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Geographic Event Conceptualization: Where Spatial and Cognitive Sciences Meet 
 

Rui Li, Alexander Klippel, Jinlong Yang 
{rui.li, klippel, jinlong}@psu.edu 

 
GeoVISTA Center, Department of Geography 

302 Walker Building, The Pennsylvania State University, University Park, PA 16802 USA 

Abstract 

We present the results of two behavioral experiments on 
the conceptualization of geographic events (here, the 
movements of hurricanes). The focus is on juxtaposing 
two types of presentation: static versus animated 
trajectories. We designed 72 animated and 72 static icons 
of the same hurricane movements and asked participants 
to group them. Within each condition we distinguished 
paths of hurricanes using topological equivalence 
classes. Topology allows for differentiating ending 
relations that are potentially relevant for event 
conceptualization (Regier, 2007). Results show that 
motion matters. Participants constructed static icon 
groups more distinctly and focused more on ending 
relations. The presentation mode additionally influenced 
linguistic descriptions. These findings contribute to 
understanding and formalizing geographic event 
conceptualization. 

Keywords: Category construction; geographic event 
conceptualization; topological relations; movement 
patterns.  

Introduction 
Event cognition is addressed in several research fields 
and as such, this article caters to an interdisciplinary 
community. Cognitive scientists address questions of 
event segmentation (Zacks, et al., 2001), the role of 
causal relationships (Wolff, 2008), or how events are 
related to language (Talmy, 1988); spatial scientists are 
interested in formally characterizing movement patterns 
(Gottfried, 2008), analyzing spatio-temporal 
information (Yuan & Hornsby, 2008), and more 
recently, using formal characterization to ground the 
semantics of movement patterns by formally capturing 
those aspects of movement patterns which are 
meaningful to a cognitive agent (Kurata & Egenhofer, 
2009). Topology, as one aspect of the spatial 
characterization of events, has long been a topic of 
interest to both spatial science and cognitive science 
communities. This article uses a topological framework 
to provide a formalized understanding of geographic 
event conceptualization, and discusses topology from a 
multidisciplinary perspective. 

The importance of topology is based on two main 
aspects. First, topological characterizations are 
qualitative and offer an abstract-level characterization 
of spatial information, which is potentially relevant to 
higher-level cognition, as knowledge is created through 

abstraction. Second, topology offers a formal basis for 
identifying invariants in spatial information. These 
invariants might be the very basis of event cognition. 
One critical aspect in event cognition is coherence, 
which allows for the determination of meaningful 
units/segments of events  (Tversky, et al., 2008). 
Identifying topologically equivalent events (or parts 
thereof) may therefore contribute to rendering the 
notion of coherence more precise. 

In this article we focus on geographic events and 
more specifically on the paths of hurricane movements. 
From a formal, topological perspective, path 
characteristics can be captured using either of the two 
most prominent topological frameworks in spatial 
information science, the region connection calculus, 
RCC (Randell, et al., 1992), or Egenhofer’s intersection 
models (Egenhofer & Franzosa, 1991). An assumption 
we need to make is that both entities (figure or moving 
entity, and ground or reference entity) are spatially 
extended (see Figure 1). The central question that we 
address here is whether the mode of presentation 
(dynamic or static) results in different 
conceptualizations of this geographic event.  

This question has been addressed in multidisciplinary 
search efforts; for example, Tversky and collaborators 
(2002) questioned whether animation facilitates 
learning and information processing; Gentner and 
Boroditsky (2001) found that learning verbs poses more 
difficulties than learning names of objects; and, closely 
related to our research here, Maguire and collaborators 
(in press) found that geometric path characteristics are 
used differently to segment events depending on the 
presentation mode (static or dynamic). 

To operationalize this research question from a 
topological perspective, we employ a modification of 
the endpoint hypothesis (Regier, 1996; Regier & 
Zheng, 2007). The essence of this hypothesis states that 
a focus (by a cognitive agent) is placed on ending 
relations in processing spatio-temporal information. 
Within the framework of topological characterization, 
ending relations of events can be formally characterized 
by different topological relations (as identified by the 
RCC or intersection models).  

Here we focus exclusively on topological relations 
and the mode of presentation while excluding other 
aspects such as shape or speed changes. Our goal is to 
use a multi-methodological, formally grounded 
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approach to demonstrate how the mode of presentation 
affects event conceptualization.  

Methods 

Materials 

We followed a design from our previous experiments 
(Klippel & Li, 2009). This design is inspired by the 
endpoint hypothesis (Regier, 1996; Regier & Zheng, 
2007) and we distinguished movement patterns on the 
basis of the topological relations at the end of the 
movement. The basis for this distinction is a conceptual 
neighborhood graph, CNG (Freksa, 1992), that is 
derived from eight topologically distinguished spatial 
relations as part of either Egenhofer’s intersection 
models (Egenhofer & Franzosa, 1991) or the region 
connection calculus, RCC (Randell, et al., 1992). This 
conceptual neighborhood graph is shown in Figure 1. 

We created eight icons (both static and dynamic) for 
each of the following nine topological equivalence 
classes derived from paths through the conceptual 
neighborhood graph:  
 DC1 – the hurricane does not make a landfall (CNG 

path: DC);  
 EC1 – the hurricane kind of bumps into the peninsula 

(CNG path: DC-EC); 
 PO1 – the hurricane just reaches land such that half 

of the hurricane is on land and the other half is over 
water (CNG path: DC-EC-PO);  

 TPP1 – the hurricane makes landfall but is still 
‘connected’ to the water (CNG path: DC-EC-PO-
TPP);  

 NTPP – the hurricane makes landfall and is 
completely over land (CNG path: DC-EC-PO-TPP-
NTPP); 

 TPP2 – same as TPP1 but the hurricane nearly made 
it out to the water again (CNG path: DC-EC-PO-
TPP-NTPP-TPP);  

 PO2 – same as PO1 but on the other side of the 
peninsula (CNG path: DC-EC-PO-TPP-NTPP-TPP-
PO);  

 EC2 – same as EC1 but on the other side of the 
Peninsula (CNG path: DC-EC-PO-TPP-NTPP-TPP-
PO-EC);  

 DC2 – same as DC1 but has crossed the peninsula 
completely (CNG path: DC-EC-PO-TPP-NTPP-TPP-
PO-EC-DC). 
Within each icon the starting and ending locations of 

the hurricanes were randomized without violating 
topological information. In total, two sets of 72 icons 
each were created showing either an animation of a 
hurricane or a static image in which a hurricane symbol 
demarcated the ending relation and a line represented 
the trajectory (see Figure 1).  

Participants 
40 undergraduate students, 20 per condition (mean 
age=21.65, 9 females in the dynamic condition and 
mean age=19.80, 11 females in the static condition). All 
participants received a cash reimbursement of $10.  

 
Figure 1. Conceptual neighborhood graph (left) and 
examples of icons representing the same topological 

relations (DC2) in the two conditions (right). 

Procedure 
Both experiments were carried out as group 
experiments in a computer lab. The lab was equipped 
with 16 Dell desktops (Model: Optiplex 755, CPU: Duo 
E8200, 2.66GHz) with 24” widescreen LCD monitors. 
We used view blocks to make sure that participants 
could only see their own screens. Each participant 
performed two tasks: a category construction task and a 
linguistic labeling task. 

 
Figure 2. Top: initial interface, bottom: ongoing (mock) 

experiment. 
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We used our custom-made grouping software 
CatScan that allows for the presentation of both static 
and dynamic stimuli (see Figure 2). All 72 hurricane 
icons in each condition were initially displayed on the 
left side of the screen. Participants were required to 
create groups on the right side of the screen. After 
creating at least one empty group they were able to drag 
icons from the left side into a group on the right side. 
They were explicitly advised that there was no right or 
wrong answer regarding either the number of groups or 
which icons belong to which group. They also had the 
opportunity to move icons between groups, move icons 
back to the left side, or delete whole groups. The main 
grouping experiment was preceded by a warm up task 
(sorting animals) to acquaint participants with the 
software. Participants performed a linguistic labeling 
task upon finishing the main grouping experiment. 
They were presented with the groups they created and 
provided two linguistic descriptions: a short name of no 
more than five words, and a longer description detailing 
their rationale for placing icons into a particular group. 

Results 
The category construction of participants is recorded 

in individual similarity matrices. In these similarity 
matrices a value of ‘0’ indicates that two icons of a pair 
of icons are not placed into the same group. 
Correspondingly, a value of ‘1’ indicates two icons are 
placed into the same group. The total number of cells in 
each similarity matrix is 5184 (2556 cells after 
removing redundancy). We created an overall similarity 
matrix (OSM) by summing over individual matrices of 
all 20 participants in each condition. Similarity in the 
OSM is represented by a number ranging from 0 to 20, 
where 0 indicates the least similarity between two icons 
and 20 indicates the highest similarity between two 
icons. Figure 3 shows a visualization of the raw 
similarities using a tool we implemented called Matrix 
Visualizer (Klippel, et al., accepted). We started our 
analysis by examining the patterns in Matrix Visualizer. 
Darker regions in each matrix indicate that 
corresponding icons (intersection of row and column) 
were considered similar by more participants. For 
example, cells at the intersection of EC2 and DC2 in 
the dynamic condition are darker than that in the static 
condition. This indicates that there are more 
participants in the dynamic condition who grouped 
icons of EC2 and DC2 together.  

Next, we used cluster analysis to analyze the 
similarities with the goal to reveal natural groupings. 
We used Ward’s method, average linkage, and 
complete linkage (Romesburg, 2004). Clatworthy and 
collaborators (2005) suggested comparing different 
cluster analysis methods in order to cross validate the 
interpretation of clustering results. The comparison of 

these three methods shows that their results are 
comparable. Here we represent the clustering analysis 
using Ward’s method; the results of using complete 
linkage and average linkage are posted on our website 
(http://www.cognitivegiscience.psu.edu/cogsci2011). 

 
Figure 3. Similarity matrices for dynamic and static 

presentation. The darker the color, the more similar two 
icons (at the intersection of rows and columns) are. 

We found that the category constructions are 
different between static and dynamic presentation (see 
Figure 4). In the static condition, overall, we found that 
participants created more distinct groups with the 
topologically distinguished paths, i.e., the topological 
ending relations are clearly separable. A good example 
is the ending relations EC2 and DC2, which are barely 
distinguishable (in fact mixed) in the dynamic group, 
but separated in the static group. Likewise, we find a 
change in the similarities between individual 
topological equivalence classes and how and when they 
are grouped together. Most strikingly, in the dynamic 
condition, EC1 and PO1 are grouped together before 
DC1 is added. In contrast, in the static condition, the 
two non-overlapping ending relations DC1 and EC1 are 
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grouped together, while PO1 is considered closer to the 
proper part relations (TPP1 and NTPP). 

Following the cluster analysis of grouping patterns, 
we looked into the actual numbers of participants who 
placed icons of the same topological equivalence class 
into the same group. Using the tool KlipArt 
(Clatworthy, et al., 2005), we counted the number of 
participants who placed a) all icons of the same 
topological equivalence class (Figure 5) and b) icons 
that are conceptual neighbors into the same group 
(Figure 6).  

A paired samples t-test shows a statistically 
significant difference between static and dynamic 
presentation. Icons in the static condition are grouped 
together more often than are the corresponding icons in 
the dynamic condition (dynamic: M = 10.22, SD = 2.22; 
static: M = 12.89, SD=2.37; t(8) = -6.532, p<0.001). 
This indicates that the mode of presentation influences 
the conceptualization of events. 

 

Figure 4. Results of cluster analysis.  

We were also interested in seeing how conceptual 
neighbors were grouped. We paired topological 
equivalence classes that are conceptual neighbors, and 
counted the number of participants who grouped them 
together. The paired equivalence classes are: 
DC1&EC1, EC1&PO1, PO1&TPP1, TPP1&NTTP, 
NTTP&TPP2, TPP2&PO2, PO2&EC2, and EC2&DC2 
(Figure 6).  

Overall, we did not find significant differences 
between the two conditions. However, the results offer 
additional insights into the interpretation of the results 
of the cluster analysis and Matrix Viewer. For example, 
DC1&EC1 are conceptually closer (they have a higher 
number) in the static condition than in the dynamic 
condition. Likewise, the pair PO1&TPP1 is considered 
more similar in the static condition than in the dynamic 

condition. In contrast, proper part relations are more 
similar in the dynamic condition. At the end of the 
movement patterns (EC2&DC2), differences become 
smaller. Please note that this analysis is rigorous in the 
sense that only participants who place all icons 
belonging to a topological equivalence class are 
counted, while cluster analysis takes into account 
individual icon similarities. 

  
Figure 5. Number of participants who grouped all icons 

of the same topological ending relation. 

 
Figure 6. Number of participants who grouped all icons 

in the same conceptual neighbor pairs 

Finally, we investigated the linguistic descriptions 
that participants provided through the software 
AntConc (Anthony, 2006). We looked at the top ten 
most frequently used words in the short names. Within 
these words, we eliminated the figure (hurricane) and 
ground (peninsula) to see how participants used words 
to describe the relations between them. The remaining 
word frequencies show some interesting differences in 
how categories (groups) were labeled and linguistically 
characterized within each condition. The three most 
frequently used words are shown in Table 1. We found 
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that while participants in the static condition focused on 
elements present in the scene as such, for example, the 
coast or the visualized trajectory (path), participants in 
the dynamic condition focused on the actual movement 
and used verbs more frequently.  

Table 1. Word frequency in short names. 

  “coast” “path” “stops” 
Dynamic 2 0 8 

Static 25 21 0 

 We then investigated the long descriptions, which 
showed similar patterns. We used the same tool to rank 
the frequency of words used. Participants in both 
conditions used similar numbers of words related to 
directions (e.g. left, right, north, south, west, east: 51 
times in the dynamic condition and 62 times in static 
condition). Participants in the static condition, however, 
used the word “path” (43 times) and “coast” (28 times) 
more often compared to participants in the dynamic 
condition (5 and 14 times, respectively). Moreover, 
participants in the dynamic condition used verbs (e.g. 
stop, end land, touch, or cross) 70 times while 
participants in the static condition used a verb “located” 
(14 times) only to describe hurricanes.  

Discussion 
The results of these two experiments extend current 
research on the conceptualization of events in a number 
of ways. We carried out a comparison of statically and 
dynamically presented paths of hurricanes. Path 
characteristics were systematically varied based on 
formal theories that have developed in spatial 
information science (and artificial intelligence). This 
combination allows us to render the influence of the 
presentation mode more precise. 

Through a multi-methodological approach, we found 
primarily that topologically defined ending relations of 
geographic movement patterns are important, but that 
they are salient to different degrees. Not every 
topological relation is cognitively salient (adequate 
from a modeling perspective) to the same degree. 
Additionally, we found that the static presentation of 
paths (of events) adds a focus on ending relations and 
strengthens topology as a criterion for distinguishing 
and conceptualizing movement patterns. 

These results contribute to the literature in the 
domain of qualitative spatial and temporal reasoning 
which relates formal and cognitive conceptualizations 
of space. For example, research by Knauff et al. (1997) 
showed that there is basically no difference between 
topological equivalence classes when the entities in a 
scene are a) static and b) simple geometric figures. 
However, if there is both a dynamic and a semantic 
context, such as in the experiments by Lu et al. (2009), 
topological equivalence classes are combined into 

larger (super-ordinate) categories. They found that 
relations that do not overlap (DC and EC) are 
distinguished from those that do overlap1.  

Based on these findings, we suggest that a) a 
semantic context changes the conceptualization of 
spatial relations (both static and dynamic), and b) static 
presentations of movement patterns place an additional 
focus on the ending relation of a movement pattern. 

Looking at the conceptualization of movement 
patterns (static or dynamic) through linguistic analysis, 
we can further corroborate that there are differences in 
processing the same spatial and semantic information 
depending on the presentation mode. While dynamic 
presentations elicit linguistic descriptions that provide 
accounts of actions, static presentations place a focus 
on entities involved in a scene. 

Conclusions 
Research on the conceptualization of events has 
become a focus in both the cognitive and the spatial 
sciences. Now that computational developments allow 
the use of dynamic events as stimuli, it becomes 
possible to relate approaches in both areas. We consider 
this combination mutually beneficial because spatial 
information science offers formalisms that render 
notions of spatial information precise, and (behavioral) 
cognitive science allows for evaluating spatial 
formalism. Hence, we can address questions on the 
conceptualization of events and spatial configurations 
more precisely as a basis for behavioral evaluations. 

For example, the notion that topology is central to 
human thought is omnipresent in the cognitive sciences. 
Researchers such as Piaget and Inhelder (1948; 1967), 
Klix (1971), Shaw (1974), and Johnson and Lakoff 
(1980), to name just a few, intimately and explicitly 
refer to topology as central to their theories. What this 
means, however, can scientifically be answered only by 
rendering the notion of topology precise, on the basis of 
formal theories. We find that formal topology makes 
more and richer distinctions than assumed in several 
cognitive theories. Behavioral evaluations therefore 
become necessary. 

We also showed that the development of new tools 
for data analysis and the integration of multiple 
methods allows for an in-depth analysis of behavioral 
data. We briefly discussed our approach that comprises 
tools for data collection (CatScan) and data analysis 
(MatrixViewer, KlipArt) with other tools such as 
Clustan and AntConc.  

Future research directions, suggested by both our 
results and the literature discussed, should address the 
influence of semantic contexts on conceptualizing 
otherwise identical spatial events, the evaluation of 

                                                             
1 Allen’s (1991) temporal calculus used by Lu and 
colleagues is isomorphic to the RCC used in this paper. 
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other formalisms that could capture movement patterns 
of single agents (Kurata & Egenhofer, 2009), and the 
integration of further path characteristics (Maguire, et 
al., in press). 
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