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Abstract:  Detecting  and  diagnosing  HVAC  faults  is  critical  for  maintaining  building  operation
performance,  reducing  energy  waste,  and  ensuring  indoor  comfort.  An  increasing  deployment  of
commercial fault detection and diagnostics (FDD) software tools in commercial buildings in the past
decade has significantly increased buildings’ operational reliability and reduced energy consumption. A
massive amount of data has been generated by the FDD software tools. However, efficiently utilizing
FDD  data  for  ‘big  data’  analytics,  algorithm  improvement,  and  other  data-driven  applications  is
challenging because the format and naming conventions of those data are very customized, unstructured,
and hard to interpret. This paper presents the development of a unified taxonomy for HVAC faults. A
taxonomy  is  an  orderly  classification  of  HVAC  faults  according  to  their  characteristics  and  causal
relations. The taxonomy includes fault categorization, physical hierarchy, fault library, relation model,
and naming/tagging scheme. The taxonomy employs both a physical hierarchy of HVAC equipment and a
cause-effect relationship model to reveal the root causes of faults in HVAC systems. A structured and
standardized vocabulary library is developed to increase data representability and interpretability. The
developed fault taxonomy can be used for HVAC system ‘big data’ analytics such as HVAC system fault
prevalence analysis or the development of an HVAC FDD software standard. A common type of HVAC
equipment-packaged rooftop unit (RTU) is used as an example to demonstrate the application of the
developed fault taxonomy. Two RTU FDD software tools are used to show that after mapping FDD data
according to the taxonomy, the meta-analysis of the multiple FDD reports is possible and efficient.

Keywords:  fault  taxonomy;  fault  detection  and  diagnostics;  big  data  analytics;  semantic  analysis;
building informatics

1. Introduction

Commercial  buildings  account  for  more  than  40%  of  energy  consumption  in  the  United  States,
constituting approximately 5296 billion kWh (18.07 quadrillion Btu) of electricity consumption in 2020
[1]. Faults, malfunctioning control and operation, and poor maintenance account for 15–30% of energy
waste in commercial buildings in the United States  [2]. Apart from energy waste, decreased building
thermal comfort,  increased system operation and maintenance costs are also observed due to various
faults in heating, ventilation and air-conditioning (HVAC) systems [3–5]. The integration and deployment
of fault detection and diagnostics (FDD) tools are proven to significantly enable reliable HVAC system
operation, as well as decrease energy consumption and other negative impacts on buildings and occupants
[6–8]. It is estimated that by deploying FDD tools in the buildings, 5–20% energy saving can be achieved
[2,8], and a recent major study saw median energy savings of 9% from implementation of FDD tools
across 9 million square meters (97 million square feet) of commercial building floorspace [9].
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FDD is designed to detect HVAC system abnormalities, locate the fault causes, and facilitate the analytics
on the possible impacts of faults during the operation of a system or equipment. In the past three decades,
extensive research has been conducted on developing advanced FDD methods and tools  [10]. Today,
more than 30 commercialized FDD software tools are available in the U.S. and the deployment scope has
witnessed a rapid increase [8]. FDD software is an analytics tool which usually uses building automation
system (BAS) data (sometimes in combination with meter data, weather data or other information) and
various diagnostics  approaches such as rule-based,  physical  model-based and data-driven methods to
provide insights into building system operation. For example, a BAS may instruct an air handling unit
(AHU) outside air damper to be at minimum position, but the FDD algorithm identifies that mixed air
temperature tracks the outside air temperature, indicating that the outside air damper is actually stuck in
an open position, which would result in hidden energy waste [11]. FDD software usually includes a front-
end graphical  user interface (GUI) which offers a dashboard for system operators to monitor system
operation  and flag the  operational  abnormalities.  Additionally,  FDD tools  can  output  their  analytics
results in a variety of formats, including tabular/text and visual format. Figure 1 illustrates a report format
of an FDD tool.  In the tabular/text summary example of a FDD report (Figure 1a), various semantic
representations  of  system/equipment/component  operational  status  are  employed  to  describe  a  fault
property.  Each  piece  of  semantic  representation  can  be  viewed  as  a  fault  message  log  and  be
automatically  generated  into  fault  records  or  fault  message  logs  with  different  time  duration  in  the
database. The fault records or fault message logs are usually presented in text or tabular formats and can
be exported to a standard format spreadsheet file. To support root cause analysis of reported faults, FDD
tools may also offer charting and trending capabilities to users (Figure 1b). The underlying fault detection
algorithms may be the same in either case; these examples relate specifically to the presentation of FDD
results.

(a) (b)
Figure 1. Examples of FDD tool analytics report: (a) tabular/text summary (b) visual display showing

AHU cooling coil valve detection result [12].

The rapid expansion in deployment of FDD software is generating and storing data that reflect system
operational  conditions  at  an  increasing  scale.  For  example,  the  FDD  tools  deployed  in  Walmart
supermarkets generated 25 million HVAC alarms company-wide in 2019 [13]. The FDD report data, in

2



theory,  offers  a  valuable  opportunity  to  understand  the  nature  of  commercial  buildings’  operational
performance at an unprecedented level of granularity. However, compared with considerable efforts on
the improvement of algorithms in the FDD tools, few studies are found to explore and standardize FDD
software report data despite several organizations such as FDD subcommittee of ASHRAE TC 7.5 and
U.S. National Institute Standards and Technology were reported working on labeling conventions for
FDD  tools  [14].  Some  industry  efforts  have  produced  industry  available  protocols  to  improve  the
semantic data interpretability in building applications such as Brick Schema [15], Project Haystack [16],
and the ontology of smart building (SBOnto)  [17]. A thorough review of these efforts can be found in
[18]. Nevertheless, those protocols lack of capabilities to standardize FDD-reported fault data.

Different from BAS data where the numerical format is used to reflect system operation, FDD report data
(as shown in Figure 1a) is usually presented in a text format to provide a semantic definition of a specific
fault  (e.g.,  faulty  components,  fault  duration,  description  of  fault  nature,  and  sometimes  fault  cost
impacts)  for a piece of equipment or the system. Although data from FDD tool  reports may contain
abundant information, FDD report data mining is very challenging. Several barriers have been identified
that hinder the effective meta-analysis of FDD report data.

There is  not  a standardized FDD report  data format in the building FDD software industry.  Various
unstructured semantic representations  are used in  different  FDD tools to create a  diverse  report  data
format. This causes difficulty in automatically extracting information and data analytics from multiple
FDD software tools.

Inconsistent fault naming conventions in various FDD tools decrease the interpretability of the data. Very
random and customized fault names are employed across different FDD tool providers or even within one
software tool but different versions. For example, in one commercial FDD tool, a ‘discharge air damper
hunting’ fault is reported to reflect a malfunctioning damper control in variable air volume (VAV) air
terminal units (ATUs). However, in another FDD tool,  this fault may be reported as a ‘discharge air
damper cycling’ fault or an ‘unstable damper’ fault. This causes an obvious discrepancy among different
FDD reports or software. In some cases, fault messages can only be interpreted by FDD tool developers.

FDD software tools employ a mixture of fault type definitions with opaque relationships between them.
Multiple fault flag messages may be generated for one piece of equipment, but they may reflect the same
fault root causes. For example, a ‘low supply air temperature’ fault, a ‘simultaneous heating and cooling’
fault, and a ‘stuck cooling coil valve’ fault may be reported concurrently. At face value, this would be
counted as three faults, when in reality the stuck cooling coil valve may be the single true fault that is
resulting in the other two effects being observed. A successful meta-analysis of FDD data requires the
relationships  between  different  fault  types  to  be  defined.  Hence,  duplicated  information,  which  may
prevent efficient analyses on the data, may exist in the FDD reports.

There is  a  lack of a consistent  physical  hierarchy,  which can be used to classify faults  occurring at
different levels of operation (e.g., component level, sub-system level, whole system level). Additionally,
some critical information related to the equipment/component or even fault nature may be missed in the
FDD report data. For example, a ‘flat sensor’ fault may be reported by a FDD tool but no information on
what type of sensor (e.g., temperature or air flow) is given in the fault name. This causes some FDD
reports  to  provide  a  high  volume  of  data  but  information  is  poor.  Further,  there  may  be  atypical
components included in the FDD report due to the mistaken label of an equipment. For example, the
‘compressor short cycling’ fault was found in the AHU fault detection report of one FDD tool. However,
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the reported component type, i.e., the compressor, should not be included in the AHU but other types of
equipment such as chillers. This equipment type label error is mainly because there is not a clear and
consistent equipment physical hierarchy when developing the FDD tools.

Leveraging this wealth of data to obtain scaled building performance insights requires the synthesis of
system and software outputs that present discrepant naming conventions, hierarchical physical granularity
of  reporting,  and  definitions  of  efficiency  opportunities.  This  represents  a  need  for  domain-specific
semantic representation that can be applied to unify the information from diverse sources into a consistent
and common knowledge framework. Two semantic approaches can be used to develop data models to
increase data representability and interoperability  [17]. One approach is to use an ontological frame to
describe data structure and relations, another type is to use taxonomy to specify data terminology as well
as prescribe data structure. Ontology defines common language and representation so that information
and knowledge  can  be described in  structured  data  [19].  In  the ontology framework,  a  standardized
vocabulary library is used to define properties, classes, and attributes of the components  [20]. Another
classification  approach  is  taxonomy,  which  is  the  classification  scheme  which  categorizes  a  set  of
information by employing agreed vocabulary of items in either a hierarchical or non-hierarchical structure
[17]. Familiar examples of taxonomies include those used in the biological sciences [21], and the Dewey
Decimal  system  [22];  additional  examples  can be  found in web search and browse  frameworks  and
software testing [23,24].

In this study, a taxonomy for HVAC system faults is developed to enable the effective interpretation and
mining  of  data  obtained from various FDD software  reports.  The  taxonomy presented in  this  work,
extends the state of knowledge established in prior work by providing a unique classification for the faults
in HVAC systems. The taxonomy permits unification across different layers in the equipment-component
location-component type-fault nature hierarchy, across diverse fault naming or indexing conventions, and
across  multiple  commonly  used  conventions  for  determining whether  a  fault  is  present.  The  current
version of the taxonomy includes faults in three common types of HVAC equipment: packaged rooftop
units (RTUs), AHUs, and VAV ATUs. The developed taxonomy was principally designed to support a
large-scale  U.S.  fault  prevalence  study,  but  is  expected  to  have  broader  applications  for  HVAC
researchers, FDD software developers, and commercial building owners. In the fault prevalence research,
the occurrence and prevalence of various types of faults  occurring in HVAC systems in commercial
buildings  will  be  analyzed according  to  different  drivers  such  as  building  types,  climate  zones,  and
equipment operation conditions. Data used to develop calculation metrics is primarily based upon the
report data generated from multiple commercial FDD tools in the U.S. Therefore, efficient interpretation
and analytics of FDD software report data are very critical.

The paper is organized as follows: a review of related works is introduced in Section 2. In Section 3, the
development methodology for fault taxonomy is described. The fault taxonomy for RTUs is employed as
an example to describe the procedure. A case study of using the taxonomy to analyze the outputs of two
FDD tools is presented in Section 4. Several discussions are presented in Section 5. Section 6 presents
conclusions.

2. Background and Related Work

2.1. Fault Descriptions Used by Existing FDD Software
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The definition of the term ‘fault’ is a key to understanding the analysis output of FDD tools. According to
IFAC Technical Committee SAFEPROCESS  [25], a fault is ‘an unpermitted deviation of at least one
characteristic property (feature) of the system from the acceptable, usual, standard condition’. Besides
that,  two  other  definitions  were  given  to  malfunction  and  failure  as  comparisons  with  the  fault.  A
malfunction is ‘an intermittent irregularity in the fulfillment of a system’s desired function’. A failure is ‘a
permanent interruption of a system’s ability to perform a required function under specified operating
conditions’. A fault can cause a malfunction in one component or system, and then lead to a failure of the
component or system.

However, faults reported from today’s FDD tools in the HVAC industry comprise a wider scope which
may include faults, malfunction, and corresponding symptoms in the system. This is because enormous
operational abnormalities, which significantly affect the normal operational performance, have been found
in the HVAC system in either commercial or residential buildings [26]. According to Frank et al. existing
commercial FDD tools use three general categories of fault type definition based upon how the faults are
presented [27]. The categories include condition-based, behavior-based, or outcome-based faults. Table 1
lists  the  descriptions  of  the  three  fault  types.  The  definitions  portion  of  the  taxonomy  permits
reconciliation of the fact that these three fault instances indeed refer to a single fault state as opposed to
multiple independent fault states.

As an introductory example shown in Table 1, consider an AHU with its outside air damper stuck open in
the mechanical cooling operation mode. In the FDD tool, the AHU’s faulted state may be defined by its
condition (i.e., outside air damper is stuck open), behavior (i.e., mixed air temperature is too high), or
outcome (i.e., the excessive cooling energy consumption). However, if the AHU is experiencing a call for
preheating when the outside temperature is very low in the winter season, it would still be considered
faulted under the condition-based definition (the outside air damper is stuck open), but not under the
behavior-based definition because mixing air temperature in the mixing box may not be abnormal. The
AHU’s state under the outcome-based definition would be determined by the amount of chilled water
flow through the cooling coil compared to a normal level of chilled water consumption. While condition-
based and behavior-based fault conventions are more often seen in the tabular/text analysis summary of
the commercial  FDD tools  outputs,  all  three  definitions  may be used in  the tools  depending on  the
available input data and the tool developer’s preferred approaches.

Table 1. Fault definition conventions [27].

Category Condition-Based Fault Behavior-Based Fault Outcome-Based Fault

Definition

Presence of an improper
or undesired physical

condition in a system or
piece of equipment

Presence of improper or
undesired behavior during

the operation of a system or
piece of equipment

A state in which a quantifiable
outcome or performance

metric for a system or piece of
equipment deviates from a

correct or reference outcome,
termed the expected outcome

Example Outside air damper
stuck open

Mixing air temperature is
too high

Excessive cooling energy
consumption

2.2. Fault Taxonomy in the HVAC Industry

Fault or data taxonomy is found to be critical to decouple faults and facilitate data mining in HVAC
systems.  In  order  to  identify the fault  causes,  faults  in  RTUs  are  classified into  electrical-related  or
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controls-related and mechanical  related categories  [28].  Under this  classification,  40% of faults  were
identified as electrical-related or controls-related faults,  and 60% percent of faults were grouped into
mechanical  related  faults.  Similarly,  Li  and Braun developed a  taxonomy for  RTU faults  which  are
grouped into two categories as component level faults and system level faults  [29]. In component-level
faults, the fault source impact is restricted to a specific component. The impacts on the system can be
traced back to this source impact.  For instance, a compressor valve leakage fault is grouped into the
component fault category. In a system-level fault,  the source impact cannot be confined to a specific
location or component. For example, a low refrigerant charge fault is grouped into a system level fault.
The developed taxonomy was used to handle multiple simultaneous faults across different components.
Cheung and Braun grouped faults in HVAC systems into six categories including control faults, sensor
faults, RTU and split air conditioner faults, chiller faults and other uncategorized faults [30]. Under this
fault classification, faults were mainly categorized according to their locations in RTUs. However, some
common faults in AHUs and VAV terminal units were not investigated in detail. Similarly, Zhang and
Hong  classified  operational  faults  into  five  categories  as  fouling  fault,  control  fault,  sensor  offset,
performance degradation, and stuck fault in a VAV system  [31]. These faults  may occur in different
locations in a VAV HVAC system. For example, a sensor offset fault can occur in an economizer or
heating/cooling coil. Various fault models were developed to describe the fault characteristics, and fault
symptoms were analyzed. Despite common faults in an air conditioner unit being classified, those faults
were all  actuator-related faults  and no sensor  and control-related faults  were discussed.  Besides,  the
authors did not provide a complete fault name library.

2.3. Fault Taxonomy in Other Industries

Apart from the data taxonomy in the HVAC industry, we also reviewed literature from other industries
including  construction  industry,  process  industry,  power  system industry,  and  software  industry.  We
found that the establishment of a clear and accurate data/fault taxonomy not only increases the systematic
description  of  data/faults  from multiple  data  sources,  but  also  facilitates  many  applications  such  as
locating faults in a complex system, developing a fault analysis system, improving data interoperability,
and interpretability.

For example, in order to improve construction productivity monitoring which requires data to be fused
from multiple  data  sources,  Pradhan et  al.  developed a  taxonomy of  spatial  and temporal  reasoning
mechanisms [32]. In the process industry, faults were simply classified into different categories according
to their forms, time behaviors, and extents  [33]. Those classification methods are useful to differentiate
the  fault  characteristics  and  facilitate  fault  detection  and  diagnosis.  In  the  form type,  faults  can  be
classified into systematic fault or random fault. According to the time behavior, faults can be categorized
into permanent fault, transient fault, intermittent fault, noise fault, and drift fault. With regards to the
extent type, faults can be divided into local faults and global faults. In  [25], fault types are grouped as
sensor  faults,  actuator  faults,  process  faults  and  control  loop/controller  fault  according  to  165 faults
published  through  1991–1995.  In  the  power  system,  faults  can  be  classified  into  three  types  as
symmetrical faults,  unsymmetrical faults and open circuit faults  [34]. Beside those classifications, the
development of fault taxonomy which includes more fault characteristics has drawn attention from other
industries such as aerospace engineering and software engineering. The purposes of those taxonomies are
to reduce risks and increase the system reliability. At the same time, tracking root caused faults can be
more efficient as fault relation models are developed in the fault taxonomy. The development of fault
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taxonomy has also drawn attention in the software industry so that detecting and tracking a fault can
become more efficient. Studies [23,35,36] reported the development of fault taxonomy for the software
industry. It was found that, by using the coherent fault taxonomy for analyzing faults, an effective test and
analysis  method  can  be  easily  achieved.  In  order  to  assess  the  quality  of  software,  especially  for
component-based software,  Mariani  et  al.  developed a fault  taxonomy for  component-based software
[35]. In the research, faults in the software were classified according to their causes and effects. Two main
classes of faults such as service-related and structure-related faults were identified. The fault taxonomy
significantly improves the testing and analysis techniques for component-based software.

2.4. Summary

Despite various methodologies employed to develop a fault taxonomy in the HVAC industry and in other
industries, the methods employed seldom consider the faults reported by FDD software. The developed
taxonomy is  insufficient  to  describe  data  obtained  from various  FDD tool  reports  for  the  following
reasons. First, most of them did not adequately address the physical configuration characteristics of an
HVAC system. Complete information for a fault in the FDD software tool often includes the description
of  the  component  which  reports  the  fault  occurrence.  Therefore,  in  the  taxonomy  architecture,  the
physical configuration of an equipment should be explicitly presented. Secondly, existing taxonomy does
not well illustrate relations between various types of faults. As illustrated in Section 2.1, faults reported in
a  FDD  tool  may  contain  relationships  which  reveal  the  causes  and  effects.  Understanding  those
relationships is critical to accurately translate FDD software data. Lastly, none of the research aimed to
provide  a  standardized  fault  library  and  naming  conventions  which  would  be  critical  in  extracting
information from meta-data analytics.

To bridge this gap, a unified taxonomy which aims at effectively interpreting faults reported by HVAC
FDD software tools is developed and is presented below.

3. Methodology

As stated in the Introduction, fault names used in FDD software reports lack interpretability. This causes
increasingly  complex  and  difficult  problems  when  analyzing  HVAC  system  faults  such  as  fault
prevalence analysis in which ‘counts’ should be accurate. For example, one dataset may refer to a stuck
heating or cooling valve, while in another dataset, this fault may be reported as simultaneous heating and
cooling, or even excessive unit-level energy consumption.

In order to address this issue, the proposed fault taxonomy for HVAC equipment fault should contain
information which can be used to locate the fault and reflect the fault feature. To achieve this goal, we
first define a system physical hierarchy, and then assign a unique fault name from a summary fault library.

The  developed  taxonomy  included  four  scenarios  which  are  expected  to  accurately  capture  the
fundamental information integrated in a fault message from FDD software tools. A four-element design
schema includes equipment physical configuration hierarchy for locating a fault (Section 3.1), controlled
vocabularies for describing fault nature (Section 3.2), unified fault identification codes (IDs) and fault
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library (Section 3.3), as well as fault relation models for identifying condition-based fault and associated
behavior-based faults (Section 3.4), for efficiently querying FDD report data. The design schema will be
detailed by using a common type of HVAC equipment, i.e., RTU as an example in the following sections.

RTU  is  a  typical  type  of  HVAC  equipment  which  comprises  all  the  components  such  as  fans,
compressors, evaporators, and coils needed to provide conditioned air to zones in a building. RTUs are
widely used in commercial buildings from different sizes due to their advantages of application flexibility,
low cost, easy installation and so on [37]. In the U.S, approximately 34% of all commercial buildings and
52% commercial floor space is served by RTUs [38].

3.1. Equipment Physical Hierarchy

Despite some standards such as Brick Schema [15] and Project Haystack [16,39] including descriptions
for a system’s hierarchy, or equipment physical configurations, they attempt to follow BAS functionalities
to capture the sensory data meaning in a BAS or BEMS. For example, in the Brick schema, two classes of
entities such as equipment and points are employed to describe the entities in a HVAC system [40]. The
dependencies between sensors, actuators, setpoints, and related equipment and spaces are described by
control relationships. However, those relations are not sufficient to interpret data generated from FDD
software tools where the fault report messages need to explicitly reveal what occurs in which component
in a piece of equipment. Besides, one of the objectives of fault prevalence research is to count fault
occurrence in a specific component. Therefore, an accurate physical hierarchy is critical to reflect various
levels in a complex HVAC system. In the process of developing the fault taxonomy for HVAC systems,
we  classified  HVAC  equipment  physical  configuration  into  three  levels  as  equipment  category,
component location type, and component type.

Figure 2 shows a simple example of three levels in the hierarchy of an RTU, with examples of what
appears in each level. The first level is assigned to define the equipment type. In the second level, a
component location is given to describe which location in an equipment a component belongs to. The
third level in the hierarchy defines the component type, i.e., the component in which a FDD tool reports a
fault.

Figure 2. Illustration of the physical hierarchy for an RTU.
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3.1.1. Equipment Type

In the equipment type, we focus on the equipment within the study scope of fault prevalence study.
Therefore, three common equipment—such as AHUs, RTUs, and VAV ATUs—were first selected.

3.1.2. Component Location

Under  each  equipment  type,  a  two-level  hierarchy  is  used  to  identify  a  component  and  component
location is the first level. Different from the Brick schema in which the location is used to determine the
spatial point in a building (i.e., a floor or a room)  [40], in the fault taxonomy, the class of component
location type is employed to locate a component within a piece of equipment. This is because the same
type  of  component  may  be  installed  at  different  locations  in  an  equipment  and  serve  different
functionalities in equipment operation. For instance, a temperature sensor can be installed and employed
in the supply air section of a RTU to collect supply air temperature and compare it with the supply air
setpoint. Meanwhile, the same type of temperature sensor can also be installed outside of the RTU to
collect outside air temperature data (Figure 3). It is obvious when reporting a temperature sensor fault that
the component  location information should be provided.  However,  in  many FDD software tools,  the
diagnostics outputs do not include any information about where the location of the component is in an
equipment. For instance, a FDD tool may only report a ‘temperature sensor frozen’ fault, but does not
explicitly illustrate if it is a temperature sensor in the outdoor air section or in the supply air section
Therefore, localizing the component in an equipment facilitates exactly mapping the fault output data
generated  by  a  FDD software.  In  the  example  above,  if  a  fault  message  is  found  that  the  location
information is absent to identify the component functionality, the fault message will be excluded from
counting the fault occurrence.

We use a term ‘Unassigned’ in the taxonomy to represent a component of which the location information
cannot be clearly identified, or multiple locations are included. For instance, in the RTU taxonomy, the
component of the RTU controller is identified. However, the controller itself is directly tied to the RTU
and serves a functionality to control the entire RTU operation. Therefore, when representing the RTU
controller,  the  ‘Unassigned’  string  is  used  to  illustrate  such  a  condition.  Additionally,  in  the  FDD
software tool,  the  violation of  a  rule  based on multiple  components  at  different  locations  is  used to
diagnose a fault. For example, some FDD tools employ the difference between mixed air temperature and
outside air temperature from AHU Performance Assessment Rules [41] to detect AHU faults and generate
fault  reports.  Hence,  a  fault  message  of  ‘mixed  air  temperature  equals  outside  air  temperature’  is
generated by the FDD tool correspondingly. In such a case, not a single location of the component can be
identified. Therefore, when mapping those fault messages, the ‘Unassigned’ string is used to illustrate
such a condition.

In the common RTU configuration hierarchy as shown in Figure 3, a total of 15 locations are identified as
given in Table 2.  It  is  noted that  some components such as the evaporator are also categorized into
location  sections.  This  is  because  faults  in  a  more  granular  component  level  can  be  detected  and
diagnosed. For example, the air filter fouling fault in the evaporator was reported in [4].
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Figure 3. Typical RTU configuration.

Table 2. Component locations in the RTU configuration and their code in fault IDs.

No. Location Code Used in Fault IDs

1 Outside air section Outside_air

2 Supply air section Supply_air

3 Return air section Return_air

4 Mixed air section Mixed_air

5 Compressor section Compressor

6 Condenser section Condenser

7 Evaporator section Evaporator

8 Heating section Heating

9 Refrigerant circuit Refrigerant_circuit

10 Economizer section Economizer

11 Discharge air section Discharge_air

12 Suction section Suction

13 Zone section Zone

14 Control section Control

15 Unassigned Unassigned
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3.1.3. Component Type

Component type is the second level of the two-level hierarchy which is used to identify a component
under the equipment type.  In  the class  of component type,  a generic component  type is  determined.
Although ‘Points’, which are used in the Brick Schema [40] can well represent some components in the
equipment or systems, it does not clearly differentiate the data types generated by FDD software tools.
Considering the FDD tools output three types of faults as condition-based faults, behavior-based faults
and outcome-based faults  (Section 2.1),  and each type covers various objects to represent  faults,  the
component types include two entities-physical entities and virtual entities to represent objects that report
faults.  The  introduction  of  two  different  entity  types  in  the  component  type  facilitates  to  map  and
differentiate a condition-based fault  from associated behavior-based faults or  potential  outcome-based
faults from the FDD tools.

In  the  physical  entity,  various  physical  components—such  as  sensors,  actuators,  and  controllers
associated with the equipment—are included. Apart from those real components, control sequence or
control parameters are also treated as physical entities because operators can directly touch those entities
by programming the control sequence or setting the parameters. Physical entities are mostly used in the
descriptions of condition-based faults because the descriptions of physical conditions are given to real
components which operators can fix.

Virtual entities include various measurements such as single sensor outputs (e.g., temperature, relatively
humidity, air flow), actuator feedback (e.g., damper operation position, valve operation position, and fan
speed) and multiple measurements (e.g.,  supply air  temperature and supply air  temperature setpoint).
Virtual entities, which are used to illustrate the objects of fault symptoms, are mostly in the descriptions
of behavior-based faults or outcome-based faults.

Similar to the component location, we use a term ‘Unassigned’ in this level to represent a component type
for which the detailed information is not  given.  This is  because for some faults,  existing FDD tools
seldom  provide  diagnostics  results  in  a  more  detailed  granularity.  For  instance,  a  compressor  fault
message such as ‘compressor malfunction’ from the FDD tool may be caused by any faults occurring in
components  (e.g.,  motor,  oil  circuit  or  airline)  occurring  in  a  compressor.  However,  no  detailed
diagnostics result regarding the fault  root cause is  given.  Therefore,  in the RTU taxonomy, the term
‘compressor’ is aligned to the component location class and the term of ‘Unassigned’ is given in the
component type. This term of ‘Unassigned’ can be replaced by a detailed component name if the FDD
tool can detect and diagnose what component type is faulty within the attached high-level component
location.

Various optional components or parts may be employed in different models of RTU products. Therefore,
it is not possible to include all available equipment configurations in the marketplace when developing the
fault  taxonomy.  In  the  current  version  fault  taxonomy,  we  determined  a  common  RTU  physical
configuration after reviewing the current RTU faults literature [4,29,42]. Despite the current taxonomy
not covering all possible physical configurations, the proposed taxonomy architecture is scalable for FDD
software developers to add more components and expand the fault name library in the future.

In the current RTU fault taxonomy, the component type level includes 31 physical entities and 10 virtual
entities (e.g., temperature, pressure, and relative humidity) are identified as provided in Table 3.

Table 3. Component types of a typical RTU configuration.
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Location Component Type

Outside air section Outside air temperature sensor
Outside air relative humidity sensor
Outside airflow sensor
Outside air damper
Temperature
Relative humidity
Air flow
Damper position

Supply air section

Supply air temperature sensor
Supply air pressure sensor
Supply air relative humidity sensor
Supply airflow sensor
Supply air fan
Supply air filter
Temperature
Relative humidity
Air flow
Pressure
Fan speed

Return air section

Return air temperature sensor
Return air CO2 sensor
Return air vent
Temperature
CO2

Zone section

Zone temperature sensor
Zone relative humidity sensor
Zone CO2 sensor
Zone dewpoint temperature sensor
Temperature
Relative humidity
CO2

Economizer section Economizer damper

Compressor section Compressor motor
Compressor lubrication oil

Compressor discharge part section Compressor discharge valve
Compressor suction part section Compressor suction valve

Condenser section

Condenser coil
Condenser gas
Fan
Unassigned

Evaporator section Evaporator coil
Evaporator filter

Heating device Unassigned
Refrigerant section Refrigerant circuit refrigerant

Refrigerant circuit expansion device
Control board Unassigned

Control
Schedule
Setpoint
Control sequence

Unassigned Cooling consumption
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Heating consumption
Electricity power consumption

It is noted that, although faults in the zone level component (e.g., zone temperature sensor fault) have
been seldom reported in  the RTU FDD papers,  in  the RTU fault  taxonomy,  we include those faults
because they are frequently reported in FDD software tools.

3.2. Description of a Fault Nature

Many terms or expressions are used in existing FDD software tools to represent a fault nature, and the
terms  used  are  very  customized  and  random.  Some  terms  are  found  in  the  same  FDD software  to
represent the same fault nature. For example, the term ‘Frozen’ in a FDD tool is used to describe a sensor
reading value that is constant even if the real measurement value is changing. However, in the same FDD
tool but different versions, the term ‘Stuck’ is used to describe the same fault nature. In order to reconcile
this inconsistency, a unified term list is needed to be developed.

In this study, controlled vocabularies are developed to standardize the fault description in one to three
words. Controlled vocabularies reduce ambiguity inherent in normal human languages where the same
concept can be given different  names and ensure consistency  [43]. The words used as the controlled
vocabularies are selected based upon extensive literature review and investigations on available FDD
software tools. In the current stage, we developed 21 controlled vocabularies to describe the fault natures.
Table 4 lists the controlled vocabularies and corresponding descriptions.

Table 4. List of controlled vocabularies.

No. Controlled Vocabulary Used
in Fault IDs

Example Component Type in Which
the Fault May Occur Description of Fault Nature

1 Bias Supply air temperature sensor Sensor reading value is constantly higher or lower
than the real value

2 Drift Supply air temperature sensor Low frequency reading value change in a sensor
with time

3 Frozen Supply air temperature sensor Sensor reading value is frozen at a constant value

4 Fouling Cooling coil Fouling is the buildup of sediments and debris on
the surface area of a coil

5 Size Supply air duct Improper coil, duct, pump size

6 Leakage Heating coil valve Fluid or air escape from the coil, or valve, or duct
due to sealing issues

7 Stuck Outside air damper Actuator  is  stuck  at  a  certain  position  due  to
mechanical or electrical malfunction

8 Setpoint_setting Control setpoint setting Improper control setpoint setting
9 Sequence_setting Control sequence setting Control interlock fault, improper control mode 
10 Schedule_setting Schedule setting Schedule setting fault
11 Block Filter Filter is blocked by fouling
12 Malfunctioning Supply air fan Fan fault due to motor failure, loose belt, or other 
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hardware faults
13 Restriction Refrigerant circuit in the RTU The refrigerant circuit is restricted 
14 Charge Refrigerant circuit in the RTU Liquid line or filter/dryer is restricted
15 No_condensable_gas Refrigerant circuit in the RTU No condensable gas is present in the circuit

16 Rule_abnormal Supply air temperature and setpoint
May apply to all measurements and setpoint. 
Represent relations between two or more 
measurements in one fault name

17 Hunting Supply air fan Unstable actuator behaviors such as cycling 
operation due to improper control parameters

18 Simultaneous Cooling and heating Simultaneously provide heating and cooling
19 Short_cycling Compressor in the RTU Control problems cause short runtime

20 Abnormal Supply air relative humidity Physical measurements are abnormal (e.g., 
temperature is too high or too low)

21 Unspecified N/A The description of the fault nature is not given

Apart from the common terms (e.g., frozen, stuck, and blocked) that are frequently reported in either
academic literature or commercially available FDD software tools, we also employ some terms which
represent fault characteristics at a higher level so that in the fault prevalence study, we minimize fault
names which represent similar fault characteristics. We explain those terms below in detail.

Abnormal:  This  term is  used  to  describe  behavior-based  faults  which  a  physical  measurement  falls
outside of certain defined criteria. For example, FDD tools usually report the RTU supply temperature is
too high or too low or fluctuating. In the taxonomy, those semantic expressions are defined as ‘Abnormal’
to avoid excessive descriptions.

Rule_abnormal: This term is used to define the fault that is detected and diagnosed based on relations
between multiple components. This is because of two reasons as (1) some FDD tools detect and report
equipment faults based on rules generated from multiple components. For example, in some FDD tools,
the abnormality between mixed air temperature value and outside air temperature value is flagged as one
fault in an AHU or RTU, and (2) some FDD tools report faults that describe the abnormality between
measurement and setpoint. For example, the ‘supply air temperature is higher than the setpoint’ fault is
reported by a FDD tool. In such a condition, the fault characteristic includes both supply air temperature
and  supply  air  temperature  setpoint.  The  fault  is  detected  because  the  threshold  between  two
measurements is overpassed. This may be caused by either the supply air temperature is abnormal or the
setpoint is abnormal. Therefore, we use ‘Rule_abnormal’ to accurately capture this fault characteristic in
FDD software tools.

Unspecified: We use the word ‘Unspecified’ to represent the fault which the FDD software does not
explicitly report what type of the fault is due to its diagnostics resolution or random naming conventions
when developing the rules. For example, FDD software has a ‘temperature sensor failure’ fault in its
report, but does not mention the exact fault nature, i.e., bias, drift, and frozen. Therefore, by assigning
‘Unspecified’  fault  nature,  we can map those types  of  faults  and count  the fault  occurrence without
missing fault detection results for specific components. 

3.3. Design of Fault ID Format
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The data format is very critical in big data analytics  [44]. Studies show that incompatible, non-aligned
data structures, and inconsistent data semantics significantly challenge the efficient data analytics and
effective information extraction [45,46]. However, in the reports of most commercial HVAC FDD tools, a
large  number  of  text  data,  which  is  unstructured  and non-machine-readable,  are  usually  included to
describe what happens in a HVAC system. For example, a FDD tool gives human-readable language as
‘RTU supply air temperature is too low’ as a supply air temperature detection result. While another FDD
tool  may  give  a  simplified  data  format  as  ‘EXCESSIVE_RATE_OF_TRAVEL’  combined  with
equipment information such as ‘CHW’ or ‘HW’ to completely describe the operational abnormality in the
component, i.e., chilled water flow rate abnormal or hot water flow oscillation. Those code formats are
very  customized,  and  usually  can  only  be  interpreted  by  FDD  tool  developers.  Therefore,  these
unstructured pieces of text data frames should be converted into a unified data format so that an efficient
FDD report data analytics can be achievable.

In this study, a fault naming schema was designed to identify each fault so that structured fault data
format can be established. Following the above-mentioned taxonomy architecture, a fault name comprises
four elements as equipment type, component location, component type, and fault nature description. The
standardized and machine-readable fault  ID format  will  facilitate  the data query to analyze the fault
prevalence at various levels of granularities.

Through this fault naming scheme, a fault library was established to include the fault in AHU, ATU, and
RTU.  Each  fault  ID  is  unique  and  in  a  standardized  format.  In  the  taxonomy,  full  expressions  of
component location and component type are used to tag each element in the fault ID. This will increase
the interpretability so that persons outside of the HVAC industry can interpret the FDD data without
barriers.

Tables 5 and 6 show examples of a condition-based and a behavior-based fault name respectively. In the
first element, the equipment type is described. In the second element, the component location is given. In
the third element, the component type is assigned. The last element in the fault name is to describe the
fault  nature  by  using  the  controlled  vocabularies.  Each  element  is  connected  by  a  dash  symbol  to
formulate a structured fault name as ‘RTU-Supply_air-Temperature_sensor-Bias’ and ‘RTU-Supply_air-
Fan_control-Hunting’.

Table 5. Example of a condition-based fault name.

Equipment Type Component Location Component Type Fault Nature
RTU Supply_air Temperature_sensor Bias

Table 6. Example of a behavior-based fault name.

Equipment Type Component Location Component Type Fault Nature
RTU Supply_air Fan_control Hunting

Controlled vocabularies listed in Table 4 are used to describe the RTU fault natures. After determining
the RTU configuration and identifying the fault natures for each component, a total of 117 fault names—
which  include  91  condition-based  faults,  23  behavior-based  faults,  and  3  outcome-based  faults—are
generated.
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3.4. Fault Relation Model

In FDD reports,  both condition-based faults  and behavior-based faults  can be found in the software
outputs.  For each condition-based fault,  a  set  of  related behavioral  symptoms (behavior-based faults)
could occur and are reported by the FDD tool. Consider, for example, the case in which one set of field
data indicates one instance of a stuck valve (condition-based convention), and a second set of field data
indicates one instance of simultaneous heating and cooling (behavior-based convention). Simultaneous
heating and cooling could be caused by a leaking valve, a stuck valve, a faulted sensor, or even controls
problems. Therefore, across the two sets of data, the total number of instances of leaking valve is at least
one, and potentially two. It can be seen that the relation model in the taxonomy well addresses the issue of
how condition-based faults and associated behavior-based faults relate to one another, and can partly
avoid under or over counting of faults.

A  relation  model  can  be  defined  to  reveal  these  relationships  between  a  condition-based  fault  and
associated behavior-based faults. Despite Brick Schema providing some relation descriptions on various
entities  within  HVAC  systems,  it  primarily  describes  equipment/parts  and  their  relations  within  a
building. In this study, we borrow strategies from Fault Tree [47] and Bayesian networks [48] which are
usually  employed to  depict  the  cause-and-effect  relations  in  an  automation  system.  We developed a
comprehensive model to connect the condition-based faults and associated behavior-based faults based on
expert knowledge and in consultation with a project Technical Advisory Group.

Figure 4 provides graphic examples of the above-mentioned relation between a condition-based fault and
associated behavior-based faults. In Figure 4a, a condition-based fault ‘compressor motor malfunction’ in
the RTU (RTU-Compressor-Motor-Malfunction) is connected by multiple behavior-based or outcome-
based  faults  in  the  RTU,  such  as  ‘Supply  air  temperature  abnormal’  (RTU-Supply_air-Temperature-
Abnormal), ‘Supply air temperature and supply air temperature setpoint don’t match’ (RTU-Supply_air-
Temperature_setpoint-Rule_abnormal),  ‘Zone  temperature  abnormal’,  (RTU-Zone-Temperature-
Abnormal), and ‘Cooling abnormal’ (RTU-Unassigned-Cooling-Abnormal) may be caused by this fault.
Through  this  relation  model,  the  calculation  of  fault  prevalence  is  expected  to  be  more  accurate.
Similarly, a behavior-based fault can be caused be caused by multiple condition-based faults in multiple
components. For example, an RTU-Supply_air-Temperature-Abnormal fault can be caused by actuator
related condition-based faults such as RTU-Compressor-Motor-Malfunction fault, or ‘Compressor short
cycling’  fault  (RTU-Compressor-Unassigned-Short_cycling),  or  control  related  condition-based  faults
such as ‘Control sequence setting’ fault (RTU-Control-Sequence-Setting), or sensor related condition-
based faults such as ‘Supply air temperature sensor frozen’ fault (RTU-Supply_air-Temperature_sensor-
Frozen) etc., as illustrated in Figure 4b.
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(a) (b)
Figure 4. Examples of fault relations: (a) one condition-based fault with multiple associated behavior-
based faults that may be caused by the condition-based fault; (b) one behavior-based fault that may be

caused by multiple condition-based faults.

It  should be noted that a condition-based fault may propagate and affect different equipment or even
subsystems due to the highly coupled HVAC system (e.g.,  a chilled water supply pump fault  in the
primary subsystem can cause multiple symptoms in downstream equipment such as an abnormal cooling
coil valve position and abnormal supply air temperature in AHUs). Therefore, a condition-based fault and
associated  behavior-based  faults  may  cross  between  different  pieces  of  equipment  or  subsystems.
However,  in  this  study,  only  ‘local’  fault  relation  models  with  a  single  piece  of  equipment  were
developed.

4. Case Study

In this section, we present how we use the developed fault taxonomy to map results generated from two
FDD  tools.  Results  for  detecting  and  diagnosing  RTU  faults  from  two  commercial  FDD  tools  are
employed. We firstly extracted critical information which illustrate fault properties from the FDD reports.
Then,  we  mapped  fault  names  according  to  the  developed  fault  taxonomy.  From  this  process,  we
successfully  reduced the  number  of  fault  names,  and hence,  redundant  information in  the FDD tool
reports could be dropped. New fault IDs were assigned when the mapped fault names were generated.
Lastly, we employed one processed FDD report to calculate fault occurrence at different granular levels to
demonstrate efficient analyses and evaluation of the commercial FDD tools can be achieved, and the
HVAC system fault prevalence research can be accomplished.

4.1. Description of Data Set

In this study, fault reports from two commercial FDD software tools which listed the identified RTU
faults, are used.

The first report (referred to as no. 1 FDD report) generated from the commercial FDD tool A, includes
two-year (Year 2018–2019) FDD results of a total of over 2000 RTUs from 131 buildings in the U.S.
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After converting the raw fault message into a binary daily fault (BDF) format in which multiple fault logs
for the same piece of component of an equipment in the same day are removed, and only one unique fault
message for the same piece of component of an equipment within one day is kept. The number of BDF
messages in the data set reaches 2,865,786 rows.

The second report (referred to as no. 2 FDD report) generated from commercial FDD tool B covers one-
year  (Year  2018)  FDD  results  of  over  5000  RTUs  from  808  buildings  including  office  buildings,
mercantile buildings, and education buildings, in the U.S. The number of BDF messages in the data set
reaches 348,911 rows.

The  BDF  messages  are  the  fundamental  elements  and  will  be  used  to  calculate  the  HVAC  fault
prevalence according to different drivers.

4.2. Mapping Process

4.2.1. Mapping Procedure

In the current FDD report mapping process, we do not use the natural language processing toolbox to map
the raw fault names in the FDD reports to the fault IDs in the developed library. This is because we found
the fault naming conventions in the FDD software reports are very customized and there is not a suitable
processing toolbox that can accomplish the task. Therefore, we employed a manual process to map the
raw fault names in the data cleaning process.

In order to map report results, a general procedure in the text information process is followed as shown in
Figure 5. First, the text data generated from the FDD tool is cleaned and preprocessed. The fault report
messages are normalized so that each fault is mapped to one fault record. It is found that in the no. 1 FDD
report, multiple fault messages representing various components are recorded as one log. Therefore, those
messages are cleaned according to the semantic descriptions. Secondly, the equipment and component
type in each fault message are examined and mapped according to the physical hierarchy. Finally, the
fault names generated in the FDD report are mapped according to the fault library in the taxonomy.

Figure 5. Flowchart of the fault name mapping procedure.

4.2.2. Mapping Rules

In order to achieve a more accurate mapping result, a set of rules are also established.
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Rule 1: The determination of fault type. If a raw fault name includes semantic representations which
describe both component information and fault  symptoms, we map it  to a condition-based fault type
instead of a behavior-based fault type. For example, a fault name is ‘RTU return air temperature sensor
stuck,  temperature  is  too  low’.  In  this  name,  we  know  that  the  fault  explicitly  illustrates  that  its
temperature sensor reading value is constant. Despite a semantic description of ‘temperature is too low’
illustrates the fault symptom, we map this fault to a ‘RTU-Return_air-Temperature_sensor-Frozen’ fault
instead of a ‘RTU-Return_air-Temperature-Abnormal’ fault.

Rule 2: When determining the fault nature and selecting the corresponding controlled vocabularies, the
words ‘Abnormal’, ‘Malfunction’, and ‘Unspecified’ can be assigned to very similar semantic meanings.
However, the word ‘Abnormal’ is assigned to represent a behavior-based fault. While ‘Malfunction’ and
‘Unspecified’ are intended to be used to represent condition-based faults.

4.3. Fault Mapping Results

Tables 7 and 8 present the unique fault names according to the taxonomy library.

In the no. 1 FDD tool, a total of 167 raw fault names are reported from a two-year FDD report. Among
those 167 faults,  102 faults can be mapped to condition-based faults and 45 faults can be mapped to
behavior-based faults according to the taxonomy respectively. After mapping fault names according to
the taxonomy, 39 unique faults in the no. 1 FDD report were assigned as given in Table 7.

In the no. 2 FDD tool, a total of 17 raw fault names are extracted from a one-year FDD report. Among
those 17 faults, 6 faults can be mapped to condition-based faults and no fault can be mapped to behavior-
based faults. After mapping fault names according to the taxonomy, 6 unique faults in the no. 2 FDD tool
were assigned as given in Table 8.

The number of unique faults after mapping is much less than the number of raw fault names in no. 1 FDD
report because multiple fault names in the FDD reports can be mapped to the same fault according to the
fault taxonomy as can be seen in Table 9. For instance, the ‘RTU-Zone-Temperature_sensor-Unspecified’
condition-based fault in the taxonomy was used to map 14 raw fault names in the FDD report including:
‘ZAT Sensor Failure: Reading less than 45’, ‘ZAT Failure: Reading greater than 95’, ‘ZAT Circuit open’,
‘ZAT Sensor Circuit is Open’, ‘ZAT Sensor Excessively Fluctuating’, ‘ZAT Circuit is Shorted’, and so
on. For these fault names, the fault’s component location and component type, i.e., the zone temperature
sensor can be identified. Besides, some fault symptoms (e.g., Reading less than 45 and greater than 95)
are given in fault names based on internal rules used by the FDD tool developers. However, the fault
name is not well described to reveal the fault nature. Therefore, we mapped this fault to the ‘RTU-Zone-
Temperature_sensor-Unspecified’. Another example is in the no. 1 FDD report, the ‘RTU-Supply_air-
Temperature_setpoint-Rule_abnormal’ behavior-based fault in the taxonomy was used to map 2 raw fault
names in the FDD report including: ‘Free Cooling Setpoint Not Met-SAT Too Warm’ and ‘Free Cooling
Setpoint Not Met-SAT Too Cool’. In this case, the supply air temperature abnormal fault was reported by
providing both the setpoint information and supply air temperature information. The relation between
these two measures is broken to illustrate this behavior-based fault can be either caused by the setpoint
setting  error  or  other  faults.  Therefore,  we  used  the  ‘RTU-Supply_air-Temperature_setpoint-
Rule_abnormal’ to map both faults.
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After mapping fault names according to the taxonomy, 39 unique faults in the no. 1 FDD report, and 6
unique  faults  in  the  no.  2  FDD  tool  were  assigned.  Both  FDD  tools  have  ‘RTU-Supply_air-
Temperature_sensor-Unspecified’ fault  reported.  In the no.  1 FDD report,  four fault  names including
‘SAT Sensor Failure: Reading less than 35 F’, ‘SAT Sensor Failure: Reading greater than 150 F’, ‘SAT
Sensor Failure: Reading greater than 150’ and ‘SAT Circuit Shorted’ are mapped to this fault. In the no. 2
FDD report, one fault name (e.g., ‘HealthSATSensor’) is mapped to this fault. Both FDD tools have faults
related to outside temperature sensor, but in the no. 1 FDD report,  the fault name can be mapped to
‘RTU-Outside_air-Temperature_sensor-Frozen’ as the raw fault name is ‘Stuck Outside Air Temperature
Sensor’. However, in the no. 2 FDD report, the fault name can only be mapped to ‘RTU-Outside_air-
Temperature_sensor-Unspecified’ because no detailed information on the fault nature is given in the raw
fault name (i.e., ‘HealthOSASensor’). The FDD tool vendor cannot give the detailed information on this
fault either.

Table 7. Fault name mapped and number of raw fault names in the No. 1 FDD report

No. Fault Name Mapped Number of Raw Fault
Names Fault Type

1 RTU-Zone-Temperature-Abnormal 23 BB *
2 RTU-Zone-Temperature_sensor-Unspecified 14 CB **
3 RTU-Economizer-Sequence-Setting 8 CB
4 RTU-Control-Sequence-Setting 8 CB
5 RTU-Zone-CO2_sensor-Unspecified 6 CB
6 RTU-Zone-Temperature_sensor-Drift 6 CB
7 RTU-Supply_air-Temperature-Abnormal 6 BB

8 RTU-Return_air-Temperature_sensor-
Unspecified 5 CB

9 RTU-Compressor-Unassigned-Unspecified 5 CB
10 RTU-Zone-Temperature_sensor-Frozen 5 CB
11 RTU-Mixed_air-Temperature-Abnormal 5 BB

12 RTU-Supply_air-Relative_humidity_sensor-
Unspecified 4 CB

13 RTU-Zone-CO2_sensor-Frozen 4 CB

14 RTU-Supply_air-Temperature_sensor-
Unspecified 4 CB

15 RTU-Zone-Dewpoint_sensor-Unspecified 4 CB

16 RTU-Zone-Relative_humidity_sensor-
Unspecified 4 CB

17 RTU-Zone-Relative_humidity_sensor-Frozen 3 CB

18 RTU-Mixed_air-Temperature_sensor-
Unspecified 3 CB

19 RTU-Outside_air-Airflow-Abnormal 3 BB

20 RTU-Supply_air-Temperature_setpoint-
Rule_abnormal 2 BB

21 RTU-Zone-Relative_humidity-Abnormal 2 BB
22 RTU-Supply_air-Temperature_sensor-Frozen 2 CB
23 RTU-Supply_air-Fan-Malfunction 2 CB
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24 RTU-Return_air-Temperature_sensor-Frozen 2 CB
25 RTU-Heating-Unassigned-Malfunction 2 CB
26 RTU-Economizer-Damper-Unspecified 2 CB
27 RTU-Unassigned-Control_board-Malfunction 1 CB

28 RTU-Unassigned-Cooling_heating_control-
Simultaneous 1 BB

29 RTU-Supply_air-Fan_control-Hunting 1 BB
30 RTU-Return_air-CO2_sensor-Frozen 1 CB

31 RTU-Supply_air-Relative_humidity_sensor-
Frozen 1 CB

32 RTU-Mixed_air-Temperature_sensor-Frozen 1 CB
33 RTU-Outside_air-Temperature_sensor-Frozen 1 CB
34 RTU-Return_air-Temperature-Abnormal 1 BB
35 RTU-Return_air-CO2-Abnormal 1 BB
36 RTU-Supply_air-Pressure_sensor-Frozen 1 CB

37 RTU-Outside_air-Relative_humidity_sensor-
Frozen 1 CB

38 RTU-Zone-Dewpoint_sensor-Frozen 1 CB
39 RTU-Outside_air-Airflow_sensor-Unspecified 1 CB

* BB: behavior-based fault. ** CB: condition-based fault.

Table 8. Fault name mapped and number of raw fault names in the No. 2 FDD report

No. Fault Name Mapped Number of Raw Fault
Names Fault Type

1 RTU-Supply_air-Temperature_sensor-
Unspecified 1 CB

2 RTU-Outside_air-Temperature_sensor-
Unspecified 1 CB

3 RTU-Return_air-CO2_sensor-Unspecified 1 CB
4 RTU-Economizer-Damper-Unspecified 1 CB
5 RTU-Compressor-Unassigned-Unspecified 1 CB
6 RTU-Condenser-Fan-Malfunction 1 CB

Tables 9 and 10 list the quantitative mapping analyses for no. 1 and no. 2 FDD tool reports respectively.

In order to evaluate the redundant information (i.e., multiple fault names represent one type of fault), the
fault name reduction rate is proposed. The fault name reduction rate can represent what the percentage of
raw fault names in the FDD tool can be reduced as a result that those raw fault names can be mapped to
one fault name in the taxonomy. The higher fault name reduction rate means that a higher amount of fault
names  represents  the  same  information,  and  hence  has  a  higher  duplicated  information  in  the  FDD
reports. The calculation of the fault name reduction rate is given below:

Fault namereduction rate=1−Unique fault name according¿ taxonomy / Fault namecan be mapped (0)

Consequently, in the no. 1 FDD report, the total fault name reduction rate is 73.4% because 39 unique
fault names were mapped from 147 fault names which can be mapped in the FDD report (71.6% for the
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condition-based faults, and 77.8% fault the behavior-based faults respectively) as shown in Table 9. In the
no. 2 FDD report, the total fault name reduction rate is 0% because 6 unique fault names were mapped
from 6 fault names which can be mapped in the FDD tool (0% for the condition-based faults), as given in
Table 10. A 0% fault name reduction rate illustrates that the FDD tool vendor does not use similar fault
names to represent the same fault according to fault name.

Table 9. Fault name mapping results for report no. 1

Content CB BB Total
No. fault name raw NA NA 167
No. fault name can be mapped 102 45 147
Pct of fault name can be mapped NA NA 88%
No. unique fault name according to taxonomy 29 10 39
Fault name reduction rate 71.6% 77.8% 73.4%

Table 10. Fault name mapping results for the report no. 2

Content CB BB Total
No. fault name raw NA NA 17
No. fault name can be mapped 6 0 6
Pct of fault name can be mapped NA NA 35.29%
No. unique fault name according to taxonomy 6 0 6
Fault name reduction rate 0% NA 0%

However, the mapping result shows that the mapping percentage did not reach 100%, i.e., some faults in
the  FDD reports  were  not  successfully  mapped.  As  can  be  seen,  for  the  no.  1  FDD tool,  the  total
successful mapping fault name is 88%. For the no. 2 FDD tool, the total successful mapping fault name is
35.29%

The reasons for unsuccessfully-mapped fault names come from the following aspects:

1. The faults for specific components are not developed in the current version of taxonomy. For example,
faults related to a heating recovery wheel are detected by the no. 1 FDD tool. As the heating recovery
wheel was not considered in the RTU configuration in the current version taxonomy library, four faults
related  to  the  recovery  wheel  (e.g.,  ‘ERV  Wheel  Low  Outside  Airflow’,  ‘ERV  Wheel  Inefficiency
Duration’, ‘ERV Wheel Inefficiency Demand’, ‘ERV Wheel Inefficiency’) were not mapped. In the no. 1
FDD report and in the no. 2 FDD report, 21 raw fault names and two raw fault names are not mapped
because of this reason.

2. The faults described by the FDD tool reports cannot be identified. For example, in one FDD tool, a ‘No
Communication’ fault is reported. This fault does not provide any details regarding fault location and
component type. In the no. 1 FDD report and no. 2 FDD report, two raw fault names and eight raw fault
names are not mapped because of this reason.

3. Multiple fault natures are presented in the semantic description of a fault. For instance, in the no. 2
FDD  tool,  a  ‘HealthMultipleFaults’  fault  name  is  used  but  no  specific  fault  nature  and  diagnosis
information is provided. In this case, the fault name cannot be mapped to the taxonomy. In the no. 2 FDD
report, one raw fault name is not mapped because of this reason.
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Generally speaking, two objectives are achieved through mapping the FDD results via the developed fault
taxonomy. First, the fault name space is decreased after mapping the fault names to the names in the fault
library of  the taxonomy.  Therefore,  automated analysis  and evaluation on FDD results  can be more
efficient. Secondly, with the unifying fault taxonomy, the exact names were mapped to the fault messages
from different FDD tools. Therefore, the FDD results from different FDD tools can be easily compared.

4.4. Calculation of Fault Prevalence

Initial fault prevalence research has been conducted by employing the fault taxonomy mapping results.
The fault prevalence research is based on data collected from various commercialized FDD tools across
the U.S. The objective of the research is to understand the fault occurrence for a specific fault or for a
specific component. We designed various metrics to assess the fault occurrence and prevalence.

For  example,  we designed a metric  which is  the average monthly fault  presence.  In  this  metric,  we
measure what percentage of equipment experiences the presence of fault type ‘x’ on one or more days in a
month, averaged across all months (expressed as a percentage of all equipment that could experience that
fault). Using no. 1 FDD report as an example, the average monthly fault presence for the 39 mapped
faults is from 0.02 to 65.8% as given in Figure 6. It can be seen that the sensor related faults demonstrate
a higher fault presence value compared with faults in other types of components. For instances, zone
temperature sensor frozen fault (RTU-Zone-Temperature_sensor-Frozen), zone relative humidity sensor
frozen (RTU-Zone-Relative_humidity_sensor-Frozen)  fault,  and outside air  temperature  sensor  frozen
(RTU-Outside_air-Temperature_sensor-Frozen) fault reach to 65.8%, 51.7%, and 44.3% respectively.

The format of fault name convention also enables the efficient data query to explore more detailed fault
occurrence or evaluate equipment operation at different granular levels. Using the same data set from no.
1 FDD report, 20 different physical components (components associated with condition-based faults) are
reported  to  experience  a  type  of  fault.  0.1%  to  93.2%  equipment  report  faults  related  to  those  20
components as shown in Figure 7. The top five components that a high percentage of equipment may
report the faults are zone temperature sensor, economizer sequence, supply air temperature sensor, zone
relative humidity sensor, and return air temperature sensor related. It can be seen that, through the clear
definition of fault names and a well-designed format in the fault name conventions, it will be much easier
to calculate and assess the fault occurrence at various components across the population of equipment.
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Figure 6. Average monthly fault presence (Data from no. 1 FDD report).

Figure 7. Percentage of equipment that report faults related to a specific component (Data from no. 1
FDD report).

5. Discussion

To date,  the taxonomy covers three major system types: RTUs, AHUs, and ATUs. The unified fault
taxonomy library  includes  293  faults  for  three  types  of  equipment.  Further  improvements  including
expansion to additional equipment/components, relation model validation, and compatibility with other
standards, are worth considering when updating the taxonomy.
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5.1. Expansion of the Taxonomy to Cover Different Equipment/Components

When developing  the  unifying  fault  taxonomy,  the  researchers  first  tried  to  include  common faults
reported in existing academic literature, as well as commercial FDD tools into the fault libraries. The
selected equipment, i.e.,  AHUs, RTUs, and ATUs are widely equipped in today’s HVAC systems in
commercial  buildings.  However,  we  found  different  system  physical  configurations  and  additional
components may be adopted in each type of equipment to meet different application requirements. For
example, some RTUs are equipped with additional components such as heat recovery wheels and CO 2

sensors to improve energy efficiency and indoor air quality. Those components are not included in the
existing physical hierarchy. Therefore, faults related to such components were not included in the fault
libraries of the existing taxonomy.

Therefore, it is possible to extend the fault library so that the library can cover novel faults when new
equipment physical configurations or additional components are incorporated into the development of the
fault taxonomy. Furthermore, other common equipment—such as chiller plants, boiler, and refrigerant
equipment—are expected to be included into future libraries in the fault taxonomy.

5.2. Validation of Relation Model

The causal relation models in the fault taxonomy, which reflect the cause-and-effect relationships between
condition-based faults and behavior-based faults, were developed to represent relations within one piece
of  equipment  within the larger  HVAC system.  However,  we did not  carry out  the validation of  the
developed relation models due to the limited data set at hand. We planned to validate the relation models
when more FDD report data are received. Furthermore, we would also like to point out that an HVAC
system is a closely coupled system in which various equipment may affect each other. Therefore, a fault
in one equipment may propagate to affect other equipment in the system. For example, an AHU outside
air damper stuck at a too high position fault in the summer season may cause pump speed to be abnormal
in the chiller plant compared with the baseline. Those fault propagations were believed to arise from the
difficulty of accurately locating and isolating a fault in a complex system. Furthermore, an HVAC system
operates under different modes and conditions. In some operation modes, associated behavior-based faults
may be  reported  together  with  the  condition-based  fault.  However,  in  other  operation  modes,  those
behavior-based faults may not be detected. Therefore, a field validation should be conducted to assess
developed relations between a condition-based fault and associated behavior-based faults and improve the
accuracy of the relation models.

5.3. Integration with Other Standards

Various standards or ontology models have been developed to increase the building data interpretability
and interoperability. During the development of fault taxonomy, we also borrow some terms from other
standards or ontology models such as Brick Schema  [40] and Project Haystack  [16]. Additionally, as
presented in the Introduction section, some organizations were reported as making efforts on integration
standards  and  labeling  faults  conventions  for  FDD.  A  unified  standard  of  formats  and  semantic
characteristics for data collected from the entire life cycle of buildings will  significantly improve the
future building meta-data analytics. Therefore, we will further study the possibility of the integration of
the developed taxonomy with other standards or models.
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6. Conclusions

In big data analytics, a unified data taxonomy and standardized data format is a fundamental requirement
to better  interpret  the data.  Today,  the increasing deployment of FDD tools in commercial  buildings
significantly  ensures  the  system operation  reliability  and improves building  operational  performance.
Although a large amount of data which reflects faults for equipment and components in HVAC systems
has been generated via various FDD tool reports, a lack of a unified fault taxonomy makes it difficult to
interpret the FDD report data across various FDD tools.

In this paper, we describe the development of a unified taxonomy for HVAC system faults relating to
AHUs, ATUs, and RTUs. The developed fault taxonomy gives an accurate and orderly classification of
HVAC equipment faults based upon their characteristics and causal relations. The designed fault name
conventions  can significantly  improve  the FDD report  data  interpretability.  The  data  format  of  fault
names which is well-structured and machine-readable, makes it possible to efficiently query fault data for
further data analytics.

Data generated by FDD software tools are used to demonstrate how the developed fault taxonomy was
used to identify RTU faults. The results show that a concise and accurate fault set can be obtained through
mapping the fault  taxonomy to the diagnostic results.  The mapped fault  sets  can be used in  various
analytics which are primarily based on the FDD report data. The case study shows that the taxonomy can
be successfully applied for a major fault prevalence study, prior to its full publication.

Our  future  works  include  extending  the  fault  taxonomy  library  so  that  various  equipment  and
corresponding physical configurations can be included. Besides, field validation works will be performed
when conducting fault prevalence research. Through this way, the probabilities of a fault and its impacts
are expected to be identified.
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