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There are some∼1,100 known antimicrobial peptides (AMPs), which
permeabilize microbial membranes but have diverse sequences.
Here, we develop a support vector machine (SVM)-based classifier
to investigate ⍺-helical AMPs and the interrelated nature of their
functional commonality and sequence homology. SVM is used to
search the undiscovered peptide sequence space and identify Par-
eto-optimal candidates that simultaneously maximize the distance σ
from the SVM hyperplane (thus maximize its “antimicrobialness”)
and its ⍺-helicity, but minimize mutational distance to known AMPs.
By calibrating SVM machine learning results with killing assays and
small-angle X-ray scattering (SAXS), we find that the SVM metric σ
correlates not with a peptide’s minimum inhibitory concentration
(MIC), but rather its ability to generate negative Gaussian mem-
brane curvature. This surprising result provides a topological basis
for membrane activity common to AMPs. Moreover, we highlight an
important distinction between the maximal recognizability of a se-
quence to a trained AMP classifier (its ability to generate membrane
curvature) and its maximal antimicrobial efficacy. As mutational dis-
tances are increased from known AMPs, we find AMP-like se-
quences that are increasingly difficult for nature to discover via
simple mutation. Using the sequence map as a discovery tool, we
find a unexpectedly diverse taxonomy of sequences that are just as
membrane-active as known AMPs, but with a broad range of pri-
mary functions distinct from AMP functions, including endogenous
neuropeptides, viral fusion proteins, topogenic peptides, and amy-
loids. The SVM classifier is useful as a general detector of membrane
activity in peptide sequences.

machine learning | membrane curvature | membrane permeation |
antimicrobial peptides | cell-penetrating peptides

The ∼1,100 known antimicrobial peptides (AMPs) (1–6) are
known collectively to have broad spectrum antimicrobial

activity (1, 3, 5) via nonspecific interactions to target generic fea-
tures in the many pathogen membranes (1, 7). Machine learning
can in principle be used to help discover the “blueprint” for natural
AMP sequences; however, such an enterprise presents significant
structural difficulties. AMPs do not share a common core structure,
but tend to be short (<50 amino acids), cationic (+2 to +9), and
amphiphilic (1–6). One of the principal components of AMP ac-
tivity involves the selective permeabilization of microbial mem-
branes (1–3, 5, 8–11). However, there is increasing evidence that
membrane activity is but one of several modes of antimicrobial
activity: Translocated AMPs can interact with intracellular targets
to inhibit cell wall synthesis, nucleic acid synthesis, protein synthesis,
and enzymatic activity (12–16). Recent studies have shown that
AMPs can be immunomodulatory (17, 18): In fact, LL-37 plays a
role in autoimmune disorders such as lupus and psoriasis (18).
These confounding factors make it difficult to implement adaptive
learning for AMPs.
Prior AMP machine-learning studies have focused primarily on

empirical quantitative structure activity relationship (QSAR) models
to evaluate large pools of candidate sequences and identify AMP
candidates with improved minimum inhibitory concentrations
(MICs) (19–21). QSAR models for AMP discovery use a variety of

statistical learning approaches, including multiple linear regression,
linear discriminant analysis, principal component analysis, partial
least-squares regression, artificial neural networks (ANN), support
vector classifiers (SVC)/support vector machines (SVM), quantita-
tive matrices (QM), hidden Markov models (HMM), and random
forests (RFs) (21–24). Lata et al. developed ANN, SVC, and QM
models based on an analysis of the C- and N-terminal residues in 486
antibacterial peptides (25). Porto et al. reported the development of
the CS-AMPPred predictor of cysteine-stabilized AMPs based on a
SVC trained over five physicochemical descriptors (19). Fjell et al.
developed a 44-descriptor ANN model to screen ∼100,000 candi-
dates and produce 18 peptides that showed high activity against
drug-resistant bacteria (20). Torrent et al. trained an eight-descriptor
AMP and SVC to predict AMP sequences (26). Maccari et al. used
RFs to design and validate the antimicrobial activity of two natural
peptides, and one peptide incorporating nonnatural amino acids
(27). Fjell et al. used an HMM to screen the bovine genome for
AMPs, one of which was discovered in bovine intestinal tissue (28).
Cherkasov et al. iteratively synthesized thousands of nine-residue
peptides and trained ANN models to discover peptides with activi-
ties against drug-resistant superbugs (29). The present work is similar
in scope to these works––most notably those of Fjell et al. (20) and
Cherkasov et al. (29)––in that we train QSAR models using limited
experimental data to perform high-throughput virtual screening and
identification of promising peptides for experimental synthesis and
testing. Specifically, we train the SVM to recognize α-helical AMPs
(Fig. 1A) (30–34), so our work is cognate with computer-assisted
AMP discovery and design (22, 35, 36), which have resulted in
clinical trials of synthetic AMPs (22). The goals of this work are quite
different from the above. Whereas a QSAR model with good pre-
dictive performance is expected to be able to identify physical
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determinants of AMP activity (22, 35, 36), our primary aim is not
to use QSAR classifiers to find AMPs with improved activity, but
rather to use computational modeling in conjunction with cali-
brating experiments to examine the interrelated nature of AMP
functional commonality, AMP sequence homologies, and general
physicochemical mediators of AMP function at multiple length
scales. We believe this approach will help uncover new unifying
relationships between the discouragingly diverse peptide taxon-
omies that currently exist.
Here, we focus our study on ⍺-helical AMPs, which have a

structure common to many peptides and protein motifs. Specifi-
cally, we use our SVM to guide traversal and mapping of the
undiscovered peptide sequence space. To help navigate this
enormous space, we use known AMP sequences as “landmarks”
and construct a “Pareto frontier” using the concept of Pareto
optimality from microeconomics (37, 38) as the subset of se-
quences that simultaneously maximize the probability that the se-
quence is antimicrobial (the distance from the SVM hyperplane σ)
and the degree of α-helical secondary structure, and minimize the
mutational distance to known AMPs (Fig. 1B). Using a com-
bination of killing assays and small-angle X-ray scattering (SAXS)
experiments on synthesized test peptide sequences that are not
previously known AMPs, we find a strong correlation between the
SVM distance to hyperplane σ and the ability for peptides to
generate negative Gaussian curvature (NGC) in model mem-
branes. Because NGC is the type of membrane curvature
topologically required for common membrane permeation
mechanisms such as pore formation, blebbing, and budding (Fig.
1C), it provides a structural basis for this common component of
AMP activity. Using the SVM sequence map as a discovery tool
for membrane activity, we increase mutational distances from
known AMP sequences, probing the sequence space that is in-
creasingly difficult for nature to discover via simple mutation from
existing AMP sequences. What emerges is a diverse taxonomy of
sequences that are expected to be not only just as membrane-
active as known AMPs, but also have a broad range of putative
primary functions beyond antimicrobial activity. We highlight
several families, including endogenous neuropeptides, viral fusion
proteins, topogenic peptides, and amyloids. Had their primary
functions been undiscovered, these peptides could have been
classified as AMPs. Not only is membrane activity not coextensive
with antimicrobial activity, it is surprisingly common for many

classes of natural peptides as one component of multiplexed in-
tracellular functions. Moreover, the calibrated SVM we construct
is an efficient discovery tool to identify and discover membrane-
active sequences.

Results and Discussion
SVM Model Development, Monte Carlo Sampling, and Pareto Analysis.
We constructed a linear SVM classifier to predict whether a can-
didate peptide is likely to be antimicrobial. The SVM was trained
by cross-validation over a balanced training set comprising 243
α-helical AMPs and 243 α-helical decoy peptides derived from
natural and synthetic sources and a variety of microbial and mul-
ticellular species, and a balanced blind test set of 43 AMP and 43
decoy α-helical peptides (SI Appendix, Figs. S1 and S2). Variable
selection was used to identify from a library of 1,588 physico-
chemical descriptors (SI Appendix, Table S1) a subset of 12 de-
scriptors used to make classifications (SI Appendix, Table S2). The
classifier demonstrated excellent performance against the blind test
set, with a prediction accuracy of 91.9%, specificity of 93.0%, and
sensitivity of 90.7% (SI Appendix, Table S3).
The trained SVM enables rapid computational screening of

peptides for antimicrobial activity. Generation of the 12 descrip-
tors and classification of all 572 AMPs and decoy peptides in our
training and test sets required only 80 s on a 2.13-GHz Intel Core
2 Duo processor, equal to 0.14 s per peptide. Nevertheless,
comprehensive screening of all 1078 peptides of length 8–60 resi-
dues––the size range of training peptides––is intractable, so we
instead traversed sequence space via a directed search according
to the following four criteria: (i) Defined peptide length. The
general mechanism of α-helical AMPs involves a combination of
electrostatic and hydrophobic interactions with negatively charged
bacterial cell membranes. Typical AMPs have a length of 20–25
amino acids, and generally generate membrane deformation by
spanning the lipid bilayer and inducing opposite membrane cur-
vature in orthogonal directions (2, 6, 39). Accordingly, we restrict
our screen to 20–25-residue peptides. (ii) Homology with a known
AMP. Classifier accuracy is expected to diminish in regions of
sequence space far from the AMP sequences upon which it was
trained. Accordingly, we control within our screen peptide ho-
mology to known AMPs. (iii) Large positive distance from the
SVM hyperplane. This criterion favors sequences for which the
classifier possesses high positive predictive value (the expected
proportion of positive results that are true positives) and speci-
ficity at the expense of sensitivity (left side of the receiver oper-
ating characteristic curve, right side of the precision-recall curve in
SI Appendix, Fig. S2). In driving the false-positive rate toward
zero––at the expense of a high false-negative rate––we focus our
screen toward the most promising candidates. (iv) High helical
content. Trained on α-helical peptides, classifier accuracy is
expected to diminish for peptides with nonhelical structure. Ac-
cordingly, we seek candidates that are predominantly helical. [We
note that certain α-helical AMPs only adopt a helical structure
upon interacting with the cell membrane (2, 6), and this criterion
will necessarily disfavor such candidates.]
Using these criteria, we performed a guided search of sequence

space to generate a subsampling of 242,110 candidates using two
complementary approaches. To traverse the sequence space with
close homology to existing AMPs, we generated 33,079 sequences
corresponding to all one-point mutants of the 76 AMPs in the
database within the size range 20–25 residues. To probe the se-
quence space of AMPs that are less likely for nature to discover
via simple mutation, we generated 208,955 additional sequences
from Monte Carlo sampling by initializing 10 independent Monte
Carlo chains with a randomly selected AMP in the size range of
interest, and ran 25,000 rounds of random point mutation, in-
sertion, and deletion. The 12 bagged descriptors were generated
for each new trial sequence and the distance from the classifier
hyperplane σ computed using the SVM classifier. Treating (−σ) as
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Fig. 1. SVM learning and Pareto-optimization select for antimicrobial and
membrane curvature-generating peptides. (A) Schematic depicting the use of
an SVM binary classifier to partition hypothetical antimicrobial peptide
sequences (blue circles) described by the n = 2 descriptors {ϕi,ϕj} from non-
antimicrobial sequences (red circles) using an (n − 1)-dimensional maximum-
margin linear hyperplane. The support vectors are the sequences lying on the
margins. The separating hyperplane lies midway between the margins. The
metric σ (green arrows) indicates the distance to hyperplane for each peptide.
Positive distances denote antimicrobial sequences whereas negative distances
denote nonantimicrobial sequences. (B) Schematic demonstrating separation
of Pareto-optimal sequences (green circles) from dominated sequences (gray
circles) in an arbitrary 3D subspace of descriptors. The Pareto frontier is the
hypersurface containing the Pareto-optimal sequences. (C) Common bi-
ologically relevant manifestations of negative Gaussian curvature generation
in cell membranes, including (C, 1) blebbing, (C, 2) pore formation, and (C, 3)
scission and budding.
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an effective energy to bias the search towards promising candi-
dates, trial sequences are accepted or rejected according to
the Metropolis criterion pacc =minf1,   expðΔσ=TÞg, where
Δσ = σtrial − σcurrent and T is an effective temperature (40–42). In
this work, we found that T = 0.8 provides a good compromise
between focusing the search toward large σ candidates while also
providing good sampling. All unique candidates were saved for the
computational screen. Finally, the helical content of all 242,110
candidates was evaluated using the ab initio secondary structure
prediction algorithm PSIPRED (bioinf.cs.ucl.ac.uk/psipred/) (43,
44) implemented in PROTEUS2 (www.proteus2.ca/proteus2/)
(45). We do not actively direct sampling toward high helical
candidates, but identify them post hoc. We note that more compre-
hensive sampling of design space could be achieved using umbrella
sampling in our Monte Carlo procedure (46).
After conducting this directed search, we wished to identify

optimal sequences within our candidates. To do this, we borrowed
the concept of Pareto optimality from microeconomics (37, 38)
and used multiobjective optimization to determine the Pareto
optimal sequences that dominate all other candidates in simulta-
neously maximizing the distance from the SVM hyperplane and
the degree of ⍺-helical secondary structure, and minimizing the
mutational distance to a known AMP. These sequences are op-
timal in the sense that no other candidates exist for which any one
criterion can be improved without degrading at least one other.
We term this Pareto frontier “physicochemically unrestricted”
because we place no restriction on the value of the 12 bagged
descriptors. It is possible that this Pareto set may contain candi-
dates with descriptor values far outside the range of the training
data. Accordingly, we constructed a “physicochemically restricted”
Pareto frontier constrained such that none of the 12 descriptors
could lie more than 10% outside the range observed in the
training set (20). Together, these two frontiers serve as guides for
our exploration of the sequence space, and our subsequent in-
terpretation of discovered sequences.
We present a 3D scatterplot of all 242,110 candidate sequences

(gray crosses) plotting the distance to the SVM hyperplane σ,
minimum Jukes–Cantor distance to a knownAMPminHomologyAMP,
and predicted fractional helicity (Fig. 2). Two-dimensional pro-
jections of the point cloud are presented in SI Appendix, Fig. S3.
The candidate sequences partition into two point clouds. The
cloud at low minHomologyAMP corresponds to candidates most
homologous to known AMPs comprising the 76 AMPs in the
database within the size range of interest plus all of their point
mutants. The cloud at high minHomologyAMP corresponds to
sequences generated by the directed Monte Carlo search biased
toward candidates with a large distance from the SVM hyper-
plane σ. Importantly, the latter may contain sequences with di-
vergent physicochemical properties from known AMPs that are
nonetheless predicted by our classifier to possess antimicrobial
activity. We highlight the 13 sequences residing on the Pareto
frontier of physicochemically restricted sequences (green dia-
monds, SI Appendix, Table S4), and the 85 sequences residing on
the Pareto frontier of physicochemically unrestricted sequences
(orange diamonds, SI Appendix, Table S5). We also indicate 16
peptides (red stars, SI Appendix, Table S6) close to both Pareto
frontiers that we selected to synthesize and test with SAXS and
killing assays.

Distance to Hyperplane of Known AMPs Does Not Correlate with
Antimicrobial Efficacy. To engage the question of whether our
SVMmodel can predict the efficacy of known AMPs, we analyzed a
standardized database of MIC values of 478 known AMPs against
Staphylococcus aureus collated from the literature (https://www.
antistaphybase.com/index.php), and calculated their distance to the
SVM hyperplane σ (SI Appendix, Fig. S4). We plotted their reported
MIC values against σ and found poor and statistically insignificant
correlation (RSpearman = −0.060 [−0.154, 0.034], P = 0.187). Analysis

of the literature suggests that the majority of the known AMPs that
we tested are compounds with multiplexed activities in addition to
membrane penetration. This observation highlights a generic prob-
lem with machine-learning approaches: High classification accuracy
does not necessarily imply understanding or even amenability to
traditional forms of understanding. Although it is known that AMPs
can have immunologically relevant activity outside of membrane
activity, there is currently no general way to identify AMPs with
additional functions. We propose a way to identify candidate se-
quences with multiplexed functions in the next section.

Predicted Distance to Hyperplane of Synthesized Test Peptides
Correlates with Strength of Negative Gaussian Curvature Generation.
The distance from hyperplane σ possesses a clear mathematical
interpretation as the distance of a candidate peptide from
a hyperplane in the 12-dimensional space of the bagged de-
scriptors (SI Appendix, Table S2). Nevertheless, the high di-
mensionality of the space, opaque nature of some descriptors,
and absence of a mechanistic model linking peptide sequence to
function makes it challenging to assign physical interpretability
to this discriminatory metric. To glean physical understanding,
we synthesized peptide sequences with defined values of σ and
assayed the peptide–membrane interactions. Specifically, we
selected for synthesis 16 candidate sequences identified by the
directed search procedure according to the following criteria:
they did not feature in the AMP database, were classified by the
SVM as antimicrobial, were predicted to have >50% ⍺-helical
content by the secondary structure prediction algorithm
PSIPRED (43–45), and were confirmed to possess antimicrobial
activity in vitro (SI Appendix, Table S6). Because a common
contribution to antimicrobial activity is membrane permeation,
we investigated this aspect using SAXS. In our prior work, we
have shown that the ability of a peptide to generate NGC in
model membranes is an excellent proxy for antimicrobial activity
through membrane-permeating properties (7, 11, 39). We incubated
these test sequences with small unilamellar vesicles mimicking bac-
terial membranes {compositions 1,2-dioleoyl-sn-glycero-3-phospho-
L-serine (PS)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
(PE)= 20/80 and 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]
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Fig. 2. Sequence atlas and Pareto frontier constructed by directed sampling
of sequence space. Embedding of the 242,110 peptides generated by our
directed sequence space search into the 3D space spanned by (i) predicted
helical content, (ii) Jukes–Cantor distance to known AMPs, and (iii) distance
to hyperplane (σ). Sequences with σ > 0 are predicted by the classifier to be
antimicrobial or membrane-active, whereas those with σ < 0 are not. The
more positive σ becomes, the higher probability of being antimicrobial
P(+1). The orange diamonds pick out the 85 peptides lying on the physico-
chemically unrestricted Pareto frontier in which we place no restriction on
the value of the descriptors generated for these candidates. Green diamonds
highlight the 13 peptides on the physicochemically restricted Pareto frontier
in which the descriptors are restricted to lie no more than 10% outside the
range observed in the training data. Red stars are the 16 peptides proximate
to the frontiers that were selected for testing.
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(PG)/PE = 20/80} under physiological salt and pH (100 mM NaCl,
10 mM Hepes, pH 7.4) at specific peptide-to-lipid charge ratios,
and measured the resulting peptide-induced membrane curva-
ture quantitatively using SAXS. We find that 14 of the synthe-
sized peptides reorganize membranes into cubic phases rich in
NGC [Fig. 3 A (Inset), C, and D]. We show representative SAXS
patterns for four of the test peptides, with labeled Bragg peaks
corresponding to their cubic phases (Fig. 3A). The best-fit lines
to determine the lattice parameter a of the cubic phases are
shown, along with the Miller indices (hkl) of each cubic reflec-
tion (Fig. 3B). We find these peptides typically reorganize model
membranes into either Pn3m or Im3m cubic phases (Fig. 3 C and
D). The amount of induced membrane curvature in these phases
can be directly compared via calculation of the NGC from the lattice
parameter and the Euler characteristic (Materials and Methods). The
same procedure was carried out for the other 10 sequences that
generated cubic phases in these membranes. They also generated
either Pn3m or Im3m phases (Fig. 3 C and D). The NGC values
calculated from SAXS data (SI Appendix, Table S6) indicate that
these peptides generate similar quantities of NGC as natural AMPs,
which already strongly suggest that these predicted peptides per-
meabilize membranes. To confirm that our classifier can also rec-
ognize decoy peptides that do not generate NGC, we selected three
negatively classified peptides to synthesize and test with SAXS. We
find that none of them generates NGC-rich cubic phases in the same
membranes tested with the 16 test peptides (SI Appendix, Fig. S8 and
Table S8). To test the ability of our classifier to detect peptide
sequences lacking antimicrobial activity, we also screened five
nonactive granulysin fragment peptides from the literature (SI
Appendix, Table S9). We find that these peptides have low or
negative values of σ and are far from the Pareto frontier, which
is consistent with their inability to generate NGC. Our algo-
rithm also correctly classifies the two active granulysin frag-
ments (47), which are known to be membrane permeating.
To test the hypothesis that the SVM classifier has learned to

discriminate peptides based on their capacity to generate NGC, we
computed the Spearman rank correlations of the magnitude of NGC

calculated from the SAXS data for the 16 selected peptides with
metrics used in the SVM classification algorithm (SI Appendix, Table
S6). We asked whether the magnitude of NGC correlates with the
homology to known AMPs and/or the distance to hyperplane σ (SI
Appendix, Fig. S5). We find that there is no significant correlation
(RSpearman = 0.155 [−0.425, 0.736], P = 0.565) between the magni-
tude of NGC generated by a peptide and its homology to a known
AMP (Fig. 4A). This finding implies that sequence homology to a
known AMP is not a necessary requirement to generate NGC. In
other words, sequences that are far from known AMPs via simple
mutation have potential to generate membrane curvature. Given this
result, we ask whether there is a correlation between σ and NGC
(j<k>j). In SI Appendix, Fig. S4, we showed that σ correlates poorly
with antimicrobial efficacy. Here we observe a strong, statistically
significant positive correlation between the distance to hyperplane of
a peptide, and its ability to generate NGC (RSpearman = 0.653 [0.234,
0.891], P = 0.006) (Fig. 4B). This provides strong support for the
hypothesis that our SVM classifier has learned to discriminate pep-
tides based on their capacity to generate NGC. Because the distance
to hyperplane σ also provides a measure of the confidence of the
algorithm P(+1) in whether or not a sequence is antimicrobial, we
conjecture that a higher confidence in classification may correlate
with an enhanced ability to generate NGC. Looking at the 16 se-
quences that were identified by the SVM as high-probability hits
[P(+1) > 0.95], we find a strong positive and statistically significant
correlation between the confidence in the prediction of the SVM
P(+1), and the magnitude of NGC (RSpearman = 0.653 [0.231, 0.896],
P = 0.006) (Fig. 4C). This result makes sense because P(+1) and
σ are monotonically but nonlinearly related. This result has strong
implications for the utility of our SVM classifier—we can now stratify
the predicted quality of sequences by using the σ-metric as a surrogate
for expected NGC generating ability to efficiently explore sequence
space and predict peptides with high membrane activity. Importantly,
sequences less homologous to known AMPs with large values of
σ that fall near, but not necessarily on, the Pareto frontier can gen-
erate the same level of membrane curvature expected of prototypical
⍺-helical AMPs (such as Magainin, j<k>j = 2.536 × 10−4·Å-2), and
candidate AMPs spanning a large range of helicities and homologies
to known AMPs can also generate magnitudes of NGC similar to
those of known AMPs (SI Appendix, Fig. S6 and Table S6). Ac-
cordingly, we expect to be able to use σ to predict the membrane
activity of peptide families that may be very dissimilar from AMPs.
We also investigated the relationship between amphiphilicity and
ability to generate curvature in membranes. Interestingly, we find that
4 out of the 12 descriptors in our final SVM model enforce amphi-
philicity in positively classified peptides (#2, 3, 6, 8 in SI Appendix
Table S2, and Fig. S9A), suggesting that the SVM encodes amphi-
philicity implicitly in its selection criteria. To quantitatively compare
amphiphilicity with j<k>j, we calculate the mean hydrophobic

A B

C D

Fig. 3. Synthesized test peptides from directed Monte Carlo search and SVM
screening generate negative Gaussian curvature in model membranes.
(A) Representative SAXS data of four test peptides indicate ability to gen-
erate negative Gaussian curvature in model bacterial membranes. Peaks
with cubic symmetry are labeled according to their x coordinates√(h2 + k2 + l2)
in B. Unlabeled peaks correspond to coexisting lamellar and/or hexagonal
phases induced by peptides. (Inset) Local topology of saddle-splay curvature.
(B) Linear fits indicating the q positions of the Bragg peaks with cubic sym-
metry, their respective Miller indices (hkl), their respective space groups, and
resulting lattice parameter a. (C) Contour surface representation of the Pn3m
space group. (D) Contour surface representation of the Im3m space group.

A B C

Fig. 4. Distance to hyperplane of test peptides does correlate with strength
of negative Gaussian curvature. There is no significant correlation between
the magnitude of NGC generation and homology of test peptides (n = 16) to
known membrane-active peptides (A, RSpearman = 0.155 [−0.425, 0.736], P =
0.155), but there is a statistically significant (B, RSpearman = 0.653 [0.234,
0.891], P = 0.006) positive correlation between the magnitude of NGC
generation and distance to hyperplane σ, as well as the probability of being
antimicrobial (C, RSpearman = 0.653 [0.231, 0.896], P = 0.006). This validates
the use of σ as a proxy for optimization of curvature generation as opposed
to antimicrobial efficacy (SI Appendix, Fig. S4).
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moment of the test peptides and find that they compare favorably to
known helical AMPs (SI Appendix, Fig. S9B) despite having large
mutational distances from known AMPs. We find that amphiphilicity
is highly correlated with the ability to generate NGC (RSpearman =
0.680, P = 0.0038).
These findings strongly support the hypothesis that our SVM

classifier has learned to distinguish membrane-permeating from
non–membrane-permeating ⍺-helical peptides. This result illustrates
a simultaneous potentiality and deficiency of our SVM, and of
QSAR approaches in general. Our classifier has discovered mem-
brane permeation activity as a highly recognizable feature of AMPs
within the training set, and used it to identify such AMPs with high
accuracy and efficiency. A limitation of the classifier is that it is
therefore capable of identifying and indexing membrane activity, but
not necessarily antimicrobial activity. Although this result may at
first blush appear to be a shortcoming of our QSAR approach, it
emphasizes the transformative potential of the SVM classifier: It
yields combinations of physicochemical properties that describe any
peptide that can mediate membrane activity through induction of
NGC. By using ⍺-helical AMPs as a bootstrap dataset to learn about
membrane curvature generating sequences in general, regardless of
their primary known function, we now have a general tool for screen-
ing peptides for membrane crossing or permeating activity.

Directed Search of the Sequence Space of Physicochemically Restricted
and Unrestricted Peptides Discovers Diverse Families of Membrane
Curvature-Generating Peptides. To test the capacity of our SVM
classifier to identify peptide sequences with membrane activity,
we compiled from the Protein Data Bank 31 peptides belonging
to diverse families of known and unknown function including
viral peptides that attack membranes, intrinsically disordered
peptides, and exocytosis/endocytosis related sequences, and
used our SVM classifier to project them into our sequence map
(Fig. 5 and SI Appendix, Fig. S3). Interestingly, a number of se-
quences were found to reside near the Pareto frontiers, suggesting
the existence of membrane activity within these candidates. Spe-
cifically, we found several neuropeptides (purple stars), calcitonin
peptide hormones (black stars), viral fusion proteins (yellow
stars), membrane anchor proteins (green stars), membrane-per-
meating protein fragments (blue stars), and topogenic peptides
(pink stars) proximate to the Pareto frontiers (Fig. 5 and SI Ap-
pendix, Table S7). This is exciting for several reasons. Several
neuropeptides have been shown to be antimicrobial in vitro (48–
50), but this is an indication that many members of the family can
generate the kind of membrane curvature required for per-
meabilization. This alludes to possible intracellular targets of
these neuropeptides and receptor-independent mechanisms of
signal transduction in addition to their regular mode of activity.
This observation reinforces a previously known structural ten-
dency of AMPs, because several of them are known to have en-
docrine and homeostatic functions. For example, hepcidin
permeates membranes but is also involved in regulation of iron
(51), whereas ⍺-melanocyte stimulating hormone has antimicro-
bial and antiinflammatory effects in addition to its signaling
properties (52). Calcitonin is a peptide hormone involved in cal-
cium homeostasis, but is also a known amyloid that deposits in
medullary thyroid carcinoma. Other studies of amyloid proteins
have demonstrated the ability to increase membrane permeability
(53), and may provide a physicochemical basis for this observation
(54). We have also previously described the role of the M2 proton
channel in budding and scission of the influenza virus (55). Using
this algorithm, we find that a variety of other viral fusion proteins
likely share similar characteristics, including peptide domains
from medically relevant viruses like ebolavirus, HIV, coronavirus,
and hepatitis C. Other diverse discovered proteins include mem-
brane-permeating protein fragments from enzymes, DNA-binding
proteins, and prion precursors. Our analysis also identified helical
membrane-active sequences from topogenic peptides, which are

known membrane curvature-generating proteins. These special
signal sequences present at the N-terminal portions of newly
translated proteins help target and translocate large proteins
across intracellular membranes (56). In general, it can be shown
that the sequence content of the Pareto-optimal and peptide se-
quences from the newly identified taxonomies follow the same
sequence trends as existing AMPs (SI Appendix, discussion sec-
tion, and Fig. S7). This demonstrates that our algorithm can ef-
ficiently and effectively identify candidates that can reorganize
bacterial membranes from a large sequence space.
In summary, we have trained an SVM classifier to recognize

membrane activity and experimentally calibrated the recognition
metric by peptide synthesis and characterization. The results,
which highlight the difference between the efficacy of an anti-
microbial and its recognizability as such, are surprising. An SVM
classifier trained only on physicochemical information can ef-
fectively recapitulate geometric and topological principles re-
quired for membrane permeation. We use machine learning not
only to predict unknown membrane-active peptides from known
ones, but also reflexively to identify peptides with multiple
functions and to discover previously unknown interrelations be-
tween existing peptide classifications. Using the SVM classifier
as a discovery tool to map the sequence space of AMPs, we find a
diverse taxonomy of sequences that are expected to be just as
membrane-active as known AMPs, but with a broad range of
primary functions outside of immunity. Finally, we show how our

Fig. 5. Directed search of the sequence space discovers diverse families of
membrane curvature-generating peptides. We visualize the 2D projection of
the 242,110 candidate peptides generated by directed sampling of sequence
space (Fig. 2) into distance to-hyperplane σ and Jukes–Cantor distance to
known AMPs and supplemented by the 31 sequences belonging to diverse
peptide families listed in SI Appendix, Table S7. To guide the interpretation
of the discovered membrane-active sequences, we highlight the physico-
chemically restricted (13 peptides, green diamonds) and unrestricted Pareto
frontiers (85 peptides, orange diamonds) For reference, the peptides ex-
perimentally tested are also shown (16 peptides, red stars). Screening of a
variety of protein families yields sequences with predicted σ > 0 near the
physicochemically unrestricted Pareto frontier. These sequences span a va-
riety of protein families, including neuropeptides (purple stars), calcitonin
peptides (black stars), viral fusion proteins (yellow stars), membrane anchor
proteins (light green stars), membrane-permeating protein fragments (blue
stars), and topogenic peptides (pink stars). Some of the proteins have un-
expected predicted membrane activity, whereas others have confirmed ex-
perimental evidence for membrane permeation. In fact, these other classes
of peptides are expected to be just as membrane-active as AMPs. This di-
versity demonstrates the power of the SVM-directed search framework as a
tool for discovery of new membrane reorganizing protein sequences.
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SVM classifier can be generalized to other fields and used as a search
engine for membrane activity in peptide sequences and a detector of
AMPs with multiplexed functions beyond membrane activity.

Materials and Methods
We trained and validated an SVM classifier to distinguish membrane-active
sequences from non–membrane-active sequences using the Python packages
propy (57) and scikit-learn (58). We used variable selection to train a classi-
fier based on 12 physicochemical descriptors, and used this model to per-
form a directed search of peptide sequence space. Optimal candidates were
identified using a Pareto analysis, and 16 test peptides were validated for
membrane activity using SAXS and antimicrobial assays. Synthesized pep-
tides were incubated with model membranes and the magnitude of

negative Gaussian curvature was measured. Full materials and methods are
found in the SI Appendix.
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