [30]192

and references therein). In addition, we account for acceptance effects, because the NDB parameters are obtained in193

different acceptance than that used for the fluctuation analyses. We therefore fold the entire NDB distribution with194

a binomial distribution such that the experimentally measured mean multiplicities of particles in the acceptance used195

for fluctuation analysis are reproduced. Volume fluctuations are naturally accounted for as for each event the number196

of sources ns are randomly sampled from the corresponding distributions.197
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Figure 7. Number of wounded nucleons (left panel) and binary collisions (right panel) as generated with a Glauber Monte Carlo
simulation using input from the ALICE experiment [28]. The selection corresponds to the 5% most central Pb-Pb collisions at√
sNN = 2.76 TeV.

The simulated mean numbers of protons are shown in the left panel of Fig. 4 for the four centrality classes. In the198

right panel of Fig. 4 the reconstructed second-order cumulants of protons are presented, normalized to the expected199

true cumulant, κ̄2[p]sim. The black stars represent the results which include volume fluctuations. The values κcorr
2 as200

calculated using Eq. 24 are shown with blue stars, while the red stars are evaluated using Eq. 23. The results for the201

third and fourth order cumulants are shown in Fig. 5. The corresponding normalized biases ∆n/κ̄n are presented in202

Fig. 6. We find the normalized biases to be very small, of the order of a few percent, so that the corrected cumulants,203

κcorr
n are very close to their expected true values, κ̄n. As already discussed, this is to be expected since the multiplicity204

distribution per wounded nucleon in the present model is close to Poisson.205

To investigate the high-energy limit, we also apply the method to ALICE data. In doing so we first run Glauber206

Monte Carlo simulations for Pb-Pb collisions at
√
sNN = 2.76 TeV. The input parameters are taken from Ref. [28],207

which selects different centrality classes by introducing sharp cuts on the charged-particle distributions. The distri-208

butions of wounded nucleons and binary collisions corresponding to the 5% most central collisions are presented in209

Fig. 7 [23]. The reconstructed mean number of wounded nucleons and binary collisions, corresponding to the 5%210

most central collisions are ⟨NW ⟩ ≈ 382 and ⟨Ncoll⟩ ≈ 1685, respectively, consistent with the numbers given in [28].211

With these numbers one can estimate a mean number of particle emitting sources, yielding ⟨ns⟩ ≈ 642 (see Eq. 34).212

The corresponding mean number of charged particles can be estimated as ⟨Nch⟩ = ⟨ns⟩ × µNBD ≈ 18811. On the213

other hand, the total number of charged particles measured inside the ALICE acceptance is about 1601 [31]. We thus214

folded the ALICE NBD distribution with a binomial with the acceptance factor of ϵ = 1601/18811 ≈ 8.5% to obtain215

the distribution within the experimental acceptance.1 The so obtained NDB distribution from ALICE is presented216

in Fig. 8. We further note that only the acceptance in rapidity is considered. Fluctuation analyses are performed217

within a finite momentum range. Inclusion of the latter will further reduce the discrepancy between NBD and the218

corresponding Poisson distribution shown with the red histogram in Fig. 8. Finally using the NBD distribution pre-219220

sented in Fig. 8, and measured proton number, ⟨Np⟩ ≈ 35 [31], we estimated ∆2[p] ≈ 1.2. This corresponds to a bias221

of ∆2[p]/κ̄2[p] ≈ 3.3% (cf. Eq. 24).222

VII. MODEL B223

In model B we introduce correlations between charged particles, specifically pions and protons by generating res-224

onances. Especially for HADES energies most of the observed pions are believed to originate from decays of Delta225

resonances. Therefore, the effect of such decay correlations, while no treated quantitatively here, needs to be taken226

1 We note that binomial folding of the NDB distribution, with the acceptance factor ϵ, changes only the parameter µ of the original NDB
distribution (µ → ϵµ), while the parameter k stays unchanged.
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(c) of Fig. 1.

into account. Specifically, this is done by generating resonances from each source and letting them decay into two227

different particle species. Moreover, the resonances are generated from a Poisson distribution. In addition we produce228

independent particles from each source as well, sampled also from a Poisson distribution. Schematic illustration of229

the model for a single source is given in Fig. 9. Fluctuations of sources are introduced like in the model A. The input230

parameters for model B are given in Table II.231

particles mean numbers per source

resonances 0.03
independent protons 0.23

other particles 0.21

Table II. Parameters for model B are mean numbers of different particles species per source (see [30] and references therein). In
addition, each resonance decays into one proton and one pion. Numbers of resonances, independent protons and other particles
are sampled from independent Poisson distributions.

By construction the simulated protons, pions and resonances follow a Poisson distribution, however, the distribution232

of the total number of particles does not, due to the correlation between pions and protons introduced via the resonance233

decay. Indeed, particle production through resonance decays enhances their fluctuations (see Appendix F).234

In experiments measurements are performed inside the finite acceptance by imposing selection criteria in momentum235

space, e.g., on rapidity and/or transverse momentum of particles. Moreover, such conditions typically lead to different236

acceptances for different particle species. In order to study the impact of the finite acceptance on the presented237

formalism, we introduce arbitrary rapidity distributions for protons, pions and other particles as illustrated in the right238

panel of Fig. 9. To this end we generate rapidity values for protons, pions and other particles from the corresponding239

distributions presented in Fig. 9.240

In the left panel of Fig. 10 we present mean multiplicities of protons produced via resonances (red circles) and241
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independently (blue circles), while the black circles correspond to the total number of protons. In addition, we242

produce pions from resonances, and, by construction, their mean values are equal to those of protons from resonances.243

The right panel of Fig. 10 shows the second-order cumulants of protons divided by the expected value κ̄2[p]sim.244

The black stars represent those including participant (volume) fluctuations, κ2[p]/κ̄2[p]sim. The corrected cumulants245

κcorr
2 [p]/κ̄2[p]sim (see Eq. 24) are shown with blue symbols, while the open red stars represent the true reconstructed246

values of fluctuations of protons κ̄2[p]/κ̄2[p]sim as calculated using Eq. 23. Similar results for the third and fourth247

order cumulants of protons are presented in Fig. 11 (see Eqs. 25, 26, 23). In Fig. 12 the normalized cumulants as a248

function of cumulant order are presented for the 10% most central collisions. The right panel of Fig. 12 corresponds249

to the full acceptance, while in the right panel the results in the finite acceptance, delimited as |y| < 1, are presented.250

One clearly observes that in the finite acceptance the precision of the method is significantly better. In Fig. 13251

we show the magnitude of the corresponding normalized biases, ∆n/κ̄n, for the full acceptance (left panel) and for252

|y| < 1 (right panel). While the biases for the full acceptance may at first sight appear rather large (∼ 40% ) one253

should realize that for the most central events the uncorrected fourth order cumulant is more than a factor of 50254

larger in magnitude than the true cumulants. In other words the proposed corrections, while not perfect are a huge255

improvement of the measurement. The situation gets better for the limited acceptance.256

VIII. DISCUSSION AND SUMMARY257

• We have shown that using mixed events to determine the contributions of wounded nucleon or volume fluc-258

tuations is equivalent to extracting the latter from the track multiplicity distribution. However event mixing259

may offer an advantage since it allows to generate an almost arbitrarily large event ensemble with the same260

multiplicity distribution, and thus eliminate possible constraints due to limited event statistics.261

In either case, not all contributions can be accessed by direct measurement. The remaining terms lead to biases,262

∆k, which depend on the multiplicity distribution per wounded nucleon. These biases are, however, paramet-263

rically suppressed by powers of ⟨N⟩ / ⟨M⟩ depending on the order of the cumulants. The biases are also small264

if the multiplicity distribution per wounded nucleon is close to Poisson. We suggest constraining these biases265

in experiments with fits to the observed multiplicity distribution within the wounded-nucleon model. Here, we266

refer to the Glauber Monte Carlo fits performed by each experiment. One of the outcomes of such a fitting267

procedure is the distribution of charged particles per source, as presented in Fig. 1 for the HADES case, which268

can be used to estimate the bias terms.269

• We have worked here within the wounded nucleon model to formulate volume fluctuations. Alternatively, one270

may introduce generic volume fluctuations as done e.g. in [22]. It is easy to show (see Appendix D) that the271

resulting expressions for the corrected cumulants, κcorr
j , and the biases, ∆j , are identical to those derived here,272

i.e. Eqs. (24-26).273
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circles respectively. The black circles represent total multiplicity of protons. Pions are produced only via resonances. Right
panel: Reconstructed second-order cumulants of protons including participant fluctuations (black stars). Corrected values for
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against volume fluctuation. The results are normalized to the true second order cumulant, κ̄2[p]sim.
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Figure 11. Left panel: Reconstructed third-order cumulants of protons including participant fluctuations (black stars) for
model B. Corrected values for cumulants κcorr
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represent fully corrected, against volume fluctuations, values κ̄3[p]=κcorr

3 [p] + ∆3[p]. Right panel: Similar to the left panel
but for the fourth-order cumulants. Note that the values for the fourth-order cumulants with volume fluctuations (black stars)
need to be multiplied by 50 for the first three centrality classes. The results are normalized to the true third or fourth order
cumulant, κ̄3[p]sim ,κ̄4[p]sim, respectively

• We note that one gets similar expressions for the fluctuations from the wounded nucleons, Eqs. (20-22), in terms274

of the factorial cumulants of, for example, pions instead of the total track multiplicity. This has the advantage275

that the corrections do not involve the particles of interest, protons, in our case.276

• We have checked that the proposed method also works if the multiplicity distribution is determined for a277

different acceptance than the particle distribution of interest. In this case all quantities in the expression for the278

corrected cumulants, Eqs.(24-26) involving the multiplicity should be evaluated in the multiplicity acceptance279

while all quantities involving the particles of interest, such as ⟨N⟩ or κj [N ] should be determined in the particle280

acceptance.281

• We have verified that the proposed method is not affected by potentially different rapidity distributions for282

different particle types.283

• We did not consider separate contributions from produced and stopped protons in the finally measured fluctu-284
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Figure 12. Left panel: Cumulants of protons in the full acceptance, presented for the 10% most central collisions (cf. Figs. 10
and 11). Right panel: Similar plot for the 10% most central collisions, but inside the finite acceptance delimited with the
|y| < 1 criterion. The results are normalized to the true cumulants, κ̄n[p]sim.
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Figure 13. The bias terms for model B, in the full (left panel) and finite (right panel) acceptances. The acceptance, |y| < 1 is
introduced using rapidity distributions of pions and protons as shown in Fig. 9.

ation signals. This is an important topic which goes beyond our studies presented in this work.285

• We note that the correction term and bias for the second-order cumulant depends on the properties of the286

multiplicity distribution only while those for higher-order cumulants also involve the (uncorrected) cumulants287

of interest (at a lower order), κn[N ] (see Eq. (25,26).288

• The proposed method is also applicable for mixed cumulants, such as the covariance between two particle species.289

The relevant formulas for mixed cumulants between species A and B up to κ2,2[A,B] are given in Appendix G.290

The corresponding relations for correction and bias terms for mixed cumulants of any order can also be obtained291

with the provided software package [26].292

• Here we have not explicitly discussed corrections for net proton cumulants. Since the expressions for the
cumulants of the net-particle distribution, in the presence of wounded nucleon fluctuations, are the same as
Eqs. (1-(4)) with N → N − N̄ [22, 23] our formulas above can be readily applied. For example for the second
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order cumulant of the net-particle number distribution, we obtain using Eq.(24)

κcorr
2 [N − N̄ ] = κ2[N − N̄ ]−

(
⟨N⟩ −

〈
N̄
〉)2

⟨M⟩2
C2[M ]

∆2,N−N̄ =

(
⟨N⟩ −

〈
N̄
〉)2

⟨M⟩2
C̄2[M ]. (39)

Alternatively and as a cross check, one can use the expression for the mixed cumulants provided in Appendix
G:

κ2[N − N̄ ] = κ2[N ] + κ2[N̄ ]− 2κ1,1[N, N̄ ] (40)

so that (see Eq. (G8))

κcorr
2 [N − N̄ ] = κ2[N − N̄ ]−

(
⟨N⟩ −

〈
N̄
〉)2

⟨M⟩2
C2[M ] (41)

with the bias

∆2,N−N̄ =

(
⟨N⟩ −

〈
N̄
〉)2

⟨M⟩2
C̄2[M ] (42)

For systems at vanishing baryon chemical potential, such as those created at very high collision energies around293

mid-rapidity, ⟨N⟩ =
〈
N̄
〉
, the corrected second-order cumulant is identical to the measured one (as discussed in294

[22, 23] ) and the bias vanishes.295

In a similar way the correction formulas for mixed cumulants and the corresponding bias terms can be expressed296

for net particles. In this case the replacements A → A− Ā and B → B − B̄ should be performed (see Eqs. G8-297

G14).298

In summary, we have presented a method to correct experimentally measured particle number cumulants for the299

effect of volume fluctuations. The essential idea is to extract the contribution from the volume fluctuations from the300

distribution of charged particles which, after appropriate re-scaling, may be subtracted from the measured cumulants301

of interest. Our proposed method is not exact as there remains a bias or remnant which can not be accessed directly302

from experiment. However, we have shown by model calculations that this bias is very small compared to the303

contribution from participant fluctuations and we hence consider our method an important step towards measuring304

the true dynamical fluctuations of the system.305

ACKNOWLEDGMENTS306

V.K would like to thank GSI and the Institute for Nuclear Theory at the University of Washington for their kind307

hospitality and stimulating research environment. V.K. has been supported by the U.S. Department of Energy, Office308

of Science, Office of Nuclear Physics, under contract number DE-AC02-05CH11231, by the INT’s U.S. Department of309

Energy grant No. DE-FG02-00ER41132, and by the ExtreMe Matter Institute EMMI at the GSI Helmholtzzentrum310

für Schwerionenforschung, Darmstadt, Germany.311

Appendix A: Wounded-nucleon model312

Here we briefly discuss the wounded-nucleon model following the Appendix of Ref. [32]. The wounded-nucleon model313

assumes that particles are produced by independent sources, called wounded nucleons or participants. Therefore, the314

probability to find A particles of type A and B particles of type B can be written as315

P (A,B) =
∑
w

W (w)
∑

a1,···aw

∑
b1,···bw

p (a1, b1) · · · p (aw, bw) δA,
∑w

k=1 ak
δB,

∑w
k=1 bk . (A1)
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Here W (w) denotes the probability to have w wounded nucleons, and p(a, b) is the probability to have a particles of
type A and b particles of type B from one wounded nucleon. The moment-generating function, h (tA, tB) is then

H (tA, tB) =
∑
A,B

etAAetbBP (A,B)

=
∑
w

W (w)
∑

a1,···aw

∑
b1,···bw

p (a1, b1) · · · p (aw, bw) etA
∑w

k=1 aketB
∑w

k=1 bk

=
∑
w

W (w)
∑
a1,b1

p (a1, b1) e
tAa1+tbb1 · · ·

∑
aw,bw

p (aw, bw) e
tAaw+tBbw

=
∑
w

W (w)

∑
a,b

p (a, b) etAa+tBb

w

=
∑
w

W (w) [hw (tA, tB)]
w

=
∑
w

W (w) ew gw(tA,tB) (A2)

where hw (tA, tB) =
∑

a,b p (a, b) e
tAa+tBb is the moment-generating function and gw(tA, tB) = ln [hw (tA, tB)] the316

cumulant-generating function for one wounded nucleon, respectively. The cumulant-generating function, G (tA, tB) =317

ln [H (tA, tB)], is then given by318

G (tA, tB) = ln [H (tA, tB)] = ln

[∑
w

W (w) ew gw(tA,tB)

]
= GW (gw(tA, tB)) (A3)

where GW (t) = ln [
∑

w W (w) ew t] is the cumulant-generating function for the wounded-nucleon distribution, W (w).319

We note, that gw(0, 0) = GW (0) = 0 by construction. The cumulants are then obtained as320

κj,k[A,B] =
∂(j+k)

∂tjA∂t
k
B

G (tA, tB)

∣∣∣∣∣
tA=tB=0

. (A4)

For example, denoting κi,j [a, b] as the cumulants of the distribution from one wounded nucleon, we have321

κ1[A] =
∂

∂tA
G(tA, 0)|tA=0 =

dGw

dgw

dgw(tA, 0)

dtA

∣∣∣∣
tA=0

=
dGw

dgw

∣∣∣∣
gw=0

dgw(tA, 0)

dtA

∣∣∣∣
tA=0

= κ1[Nw]κ1[a] = ⟨Nw⟩ ⟨a⟩ (A5)

where κ1[n] = ⟨a⟩ denotes the mean number of particles of type A per wounded nucleon and κ1[w] = ⟨Nw⟩ the mean322

number of wounded nucleons. The second-order cumulant is323

κ2[A] =
∂2

∂t2A
G(tA, 0)|tA=0

=
d2Gw

dg2w

(
dgw(tA, 0)

dtA

)2
∣∣∣∣∣
tA=0

+
dGw

dgw

d2gw(tA, 0)

dt2A

∣∣∣∣
tA=0

= κ2[Nw]κ1[a]
2 + κ1[Nw]κ2[a] = κ2[Nw] ⟨a⟩2 + ⟨Nw⟩κ2[a] (A6)

The covariance is324
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cov[A,B] =
∂2

∂tA∂tB
G(tA, tB)|tA,tB=0 =

∂

∂tB

(
dGw

dgw

∂gw(tA, tB)

∂tA

)∣∣∣∣
tA,tB=0

=
d2Gw

dg2w

∂gw(tA, tB)

∂tA

∂gw(tA, tB)

∂tB

∣∣∣∣
tA,tB=0

+

(
dGw

dgw

∂2gw(tA, tB)

∂tA∂tB

)∣∣∣∣
tA,tB=0

= κ2[NW ]κ1[a]κ1[a] + κ1[Nw]cov[a, b]

= κ2[Nw] ⟨a⟩ ⟨b⟩+ ⟨Nw⟩ cov[a, b] (A7)

Using the relation between the cumulant and factorial cumulant-generating function, Eq. B3 , the factorial cumulant325

generating function is given by326

GF (zA, zB) = G (ln(zA), ln(zB)) = GW (gw (ln(zA), ln(zB))) = GW (gF,w (zA, zB)) , (A8)

with327

gF,w (zA, zB) = ln

∑
a,b

p (a, b) zaAz
b
B


the factorial cumulant-generating function for the distribution of one wounded nucleon, p (a, b). The structure is
the same as for the cumulant-generating function, except that now the argument of the wounded-nucleon cumulant-
generating function is the factorial cumulant-generating function, gF,w. Thus the factorial cumulants are easily
obtained by simply replacing all the cumulants of the particle distribution for a given wounded nucleon, κi,j [a, b] with
the corresponding factorial cumulants, with C1[X] = κ1[X] = ⟨X⟩

C1[A] =
∂

∂zA
GF (zA, 1)|zA=1 = κ1[Nw]C1[a] = ⟨Nw⟩ ⟨a⟩

C2[A] = κ2[Nw] ⟨a⟩2 + ⟨Nw⟩C2[a]

C1,1[A,B] = cov[A,B] (A9)

Appendix B: Cumulant and factorial cumulant-generating functions328

Given a multiplicity distribution for particles of type A and B, P (A,B) the generating functions for cumulants,329

g(tA, tB), and factorial cumulants, gF (zA, zB) are given by330

g (tA, tB) = ln

∑
A,B

P (A,B) etAAetBB

 (B1)

gF (zA, zB) = ln

∑
A,B

P (A,B) (zA)
A(zB)

B

 . (B2)

By construction, g (tA = 0, tB = 0) = 0 and gF (zA = 1, zB = 1) = 0. Cumulants of order (i, j), κj,k[A,B], are then331

obtained through332

κj,k[A,B] =
∂(j+k)

∂tjA∂t
k
B

g (tA, tB)

∣∣∣∣∣
tA=tB=0

,

while the factorial cumulants, Cj,k[A,B], are given by333

Cj,k[A,B] =
∂(j+k)

∂zjA∂z
k
B

gF (zA, zB)

∣∣∣∣∣
zA=zB=1

.
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The generating functions are related through334

gF (zA, zB) = g [ln(zA), ln(zB)] (B3)

or vice versa335

g (tA, tB) = gF
(
etB , etB

)
(B4)

These relations may also be used to convert cumulants into factorial cumulants and vice versa [33]. For example,336

for the diagonal cumulants, κn[A] we have337

κn[A] =

n∑
j=1

S (n, j)Cj [A] (B5)

where S(n, j) denotes the Stirling numbers of the second kind. The inverse relation is338

Cn[A] =

n∑
j=1

s (n, j)κj [A], (B6)

with s(n, j) denoting the Stirling numbers of the first kind. For the first four orders this evaluates to

κ1 = C1

κ2 = C1 + C2

κ3 = C1 + 3C2 + C3

κ4 = C1 + 7C2 + 6C3 + C4 (B7)

and

C2 = κ2 − κ1

C3 = 2κ1 − 3κ2 + κ3

C4 = −6κ1 + 11κ2 − 6κ3 + κ4 (B8)

Appendix C: Multiplicity Distribution339

The multiplicity distribution, P (M), is given by summing over all (charged) particles,

PM (M) =
∑

A,B,X

P (A,B,X) δM,A+B+X , (C1)

where340

P (A,B,X) =
∑
w

W (w)
∑

a1,···aw

∑
b1,···bw

∑
x1.···xw

p (a1, b1, x1) · · · p (aw, bw, xw) δA,
∑w

k=1 ak
δB,

∑w
k=1 ak

δX,
∑w

k=1 xk

is the distribution of particles of type A, B and all others, denoted by X. The distribution for particles A and B341

defined in Appendix A are then given by P (A,B) =
∑∞

X=0 P (A,B,X) while that for the particles per wounded342

nucleons are given by p (a, b) =
∑∞

x=0 p (a, b, x)343
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The moment-generating function is then given by (proceeding analogously to Eq. A2:

HM (t) =
∑
M

PM (M) etM =
∑

M,A,B,X

P (A,B,X)δM,A+B+X etM =
∑

A,B,X

P (A,B,X) et(A+B+X)

=
∑
w

W (w)
∑

a1,···aw

∑
b1,···bw

∑
x1.···xw

p (a1, b1, x1) · · · p (aw, bw, xw) e
t
∑w

k=1 aket
∑w

k=1 bket
∑w

k=1 xk

=
∑
w

W (w)
∑
a1

∑
b1

∑
x1

p (a1, b1, x1) e
t(a1+b1+c1) · · ·

∑
aw

∑
bw

∑
xw

p (aw, bw, xw) e
t(aw+bw+cw)

=
∑
w

W (w)

[∑
a

∑
b

∑
x

p (a, b, x) et(a+b+c)

]w
=
∑
w

W (w) [hm,w(t)]
w

=
∑
w

W (w) ewgm,w(t)

where, hm,w(t) the moment-generating function and gm,w(t) = ln [hm,w(t)] the cumulant-generating function of the344

multiplicity distribution for one wounded nucleon, p(m) =
∑

a,b,x p(a, b, x)δm,a+b+x. The cumulant-generating func-345

tion, GM (t), for the multiplicity distribution, P (M), is then given by346

GM (t) = ln [HM (t)] = ln

[∑
w

W (w) ewgm,w(t)

]
= GW (gm,w(t)) (C2)

The cumulants of the multiplicity distribution are given by (following the analogous Eqs. A5 and A6)

κ1[M ] = ⟨Nw⟩ ⟨m⟩
κ2[M ] = κ2[Nw] ⟨m⟩2 + ⟨Nw⟩κ2[m] (C3)

where κi[m] denote the cumulants of the multiplicity distribution of one wounded nucleon and κi [NW ] those of the347

wounded nucleon distribution. Analogous to Eq. A8 the factorial cumulant-generating function is readily obtained348

GF,M (z) = GM (ln(z)) = GW (gm,w (ln(z))) = GW (gF,m,w (z)) , (C4)

with349

gF,m,w(z) = ln

[∑
m

p(m)zm

]
,

the factorial cumulant-generating function for the multiplicity distribution of one nucleon, p(m). Again, the factorial
cumulants are obtained by replacing the cumulants of the distribution p(m), κi[m] with the corresponding factorial
cumulants, Ci[m], in Eq. C3 by the factorial cumulants

C1[M ] = ⟨Nw⟩ ⟨m⟩
C2[M ] = κ2[Nw] ⟨m⟩2 + ⟨Nw⟩C2[m] (C5)

Appendix D: Wounded Nucleon vs Volume Fluctuations350

Here we will discuss the relation between wounded nucleon fluctuations [23] and so-called volume fluctuations as351

they are discussed e.g. in [22]. Following Ref. [22] the cumulant-generating function is given by352

Φ(t) = ln

[∫
dV P (V )eV ξ(t)

]
=χV (ξ(t)) (D1)

with χV (t) the cumulant-generating function for the distribution of volumes, P (V ), and353

ξ(t) =
1

V
ln

[∑
N

p(N ;V )eNt

]
(D2)
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the generating function for scaled cumulants, κ/V , given for the distribution of particles at fixed volume, p(N ;V ).354

Then, for a fixed volume V , the scaled cumulants are given by355

κj

V
=

∂j

∂ tj
ξ(t)|t=0 . (D3)

For the wounded nucleon model we have (see Appendix A)356

G(t) = ln

[∑
w

W (w) ew gw(t)

]
= GW (gw(t)) (D4)

with GW (t) the cumulant-generating function for the wounded nucleon distribution, W (w), and357

gw(t) = ln

[∑
n

p(n)ent

]
(D5)

the generating function for the distribution of particles for one wounded nucleon. The cumulants per wounded nucleons358

for a fixed number of wounded nucleons, Nw, are given by359

κj [N ]

Nw
= κj [n] =

∂j

∂ tj
gw(t)|t=0 . (D6)

Comparing the above expressions, one finds that the cumulants for volume fluctuations can be obtained from those
for the wounded-nucleon number by the following replacements

κj [Nw] → κj [V ]

κ̄j [N ] = ⟨Nw⟩κj [N ] → ⟨V ⟩ κj

V

Indeed comparing the second-order cumulants for both scenarios we have

κ2[N ] = ⟨Nw⟩κ2[n] + ⟨n⟩2 κ2[Nw] = κ̄2[N ] + ⟨N⟩2 κ2[Nw]

⟨Nw⟩2

κ2[N ] = ⟨V ⟩ κ2

V
+
(κ1

V

)2
κ2[V ] = κ̄2[N ] + ⟨N⟩2 κ2[V ]

⟨V ⟩2

where in the second line we used κ1 = ⟨N⟩ and κ̄2 = ⟨V ⟩ κ2

V . Obviously, analogous replacements also hold for the360

factorial cumulants361

C̄j [N ] = ⟨Nw⟩Cj [n] → ⟨V ⟩ Cj

V

with Cj/V the volume scaled factorial cumulants.362

Appendix E: Results for factorial cumulants363

Here we provide the formulas for the corrected factorial cumulants, Ccorr
k and ccorrk , and the associated biases,364

∆k,F and δk,F . Both the factorial cumulants and the biases are related to the corresponding cumulants via the linear365

relation Eqs. B7 and B8. The corrected factorial cumulants and the associated biases are366

Ccorr
2 = C2[N ]− ⟨N⟩2

⟨M⟩2
C2[M ] (E1)

Ccorr
3 = C3[N ]− 3C2[M ]C2[N ]⟨N⟩

⟨M⟩2
+

3C2[M ]2⟨N⟩3

⟨M⟩4
− C3[M ]⟨N⟩3

⟨M⟩3
(E2)

Ccorr
4 = C4[N ]−

(
6C2[N ]⟨N⟩2

(
C3[M ]⟨M⟩ − 3C2[M ]2

)
⟨M⟩4

+
4C2[M ]C3[N ]⟨N⟩

⟨M⟩2
(E3)

+
3C2[M ]C2[N ]2

⟨M⟩2
+

⟨N⟩4
(
−10C3[M ]C2[M ]⟨M⟩+ C4[M ]⟨M⟩2 + 15C2[M ]3

)
⟨M⟩6

)
(E4)
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∆2,F =
⟨N⟩2

⟨M⟩2
C̄2[M ] (E5)

∆3,F = C̄2[M ]

(
3C2[N ]⟨N⟩

⟨M⟩2
− 3C2[M ]⟨N⟩3

⟨M⟩4

)
+

C̄3[M ]⟨N⟩3

⟨M⟩3
(E6)

∆4,F = C̄2[M ]

(
4C3[N ]⟨N⟩

⟨M⟩2
+

3C2[N ]2

⟨M⟩2
− 18C2[M ]C2[N ]⟨N⟩2

⟨M⟩4
− 4C3[M ]⟨N⟩4

⟨M⟩5
+

15C2[M ]2⟨N⟩4

⟨M⟩6

)
(E7)

+ C̄3[M ]

(
6C2[N ]⟨N⟩2

⟨M⟩3
− 6C2[M ]⟨N⟩4

⟨M⟩5

)
+

C̄4[M ]⟨N⟩4

⟨M⟩4
(E8)

For the scaled factorial cumulants we have367

ccorr2 = c2[N ]− ⟨N⟩
⟨M⟩

c2[M ] (E9)

ccorr3 = c3[N ]− 3
⟨N⟩
⟨M⟩

c2[M ]c2[N ] +

(
⟨N⟩
⟨M⟩

)2 (
3c2[M ]2 − c3[M ]

)
(E10)

ccorr4 = c4[N ]− ⟨N⟩
⟨M⟩

(
3c2[M ]c2[N ]2 + 4c2[M ]c3[N ]

)
(E11)

+

(
⟨N⟩
⟨M⟩

)2 (
18c2[M ]2c2[N ]− 6c3[M ]c2[N ]

)
(E12)

+

(
⟨N⟩
⟨M⟩

)3 (
−15c2[M ]3 + 10c2[M ]c3[M ]− c4[M ]

)
(E13)

δ2,F =
⟨N⟩
⟨M⟩

c̄2[M ] (E14)

δ3,F = 3
⟨N⟩
⟨M⟩

c2[N ]c̄2[M ] +

(
⟨N⟩
⟨M⟩

)2

(c̄3[M ]− 3c2[M ]c̄2[M ]) (E15)

δ4,F =
⟨N⟩
⟨M⟩

(
3c2[N ]2c̄2[M ] + 4c3[N ]c̄2[M ]

)
(E16)

+

(
⟨N⟩
⟨M⟩

)2

(6c2[N ]c̄3[M ]− 18c2[M ]c2[N ]c̄2[M ]) (E17)

+

(
⟨N⟩
⟨M⟩

)3 (
15c2[M ]2c̄2[M ]− 6c2[M ]c̄3[M ]− 4c3[M ]c̄2[M ] + c̄4[M ]

)
(E18)

Appendix F: Particle production through cluster decays368

Let us assume that particles are produced via clusters and that each cluster further decays into two particles.369

Moreover, clusters are generated from a Poisson distribution. As each cluster decays into two particles the probability370

of measuring k particles is equivalent to measuring k/2 clusters and can be presented as:371

p (k; ⟨Ncl⟩) = e−⟨Ncl⟩ ⟨Ncl⟩k/2

(k/2)!
(F1)

The corresponding moment-generating function reads:372

M(t) =

∞∑
k/2=0

etke−⟨Ncl⟩ ⟨Ncl⟩k/2

(k/2)!
= e⟨Ncl⟩(e2t−1), (F2)
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where ⟨Ncl⟩ denotes mean number of clusters produced.373

The cumulants of total particle number k can be computed as:374

κn[k] =
∂n

dtn
ln(M(t))

∣∣∣∣
t=0

(F3)

For the first two cumulants one gets:375

κ1[k] = 2⟨Ncl⟩ (F4)

κ2[k] = 4⟨Ncl⟩ (F5)

One clearly sees from Eqs. F4 and F5 that κ1(k) ̸= κ2(k), i.e the total number of particles does not follow a Poisson376

distribution, although the clusters do. Moreover, one observes that particle production through clusters enhances377

fluctuations. In general, for clusters following a Poisson distribution and decaying into m particles, the cumulants of378

total particle number can be written as:379

κn[k] = mn⟨Ncl⟩ (F6)

We note that Eq. F6 also applies to particle production through resonance decays.380

Appendix G: Mixed Cumulants381

Here we provide the relevant formulas for mixed cumulants. Given the generating function, Eq. A3, the mixed382

cumulants for particles of type A and B are given by (see Eq. A4)383

κj,k[A,B] =
∂(j+k)

∂tjA∂t
k
B

g (tA, tB)

∣∣∣∣∣
tA=tB=0

(G1)

The explicit formulas for the four lowest-order mixed cumulants are:

κ1,1[A,B] = κ̄1,1[A,B] + ⟨A⟩⟨B⟩κ2 [NW ]

⟨NW ⟩ 2
(G2)

κ2,1[A,B] = κ̄2,1[A,B] + (2⟨A⟩κ̄1,1[A,B] + ⟨B⟩κ̄2,0[A,B])
κ2 [NW ]

⟨NW ⟩ 2
+ ⟨A⟩2⟨B⟩κ3 [NW ]

⟨NW ⟩ 3
(G3)

κ1,2[A,B] = κ̄1,2[A,B] + (⟨A⟩κ̄0,2[A,B] + 2⟨B⟩κ̄1,1[A,B])
κ2 [NW ]

⟨NW ⟩ 2
+ ⟨A⟩⟨B⟩2κ3 [NW ]

⟨NW ⟩ 3
(G4)

κ2,2[A,B] = κ̄2,2[A,B] +
(
⟨A⟩2κ̄0,2[A,B] + 4⟨A⟩⟨B⟩κ̄1,1[A,B] + ⟨B⟩2κ̄2,0[A,B]

) κ3 [NW ]

⟨NW ⟩ 3

+
(
2⟨A⟩κ̄1,2[A,B] + 2⟨B⟩κ̄2,1[A,B] + 2κ̄1,1[A,B]2 + κ̄0,2[A,B]κ̄2,0[A,B]

) κ2 [NW ]

⟨NW ⟩ 2

+ ⟨A⟩2⟨B⟩2κ4 [NW ]

⟨NW ⟩ 4
(G5)

where, analogous to the notation for the regular cumulants, κ̄j,k[A,B] denotes the mixed cumulant for constant
number of wounded nucleons ⟨NW ⟩. Note, that κj,0[A,B] = κj [A] and κ0,j [A,B] = κj [B] correspond to the regular
cumulant for particles of type A and B respectively. The first order mixed cumulant, κ1,1[A,B] = cov[A,B] is also
referred to as the covariance between the distributions of particles A and B. In order to obtain the corrected mixed
cumulants we proceed in the same fashion as for the regular cumulant. We express the terms involving cumulants of
the wounded nucleons, κi [NW ] / ⟨NW ⟩i in terms of the factorial cumulants of the multiplicity distribution (See Eqs.
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20-22) and solve for the the mixed cumulants with fixed number of wounded nucleons, κ̄j,k[A,B]. Again, the results
are given in the form

κ̄j,k[A,B] = κcorr
j,k [A,B] + ∆j,k (G6)

where κcorr
j,k [A,B] are the cumulants including the measurable corrections and ∆j,k are the corresponding biases due

to quantities which are not directly measurable.

κcorr
1,1 [A,B] = κ1,1[A,B]− ⟨A⟩⟨B⟩

⟨M⟩2
C2[M ] (G7)

∆1,1 =
⟨A⟩⟨B⟩
⟨M⟩2

C̄2[M ] (G8)

κcorr
2,1 [A,B] = κ2,1[A,B]− ⟨B⟩C2[M ]κ̄2,0[A,B]

⟨M⟩2
− 2⟨A⟩C2[M ]κ1,1[A,B]

⟨M⟩2
+

⟨A⟩2⟨B⟩
(
2C2[M ]2 − ⟨M⟩C3[M ]

)
⟨M⟩4

(G9)

∆2,1 =
1

⟨M⟩4
[
2⟨A⟩⟨M⟩2C̄2[M ]κ1,1[A,B] + ⟨B⟩⟨M⟩2C̄2[M ]κ̄2,0[A,B]

−⟨A⟩2⟨B⟩
(
C̄2[M ]

(
C̄2[M ] + C2[M ]

)
− ⟨M⟩C̄3[M ]

)]
(G10)

κcorr
1,2 [A,B] = κ1,2[A,B]− ⟨A⟩C2[M ]κ̄0,2[A,B]

⟨M⟩2
− 2⟨B⟩C2[M ]κ1,1[A,B]

⟨M⟩2
+

⟨B⟩2⟨A⟩
(
2C2[M ]2 − ⟨M⟩C3[M ]

)
⟨M⟩4

(G11)

∆1,2 =
1

⟨M⟩4
[
2⟨B⟩⟨M⟩2C̄2[M ]κ1,1[A,B] + ⟨A⟩⟨M⟩2C̄2[M ]κ̄0,2[A,B]

−⟨A⟩⟨B⟩2
(
C̄2[M ]

(
C̄2[M ] + C2[M ]

)
− ⟨M⟩C̄3[M ]

)]
(G12)

κcorr
2,2 [A,B] = κ2,2[A,B] +

2⟨A⟩2C2[M ]2κ̄0,2[A,B]

⟨M⟩4
+

2⟨B⟩2C2[M ]2κ̄2,0[A,B]

⟨M⟩4

− C2[M ]κ̄0,2[A,B]κ̄2,0[A,B]

⟨M⟩2
− ⟨A⟩2C3[M ]κ̄0,2[A,B]

⟨M⟩3
− ⟨B⟩2C3[M ]κ̄2,0[A,B]

⟨M⟩3

+
12⟨A⟩⟨B⟩C2[M ]2κ1,1[A,B]

⟨M⟩4
− 2C2[M ]κ1,1[A,B]2

⟨M⟩2
− 2⟨A⟩C2[M ]κ1,2[A,B]

⟨M⟩2

− 2⟨B⟩C2[M ]κ2,1[A,B]

⟨M⟩2
− 4⟨A⟩⟨B⟩C3[M ]κ1,1[A,B]

⟨M⟩3
− 10⟨A⟩2⟨B⟩2C2[M ]3

⟨M⟩6

+
8⟨A⟩2⟨B⟩2C3[M ]C2[M ]

⟨M⟩5
− ⟨A⟩2⟨B⟩2C4[M ]

⟨M⟩4
(G13)

∆2,2 = C̄2[M ]2
(
−⟨A⟩2κ̄0,2[A,B]

⟨M⟩4
− ⟨B⟩2κ̄2,0[A,B]

⟨M⟩4
+

3C2[M ]⟨A⟩2⟨B⟩2

⟨M⟩6

)
+ C̄2[M ]

(
−C2[M ]⟨A⟩2κ̄0,2[A,B]

⟨M⟩4
− C2[M ]⟨B⟩2κ̄2,0[A,B]

⟨M⟩4
+

κ̄0,2[A,B]κ̄2,0[A,B]

⟨M⟩2

− 2C̄3[M ]⟨A⟩2⟨B⟩2

⟨M⟩5
− 12C2[M ]⟨A⟩⟨B⟩κ1,1[A,B]

⟨M⟩4
+

2⟨A⟩κ1,2[A,B]

⟨M⟩2
+

2κ1,1[A,B]2

⟨M⟩2

+
2⟨B⟩κ2,1[A,B]

⟨M⟩2
+

6C2[M ]2⟨A⟩2⟨B⟩2

⟨M⟩6
− 2C3[M ]⟨A⟩2⟨B⟩2

⟨M⟩5

)
+ C̄3[M ]

(
⟨A⟩2κ̄0,2[A,B]

⟨M⟩3
+

⟨B⟩2κ̄2,0[A,B]

⟨M⟩3
+

4⟨A⟩⟨B⟩κ1,1[A,B]

⟨M⟩3
− 4C2[M ]⟨A⟩2⟨B⟩2

⟨M⟩5

)
+

C̄2[M ]3⟨A⟩2⟨B⟩2

⟨M⟩6
+

C̄4[M ]⟨A⟩2⟨B⟩2

⟨M⟩4
(G14)
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