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The Birth-Death-Mutation Process: A New Paradigm for
Fat Tailed Distributions
Yosef E. Maruvka, David A. Kessler, Nadav M. Shnerb*

Department of Physics, Bar Ilan University, Ramat-Gan, Israel

Abstract

Fat tailed statistics and power-laws are ubiquitous in many complex systems. Usually the appearance of of a few
anomalously successful individuals (bio-species, investors, websites) is interpreted as reflecting some inherent ‘‘quality’’
(fitness, talent, giftedness) as in Darwin’s theory of natural selection. Here we adopt the opposite, ‘‘neutral’’, outlook,
suggesting that the main factor explaining success is merely luck. The statistics emerging from the neutral birth-death-
mutation (BDM) process is shown to fit marvelously many empirical distributions. While previous neutral theories have
focused on the power-law tail, our theory economically and accurately explains the entire distribution. We thus suggest the
BDM distribution as a standard neutral model: effects of fitness and selection are to be identified by substantial deviations
from it.
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Introduction

Survival of the fittest or of the luckiest? The answer depends on

the subject considered. Out of ten pairs of pants bought a year ago,

the survivors are perhaps those made of a better material; if

wineglasses are considered, persistence is mainly a matter of luck. In

the absence of prior knowledge, statistics must be used in order to

identify the role of fortune: wineglass life expectancy, for example, is

described by an exponential distribution. Strong deviations from

this statistics indicate to what extent ‘‘death’’ is a result of

accumulated wear, rather than from uncorrelated random events.

In many complex systems, though, it is hard to identify relative

role of fortune. Large differences in success (of investors or authors)

or abundance (of bio-species) do not necessarily reflect the

‘‘quality’’ or the ‘‘fitness’’ of the rich and the frequent. Huge

abundance fluctuations may be a result of accumulation of

stochastic events, as exemplified by the uneven statistics of

surnames in society [1].

The schism between the ‘‘neutral’’ (stochastic) and the ‘‘fitness’’

(deterministic) outlooks is most strongly pronounced in the theory

of evolutionary dynamics [2]. Darwin condemned those who

‘‘attribute … (species’) proportional numbers to what we call

chance. But how false a view is this! [3]’’ and held that the main

factor shaping eco-communities is natural selection. The opposite

view, that random drift plays the major role in evolution — both

on the molecular (Kimura’s neutral evolution [4]) and the

ecological (Hubbell’s community drift model [5]) levels — has

sparked a series of ongoing hot and emotional debates.

In economy and social sciences the deterministic approaches

tend to emphasize the tremendous inequality in income and

wealth, say, as reflecting underlying ‘‘quality’’ (from prudence to

crookedness) differences. The opposing neutral approach [6] have

recently found a prominent outspoken, Nassim Taleb. In his books

[7,8] he maintains that the weight of unpredictable events (what he

calls ‘‘black swans’’) is overwhelming in determining economic and

social success.

Purely deterministic and purely stochastic theories are both

oversimplifications. The real scientific problem is to find the

relative weight of chance versus fitness. The assumption of neutral

dynamics is most useful as a null hypothesis, with which empirical

statistics should be compared. Nowadays this role is played by the

Yule-Simon statistics [9–11], or its approximation by a simple

power law [12,13]. In the following we briefly review Yule’s model

and point out its major shortcoming. We suggest a correction that

yields different statistics and show that the new distribution fits

many ‘‘canonical’’ empirical datasets very nicely.

Yule-Simon theory [9] arose from a study of the the highly

skewed distribution of biological species within genera. One of the

graphs studied by Yule — for the family of long-horn beatles

Cerambycinea — is plotted in the left inset of Fig. 1. This is a

Pareto plot showing nm, the fraction of genera with m species, vs.

m on a log-log scale. One observes a few ‘‘wealthy’’ genera to

which many species belong, and many ‘‘poor’’ genera with

apparent linear dependence that suggests a power-law distribution.

Yule’s neutral model posited that the rate of speciation is fixed

for all species. Upon speciation, the new species stays in the same

genus with probability 1{m. m, the chance that the offspring

species branches out to form a new genus, is also fixed, ensuring

perfect neutrality (no fitness). This simple process generates a

steady state distribution that converges rapidly to a power law for

the relative species abundance nm,

nm~CB(m,2zm)*Cm{(2zm): ð1Þ
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where C is a normalization factor. Note that this fat-tailed

distribution has nothing to do with the ‘‘quality’’ differences

among species, instead it is a result of the multiplicative character

of the noise.

As pointed out by Herbert Simon [10], Yule’s argument goes far

beyond its original context. Simon considered power-laws for the

number of occurrences of words in a text, scientific publications

and wealth distribution. Subsequently, the appearance of power-

laws has been recognized as a fundamental feature of eco-, econo-,

bio- and socio-systems, with countless of examples from protein

family statistics [14], surname abundance ratio [1,15], internet

connections [16], firm sizes [17], casualties in terror attacks [18]

and so on. In addition the common scenario considered in the new

popular theory of scale free networks - the preferential attachment

dynamics - is indeed mathematically equivalent to Yule’s process

[see methods (A)] where small families are generated by a source,

not by mutations [11].

Results and Discussion

As a starting point for the presentation of our new neutral

model, let us stick for the moment to the original context of Yule

theory, the species within genera statistics. The main panel of

Figure 1 reveals a major failure of the Yule-Simon model. The

original distribution observed by Yule for Cerambycinea beatles,

based on the 1024 genera (5719 species) is compared with the

current data with 27221 species and 4411 genera. Clearly,

something bad has happened to the simple power-law: it

characterizes now only the tail of the distribution, and a very

pronounced ‘‘shoulder’’ appears for the small genera.

This shoulder appears in almost any fat-tailed distribution [11].

Accordingly, a ‘‘power law fit’’ indeed involves two parameters: a

threshold xmin marking the end of the shoulder and the tail’s slope.

Unfortunately, the large argument tail tends to be of poor quality,

noisy, brutish and short. Very rarely one finds a reliable dataset that

allows for a good quality fit. Indeed, a recent metaanalysis by

Clauset, Shalizi and Newman [19] reveals that, among 20 canonical

datasets considered, only in one case a power law fit is really

convincing and in most cases other distributions are doing better.

We suggest that these obstacles reflect an essential shortcoming

of the Yule-Simon theory: the neglect of ‘‘death’’ events. In reality

species go extinct, individuals die and links break down, yet in the

Yule-Simon theory this never happens. A death process cannot be

taken into account by simply introducing a net birth rate; it also

accounts for the stochastic extinction of existing families (genera).

Yule theory thus overestimates the fraction of small families, which

explains the typical ‘‘shoulder’’ that appears at small m’s.

Recently Manrubia and Zannete [1] studied the distribution of

surnames in a population, using a model which is a specific

example of the birth-death-mutation (BDM) process (see also [20]).

We [15] then extended these results, showing that the resulting

distribution is independent of the particular details of the process.

In the spirit of Simon’s realization that the Yule model results are

applicable in a much broader context, we here propose, and

demonstrate by numerous examples, that the BDM process and its

resulting statistics should be applicable to a very wide range of

empirical datasets.

BDM statistics: results and applications
Here is a list of the main results for the statistics of the BDM

process, where the total population is growing/decaying at rate c. In

the supplementary material we resent a detailed description of the

BDM dynamics and establish the equivalence between this process

and preferential attachment [16] with the possibility of link removal.

1. The probability distribution function (the chance nm to pick at

random a family of size m) is described by the Kummer

function U(a,b,c) [21].

(a) If the growth rate c is larger than the mutation rate m, an

asymptotic power-law tail appears:

n(m)~
nRcC(2zn)

m
U 1zn,0,

Rcm

N0

� �

*m??
m

{(1z
c

c{m)
,

where n:m=(c{m) and Rc:2N0jc{mj=s2, N0 is the

current population size.

(b) For mwc, the BDM dynamics supports a truncated

power-law distribution [here n:c=(m{c)],

n(m)~
RcC(1zn)

m
U n,0,

Rcm

N0

� �
e
{

Rcm
N0

*m??
m{1{ne

{ 2
s2

(m{c)m
:

ð2Þ

2. When R0 individuals are sampled the effective strength of the

sampling is s~R0=Rc. In the strong sampling limit, s&1, the

new distribution is just a rescaled Kummer [15]. On the other

hand if s%1,

nR(m)&B(m{1{n,2zn)nRosn: ð3Þ

 

Figure 1. Species within genera statistics for Cerambycinea
beatles. The original species within genera statistics used by Yule (blue
squares), based on 1024 genera known at 1925 for the Cerambycinea
family (down left). On a log-log scale this graph looks very much
straight, suggesting a power-law statistics (black line). In the main
figure, the black circles show the contemporary statistics as obtained
for 4411 genera (27221 species of Cerambycinea [24]), where a
pronounced ‘‘shoulder’’ appears. The red line is the best fit of BDM
function (2), c is the diversification rate and m reflects the chance of a
new species to initiate a new genus. The blue line shows the prediction
of our theory for a sample of R0~5719 species chosen at random out
of the 22271 known today with the same m and c, as obtained from Eq.
3. This is now a prediction without any fitting parameters, to be
compared with the original Yule statistics.
doi:10.1371/journal.pone.0026480.g001

BDM Process and Fat-Tailed Distributions
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Eq. (3) implies that the BDM statistics crosses over to the Yule-

Simon result when the sampling is weak [see Eq. (1) and the

discussion in methods (B)]. Since weak sampling yields mainly

members of large families for which the chance of extinction is

small, Yule’s theory with a net birth rate becomes adequate.

Indeed, in the main part of Fig. 1 we show how the BDM

Kummer statistics fits the contemporary data for Cerambycinea

and how one can reconcile the Yule result by taking into account

the effect of sampling. Note that our theory [15] is based on a

Fokker-Planck equation that fails when the size of the family is of

order unity [22], thus here and in the following figures the curve

fails to fit the number of singletons.

Fig. 2 demonstrates the power of our technique using many

paradigmatic fat-tailed distributions from the social sciences

(surnames, insurgency, WWW), engineering (internet), ecology

(species within genera, species abundance ratio, clusters of trees),

biology (cancer abberations statistics) and economy (firms size

distribution). In all cases presented here a two parameter fit is

shown, thus we are not using more fitting parameters than a

standard power-law fit. In some cases the relevance of the BDM

dynamics to the underlying process is clear; in other cases (terror

attacks) the underlying process is not well understood, and more

studies are needed in order to prove, or disprove, the relevance of

BDM, perhaps along the lines suggested by [23]. The agreement

of theory and data is impressing with respect to other fits on log-

log scale; some examples of other fitting functions and distributions

are given in the methods section (D).

Clearly the BDM theory is much stronger than a simple power-

law fit, yielding sharper predictions and fitting almost perfectly

many paradigmatic empirical datasets. Its amazing success, even

Figure 2. Tour de force of BDM statistics: Pareto plots are presented for empirical datasets obtained from independent studies
across many disciplines. The best fit values of c and m are given for each item. (a) Distribution of number of chromosome abberations in cancer
tumors [26]. c~0:28 m~0:37 (b) Surname statistics from the 1790 US census. The growth rate (c~0:034) was inferred [15] from historical censuses in
England, and the fit retrieves the ‘‘mutation’’ (surname changes) rate to be m~0:011. (c) WWW: number of sites with certain degree of links as a
function of the degree. The set of 200 million web pages with 1,500 million hyperlinks first considered by Broder et. al. [31] has been analyzed.
c~0:27 m~0:065. (d) Internet (physical structure) - number of nodes with m links vs. m. Data obtained from DIMES web site (www.netdimes.org).
c~0:72 m~0:51. (e) Clusters of trees in the tropical forest. Shown here is the number ns of clusters of size s for Hybanthus pronifolius, the most
frequent species in the Barro-Colorado Island plot [32]. (f) Species abundance ratio in the tropical forest [32]. Here c~5:4:10{5 m~1:5:10{4 . (g)
Human insurgency: number of terror attacks with m casualties vs. m. Data from Global Terrorism Database, START (http://www.start.umd.edu).
c~0:1m~0:051. (h) Number of Norwegian firms with m employees, as obtained from statistics Norway website, www.ssb.no. (Data for 2010).
c~0:11 m~0:04. (i) Species within genera statistics for the Plantae kingdom [24] c~0:055m~0:017.
doi:10.1371/journal.pone.0026480.g002
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where the BDM process is certainly a crude approximation for the

real dynamics, suggests that this distribution behaves like a central

limit for many multiplicative neutral processes.

For any of the topics of Fig. 2 a comprehensive discussion is

needed in order to put our new results for c and m in the context of

the specific field. This is beyond the scope of this Letter, and short

specific comments are presented in methods, subsection (C).

Let us conclude by demonstrating the quality of our results

using one example. Figure 3 shows the species within genera

statistics for all the Animalia kingdom [24]. The Kummer function

fits almost exactly the empirical data, much better than other

distributions conjectured (see SM). The rate of diversification

(speciation minus extinction), c~0:063+0:02, is consistent with

the range of values estimated from lineage through time plots [25],

and our confidence intervals are much tighter.

Materials and Methods

A. The birth-death-mutation process
The birth-death-mutation (BDM) process, in its simplest form,

governs the dynamics of S families of agents. Each family is

characterized by m, the number of agents in it. For the sake of

concreteness let us consider a population of species (agents), each

of which belongs to a genus (family).

At every time step a species is chosen at random among all species,

independent of its genus. This agent is removed with probability 1{p
and reproduces (speciates) with probability p. The offspring belongs

to the same genus as its parent species with probability 1{m, and

‘‘mutates’’ to form a new genus with probability m. Note that we use

the word ‘‘mutation’’ to indicate an offspring that forms a new family

(genus, surname), rather than belonging to the same clan as its parent.

The parameter c~2p{1 defines the growth rate (if positive) or the

decay rate (if negative) of the population. This is the overlapping

generations (Moran) version of the process.

Many other processes support the same steady state distribution

of family sizes [15]. Of particular importance is the nonoverlap-

ping generations (Wright-Fisher) version of this dynamics. In this

case all agents produces offspring at once and then are removed.

An agent produce n offspring with probability Pn. The average

number of offspring per individual is thus given by �nn~
P

nPn,

and the growth/decay rate is c~�nn{1. Again m is the mutation

rate as described above.

In previous work [15] we have shown that all these processes

yield the same steady-state distribution of family sizes, which is

independent of the ‘‘microscopic’’ details. The final distribution

depends only on the growth rate c, the mutation rate m, and the

variance s2~Var(n). For the Moran case s2~2. It turns out that

n(m) satisfies the Kummer differential equation

Ln(m)

Lt
~

s2

2

L2

Lm2
mn(m)½ �z(m{c)

L
Lm

mn(m)½ �: ð4Þ

Note that this equation resembles a diffusion-convection process

for mn(m).

The same statistics emerges if agents are removed with

probability 1{p, reproduce into the parent set with probability

p(1{m), and new agents, each deposited into an empty set

(family), are added with probability pm (we refer to this as the

birth-death-source process, BDS). This is the case, e.g., if nodes,

each carrying a certain number of links, are added to an already

existing network and the chance of a link to be attached to an

already existing node is proportional to the degree of the node. If

links are removed at a different rate, the process yields the same

statistics as the BDM (up to slight modifications since new families

appear, in realistic networks, with size which is greater than one).

The BDM process is a generalization of the famous Yule process

which has no death in it; i.e., agents are only born and mutate. In

the same sense, the BDS version generalizes the preferential

attachment process [16] in which links are only added to the

network but are never removed.

B. Yule-Simon statistics as a weak sampling limit of BDM
In the process defined by Yule there is no death, and the

mutation rate mYule is simply the ratio between the average

number of new surnames (or genera) that appear during a period

of time and the number of new individuals added, during the same

period, to already existing families (see the detailed discussion in

[11]).

In the BDM process the rate in which new families are

generated is mbN (N is the total population at certain time, b is the

 

 

Figure 3. A Pareto plot for the species within genera statistics
for the Animalia kingdom. The fit of the BDM theory to the data is
surprisingly good, given the existence of different taxonomical
classifications for genera. The fit suggests a diversification (speciation
minus extinction) rate of about 0.063; this value falls within the
confidence intervals obtained by Ricklefs [25] for North and South
American clades of passerine birds.
doi:10.1371/journal.pone.0026480.g003

Figure 4. Animalia kingdoms statistics: Modified pareto (Zipf-
Mandelbrot, dashed line) best fit vs. Kummer best fit.
doi:10.1371/journal.pone.0026480.g004

BDM Process and Fat-Tailed Distributions
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birth rate) and the rate in which the total population in the already

existing families grows is ½b(1{m){d�N . Without loss of

generality we can choose d~1 such that b~1zc, since the

growth rate c:b{d. The ratio between the new families

generation rate and the old families growth rate is, (to the first

order in the small parameters c and m), n:m=(c{m). This implies

that for small growth and mutation rates, which is the regime of

validity of the Kummer theory, Yule theory is equivalent to BDM

iff stochastic extinction is neglected and m Yule is replaced by n.

For that reason, Eq. (5) of the main text is equivalent to Yule

statistics (Eq. 1) with n instead of m.

C. 3 Remarks for Figure 2 of the main text
The remarks below refer to the panels of Fig. 2:

General: The binning of the data was done using a half

logarithmic scale, which means that for small families (mƒ10) we

had a bin for every number, while for large families we used

logarithmic binning with a bin size 2k (k is the bin number). We

have found this to be optimal in terms of presentation clarity, but

the Kummer fit has been checked using other binning schemes

and the differences are negligible. For two datasets (surname panel

(b), and firms panel (h)) the data was available only in a binned

form, so the existing binning scheme has been retained.

(a) Cancer: The data we present here is the distribution of the

number of chromosome abberations in cancer tumors [26],

includes all different types of cancer. See [27] for analysis of

different types of cancer.

(b) Surname: The size of a family was defined as the number of

households having the same surname. Data refer to the US

census of 1790, when the US population shared the same

genealogic and demographic histories with the British

population. The English demography is roughly document-

ed since the Domesday Book census carried out by William

the Conquerer. For more details see [15].

(c) WWW links statistics. There is some ambiguity about the

kind of sampling involved in the collection of the data. In

principle one should make a distinction between building a

surname statistics by sampling individuals and asking for their

surname, in which case Eq. (5) of the method section is

applicable, and sampling surnames and asking for the

number of individuals having this specific surname. In the

internet case the sampling is done by crawlers moving from

node to node along the links; here a link is an individual and

a node is a ‘‘surname’’. In any case, the success of our fit to a

full census theory means that the effect of sampling, if any, is

weak (i.e., that we are in the strong sampling regime).

(d) We present here the nodes in-degree distribution (i.e. the size

of a node is determined by the number of links pointing to

it). The nodes out-degree distribution does not follow

Kummer. This difference needs further analysis.

(e) The data presented here is for the most frequent species in

the plot, Hybanthus pronifolius. There are about 40000

individual trees of this species in a rectangular area of

10006500 meters. We have covered the area by a

Figure 5. Out-degree statistics: The best fit to Kummer fails systematically at small ms.
doi:10.1371/journal.pone.0026480.g005

BDM Process and Fat-Tailed Distributions
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262 meters grid and consider any square that contains at

least a single Hybanthus tree as black, other squares are white.

We then identified and tracked black cluster using the

standard Hoshen-Kopelman algorithm. We have checked

that the results are not sensitive to slight modifications of the

lattice constant (grids with 1–3 meters squares were checked)

and have gotten fits of similar quality for the other frequent

species in the plot.

(f) The data was averaged over six different censuses. Time

between consecutive censuses is five years, to be compared

with the lifetime of a tree which is typically about 100 years.

(f) Our best fit yields c~4:310{5 and m~2:910{4. This

suggests that the total population of the meta-community

isn’t really fixed but rather grows extremely slowly. Although

the model is neutral, the overall effect of adaptation may

very slowly increase the carrying capacity of the forest.

(f) While we are not trying to claim that our fit is actually

conclusive, this result opens an interesting possibility for

refutation of the critics of the ‘‘point mutation’’ version of

Hubbell’s theory, who base themselves on turnover rates. As

pointed out by Ricklefs [28] and by Nee [29] the time to

origination of a species with N individuals is about 2N. This

leads to ridiculously large timescales when applied to realistic

species abundance. One implication of our work is that the

introduction of a very weak growth rate does not kill the

statistics, yet it clearly shortens the time to origination

significantly. For example for 10 million trees with

generation time of a 100 years, the time to origination if

the total population is fixed will be of order of a billion years,

while for the c above it will be 40 million years.

(g) The datasets had also some non-integers values (the meaning

of which is unclear to us) that we rounded up to the closest

integer number.

(h) The dataset includes the number of establishments with m

employees, starting from m~0. In order to avoid this zero

we have shifted m?mz1, counting the owner also as an

employee.

(i) The statistics of the Plantae kingdom. This dataset is similar

to the Animalia displayed and analyzed in Fig. 3; we have

preferred to present a more detailed analysis of Animalia

since this is the largest kingdom.

D. The adequacy of Kummer
When dealing with fat-tailed distributions that are extended

over many orders of magnitude, a log-log plot must be used.

However, these plots are notoriously known to smear out some

fine details of the distribution, and sometimes this feature blurs the

actual mismatch between the theory and the empirical data. The

level of exactness is thus a crucial factor in determining the

adequacy of a fit. Here we describe two examples.

First, in Fig. 4 the Kummer best fit is compared with the best fit

obtained for the modified Pareto (Zipf - Mandelbrot) distribution,

which is a two parameter law with the same concave shape,

nm~N0
(az1)b{1(b{1)

(azm)b
ð5Þ

where N0 is the population size. The best fit for the parameters a
and b is shown together with the best Kummer fit. One can see

that, although the mismatch is never large in a loglog plot once the

function captures the general trend, there are systematic deviations

in the modified Pareto case but not from the Kummer function

(note again that the singletons are not covered by our theory so the

mismatch at m~1 is irrelevant).

As another example let us present a case where systematic

deviations from Kummer show up. In Fig. 5 the out-degree

distribution of nodes in the internet (the in-degree that satisfies

Kummer is shown in Fig. 2d) is shown together with the best fit to

Kummer, and indeed one can see systematic deviations that makes

the Kummer fit very suspicious, if not fully disqualified.

In general the Kummer function may be considered in any case

where the distribution is monotonically decreasing (so it is

inappropriate as an explanation to, say, scientific citation statistics

where a hump appears at intermediate values of m). For a

reasonable fit the slope at small m-s should be close to one, not too

shallow (as in the Tsallis distribution [30]) or too steep.
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