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Pyroclast cooling and saturation in water

Kristen E. Fauriaab Michael Mangaa

Abstract

In the submarine setting pyroclast cooling and saturation, by controlling the 
buoyancy of individual clasts and surrounding fluid, exert fundamental 
controls on the dispersal and fate of volcanic material. In this study we use 
laboratory experiments to understand and quantify how hot and air-filled 
pyroclasts cool and saturate in liquid water. By measuring internal 
temperature and clast submerged weight in over thirty experiments, we find 
that pumicecools and saturates in two stages. We observe that the first 
stage is marked by much higher rates of cooling and saturation than the 
second stage and that the transition between stages is sharp. We propose 
conceptual and quantitative models for each stage of pyroclast cooling and 
saturation. Specifically we argue that the first stage is defined by the 
presence of internal steam. That is, hot pyroclasts ingest liquid water and 
generate steam. Once a clast's internal pore space is filled with steam, heat 
loss to the surroundings causes condensation of internal vapor and clast 
saturation. Stage 1 ends when all internal steam has condensed. We test this
idea with a Stefan Model with advection and conclude that heat loss, rather 
than permeability, controls the saturation of pyroclasts above the boiling 
temperature. We find that permeability matters for air-filled clasts with initial
temperatures below the boiling point. Stage 2 begins after all internal vapor 
has condensed and we propose that stage 2 cooling and saturation are 
controlled by heat conduction and thermal contraction of trapped gas, 
respectively. From our understanding of the processes that govern the stage 
1 to 2 transition, we derive an empirical average pyroclast cooling rate of 
q = 7.5 ± 0.5 W cm−2. Finally, we develop quantitative models for cooling-
controlled porous clast saturation and for buoyant clast rise to the ocean 
surface. We find that meter size clasts stay buoyant for more than 10 min - 
long enough to reach the surface from a depth of 1000 m. The models 
developed here test our understanding of clast-scale processes and 
demonstrate that - in hot and porous clasts - the details of internal texture 
do not matter because clast saturation, and thus buoyancy and fate in the 
water column, are governed by heat transfer.

Keywords: Submarine volcanism, Pumice, Heat transfer, Volcanic plumes, 
Laboratory experiments, Stefan problem

1. Introduction

When pyroclasts erupt into or onto water they are known to at least partially 
saturate and cool. Experiments show that the water logging of hot lapilli-size 
pyroclasts can be rapid (e.g., Whitham and Sparks, 1986, Allen et al., 2008, 
Jutzeler et al., 2017 and pyroclast cooling is thought to provide buoyancy for 
submarine plumes (e.g., Head and Wilson, 2003, White et al., 2015. In this 
study we experimentally measure pumice cooling and saturation rates in 



liquid water and develop models for clast-scale cooling and saturation 
behaviors. Because cooling and saturation control buoyancy, a clast-scale 
understanding is central for testing and building models of submarine 
plumes and pyroclast dispersal.

In the subaerial environment, the fate of pyroclastic material depends on 
heat transfer, where heat loss from pyroclasts makes plumes buoyant and 
can control the runout of pyroclastic density currents. Clast-scale models for 
heat transfer (e.g., Thomas and Sparks, 1992, Stroberg et al., 2010 have 
therefore become foundational for multiphase models of subaerial volcanic 
flows (e.g., Ongaro et al., 2007, Dufek and Bergantz, 2007, Benage et al., 
2016. Clast-scale models for heat transfer in water are likewise necessary to 
understand and build quantitative models for submarine eruption dynamics. 
We expect, however, that pyroclast cooling in water may be complex 
because water is an effective coolant, porous pyroclasts can ingest water, 
and phase changes are possible.

In the subaqueous setting, pyroclasts can also themselves be buoyant. It is 
known that submarine eruptions can generate rafts of floating pumice (e.g., 
Bryan et al., 2004, Jutzeler et al., 2014, Carey et al., 2014b. Pumice can stay 
afloat for months to decades (e.g., DeVantier et al., 1992) due to gas 
trapping and can sink because of gas diffusion (Fauria et al., 2017) or may 
wash ashore.

Experiments have demonstrated that hot (> 300°C) pumice can sink rapidly, 
often within several seconds, and that the tendency for pyroclasts to 
saturate increases with clasttemperature (Allen et al., 2008, Jutzeler et al., 
2017, Whitham and Sparks, 1986). Whitham and Sparks (1986) suggested 
that hot pyroclasts generate steam in their pore spaces as they ingest liquid 
water and that steam generation drives air out. Allen et al. (2008) further 
argued that the condensation and contraction of steam drives pyroclast 
saturation and that “pumice lapilli cool and adsorb water more readily than 
larger clasts.” These findings suggest that there is a direct connection 
between pyroclast cooling and saturation.

Conceptual models for submarine plumes often incorporate these 
observations that pumice can be both positively and negatively buoyant and 
that heat loss plays a role in dictating buoyancy. For example, Kano et al. 
(1996) envisions a submarine plume containing both rising and falling clasts 
and where “hot pumice clasts, especially large ones ... ascend in plume by 
buoyancy... [while] clasts of smaller sizes rapidly cool down in contact with 
water and begin to fall out from the plume.” Similarly, Allen and McPhie 
(2009) depict submarine eruptions where giant pumice can remain hot and 
buoyant long enough to reach the surface and Cashman and Fiske (1991) 
model how pumice size and density dictate clast fallout behavior. The idea 
that pyroclasts from a single eruption can be sorted into floating and sinking 
components based, at least in part, on saturation and heat transfer dynamics
is consistent with the recent observation that most, but not all, pyroclasts 



from the 2012 eruption of Havre submarine caldera formed a raft and that 
larger clasts were dispersed farther (Carey et al., 2018). Work remains, 
however, to quantitatively test these and other conceptual models for 
submarine eruption dynamics and pumice transport.

In this study we first use laboratory experiments to examine clast-scale 
cooling and saturation in water. We then propose that different processes 
control cooling and saturation dynamics at different stages in time (Section 
3.3). In Section 4 we develop quantitative models to test our conceptual 
models for the stages of pyroclast cooling and saturation.

We conclude, based on agreement between experimental and model results,
that hot pyroclasts cool and saturate in two main stages. In the first stage, 
hot clasts convert ingested water to steam. Clast cooling then causes the 
condensation of internal water vapor and drives saturation. In the second 
stage, we conclude that clasts cool by conduction and saturate due to the 
the thermal contraction of trapped non-condensable gases.

We use the models validated in Section 4 to expand beyond our 
experimental parameter range and examine behaviors relevant for 
submarine pyroclast-producing eruptions (Section 5). Specifically, we use our
models to determine if (and how quickly) steam-filled clasts exiting a 
submarine vent (1000 mbsl) can reach the ocean surface (Section 5.2). 
Together, our experimental and model results demonstrate how cooling 
limits water ingestion and why hot clasts often reach the ocean surface. The 
clast-scale models developed here can be used in multiphase and 
multicomponent models for submarine clast-producing eruptions and our 
experiments can be used to validate future models that incorporate 
additional physics such as pressure effects.

2. Experimental methods

We conduct laboratory experiments to examine how air-filled pumice cool 
and saturate in water primarily using clasts from Medicine Lake, California 
and also from the 1902 plinian eruption of Santa Maria Volcano, Guatemala 
and rafted pumice from the 2012 eruption of Havre submarine volcano, 
Kermadec Arc (Table 1). The Medicine Lake clasts originated from the Plinian 
fallout phase before the 1060 CE emplacement of the Glass Mountain flow. 
Porosities of 0.69–0.81 with connected fractions of 0.81–0.97 have been 
measured on Medicine Lake clasts (Giachetti et al., 2015). We use subaerial 
clasts because they are similar in vesicularity and macrotexture to their 
submarine counterparts (e.g., Rotella et al., 2015) and more readily 
available. While the signatures of magma-water interactions on pyroclast 
textures can be difficult to recognize (e.g., White et al., 2015) and subaerial 
and submarine clasts have overlapping vesicularities and permeabilities 
(e.g., Carey et al., 2014a), open questions exist about the differences in 
internal structure of submarine versus subaerial pumice that can be 
addressed with future micro-textural studies.



Table 1. Pumice clast characteristics: characteristic radius, ro, is estimated by assuming a spherical 
geometry and * refers to values calculated by assuming porosities (70% for Pum08 and 80% for 
HRaft01). n refers to the number of experiments conducted on each clast. rtro refers to the 
thermocouple position relative to clast radius, rtro=1 implies that the thermocouple is at the center of 
the clast. Uncertainties are calculated as the standard deviation of a set of measurements. We do not 
report uncertainties where only one measurement was made or if multiple measurements report the 
same values.

Clast 
name

Source Mass 
(g)

Volume 
(cm3)

Porosi
ty

ro(cm
)

rtro n Bi HWm2
K

ML01 Medicine Lake, CA 7.7 11.1 0.70 1.4 0.73 9
3.6±0
.6 194±35

ML02 Medicine Lake, CA 38.9 50.5 0.67 2.3 0.65 9
9.9±3
.6

314±11
5

ML03 Medicine Lake, CA 7.9 11.6 0.70 1.4
0.71 
&0.35 4

4.3±0
.5 223±29

Pum06 unknown 5.7 6.8 0.64 1.2 0.68 2
5.5±0
.5 359±33

SM16
Santa Maria, 
Guatemala 4.3 7.0 0.74 1.2 0.67 1 4 240

Pum07 Medicine Lake, CA 63.8 83.2 0.67 2.7 0.70 2 6 167

Pum08 Medicine Lake, CA 302.2 *403.0 *0.70 *4.6 *0.87 1 2 33

HRaft01 Havre 2012 raft 60.7 *121.4 *0.80 *3.0 *0.98 1 1 20

In the experiments presented here, we measure pumice submerged weight 
through time to calculate and quantify liquid saturation. At the same time, 
and to examine cooling, we measure pumice internal temperature at one or 
two locations within the clasts. We explore a parameter range that includes 2
to 9 cm diameter pumice and initial temperatures from ambient to 670°C 
(Tables 1 and S1).

To measure pumice internal temperature, we place K-type thermocouples 
(temperature range up to 1335°C) into 2 mm diameter drilled holes within 
the clasts. While we attempted to center the thermocouple within the clast, 
irregular clast shapes made centering the thermocouple imprecise and not 
well defined. Table 1 gives rtro, the ratio of thermocouple location to clast 
spherical equivalent diameter, for each clast. We use Al cement to secure 
and seal the space between the clast and thermocouple.

We heat clasts in one of two different ovens with the thermocouple/s 
adhered and the thermocouple sheathing bent to fit through gaps in the 
oven doors. Because one of our ovens has a temperature range less than 
260°C and the other oven has a temperature range greater than 460°C, we 
do not conduct experiments within the 260–460°C range.



To initiate an experiment, we remove the clast from the oven and quickly 
submerge the clast 1 to 3 cm below the surface of a 20°C water bath (Fig. 1).
The water bath is large (twelve liters), as is the heat capacity of water, such 
that we expect temperature gradients within the bath to be minimal. Indeed,
we do not observe changes in background temperature as the clasts cool.

Fig. 1. Experimental set-up. We measure the internal temperature and submerged weight of 
pumiceclasts as they cool in a water bath.

As the clast is submerged, we record clast internal temperature and water 
bath temperature at 0.42 Hz. When two thermocouples are present in a clast,
we can observe temperature gradients in a single clast. We do not assume 
that temperature is uniform within a clast.

We measure clast submerged weight at 1 Hz by connecting a rigid rod 
extending from the thermocouple(s) to the scale (Fig. 1). Because the 
pumice enter the water before the rigid rod is placed on the scale, there is a 
1–2 second delay between the time the clast is submerged and the time 
when we begin measuring submerged weight. Submerged weight increases 
as a pumice becomes saturated because the downward force exerted on the 
scale is proportional to pumice density, which increases as a clast saturates. 
Clasts are often initially buoyant, however the rigid rod keeps the clasts 
below the water surface. Buoyant clasts push up against the rigid rod such 
that their buoyancy is reflected in the submerged weight measurement.

Pumice submerged weight is the clast out-of-water weight, MT, less the 
displaced water weight,

(1)MS=MT−ρlVT,



where VT is the pumice volume, and ρl is liquid water density. We determine 
pumice volume, VT, by separately measuring the submerged weight of a dry 
clast and where we sealed the clasts with wax paper (parafilm) (Houghton 
and Wilson, 1989). Porosity is estimated from clast dry weight and volume 
(Table 1). We do not measure porosity on two large clasts that were too big 
for our ballast. We directly measure MS during the experiments.

We relate the change in submerged weight, MS, to the change in volume of 
liquid water within the pore space of a clast, Vl, according to

(2)ΔMS=ρlΔVl,

where ρl is liquid water density. We calculate the flux of liquid water, Ql into 
the pumice according to

(3)Ql=dMSdt,

where t is time, and Ql has units of grams per second. We report Ql and ΔMS 
rather than MSbecause the weight of the thermocouple wire added 
uncertainty (± 3 g) to MS but did not affect the accuracy of ΔMS.

3. Experimental results

We first describe observations of cooling and saturation of a single and 
representative pyroclast. We then describe how cooling and saturation 
depend on clast initial temperature. Finally, we identify several general sets 
of behavior that occur as pumice cool in liquid water and suggest what 
processes control cooling and saturation behaviors.

3.1. Cooling and saturation of a representative clast

Here we describe the cooling and saturation of a representative 7.9 g clast 
from Medicine Lake, California (ML03) from an initial temperature of 265°C 
(Fig. 2). We placed thermocouples at two locations within ML03, 6 and 
11 mm from the edge, and report change in submerged weight as 
ΔMS = MS(t) − MS(t = 0).



Fig. 2. Cooling and saturation of 7.9 g Medicine Lake clast ML03 from an initial temperature of 265°C. 
We measure internal temperature at two locations within the clast: 6 and 11 mm from the clast edge 
(solid lines). We find that submerged weight increases and internal temperatures drop rapidly in the 
first 19 s following submersion (dotted line). We observe bubbles flowing in the first 3–5 s following 
submersion. We find that ΔMS decreases at the same time (∼19 s) internal temperatures reach local 
minima.

We find that the submerged weight of ML03 increases immediately following 
submersion and gas bubbles (air) vigorously flow out (Fig. 2). Internal clast 
temperature drops more than 150°C within the first 10 s following 
submersion.

The rate of visible gas bubble escape slows within the first several seconds 
following submersion, yet clast submerged weight continues to increase. At 
10 s, the temperature recorded by the 11 mm thermocouple approaches 
100°C before falling rapidly.

At 19 s, we observe an inflection point in submerged weight, indicating a 
decline in liquid flux into the clast. At ≈ 19 s, we also observe local minima in
temperature at both thermocouples, after-which temperature increases at 
both thermocouples before declining again.

Experiments on other clasts and at other initial temperatures exhibit similar 
behavior. Specifically, we find that clasts with initial temperatures greater 
than the boiling point (100°C at 1 atm) exhibit a sharp transition between 
high initial liquid flux stage and second low liquid flux stage (Fig. 2).

At the time of this high-to-low liquid flux transition, we observe 
corresponding changes in temperature. In some clasts (e.g., Fig. 2) we 
observe local minima in the temperature and in others we see an inflection 



point (e.g., Fig. S1). Regardless of the specificities of observed temperature 
time series, we find that internal clast temperature is always ≤ 100°C at the 
high-to-low liquid flux transition. We emphasize that all our experiments 
were done at 1 atm.

3.2. Initial temperature effects

To determine how clast initial temperature and thermal energy affect cooling
and saturation, we conducted experiments where we varied the initial 
temperatures of two clasts from Medicine Lake, ML01 (7.7 g) and ML02 
(38.9 g). Fig. 3a shows how the temperature 10 mm within clast ML01 
changes during the first 60 s of the experiments. Fig. 3b shows liquid flux 
(Eq. (3)) as a function of time.

Fig. 3. Effects of initial temperature on cooling and saturation. (A) Internal temperature of clast ML01 
as a function of time. Clast internal temperature declines rapidly, approaches 100°C, and finally drops 
below 100°C. Initially hotter clasts take longer to cool below the phase transition temperature, 100°C. 
(B) Liquid flux (g s−1) into the clasts as a function of time. Clasts with initial temperatures below 100°C 
exhibit the lowest liquid fluxes. All clasts with initial temperatures above 100°C exhibit sharp high-to-
low liquid flux transitions (Ql < 0.05 g s−1 and marked with stars). The inset shows how the timing of 
the high-to-low liquid flux transition increases with clast initial temperature.

Several trends are apparent in Fig. 3. First, liquid flux declines sharply in 
experiments where the initial temperature is greater than the phase change 
temperature, 100°C. We mark the time, t*, at which the liquid flux is less 
than a threshold value, Ql < 0.05 g s−1. We find that t*increases with clast 
initial temperature as illustrated in the inset to Fig. 3b. We find, furthermore, 
that clast internal temperatures are less than the phase change temperature
at t*.



Second, we observe that the liquid flux before t* is the same in experiments 
with initial temperatures ≥ 458°C. This flux is approximately 0.2 g s−1 and is 
less than that observed for initially cooler clasts. Similar results from clast 
ML02 are shown in Fig. S3.

The observation that clasts with initial temperatures between 139 and 267°C
have higher initial liquid fluxes than clasts with initial temperatures ≥ 458°C,
suggests that clast thermal energy can impede clast liquid saturation. The 
observation that liquid flux does not vary with clast initial temperature for 
temperatures ≥ 458°C suggests that, for these conditions, the pressure 
gradients driving liquid flow are the same. We note that we cannot observe 
behaviors of clasts with initial temperatures ≈ 260 − 460°C because our 
ovens do not operate in this range.

3.3. Conceptual models for pumice cooling and saturation

Here we identify several general behaviors that occur as pumice cool and 
saturate and we outline these as stages in Table 2 and Fig. 4. We define 
stage 1 as the stage between pumice submergence and t*, the high-to-low 
liquid flux transition (Fig. 4). We define t* here as the time at which Ql < 0.05 
g s−1. Stage 2 follows stage 1 and is the time over which internal 
temperatures approach ambient. The majority of cooling and saturation 
occur during stage 1 and we suggest that stage 1 consists of two substages. 
In this section we describe the processes we hypothesize are important in 
each stage and substage.
Table 2. Cooling and saturation stages.

Stage and interpretation Observations Scaling

(1a) Gas escape controlled: Gas 
flows out of clasts and liquid water 
enters. Ingested water is converted 
to steam in clasts above the boiling 
temperature.

Visible bubble flow out of 
the clasts.

For initial temperatures 
less than the phase 
change temperature 
(100°C): Ql∝e-ξt

(1b) Heat conduction and steam 
condensation controlled: Heat loss 
causes condensation of internal 
water vapor which further drives 
liquid infiltration and cooling. Stage
1b ends when all the steam within 
the clast has condensed and the 
liquid flux into the clast is small (Ql 
< 0.05 g s−1). A clast can be 
partially saturated at the end of 
stage 1 due to the trapping of non-
condensable gas.

We observe few bubbles 
escaping from the clast. 
Internal temperatures 
sometimes plateau at 
100°C. Liquid flux is lower
for very hot clasts 
compared to warm clasts 
(Fig. 3).

q=7.5±0.5Wcm−2Ql=qS
aL

(2) Heat conduction controlled: 
Clasts cool by conduction. Slow 
liquid saturation results from 
thermal contraction of non-
condensable gas bubbles. Internal 

Submerged weight 
increases gradually and 
internal temperatures 
slowly approach ambient.

lnT(r,t)
−T∞Ti−T∞∝tQl∝dTdt



Stage and interpretation Observations Scaling

clasts temperatures can increase at 
the beginning of stage 2 as heat 
from warm regions of the clast 
(e.g., the interior or heterogeneous 
areas) is conducted into colder 
areas.

Fig. 4. Cooling and saturation stages of representative clast ML01. We propose that cooling and 
saturation takes place in several stages and over which different processes dominate. Stage 1a: Water 
enters the clast as air flows out. If the clast is hot, ingested water is converted to steam. The dashed 
lines express uncertainty in the stage 1a to 1b transition. Stage 1b: Clast at least partially contains 
steam. As the clasts cool, internal steam condenses and generates a pressure gradient that draws in 
liquid water. Stage 1 ends once all internal steam has condensed. Stage 2: Cooling occurs through 
conduction and saturation is controlled by the thermal contraction of trapped non-condensable gas.

Hot clasts are known to convert ingested water to steam (e.g., Whitham and 
Sparks, 1986). We define stage 1b as the time over which steam is present 
within the clasts (Table 2). We further propose that clast cooling causes 
water vapor condensation and that the associated volume change draws in 
liquid water. Clasts can contain liquid water, steam, and trapped gas during 
stage 1b. Whitham and Sparks (1986) proposed a similar connection 
between pumice cooling and saturation where, “as the pumice cools below 
100°C the steam will condense leading to water vapor being adsorbed.” 
Stage 1b is therefore relevant for understanding the behavior of initially 
steam-filled clasts.

Several experimental observations support the hypothesis that water vapor 
condensation leads to saturation including: (1) the absence of visible gas 
escape as submerged weight increases; (2) the observation that the rate of 
cooling with time increases immediately after internal temperatures fall 
below 100°C (Fig. 4) - consistent with a condensation-associated volume 
change drawing cooler water to the thermocouple; and (3) the observation 



that very hot > 458°C pumice saturate more slowly than lower temperature 
pumice (Fig. 3) - suggesting that heat loss impedes saturation.

We suggest that Stage 1b ends when all steam within the clast has 
condensed. We recognize the end of stage 1, t*, as the time when liquid flux 
becomes small (Ql < 0.05 g s−1). However, we note that clasts with initial 
temperatures < 100°C (the phase change temperature at ambient pressure) 
do not exhibit an abrupt change in liquid flux and we propose this is because 
cool clasts cannot generate steam.

Stage 2 begins when once all internal steam has condensed. During stage 2 
we expect that clasts contain only liquid water and, possibly, non-
condensable gas such as trapped air (Fauria et al., 2017). We hypothesize 
that heat conduction controls stage 2 cooling and saturation occurs through 
the thermal contraction of trapped non-condensable gases.

4. Testing concepts for pumice cooling and saturation with quantitative 
models

We proposed conceptual models for the stages of pumice cooling and 
saturation in Section 3.3 and Table 2. We test those concepts here by 
developing process-based quantitative models for the various stages of 
pumice cooling and saturation that we compare to our experimental results. 
The clast-scale models developed in Sections 4.1–4.5 match experimental 
observations - lending confidence to our conceptual understanding and 
providing quantitative tools to extrapolate to conditions not explored with 
experiments.

In Sections 4.6–4.7 we combine all our experimental results to derive 
average clast cooling and saturation rates. These expressions may be useful 
in submarine plume models and are based on the understanding of clast 
cooling and saturation developed in Sections 4.1–4.5.

4.1. Stage 1a: saturation of pumice below the phase change temperature

We find that the flux of liquid water into clasts (Eq. (3)) decreases 
exponentially with time for clasts with initial temperatures less than the 
boiling point such that

(4)Ql(t)=Qoexp(−ξt),

where Qo is the initial flux of liquid into the clast, ξ is a fitted coefficient, and 
t is time (Fig. 5). The exponential decline in Ql is consistent with a Darcy 
model for flow in which pressure gradients are generated by hydrostatic 
pressure (Horton 1933; Assouline, 2012). For the same clast, initial liquid flux
increases with initial clast temperature (Fig. 5) and we hypothesize that this 
is because thermal contraction adds to the pressure gradient drawing water 
into the clast.



Fig. 5. Flow declines exponentially with time for clasts with initial temperatures < 100°C (the phase 
change temperature at 1 atm). We fit Eq. (4) to measurements of liquid flux from clast ML02 and find 
that liquid flux increases with clast initial temperature.

4.2. Stage 1a: saturation of pumice above the phase change temperature

When the initial temperature of a clast is greater than the boiling point, we 
observe that the initial saturation of the clast is rapid (e.g., Fig. 3). We 
propose that rapid air escape and water ingestion occur as a result of 
hydrodynamic instabilities (e.g., Dufek et al., 2007). Thermal contraction of 
air may also draw in liquid water (e.g., Allen et al., 2008). While stage 1a 
liquid flux is high, we do not yet have a quantitative model for this stage. We
propose, however, that as liquid water is ingested and comes into contact 
with the hot clast interiors, water is flashed to steam. Stage 1a would not 
exist for initially water vapor-filled clasts.

4.3. Stage 1b: cooling controls saturation

Stage 1a transitions to stage 1b when clasts contain appreciable steam. 
During stage 1b, we envision that cooling generates an inward moving 
condensation front (Fig. 6) and that clasts saturate as condensation draws in 
liquid water (e.g., Whitham and Sparks, 1986). This scenario is similar to the 
classic Stefan problem, where heat loss drives the movement of a vapor-
liquid interface, except that permeable clasts can ingest water and ingested 
water may accelerate cooling.



Fig. 6. Conceptual model of stage 1b cooling and saturation. Clasts contain steam in their pores. 
Internal steam condenses as the clasts cool - generating an inward propagating condensation 
interface. At the condensation interface the production of latent heat balances outward heat 
conduction. Liquid water is drawn into the clast at the velocity of the condensation interface. The 
mathematical details of this model are given in Appendix B.

We compare our experimental measurements against a Stefan model with 
advection to test the idea that cooling controls the saturation of steam-filled 
clasts. Because the Stefan model neglects clast permeability, we first argue 
(Section 4.3.1) why permeability does not limit clast saturation.

4.3.1. Why permeability may not limit clast saturation

Consider a vapor-filled pumice that loses heat to its surroundings (e.g., Fig. 
6). Similar to the classic Stefan problem, we expect heat loss to cause 
condensation and drive the movement of a vapor-liquid interface at velocity 
v. Because pyroclasts are permeable, we also except that liquid water can be
drawn into the clast. To determine whether heat loss or permeability limits 
clast saturation, we compare the velocities at which water flows into a clast 
as a result of permeable flow versus heat loss. The slowest velocity will limit, 
and thereby control, clast saturation.

If heat-loss controls flow, the speed of the vapor-liquid interface is 
determined by the classic Stefan problem (Fig. 6), where heat conduction is 
balanced by the release of latent heat at the vapor-liquid interface

(5)keffdTdx=ρϕLv,



where keff if effective thermal conductivity, T is temperature, x is distance, v 
is the velocity of the steam-liquid interface, ρ is the fluid density, L is the 
latent heat of condensation, and where we assume that all vapor is 
condensable. For this scaling analysis, we use a steady-state solution to the 
1-dimensional advection-diffusion problem (Bredehoeft and Papaopulos, 
1965) to estimate the temperature distribution of the liquid-saturated part of
the clast

(6)T(x)−T∞Ti−T∞=ePex/(ro−rs)−1ePe−1

where ro − rs is the distance between the edge of the clast and the steam-
liquid interface, and Pe=v(ro−rs)Deff is a dimensionless Peclet number (the 
rate of heat advection to diffusion), and Deff is the effective thermal 
diffusivity. We solve for the infiltration speed of liquid water, v, into the clast 
by combining Eqs. (5) and (6)

(7)v=−Deffro−rsln1−keff(Ti−T∞)ρsϕLDeff.

Alternatively, if permeability controls saturation clasts saturate at the 
velocity given by Darcy's law

(8)v=κμϕ(ρlg−∇p),

where κ is permeability, μ is water viscosity, ρlg is the hydrostatic pressure 
gradient and −∇paccounts for additional pressure gradients. We let 
−∇p=P1ro to account for the pressure gradient induced by condensation 
(Appendix A).

The lowest velocity derived from either permeable flow (Eq. (8)) or heat 
transfer (Eq. (7)) will control the pyroclast saturation rate because the 
slowest process is rate-limiting.

By combining Eqs. (8) and (7), we find that permeability can limit clast 
saturation if

(9)κ<−μϕDeff(ro−rs)ln1−keffTi−T∞ρϕLDeffP1ro+ρlg.

Given Deff = Dwϕ + Dr(1 − ϕ) ≈ 2.5 × 10−7 m2s−1 for ϕ = 0.7 (Bagdassarov et al.,
1994), keff = 1 W m−1K−1, Ti−T∞=100∘C, ρ = ρl, and P1 = 105 Pa, permeability 
can limit saturation if κ < 8.5 × 10−16 m2 for ro= 2 m and rs = 1 m or κ < 
1.0 × 10−15 m2 for ro = 0.02 m and rs = 0.01 m. Because permeability values in
pumice are larger, typically ∼ 10−12 m2 (e.g., Klug and Cashman, 1996, Saar 
and Manga, 1999, Rust and Cashman, 2004, Mueller et al., 2005, Wright et 
al., 2009, Degruyter et al., 2010, Burgisser et al., 2017, Colombier et al., 
2017, Gonnermann et al., 2018), we argue that permeability does not limit 
clast saturation for both large and small clasts.

In the next section we compare a model for cooling-controlled saturation 
against observations from a small 1.4 cm diameter clast. We find that a 
Stefan model with advection, and which neglects permeability, matches 
observations.

4.3.2. Stefan model with advection



We proposed that stage 1b cooling and saturation are similar to the classic 
Stefan problem, except that liquid water is drawn into permeable clasts as 
vapor condenses (Fig. 6). To test the applicability of the classic Stefan 
problem to hot pyroclasts and to better understand how vapor-filled clasts 
saturate, we build a Stefan model with advection. We then compare the 
Stefan model with advection to our experimental results.

The full set of equations for the 1-D Stefan model with an advective 
component are given in Appendix B. The model is based on a balance 
between the outward conduction of heat and the production of latent heat 
from condensation. This balance gives rise to the inward migration of a 
condensation interface (Fig. 6). We allow liquid water to flow into the clast at 
the velocity of the condensation interface. As a result, water ingestion can 
enhance cooling in our model. We also assume that a constant heat transfer 
coefficient can describe heat loss at the clast's outer boundary and that the 
clast's steam-filled interior maintains constant pressure of 1 atm and 
temperature of 100°C. We solve the Stefan problem with advection 
numerically for both planar and spherical geometries. As described in Section
4.3.1, this model neglects clast permeability because saturation is controlled 
by heat loss. Furthermore, we use an effective Stefan number because the 
majority of the thermal mass may be in the rock rather than the steam 
(Appendix C).

We compare the Stefan model with advection against measured or 
calculated quantities from our experiments: the condensation front position, 
the time at which the condensation front reaches the clast center, and the 
effective Stefan number.

We calculate the condensation front position in our experiments from 
submerged weight and according to

(10)v=drsdt∝Ql(t)ρlϕSac,

where v is infiltration velocity, rs is the condensation front location, ρl is liquid
density, ϕ is porosity, Sac=1C14πro2 is the surface area of the condensation 
front, C1 is an empirically determined constant, and Ql(t) is the calculated 
liquid flux (Eq. (3)). We assume Sac is constant in Eq. (10) as is the case if 
pumice saturate like a series of parallel tubes. The time at which the 
condensation front reaches the clast center is the stage 1 to 2 transition or 
t*.

The effective Stefan number expresses the ratio of sensible to latent heat in 
a clast, is calculated as described in Appendix C, and decreases as clast 
initial temperature increases. That is, clasts with higher initial temperatures 
have lower effective Stefan numbers and take longer to cool and saturate. 
For example, using the values given in Appendix C we find Steff = 4.9 and 2.9 
for clasts with temperatures of 400 and 600°C, respectively.

We compare numerical solutions to the Stefan model with advection to 
experimental results (ML01 with Ti = 523°C) in Fig. 7. Fig. 7 shows 



normalized condensation front position as a function of time. The time at 
which normalized front position reaches zero is the time at which all internal 
steam has condensed.

Fig. 7. Normalized condensation front position (rsro) as a function of time. We use our experimental 
measurements to calculate the condensation front position (Eq. (10) with C1 = 2.6, black circles). The 
best estimate of St during the experiment is 3.5 (based on equation C.4). We compare calculated front 
position to solutions from a modified Stefan model in spherical and planar geometries (Appendix B). 
We find that, using reasonable Stefan numbers, the modified Stefan model matches our experimental 
measurements, lending support to the conceptual model for stage 1b depicted in Fig. 6.

We find that the Stefan model with advection agrees with experimental 
results and with similar Stefan numbers (Fig. 7). The agreement between the
modeled (Appendix B) and calculated (Eq. (10)) curves for condensation 
front position in Fig. 7 lends support not only to the applicability of a Stefan 
model with advection to pumice, but to the concept that pyroclast cooling 
controls saturation.

We emphasize that the Stefan model with advection, while simulating the 
behavior of steam-filled pumice, matches the saturation behavior of initially 
air-filled clasts. This similarity exists because ingested liquid water is 
efficiently vaporized to steam (Eqs. (C.2) and (C.3)). That is, only a small 
fraction of glass thermal energy is required to convert ingested liquid water 
to steam because there is much more thermal energy in a clast's glass 
matrix compared to (pore-filling) water vapor.

Non-condensable gases (such as air) may become trapped as air-filled clasts 
saturate. We account for the presence of trapped gas with the term gf in Eq. 



(C.4). Future work may examine the role of trapped non-condensable gas 
pockets in cooling and saturation dynamics.

4.4. Stage 2 cooling by conduction

Stage 2 begins once all internal steam has condensed and, as a result, the 
liquid flux declines below a threshold value (e.g., Fig. 3). We propose that 
stage 2 heat loss is dominated by conduction, rather than advection. To test 
this hypothesis, we compare stage 2 temperature measurements to 
solutions of a heat conduction model on a sphere (Appendix D). To model 
stage 2 cooling we assume: (1) pumice is spherical; (2) the clast has a 
uniform initial temperature Ti; (3) clast internal structure is uniform; (4) the 
clast's convective heat flux is uniform with heat transfer coefficient H; (5) the
water bath has constant temperature T∞; (6) all pumice pores are filled with 
liquid water; and (7) heat is transferred by conduction inside the clast.

The Biot number expresses the ratio of internal to external resistance to heat
transfer and is

(11)Bi=Hrokeff,

where H is the heat transfer coefficient, ro is the clast radius and keff is 
effective thermal conductivity. A Biot number ≤ 0.1 implies that heat loss is 
limited by external heat transfer and the temperature within the clast is 
approximately uniform. Because we find that clast internal temperature is 
spatially variable during stage 2 (e.g., Fig. 2) we expect that Bi ≥ 0.1 and 
therefore a lumped capacitance model is not suitable.

The exact solution for the time dependent non-dimensionalized radial 
temperature distribution (Appendix D) across a conductive sphere with a 
convective boundary layer is

(12)θ(r,t)=(T(r,t)−T∞)(Ti−T∞)=∑n=1∞Anexp(−λn2τ)sinλnrroλnrro,

where θ(r,t)=(T(r,t)−T∞)(Ti−T∞) is dimensionless temperature, r is clast 
radial position, τ=Defftro2 is non-dimensionalized time and Deff is effective 
thermal diffusivity, An=4(sinλn−λncosλn)2λn−sin2λn and the values for λn 
are the positive roots of the transcendental equation Bi=1−λncot(λn) (e.g., 
Incropera et al., 2002).

The solution to Eq. (12) can be approximated with the first term of the series 
for τ > 0.2 (Incropera et al., 2002) such that

(13)θ(r,t)=(T(r,t)−T∞)(Ti−T∞)=A1exp(−λ12τ)sinλ1rroλ1rro,

where A1 and λ1 are determined for different Biot numbers (Schneider, 1955).
Eq. (13) shows that the time dependence of temperature is the same at any 
radial position in the clast such that ln(θ(r,t))∝τ. Fig. 8 demonstrates how Eq.
(13) scaling matches stage 2 temperature measurements.



Fig. 8. Stage 2 temperature as a function of dimensionless time, τ. We find that dimensionless 
temperature scales with e−τ, supporting the concept that clasts cool through conduction during stage 
2. We fit conduction model solutions on a sphere (black line) to our experimental measurements to 
estimate Biot numbers and heat transfer coefficients. See Table 1 for a list of fitted Bi and H values.

We fit Eq. (13) to our experimental measurements to determine Bi and then 
calculate H. To fit our data we approximate ro=43πVT13, where VT is the 
clast volume. We estimate r from the depth of the hole drilled for each 
thermocouple (rt, Table 1). We use the maximum temperature measured 
during stage 2 to estimate Ti and to set the temporal location where τ = 0. 
We neglect the temperature dependence of thermal diffusivity and 
conductivity and calculate effective thermal diffusivity as in Section 4.3.2. 
Similarly, we estimate effective thermal conductivity according 
tokeff=kwϕ+kr(1−ϕ) ≈ 0.7 W m−1K−1, where kw is water thermal conductivity 
and kr is rock thermal conductivity.

We iteratively find the Biot number that fits Eq. (13) to our temperature 
measurements for τ > 0.2. Fig. 8 shows how Eq. (13) matches our data and 
based on the fit we estimate Bi and H(Table 1). We find Biot numbers and 
heat transfer coefficients in the range of 1 − 10 and 20 − 350 W m−2K−1, 
respectively (Table 1). By comparison, typical heat transfer coefficients are 
lower for pyroclasts cooling in air, ≈ 15 W m−2K−1 (Stroberg et al., 2010) and 
much higher for steel, nickel, aluminum, and copper cooling in water, ≈ 
103 − 104 W m−2K−1, with Hdecreasing with the surface temperature of the 
metal (Bamberger and Prinz, 1986).

4.5. Stage 2 saturation by thermal contraction



During stage 2 we find that clast submerged weight changes linearly with 
temperature (Fig. 9). We propose that the linear relationship in Fig. 9 reflects
thermal contraction of internal fluids (primarily trapped air) and consequent 
ingestion of liquid water. That is, the total amount of trapped gas is 
conserved and the amount of liquid water increases as water fills the space 
made available by thermal contraction.

Fig. 9. Stage 2 saturation of clast ML01. Submerged weight increases linearly as temperature declines 
during stage 2. The linear relationships between submerged weight and temperature indicate that the 
clast saturates as thermal contraction draws in liquid water during stage 2. We propose that 
ΔMSΔTrincreases with trapped gas content and use Eq. (16) to solve for trapped gas content, gf. We 
find that trapped gas content generally decreases as clast initial temperature increases.

At constant pressure, the volumetric coefficient of thermal expansion

(14)α=1VfdVfdT,

demonstrates that fluid volume changes linearly with temperature, where Vf 
is fluid volume. Because the thermal expansion coefficient of air is an order 
of magnitude greater than that of water, clasts that contain more trapped air
(or trapped non-condensable magmatic gases) will contract more and ingest 
more water more per degree of cooling such that

(15)dMTdTr∝gf,

where Tr is the internal temperature at any radial position and gf=VgϕVT is 
the fraction of trapped gas within the pore space (Fauria et al., 2017). 
Appendix E shows how the change in submerged weight with temperature 
depends on trapped gas volume,

(16)dMTdTr=−VTϕρlαl−gfαl+gfαg,

where αl and αg are the thermal expansion coefficients for liquid water and 
air, respectively. Eq. (16) includes effects from both liquid water and air 
contraction.



Fig. 9 demonstrates how clast submerged weight scales linearly with 
temperature during stage 2. In Fig. 9 we define ΔMS = MS(t) − MS(tS2) and 
ΔTr = Tr(t) − Tr(tS2) where tS2 is a time soon after the beginning of stage 2 
(specifically tS2 is 30 s after the observed temperature maximum in stage 2).

We find that dMTdTr, and thus trapped gas fraction gf generally decrease 
with increasing clast initial temperature. The observation that initially hotter 
clasts trap less gas is consistent with previous work which shows that 
trapped gas fraction decreases with increasing clast initial temperature 
(Allen et al., 2008, Fauria et al., 2017, Manga et al., 2018).

4.6. Clasts cool at the same average rate

Observations of liquid flux as a function of time show that the length of time 
until the stage 1 to stage 2 transition, t*, increases as clast initial 
temperature increases (Fig. 3). Here, based on results from all experiments, 
we propose that t* increases linearly with clasts' initial thermal energy (Fig. 
10). An increase in t* with clast initial thermal energy is consistent with the 
idea that clasts must cool below the boiling point to condense all internal 
steam and transition to stage 2.

Fig. 10. High-to-low liquid flux transition, t*, as a function of clast initial thermal energy and surface 
area. Consistent with our concept that clasts must lose a sufficient amount of thermal energy to 
condense all internal steam and reach t*, the linear relationship indicates that clasts experience the 
same time-integrated average rate of heat loss, q = 7.5 ± 0.5 W cm−2.



We plot t* as a function of clast initial thermal energy divided by clast surface
area in Fig. 10. Fig. 10 shows a linear relationship that can be approximated 
by

(17)t*︸coolingtime=1q︸averageheatflux(Ti-T∞)cprMDSa︸initialheatcontent,

where q is a fitted coefficient that represents heat flux in W cm−2, cpr is the 
heat capacity of the solid phase, MD is clast dry mass, and Sa is clast surface 
area. The linear scaling in Eq. (17) implies that the stage 1 to 2 transition 
occurs when a sufficient amount of heat has been lost and suggests that the 
clasts of different sizes, porosities, and initial temperatures, experience the 
same average heat flux during stage 1 such that q is the same for different 
clasts. From Fig. 10, we estimate q = 7.5 ± 0.5 W cm−2.

Because we could not measure the submerged weight of very large clasts, 
we used high speed video and temperature measurements to determine t* 
for these clasts (Pum07, Pum08, and HRaft01). Uncertainty in the surface 
area of the clasts generates the largest uncertainty in the right side of Eq. 
(17) and therefore q. We approximate surface area by letting Sa be the 
average of the spherical equivalent surface area and the elliptical equivalent 
surface area, Saellipsoid=4π(r1r2)1.6+(r2r3)1.6+(r2r3)1.6311.6, where r1, r2,
and r3 are the axes dimensions that we measure on each clast (Fig. S4).

The t* timescale is significant because it represents the time over which a 
clast is at least partially above the boiling point and contains steam. The 
result that different clasts have the same average stage 1 heat flux may be 
useful in models of pyroclast dispersal and clast buoyancy evolution (e.g., 
Manga et al., 2018). We note that t* measured on a clast from the 2012 
submarine eruption of Havre volcano (HRaft01) follows the same trend as 
the other clasts.

Extrapolation of q = 7.5 ± 0.5 W cm−2 to much larger clast sizes should be 
done with caution, however. Heat loss may be slower in very large clasts 
because temperature gradients may be smaller.

4.7. A new model for clast saturation: a balance between condensation and 
water ingestion

We observe that liquid flows into clasts at the same rate for very hot clasts 
and that the liquid flux is relatively constant through time during stage 1 
(Fig. 3). Here we propose a method to estimate the average stage 1 liquid 
flux, Ql, based on our findings that saturation is governed by heat loss and 
that there is an average rate of heat loss, q = 7.5 ± 0.5 W cm−2. Specifically 
we propose

(18)Ql=qSaL,

where Sa is the clast surface area, and L is the latent heat of condensation. 
Eq. (18) reflects a balance between the rate of liquid flow coming into the 
clast (lhs) and the rate of condensation (rhs). Eq. (18) does not include 
thermal contraction effects or account for the presence of non-condensable 



gas. Eq. (18) assumes that clasts are at constant pressure and near the 
phase change temperature such that any cooling generates condensation.

We compare Eq. (18) to average stage 1 saturation rates (measured for 
clasts with initial temperatures > 458°C) in Fig. 11. We do not report 
saturation rates for our largest clasts (Pum 07, Pum08, and HRaft01), 
because these clasts were too buoyant in water to measure their submerged 
weight with our set-up.

Fig. 11. Observed time-averaged liquid flux versus modeled time-averaged liquid flux (Eq. (18)). We 
propose that, because Ql predictions are close to observed values, that we can use Eq. (18) to estimate
average rates of liquid flow into clasts and where liquid flow balances steam condensation. The line is 
1:1.

We find that Eq. (18) predicted saturation rates, where we use q = 7.5 ± 0.5 
W cm−2 and Saas described in Section 4.6, are close to the average stage 1 
saturation rates measured in our experiments (Fig. 11).

Eqs. (17) and (18) may prove useful in models of submarine pyroclast 
dispersal because they provide a way to estimate average saturation and 
cooling rates based on measurable quantities such as clast porosity, size, 
and initial temperature. Because we did not validate Eq. (18) on clasts larger 
than 5 cm diameter, extrapolation to larger clast sizes should be done with 
caution.

5. Discussion

In the preceding sections we presented observations of, and quantitative 
models for, pumicecooling and saturation. We found that pumice containing 



steam and trapped air cools in two-stages. In stage 1, water ingestion both 
accelerates, and is limited by, clast cooling. We argued that during stage 1b 
heat transfer, rather than permeability, controls saturation and tested this 
idea with a Stefan model with advection. We proposed that stage 2 cooling 
and saturation are controlled by conduction and thermal contraction, 
respectively. Finally, we argued that the stage 1 to stage 2 transition occurs 
when sufficient thermal energy is lost, all vapor has condensed to liquid, and 
proposed a model to estimate the transition timescale, t*, as well as average 
rates of heat loss, q, and liquid water saturation, Ql.

Here we discuss how the Section 4 models can be applied to submarine 
eruptions and the limitations associated with extrapolation to parameter 
spaces not explored in this study but that are relevant for the submarine 
environment.

5.1. Experimental and model limitations

Submarine pyroclast-generating eruptions differ from the experiments 
presented here in many important ways. Submarine eruptions often occur in 
cold, salty, and deep water where high pressures affect gas density, and 
phase change temperatures. Magmatic volatiles initially fill the pores of 
submarine-erupted pumice and the type of gas matters because steam 
condenses while CO2 (or air) contracts with cooling. Submarine-erupted 
pyroclasts may form eruption columns (e.g., Kano et al., 1996) or rise as 
individual clasts (e.g., Rotella et al., 2013) and the development of 
conceptual models for submarine eruptions is an active area of research 
(White et al., 2015) that the present study may inform.

Our experiments and models specifically address our understanding of clast 
rise through the water column and heat transfer from pyroclasts. Yet by 
neglecting pressure effects in this study we were unable to account for vapor
expansion due to decompression or changes in phase change temperature. 
Because clasts may be able to vesiculate during rise through the water 
column (e.g., Mitchell et al., 2018), clast permeability and vesicularity may 
not be static as we assumed.

We conducted experiments on air-filled pumice while submarine-erupted 
pumice contain primarily water vapor. Because hot air-filled pumice generate
steam in their pores when submerged in water (Section 3.3), we use models 
(Section 4.3) to extrapolate our results to steam-filled pumice. This 
extrapolation should be done with caution because we were not able to 
examine the behavior of large, > 10 cm diameter clasts, with experiments. 
In addition, we did not explicitly model the time-varying and heterogeneous 
distribution of non-condensable gases in pumice pores nor did we explicitly 
consider multiphase effects such as liquid and vapor counter flows. Liquid 
water infiltration may also not be spatially uniform as assumed in our 
models.



While we estimated an average heat flux for pyroclasts (Sections 4.6), this 
flux is likely not constant over time. We speculate that in clasts much larger 
than those examined here (≫ 10 cm diameter), the average heat flux could 
be less than we measured (7.5 W cm−2) because temperature gradients may 
be small.

Our experimental set-up precluded the examination of many of the 
processes listed above. Consideration of these and other processes is 
needed, however, to model submarine eruption columns (White et al., 2015).
Efforts are underway to understand clast rise through the water column by 
coupling pumice buoyancy evolution to clast vesiculation and an ascent 
model (Cahalan and Dufek, 2017). The present experimental data may prove
useful to validate such numerical models.

5.2. Application to submarine eruptions

Our models for pyroclast cooling and saturation can inform our 
understanding of submarine eruptions, in particular eruptions that produce 
pumice rafts or large clasts like the 2012 eruption of Havre submarine 
volcano (Carey et al., 2018). In submarine pyroclast-producing eruptions, 
pumice can remain buoyant long enough to reach the ocean surface (e.g., 
Allen and McPhie, 2009, Barker et al., 2012, Rotella et al., 2013 or may sink 
part way through the water column (e.g., Kano et al., 1996, Head and Wilson,
2003, Woods, 2010. We note that high porosity subaqueous clasts can be 
created through both explosive fragmentation or brittle fracture associated 
with quenching (e.g., Manga et al., 2018). Clasts that reach the surface can 
enter pumice rafts that are dispersed great distances.

Here we build a model for pumice rise to the ocean surface based on the 
buoyancy of individual clasts. We use Eq. (18) to determine how pumice 
buoyancy evolves with time. We then calculate clast rise speeds and 
determine minimum clast sizes that can reach the surface from 1000 m 
depth.

To model clast rise, we assume that clasts saturate as a result of heat loss, 
contain only condensable vapor at the phase change temperature, and the 
internal vapor does not expand due to decompression. To determine the 
time until neutral buoyancy we first calculate the fraction of pore space filled
with liquid water, ω, as a function of time

(19)ω(t)=QltϕρlVT,

where we use Eq. (18) to estimate Ql. We calculate clast density, ρc 
according to

(20)ρc(t)=(1−ϕ)ρr+ϕω(t)ρl

and determine the water saturation, w*, at which clasts reach neutral 
buoyancy (dashed line) such that ρc = ρl (Fig. 12). Fig. 12 shows how 
buoyancy time increases with clast size and porosity. We assume that the 
ambient fluid has a constant density, ρl, that does not change with depth or 



due to heating. We find that a 0.5 m and 80% porosity clast will remain 
buoyant for ≈ 20 min and 1 m diameter and 65% porosity clast will remain 
buoyant for ≈ 12 min. Because Eqs. (18)–(20) do not include the effects of 
vapor expansion associated with decompression, we expect that the 
buoyancy times plotted in Fig. 12 represent lower bounds on the longevity of
clast rise through the water column.

Fig. 12. Clast rise to the ocean surface. Time for a clast to reach neutral buoyancy (dashed lines) and 
time to rise to the ocean surface from 1000 m depth (solid lines) as functions of clast size and porosity.
We model clast saturation as a function of heat loss and steam condensation (Eqs. (18)–(20)). We 
estimate clast rise times using Eq. (20)–(22). From this figure, we can estimate how long a water-vapor
filled clast will remain buoyant (excluding the effects of decompression and vapor expansion) and 
minimum clast sizes required to reach the surface (intercepts of dashed and solid lines). Porosities are 
listed in percent.

We compare clast buoyancy times to clast rise times to the ocean surface 
from a depth of 1000 m (Fig. 12). We estimate clast rise velocities, u, 
according to

(21)u=8(ρl−ρc(t))gro3ρlCd,

and rise distance as

(22)Lrise=∫udt,

where ρc is clast density, ρl is liquid water density, g is gravity, ro is clast 
radius, and Cd = 0.3 is a drag coefficient (Batchelor, 1970). By combining Eqs.
(20)–(22) we determine the time at which a clast saturating at rate, Ql would 
reach the surface from 1000 m depth (Fig. 12).



Fig. 12 shows how, based on Eqs. (19)–(22), we can determine minimum 
clast sizes required to reach the surface from a depth of 1000 m: 0.8, 0.45, 
0.25, and 0.16 m diameter clasts for porosities of 0.65, 0.7, 0.8, and 0.9, 
respectively (intercepts of dashed and solid lines). Regardless of clast size 
and porosity, a clast can rise from a depth of 1000 m for ≈ 10 min before 
either reaching the surface or starting to sink (Fig. 12).

Once pyroclasts reach the surface they can float and form pumice rafts as a 
result of non-condensable gas trapping (Fauria et al., 2017) and thus have 
the potential to be dispersed long distances. When clasts reach the surface 
full of steam, floatation requires that air enters the pore spaces before the 
clasts cool (e.g., Fiske et al., 2001). Our model supports arguments and 
observations that large clasts waterlog last and are sometimes able to reach 
the surface (e.g., Kano et al., 1996, Allen and McPhie, 2000, Stewart and 
McPhie, 2004, Allen and McPhie, 2009, Cas and Giordano, 2014, and also 
provides quantitative constraints on the timing of saturation. The recent 
2012 eruption of Havre submarine volcano demonstrates how porous 
volcanic material can be partitioned into both floating and sinking 
components (Carey et al., 2018) and our model may be useful for 
understanding those sorting processes.

Conceptual models have also attributed the buoyancy of pyroclasts to steam 
sheathes that develop around their exteriors. We did not observe, however, 
steam sheathes in any of our experiments because liquid water can enter 
the pores and cool the surface below the boiling temperature. Rather, we 
propose that steam occupies the clast interiors - the warmest regions of the 
clasts.

Together, our experimental results and models suggest that, because 
saturation is limited by cooling and condensation, pyroclasts often remain 
hot and buoyant long-enough to reach the surface. Our clast-scale cooling 
and saturation models provide tools for understanding the eruption dynamics
of events such as the 2012 eruption of Havre volcano - noting that additional
physics, such as the effects of pressure changes, should be better resolved 
to fully understand the evolution of clast buoyancy.

6. Conclusions

Pyroclast cooling and saturation are important for understanding submarine 
eruption dynamics and pyroclast dispersal. In this study we used laboratory 
experiments to examine, and develop models for, clast-scale cooling and 
saturation processes.

We found that pumice cool and saturate in several stages (Fig. 4). At first 
(stage 1a), gas bubbles flow out as water enters the clasts. Air-filled clasts 
below the boiling temperature saturate according to Darcy's law where 
permeability matters (Section 4.1). By comparison, hot clasts convert 
ingested water to steam and heat loss, rather than permeability, controls 
vapor-filled clast saturation (i.e., stage 1b, Section 4.3).



We observed that the rate of liquid saturation declines abruptly in hot clasts -
indicative of the time, t*, at which all internal vapor has condensed. We 
demonstrated that clasts cool by conduction and saturate due to the thermal
contraction of trapped non-condensable gasonce all vapor has condensed 
(i.e., stage 2, Sections 4.4 and 4.5).

Because internal vapor condensation requires the loss of a sufficient amount 
of heat, we derived an average rate of heat loss for all clasts based on a 
linear relationship between t*and clast initial thermal energy (Section 4.6). 
That is, t* scales lineally with clast initial thermal energy, demonstrating that 
clasts tested here lose heat at the same time-integrated average rate of 
q = 7.5 ± 0.5 W cm−2.

We then derived an expression for the average rate of clast saturation (Eq. 
(18)), based on our finding that the rate of liquid water ingestion balances 
the rate of condensation in steam-filled pyroclasts (Fig. 11).

Finally, we applied our understanding that heat loss controls steam-filled 
pyroclast saturation to estimate the time it takes clasts to reach the ocean 
surface from 1000 m depth (Section 5.2). We find that clasts larger than ∼ 
1 m diameter can rise to the ocean surface from 1000 mbsl due to their 
buoyancy and before water-logging. We find that cooling can make small 
clasts condense internal water vapor, become water-logged and sink before 
reaching the ocean surface (Fig. 12).

While our experiments and models do not incorporate all the processes 
relevant for submarine eruptions (e.g., decompression effects) they can 
provide insight into submarine eruption dynamics. For example, we find that 
steam-filled pyroclast saturation depends on heat loss, rather than 
permeability, and this implies that water-logging may be independent of the 
details of internal texture. In addition, the clast-scale models developed here
can inform multiphase models of submarine eruption columns and pyroclast 
dispersal. Our experimental results may also help validate models that 
include important processes neglected in this study. In general, our study 
results support what was already acknowledged - that large and hot 
pyroclasts saturate slowly as they cool (e.g., Kano et al., 1996, Cashman and
Fiske, 1991, Fiske et al., 2001, Allen and McPhie, 2009, Cas and Giordano, 
2014, White et al., 2015. The models and data presented here provide a 
quantitative framework, however, for understanding the mechanics of 
cooling and saturation and demonstrate that high porosities and phase-
changes lead to complex behaviors.
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Appendix A. Pressure gradient caused by condensation

Here we estimate the pressure gradient generated by condensation in 1-D 
(i.e., inward movement of a condensation interface). Consider the change in 
pressure generated by losing n moles of gas from a container or pyroclast. 
From the ideal gas law

(A.1)P1n1=P2n2,

where P is gas pressure, the subscripts 1 and 2 refer to initial and final time, 
respectively, and where volume and temperature are constant. Assuming 
that the concentration of moles of gas per unit length is constant, C 
[moles m−1], we can write n1 = Cro and n2 = Crs in 1-D and where ro is 
pyroclast radius and rs is the condensation interface position. That is, the 
number of moles of gas decreases due to condensation where rs is the 
location of the condensation interface.

We can substitute into Eq. (A.1) to solve for the pressure difference

(A.2)P2−P1=ΔP=−P1ro−rsro.

The pressure gradient from the clast edge to the condensation interface 
becomes

(A.3)∇p=ΔPro−rs=−P1ro.

We therefore find that pressure gradients generated by condensation are 
inversely proportional to clast radius and are the largest in small clasts.

Appendix B. Stefan problem with advection

Here we write the governing equations for the inward propagation of a 
condensation front in a conductively cooling sphere (e.g., Pedroso and 
Domoto, 1973, Riley et al., 1974, Ismail and Henrıquez, 2000 and with an 
advective term to account for water flow into the clasts. Consider a sphere of
radius ro composed of a homogeneous fluid with initial temperature Tf, where
Tf is the phase change temperature, and surrounded by a bath of subcooled 
fluid of constant temperature T∞ (Fig. 6). We write 1-dimensional equations 
that govern sphere cooling by conduction and advection and propagation of 
an internal condensation front as:

(B.1)∂T∂t=Deff2r∂T∂r+∂2T∂r2−∂rs∂t∂T∂r|rs<r<ro



(B.2)keff∂T∂r=ρeffLeff∂r∂t|r=rs

(B.3)T=Tf|r<rs

(B.4)−keff∂T∂r=H(T−T∞)|r=ro

(B.5)T(r,0)=Tf

where keff is effective thermal conductivity, rs(t) is the position of the phase 
change front, ρeffis effective density, Leff is effective latent heat, and H is the 
heat transfer coefficient. We use effective latent heat to account for 
multiphase effects (Appendix C). By defining the following dimensionless 
variables τ=Defftro2, R*=1−rro, S=1−rsro, θ(r,t)=(T(r,t)−T∞)(Tf−T∞), 
St=cpeff(Tf−T∞)Leff, and Bi=Hrokeff, we can write the model equations as

(B.6)∂θ∂τ=2R*−1∂θ∂R*+∂2θ∂R*2−∂S∂τ∂θ∂R*|0<R*<S

(B.7)St∂θ∂R*=∂R*∂τ|R*=S

(B.8)∂θ∂R*=Biθ|R*=0

(B.9)θ=1|S<R*<1

(B.10)θ(r,0)=1

We solve Eqs. (B.6)–(B.10) numerically and use a finite difference 
approximation and moving grid approach. We adopt the stability condition 
used by Ismail and Henriquez (2000)

(B.11)τN2RN*≤12,

where N is the number of points in the grid. We let n = 0 at R* = 0 and n = N 
at R* = S, where S is the position of the condensation front. We use a grid 
with = 25 grid points as did Ismail and Henriquez (2000).

We test our model by comparing our solution (without advection) to an 
analytical solution by Pedroso and Domoto (1973). We also write out and 
solve a similar set of equations for a planar geometry and compare those 
solutions to our data as well. While our model includes cooling effects from 
fluid flow, we do not explicitly include the effects of heat transfer among 
multiple phases and we assume that steam in the clast interior is at the 
boiling temperature. We use values derived in Section 4.4 to estimate H.

Appendix C. Effective Stefan number

The Stefan number, St, is an important parameter in the Stefan problem and 
expresses the ratio of sensible to latent heat in a clast. Clasts with lower 
Stefan number (more latent heat) will take longer to cool and saturate. The 
Stefan number is traditionally defined as

(C.1)St=(Tf−T∞)cpL,

where cp is the solid phase heat capacity and L is the latent heat of 
vaporization.



Defining a Stefan number in a high porosity clast that contains multiple 
phases (glass, steam, liquid water, air) is complicated, however, because of 
the volume changes associated with phase changes and because more 
thermal mass can be in the rock rather than the vapor. Therefore we make 
several assumptions and approximations to estimate Stefan numbers for hot 
and porous pumice.

First, we use an effective heat capacity for the liquid-filled area between the 
condensation interface and clast exterior, cpeff = (1 − ϕ)cpr + ϕcpl, where cpr is 
the heat capacity of the glass phase and cpl is the heat capacity of the liquid 
phase (Fig. 6).

Second, we compare the thermal energy of the rock to the vapor phase. The 
thermal energy of water vapor at temperature, T, per unit volume is

(C.2)Hs=ϕTcpsρs+ϕLρs

where cps is the heat capacity of steam, ρs is steam density, L is latent heat. 
The thermal energy of the glass matrix per unit volume is

(C.3)Hg=(1−ϕ)Tcprρr.

Using ρs = 1 kg m−3 and ϕ = 0.7 we find that HsHg=10−2 for T = 100°C and 
HsHg=3×10−3for T = 500°C. Because HsHg is small, we conclude that much 
more thermal energy is held within the glass matrix than the vapor phase in 
steam-filled pumice.

Steam condensation in clast interiors may therefore be limited, not just by 
the latent heat of condensation, but by the sensible heat of the glass. That 
is, as a condensation interface moves inward some distance, the heat 
removed is not only the latent heat of the water vapor, but also the sensible 
heat of the vapor and glass. We therefore write an effective latent heat that 
includes the thermal energy of the glass matrix (we neglect the relatively 
small contribution from vapor sensible heat)

(C.4)Leff=ϕρs(1−gf)L(1−ϕ)ρr+ϕρl︸vaporlatentheat+(1−ϕ)ρrcpr(T−Tf)
(1−ϕ)ρr+ϕρl︸glasssensibleheat,

where T is clast temperature, Tf is the phase change temperature, and gf is 
the fraction of trapped non-condensable gas (e.g., CO2 or air) in the pore 
space. We normalize clast latent and sensible heat by the density of the 
liquid saturated rock in Eq. (C.4).

We use Eq. (C.4) to estimate an effective Stefan number for porous clasts 
that contain water vapor

(C.5)Steff=(Tf−T∞)cpeffLeff.

Using T = 523°C, Tf = 100°C, T∞=20∘C, cpeff = 3.2 kJ kg−1 K−1, cpr = 0.8 kJ kg−1 
K−1, cpl = 4.2 kJ kg−1 K−1, L = 2200 kJ kg−1, ϕ = 0.7, ρs = 1 kg m−3, ρr = 2400 kg 
m−3, ρl = 1000 kg m−3, and gf = 0.2 we find Steff = 3.5. Eqs. (C.4) and (C.5) 
demonstrate how, as clast initial temperature increases, the effective Stefan 
number decreases.



Appendix D. Conductive cooling on a sphere

Consider a radially symmetric sphere that cools by conduction and 
convective heat transferat its outer edge. To determine the temperature 
distribution T(r,t) inside a sphere we write the 1-D heat equation in spherical 
coordinates and specify initial and boundary conditions:

(D.1)∂T∂t=Deff2r∂T∂r+∂2T∂r2|0<r<ro

(D.2)∂T∂r=0|r=0

(D.3)−keff∂T∂r=H(T−T∞)|r=ro

(D.4)T(r,0)=Ti

where T∞ is background temperature, Ti is initial temperature, t is time, r is 
radial position, rois sphere radius, keff is effective thermal conductivity, Deff is 
effective thermal diffusivity, and H is the heat transfer coefficient. The 
governing equations can be non-dimensionalized by defining R=rro to be 
dimensionless radius, τ=Defftro2 to be dimensionless time, θ(r,t)=(T(r,t)
−T∞)(Ti−T∞) to be dimensionless temperature, and by recalling that 
Bi=Hrokeff,

(D.5)∂θ∂τ=1R∂∂RR∂θ∂R|0<R<1

(D.6)∂θ∂R=0|R=0

(D.7)∂θ∂R+Biθ=0|R=1

(D.8)θ(R,0)=0.

The exact solution to Eqs. (D.5)–(D.8) is given by Eq. (12) and an 
approximate solution is given by Eq. (13). In Section 4.4 we compare 
measurements of clast internal temperature to solutions to Eqs. (D.5)–(D.8) 
to determine stage 2 heat transfer coefficients.

Appendix E. Derivation of equation for trapped gas content

Here we derive an equation that relates change in mass with temperature to 
changes in fluid fractions within a clast. We can write the total mass of a 
partially saturated pumice as,

(E.1)MT=MD+ρgVg+ρlVl,

where MD is the mass of the rock phase (pumice dry mass), ρg is the gas 
density, Vg is the gas volume in the pumice, ρl is the liquid density, Vl is the 
liquid volume with the pumice clast. Because pumice internal volume is 
conserved, VTϕ = Vl + Vg, where VT is the total pumice volume and ϕ is 
porosity. If the mass of non-condensable gas within a pumice doesn’t change
during stage 2 due to gas trapping and by writing Vl = (VTϕ − Vg) then the 
derivative of Eq. (E.1) with respect to temperature is

(E.2)dMTdT=d(ρl(VTϕ−Vg))dT.

The definition of thermal expansion coefficients (Eq. (14)) can be combined 
with Eq. (E.2) such that



(E.3)dMTdT=(VTϕ−Vg)(−ρlαl)+ρl(−αgVg).

Eq. (E.3) can be further simplified by letting gf=VgϕVT be the fraction of 
trapped gas within the pore space such that

(E.4)dMTdTr=−VTϕρlαl−gfαl+gfαg,

where Tr is the temperature at any radial position. We can estimate dMTdT 
by fitting a linear slope to plots of temperature versus submerged weight 
and then use Eq. (E.4) to estimate trapped gas fraction (Fig. 9). We can use 
temperature from any radial position, Tr, because in a conductively cooling 
body the time dependence of internal temperature at any radial position is 
the same as that at the center point (Incropera et al., 2002).
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