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Abstract 

As critical dimensions shrink, line edge and width roughness (LER and LWR) become of 

increasing concern. Traditionally LER is viewed as a resist-limited effect; however, as critical 

dimensions shrink and LER requirements become proportionally more stringent, system-level 

effects begin to play an important role. Recent advanced EUV resist testing results have 

demonstrated lower bounds on achievable LER at the level of approximately 2 to 3 nm. Here we 

use modeling to demonstrate that a significant portion of this low bound may in fact be do to 

system-level effects and in particular the mask. Of concern are both LER on the mask as well as 

roughness of the multilayer reflector. Modeling also shows roughness (flare) in the projection 

optics not to be of concern. 
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Introduction 

Line edge and width roughness (LER and LWR), has become an issue of increasing concern as 

projection lithography techniques push to smaller and smaller feature sizes. This poses significant 

challenges to the development of photoresist for next-generation lithography techniques such as 

193-nm immersion and extreme-ultraviolet (EUV) lithography. For example at the 32-nm DRAM 

half-pitch fabrication node, the International Technology Roadmap for Semiconductors [1] calls for a 

LWR in resist of less than 1.7 nm (LER < 1.2 nm assuming uncorrelated edges). Historically, LWR is 

viewed as a resist-limited effect; however, as LWR requirements approach single-nm values, system-

level effects may begin to play an important role. Examples of such system-level effects include LER 

on the mask [2], mask reflector surface roughness [3, 4], and projection optics scatter [5]. Recent 

advanced EUV resist testing using the SEMATECH Berkeley EUV microfield exposure tool (MET) 

[6, 7] has demonstrated a lower bound on achievable LER at the level of approximately 2 nm. Here 

we present detailed modeling results evaluating the importance of the above mentioned system-level 

effects in the observed LER lower limit. 

Modeling methodology 

The SEMATECH Berkeley MET imaging characteristics are modeled using scalar aerial image 

computation software based on the partially-coherence image formation equations [8]. Similar 

capabilities can also be obtained through the use of commercial modeling packages such as 

Prolith [9] or Solid EUV [10]. The relatively small numerical aperture utilized by EUV systems 

(the MET has a numerical aperture of 0.3) enables us to use scalar modeling as well as the thin 

mask approximation. The mask LER used in the modeling is determined from a scanning-

electron micrograph (SEM) of coded 50-nm equal lines-space features on a characteristic MET 

5× mask (Fig. 1). The line edges are extracted from the SEM and a grayscale simulation mask is 
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generated (Fig. 2). Note the tone reversal from the SEM to the generated simulation mask; 

lighter regions in the SEM correspond to the absorber, thus become dark in the generated 

simulation mask. In the simulation analysis to follow, we consider only the center 5 lines for 

LER analysis. Grayscale is used on the simulation mask to define the edge transition region 

enabling higher fidelity in the replication of the LER. In a strictly binary mask the edge position 

resolution is determined solely by the pixel size, whereas for grayscale edge transition we can 

effectively achieve sub-pixel edge positioning enabling high fidelity LER reproduction at 

reasonable sampling levels. The size of the final simulation mask is 1020×1020 pixels. The LER 

of the mask is 8.9 nm in mask coordinates and 1.8 nm in wafer coordinates. 

 Next we describe the modeling of the mask multilayer or phase roughness. Masks used in 

EUV lithography are reflective and are rendered so through the deposition of a multilayer 

coating typically comprised of 40 or more bilayers [11]. If one starts with knowledge of the 

uncoated substrate surface, multilayer growth models can be used [12,13] to predict the coating 

properties throughout the stack. From the calculated coating properties, rigorous electromagnetic 

field modeling could be used to calculate the electric field reflected from the mask [14-16]. Such 

an approach, however, would be extremely time consuming. In most cases relevant to the 

moderate roughness of interest here, the effect of the rough mask can be readily modeled as a 

pure phase distribution, where the phase is determined from the geometric path-length 

differences imparted by assuming the EUV light to be reflected from the top surface of the mask 

[17]. In practice, this simplification works because the vast majority of the non-conformal 

multilayer growth occurs within a small number of layers closest to the substrate. Within the 

EUV penetration region of a typical 40 or more bilayer multilayer, the layer growth tends to be 

conformal for roughnesses of interest here. Using this simplified approach, one only needs to 
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measure the topographic profile of the final multilayer-coated mask. 

Figure 3 shows an atomic force micrograph (AFM) of the multilayer coated mask blank. 

The full rms roughness over the 2-µm scan is 0.24 nm and the peak to valley roughness is 2.16 

nm. The rms slope error computed from the AFM is 1.3 mrad, approximately twice the proposed 

industry specification. Figure 4 shows the isotropic power spectral density (PSD) of the 

roughness and Fig. 5 shows the synthesized mask with phase depicted as grayscale. The mask 

phase error is synthesized from the PSD in Fig. 4 to achieve the same mask size and sampling as 

used for the rough line simulation mask in Fig. 2. As discussed below, for simulation purposes, 

we also consider a mask with ideally smooth lines and the same rough multilayer as used in Fig. 

5.  

Finally, optic scatter (flare) is modeled by adding phase roughness to the pupil mask. The 

pupil mask further includes information on the optic aberrations and obscuration. The optic 

wavefront quality is approximately λ/15 and the flare within the 200×600 µm printed field is 

approximately 7%. Details on the flare and aberrations in the SEMATECH Berkeley MET can 

be found in the literature [18-21]. 

Modeling results 

In order to explicitly study the relative importance of the various mask contributors to LER, in 

the cases to follow we consider three different simulation masks: smooth lines rough multilayer 

(Mask 1), rough lines smooth multilayer (Mask 2), and rough lines rough multilayer (Mask 3). 

Figure 6 shows results for three different illumination settings: annular (0.35-0.55) [Fig. 6(a)], 

monopole [σ = 0.15, offset = (015,-0.45)] [Fig. 6(b)], and dipole [σ = 0.2, offset = (0.36,0.36)] 

[Fig. 6(c)]. For the lowest coherence case (annular), we see the in-focus LER to be dominated by 
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the LER on the mask whereas as we move out of focus the multilayer roughness begins to 

dominate. For the higher coherence settings, the multilayer roughness dominates throughout 

focus. In all cases the effect of the mask LER is relatively constant through focus, whereas the 

multilayer effect varies strongly with focus. As one would expect, the LER obtained from Mask 

3 is approximately the quadrature sum of the LER obtained from Masks 1 and 2 independently. 

For annular illumination, the LER at best focus is approximately 1.4 nm whereas the higher 

coherence settings show LER values greater than 2 nm.  

 Figure 7 shows a direct comparison of the various illumination settings with Mask 3. 

Two additional annular settings are also considered. Again it is clear that from the perspective of 

LER, the lower the coherence the better. 

 The final potential LER source we consider is roughness from the projection optics (or 

flare) as suggested in Ref. [5]. Figure 8 shows a direct comparison of the flare and no-flare cases 

with Mask 3 for various illumination settings (annular, monopole, and dipole). As evidenced by 

the modeling results, the effect of flare (projection optics scatter) is negligible. For the annular 

case, which is lowest coherence condition [Fig. 8(a)] the flare and no flare results are virtually 

indistinguishable. For the higher coherence cases of monopole and dipole, slight differences can 

be seen both increasing and decreasing the observed LER through focus. We note that unlike 

roughness on the mask, the effect of pupil roughness or scatter would be expected to be 

insensitive to focus in terms of magnitude.   

Discussion 

The results presented here have demonstrated the importance of mask effects in terms of the ultimate 

LER capabilities of EUV exposure tools. Depending on the illumination conditions, mask multilayer 

roughness and/or mask LER play important roles. In general, for lower coherence settings such as 
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annular, mask LER is dominant, whereas for high coherence settings such as monopole and dipole, 

mask multilayer roughness is dominant. In all cases, mask multilayer roughness is dominant in terms 

of through focus behavior. This strong illumination dependence is due to the fact that the LER caused 

by mask multilayer roughness arises from coherent speckle effects. The impact is that as higher 

coherence low-k1 type illumination settings are used to improve resolution, the resulting mask induced 

LER increases. 

Another implication of the dominance of the mask multilayer roughness is that accurate 

determination of the true roughness is crucial, this measurement, however, can be complicated since 

all we can readily measure is the AFM roughness before and/or after multilayer coating. Having the 

pre-coating roughness we need to rely on complicated smoothing model which require knowledge of 

the coating characteristics which may be viewed as proprietary by the mask manufactures. Working 

from the post-coating roughness, as we have done here, we need to rely on the assumption that the 

measured surface roughness is indeed representative of the stack replicated roughness which directly 

impacts the phase as compared to simple capping layer roughness, for example, which would couple 

to phase much more weakly. We note that such issues could, in principle, be addressed using an EUV 

aerial imaging microscope with well known coherence properties. 

As discussed in the modeling methodology section, the mask multilayer roughness is 

approximately a factor of 2 larger than specifications. It is instructive to consider what LER 

performance we might expect if the mask had met the specifications. To this end, we simply scale 

down the phase roughness by a factor of two and recompute the resulting aerial images and LER. 

Figure 9 shows the results for annular (0.35-0.55), monopole [σ = 0.15, offset = (0,0.45)], and dipole 

[σ = 0.2, offset = (0.36,0.36)]. Comparing the results to those shown in Fig. 6, we see that as expected 

the annular case remains dominated by mask LER, but this time through an even wider focus range. 
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Moreover, the monopole case is now also mask LER dominated. For the dipole case, however, the 

multilayer roughness still remains dominant. The best focus LER value for annular and monopole is 

approximately 1.2 nm, whereas dipole has a best-focus LER of approximately 1.6 nm. 

Finally we consider the potential effect of the mask-induced LER on current resist 

characterization results. Recent EUV resist testing results have shown clear evidence of an asymptotic 

behavior of LER reduction as a function of dose leveling out at an LER of approximately 2 nm or 

slightly larger. Figure 10 depicts such data as collected from exposure results from the SEMATECH 

Berkeley MET. The vast majority of these results are obtained with annular or monopole illumination. 

Figure 11 shows the same plot but with the mask-induced LER term, as modeled here, removed. The 

mask-induced LER is assumed to add in quadrature with the remaining LER terms. In Fig. 11(a), a 

1.43-nm LER component is removed, corresponding to lowest computed LER for annular 

illumination and in Fig. 11(b), a 1.99-nm LER term is removed corresponding to monopole. Despite 

the removal of significant LER magnitudes, the data shows that achieving the ITRS target of 1.2-nm 

LER for the 32-nm node still remains quite challenging.  

In summary, present mask limitations dictate that numerical compensation for these effects is 

required in order to achieve accurate resist LER characterization below levels of approximately 3.5 

nm. It is important to note, however, that the mask presently used in the SEMATECH Berkeley MET 

has a multilayer roughness that is approximately twice the proposed 32-nm node specification and an 

absorber LER approximately 7.5 times larger than specification [1] (8.9 nm measured compared to 

1.18 nm specification). Achieving the target mask specifications in terms of roughness and LER will 

be crucial to reaching the ultimate manufacturing goal for LER. Finally, the simulation also shows that 

the effect of projection-optics scatter is negligible in terms of aerial-image LER, even under high-

coherence illumination. 
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List of Figures 

Fig. 1.  Source scanning electron micrograph (SEM) used for determination of mask LER 

used in modeling. The selected feature size is coded 50-nm equal lines-space features on a 5× mask. 

Fig. 2. Generated grayscale simulation mask based on SEM in Fig. 1. Note the tone reversal 

from the SEM to the generated simulation mask; lighter regions in the SEM correspond to the 

absorber, thus become dark in the generated simulation mask. 

Fig. 3. Atomic force micrograph (AFM) of the multilayer coated mask blank. The full rms 

roughness over the 2-µm scan is 0.24 nm and the peak to valley roughness is 2.16 nm. The rms slope 

error computed from the AFM is 1.3 mrad, approximately twice the proposed industry specification.  

Fig. 4. Isotropic power spectral density (PSD) of the roughness as computed from AFM in 

Fig. 3. 

Fig. 5. Synthesized multilayer phase roughness depicted as grayscale. The mask phase error is 

synthesized from the PSD in Fig. 4 to achieve the same mask size and sampling as used for the rough 

line simulation mask in Fig. 2. 

Fig. 6. Simulation results for three different masks [smooth lines rough multilayer (Mask 1), 

rough lines smooth multilayer (Mask 2), and rough lines rough multilayer (Mask 3)] and  three 

different illumination settings: annular (0.35-0.55) (a), monopole [σ = 0.15, offset = (0,0.45)] (b), and 

dipole [σ = 0.2, offset = (0.36,0.36)] (c). 

Fig. 7. Direct comparison of the various illumination settings with Mask 3. Two additional 

annular settings are also considered.(0.3-0.7 and 0.43-0.46). 

Fig. 8. Direct comparison of the flare and no-flare cases with Mask 3 for various illumination 

settings [annular (a), monopole (b), and dipole (c)]. The effect of flare (projection optics scatter) is 

negligible. 
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Fig. 9. Computed aerial image LER under various illumination conditions for Mask 3 

resynthesized to meet industry specifications for mask roughness. The illumination settings are 

annular (0.35-0.55), monopole [σ = 0.15, offset = (0,0.45)], and dipole [σ = 0.2, offset = (0.36,0.36)]. 

Fig. 10. Summary of EUV resist LER testing results form the SEMATECH Berkeley MET 

over the past few years. The vast majority of these results are obtained with annular or monopole 

illumination. 

Fig. 11. Data from Fig. 10 with the mask-induced LER term removed. The mask-induced 

LER is assumed to add in quadrature with the remaining LER terms. In (a), a 1.43-nm LER 

component is removed, corresponding to lowest computed LER for annular illumination and in (b), a 

1.99-nm LER term is removed corresponding to monopole. 
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