Lawrence Berkeley National Laboratory

LBL Publications

Title

Computational Biology and High Performance Computing

Permalink

https://escholarship.org/uc/item/1521h7nt

Authors

Zorn, Manfred Head-Gordon, Teresa Arkin, Adam <u>et al.</u>

Publication Date

1999-10-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

ERNEST ORLANDO LAWRENCE Berkeley National Laboratory

Computational Biology and High Performance Computing

Manfred Zorn, Teresa Head-Gordon, Adam Arkin, Brian Shoichet, and Horst D. Simon

National Energy Research Scientific Computing Division

October 1999

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Computational Biology and High Performance Computing

Manfred Zorn, Teresa Head-Gordon, Adam Arkin, Brian Shoichet, and Horst D. Simon

National Energy Research Scientific Computing Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California 94720

October 1999

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, Division of Mathematical, Information, and Computational Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

	Tutorial Outline
■ 1:30 - 2:00 p.m.	Overview of Computational Biology
	Teresa Head-Gordon
■ 2:00 - 3:00 p.m.	Bioinformatics Manfred Zorn
■ 3:00 - 3:30 p.m.	Break
■ 3:30 - 4:00 p.m.	Protein Structure Prediction and
	FoldingTeresa Head-Gordon
■ 4:00 - 4:30 p.m.	Docking/Molecular Recognition
	Brian Shoichet
4:30 - 5:00 p.m.	Cellular Networks Adam Arkin
.	
	Supercomputing DD Portland

(1)	Why computational biology?
(2)	Community effort to define problems with genuine computational complexity
	Genome analysis, gene modeling, sequence-based annotation
	Low resolution fold prediction: Single Molecule
	High resolution structure prediction and protein folding: Single Molecule
	Molecular recognition or Docking: Multi-molecule complexes
	Cellular Decision modeling
(3)	Putting it all together:
	Deinococcus radiodurans
	Center for Integrative Physiome Analysis (CIPhA)

.4

Feed	back from Biotech ndustry Meeting	ererrer in
	LBNL 2/25/99	
Jim Cavalcoli, Ph.D. Bioinformatics Manager, PDLMG Parke-Davis, Warner-Lambert	Patrick O'Hara VP, BioMolecular Informatics ZymoGenetics, Inc Seattle WA	Herve Recipon Asst. dir. bioinformatics diaDexus (Incyte)
Pete Smietana, Ph.D. Senior Staff Software Engineer, Bioinformatics Ciphergen	Peter Karp, Ph.D. Scientific Fellow Pangea Systems	Rick Bott X-ray crystallographer Genencor
Julie Rice Computational Chemist IBM-Almaden	Eric Martin Sr. Scientist Small Molecule Dis Chiron	scovery
LBNL: Gilbert, Head-Gord	on, Holbrook, Mian, Rokhsar, Si	mon, Spengler, Zorn
We want to listen to Biotech industry	ry perspective on Computational	Biology white paper
Is there strong objection to an NO, very supportive Are there other areas to be ind Will be a new chapter on Technical input: contribute a Parke-Davis, Chiron, Zy	y of the content? cluded, stronger emphasis placed databases: integrating, queryin "vignette" on important Comp. I mogenetics, Pangea	l? g, visualization Bio. application
	Supercomputing 99-Portland	

White Paper in Co	mputational Biology		
The First Step Beyond the Genome Project: High-	Biotechnology Advances from Computational		
Throughput Genome Assembly, Modeling, and	Structural Genomics: In Silico Drug Design and		
Annotation	Mechanistic Enzymology		
P. LaCascio, R. Mural, J, Snoddy, E. Uberbacher,	R. Abagyan, NYU, Skirball Institute		
ORNL	P. Bash, ANL		
S. Mian, F. Olken, S. Spengler, M. Zorn: LBNL	J. Blaney, Metaphorics, Inc.		
David States, Washington University	F. Cohen, UCSF		
	M. Colvin, LLNL		
From Genome Annotation to Protein Folds:	I. Kuntz, UCSF		
Comparative Modeling and Fold Assignment			
D. Eisenberg, UCLA	Linking Structural Genomics to Systems Modeling:		
A. Lapedes, LANL	Modeling the Cellular Program		
A. Sali, Rockefeller University	A. Arkin & D. Wolf, LBNL		
B. Honig, Columbia University	P: Karp, PangeaS. Subramaniam, U Illinois Urbana		
Low Resolution Folds to High Resolution Protein	Implicit Collaborations Across the DOE Mission		
Structure and Dynamics	Sciences		
C. Brooks, Scripps Research Institute	M. Colvin & C. Musick, LLNL		
P. Kollman &Y. Duan, UCSF	T. Gaasterland, ANL (now Rockefeller)		
A. McCammon & V. Helms, UCSD	S. Crivelli & T. Head-Gordon, LBNL		
G. Martyna, Indiana University	G. Martyna, Indiana University		
D.Tobias, UCI			
T. Head-Gordon, LBNL			

Genom	e Projects	
Model organisms sequence	ed	
● E. coli	4.5 Mb	
• S. cerevisiae		
• C. elegans	100 Mb	
 Dozens of bacteria 	1 - 6 Mb	
• D. melanogaster	140 Mb	
Human	,	
• 408 Mb		
● ~14% of the genome		
		-
Supercomp	uting 99-Portland	30

	Heuristic Signals	
n de la construcción de la constru Esta de la construcción de la const Esta de la construcción de la const		
Andread Antonio and Antonio Antonio and Antonio and Anto Antonio and Antonio and Anto Antonio and Antonio and Antonio Antonio antonio antonio Antonio antonio		
		and a second sec
y south a south of a	Supercomputing 92-Portland	

Genome Channel
Supercomputing 99-Portland 4:

iC v2 U - Human (2 (24) Por Option	Humo sepiensi Chiamosome 5, Cr n. 1853 Sintian (M.22005)	onlig 1000980 Features	1744674 bp) 20 23			
	 1.11	1		t		i
 				.31	μ(+ 	
e e shi bebe shi ji		11	1 ° , + , ° ; F∉	0 - 1 H # 4 - 4	,, 1 	

	Comp more	ulai Docki	ng
Receptor	Lead from molecular docking	Receptor	Lead from molecular docking
HIV protease	CI-O-ON-V	HGXPRTase	\$ July
thymidylate synthase	, So,	RNA	
hem agglutinin		Zn β-lactamase	
cercarial elastase		Thrombin	N-CN
malarial protease		AmpC β-lactamase	
CD4-gp120	unpublished	thymidylate synthase	N-N \$0,
		HGXPRTase	unpublished

			Know	n ligar	na results	
	Numbe	r of	Time	Score	RMS	Rank in
Enzyme	Confs	Comps	(hrs.)	(kcal/mol)	(Å)	Database
Single Conformation Da	tabase		0.50			
Complexed DHFR	5,761	5,761	0.58			
Uncomplexed DHFR	5,761	5,761	1.40	91.9	8.32	16.09%
Complexed TS	281	281	0.31			
Uncomplexed TS	281	281	0.51	-8.3	3.67	97.15%
Multi Conformation Data	abase					
Complexed DHFR	867,822	5,656	0.94	-12.5	1.20	99.33%
Uncomplexed DHFR	867,822	5,656	2.96	-7.4	1.34	98.83%
Complexed TS	88,487	263	0.27	-89.2	0.77	99.62%
Uncomplexed TS	88,487	263	0.18	-31.5	2.71	99.24%
Full Multi Conformation	Database					
Complexed DHFR	33,717,639	115,349	26.50	-12.5	1.20	99.72%
Complexed TS	33,715,748	117,240	80.90	-89.2	0.77	99.93%

ERSC	H	Iit Rates		FFF DESIZ
Enzyme	Hit	IC50 for	Compounds	Random Hit
AmpC (E. coli)	50%	<10 µM	20	???
IXPRTase (T. cruzi)	60%	<12 µM	22	222
orporate (homology modeled)	2%	???	895	0.04% (per 102,000)
	Sup	ercomputing 99-Por	tland	

	a second s	(BERRELLY LAD)
•Genome projects are providi	ing a large (but partial) list of parts	
•New measurement technolog and timings	gies are helping to identify further compo	onents, their interactions,
Gene microarrays		
 Two-Hybrid library sc 	reens	
 High-throughput capil 	llary electrophoresis arrays for DNA, pro	teins and metabolites
 Fluorescent confocal in 	maging of live biological specimens	
 High-throughput prote 	in structure determination	
•Data is being compiled, syst	ematized, and served at an unprecedente	d rate
• Growth of GenBank and	nd PDB > polynomial	
 Proliferation of databa 	ses of everything from sequence to confo	ocal images to literature
		State State
 The tools for analyzing these 	e various sorts of data are also multiplyir	g at an astounding rate

Ernest Orlando Lawrence Berkeley National Laboratory One Ovelotron Road | Berkeley, California 94720

ABT867

Prepared for the U.S. Department of Anergy under Contract No. DB-ACOB-ZISTODUES