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MODELLING ANIMAL SYSTEMS RESEARCH PAPER

Bayesian simultaneous equation models for the analysis of energy
intake and partitioning in growing pigs
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2Department of Animal Science, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, 8830
Tjele, Denmark

(Received 26 September 2011; revised 23 January 2012; accepted 28 February 2012;
first published online 4 April 2012)

SUMMARY

The objective of the current study was to develop Bayesian simultaneous equation models for modelling energy
intake and partitioning in growing pigs. A key feature of the Bayesian approach is that parameters are assigned
prior distributions, which may reflect the current state of nature. In the models, rates of metabolizable energy (ME)
intake, protein deposition (PD) and lipid deposition (LD) were treated as dependent variables accounting for
residuals being correlated. Two complementary equation systems were used to model ME intake (MEI), PD and
LD. Informative priors were developed, reflecting current knowledge about metabolic scaling and partial
efficiencies of PD and LD rates, whereas flat non-informative priors were used for the reminder of the parameters.
The experimental data analysed originate from a balance and respiration trial with 17 cross-bred pigs of three
genders (barrows, boars and gilts) selected on the basis of similar birth weight. The pigs were fed four diets
based on barley, wheat and soybean meal supplemented with crystalline amino acids to meet or exceed Danish
nutrient requirement standards. Nutrient balances and gas exchanges were measured at c. 25, 75, 120 and 150 kg
body weight (BW) using metabolic cages and open circuit respiration chambers. A total of 56 measurements
were performed. The sensitivity analysis showed that only the maintenance component was sensitive to the
prior specification, and hence the maintenance estimate of 0·91MJ ME/kg0·60 per day (0·95 credible interval
(CrI): 0·78–1·09) should be interpreted with caution. It was shown that boars’ ability to deposit protein was
superior to that of barrows and gilts, as these had an estimated maximum PD (PDmax) of 250 g/day (0·95 CrI:
237–263), whereas the barrows and gilts had a PDmax of 210 g/day (0·95 CrI: 198–220). Furthermore, boars
reached PDmax at 109 kg BW (0·95 CrI: 93·6–130), whereas barrows and gilts maximized PD at 81·7 kg BW
(0·95 CrI: 75·6–89·5). At 25 kg BW, the boars partitioned on average 5–6% more of the ME above maintenance
into PD than barrows and gilts, and this was progressively increased to 10–11% more than barrows and gilts at
150 kg BW. The Bayesian modelling framework can be used to further refine the analysis of data from metabolic
studies in growing pigs.

INTRODUCTION

Simultaneous equation statistical models are an
attractive method for analysing interactions among
components of animal systems directly. An application
of these models is in bio-energetics of animal growth,
because it is preferable to analyse protein deposition
(PD) and lipid deposition (LD) data using simultaneous
equations statistical models (Koong 1977; van Milgen

& Noblet 1999; Strathe et al. 2010a). However, they
require utilization of additional parameters, which
is computationally costly and hence these models
have been applied mainly to larger datasets. For
instance, Strathe et al. (2010a) analysed 384 energy
balances, which can be considered a large dataset
for metabolic studies. These studies require expensive
equipment and labour, so they often produce sparse
datasets. As a consequence, parameter identifiability
becomes an issue, which leads to poor convergence
of the non-linear estimation routine, i.e. parameter
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estimates with large standard errors (S.E.) and point
estimates of key parameters that may be scientifically
unreasonable.
In Bayesian paradigm, prior information can be

synthesized through formal statements of probability
because model parameters are viewed as random
variables with associated probability distributions, so-
called ‘priors’ to the parameters (Gelman et al. 2004).
The inclusion of previous knowledge is a fundamental
and integral part of the modelling process – for
example, parameters describing partial efficiencies
of utilizing metabolizable energy (ME) above main-
tenance (MEM) for protein deposition (PD; kp) and
LD (kf) and the exponent scaling the metabolic body
size (b), are known a priori because the bioenergetics
of growth have been studied for decades. The prior
distributions are subsequently updated with regard
to the data at hand. The resulting, so-called ‘posterior
probability distributions’, or ‘posteriors’ for short, are
consistent with both the experimental data and
the priors, as the posteriors are derived from the
product of the likelihood of the data and the prior
probability of the parameters. A Bayesian approach
has recently been described for the analysis of energy
balance data in dairy cows as a robust framework
for integration and extraction of information (Strathe
et al. 2011).
The objective of the current study was to de-

velop Bayesian simultaneous equation models for
modelling energy intake and partitioning in growing
pigs.

MATERIALS AND METHODS

All experimental procedures complied with the
Danish Ministry of Justice, Law No. 382 (10 June
1987) and Act No. 726 (9 September 1993), regarding
animal experimentation and care.

Experimental procedure

The pigs used in the study were crosses of
Yorkshire×Landrace sows and Duroc boars. Eighteen
pigs of three genders (barrow (male pig castrated
before puberty), boar and gilt), originating from six
litters were used and hence there were six pigs per
gender. The pigs were obtained from the swine herd
at Foulum Research Centre (Denmark). The first 12
pigs were subjected to three balance periods, whereas
the last six pigs were subjected to four periods,
covering the growth phase from 20 to 150 kg body

weight (BW). During the growth phase, the pigs were
fed four diets (described later in this section) in the
corresponding intervals: 25–45, 45–65, 65–100 and
100–150 kg BW. The balance periods were planned
to be done in themiddle or last part of each interval. All
balance periods lasted 7 days in metabolism cages,
with days 4 and 5 in the respiration chambers. One
barrow was omitted from the dataset due to illness in
the first balance period. A total of 56 energy balances
including 16 for barrows, 20 for boars and 20 for gilts
were measured. During the collection and balance
periods, the pigs were kept in stainless steel metab-
olism cages in the respiration chambers. Feed allow-
ance approximated ad libitum feed intake. Faeces and
urine were collected quantitatively during the 7-day
collection period. Gas exchange and heat production
(HP) were measured for 48 h on days 3 and 4. BWover
each balance period was calculated as the mean of
initial and final BW during the period. The calculation
of ME included energy losses in faeces, urine, methane
and hydrogen. The average daily HP was calculated
according to Brouwer (1965). Total energy gain over
the balance period was obtained as the difference
betweenME intake (MEI) and HP; its partition between
protein and lipid gain was calculated by assuming that
protein gain (6·25×nitrogen (N) retention) contained
23·8 kJ/g (ARC 1981). Nitrogen retention was calcu-
lated as the difference between N intake and N losses
in faeces and urine. The experimental procedure of
conducting respiration and energy balance trials at
Foulum Research Centre is described in full by
Jorgensen et al. (1996).

The diets were based on barley, wheat and soybean
meal, and were formulated to meet nutrient re-
quirements according to Danish nutritional standards.
Their ingredient and chemical compositions are
presented in Table 1. The pigs were individually
housed under thermoneutral conditions and given ad
libitum access to feed and water when they were not
subjected to determination of nutrient and energy
balance.

Statistical model

It was assumed that multiple observations from the pig
were independent because diets were changed during
the consecutive balance periods. Also, a preliminary
analysis showed that variance components associated
with structural model parameters were poorly esti-
mated, because it was difficult to estimate pig specific
MEI, PD and LD curves with only three observations
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per pig and only 17 pigs. The distribution of the data
conditional on model parameters is

yijk|βi, kp, kf ,b,Σ � MVN( f (βi, kp, kf ,b,BWij)k,Σ)
(1)

where yijk denotes the kth observed response (MEI,
PD and LD, all expressed in MJ/day) related to the
ith gender (barrow, boar and gilt) at the jth BW
(1, 2, . . ., ni); f (βi, kp, kf, b, BWij)k denotes the expected
MEI, PD and LD values given by the simultaneous
equations, which are described in detail below. The
vector of structural parameters is specific to the ith
gender and denoted by βi. The elements in βi are
also specific to the equation format, equating the
expected values, and its attributes and dimensions are
presented below. Parameters kp, kf and b are the partial
efficiencies and metabolic exponent parameter,
respectively, which are dimensionless quantities. The

variance–covariance matrix Σ describes the residual
variability in the three responses. The introduction of a
multivariate normal (MVN) distribution assumes
that the responses are correlated (Strathe et al.
2010a). Moreover, measurement errors that might
have occurred in the determination of ME, PD or LD
are assumed to be correlated. This is an important
model feature in the calculation of energy bal-
ances and their interrelationships, and it represents
an extension of the previous framework proposed by
Strathe et al. (2010a).

Simultaneous equations describing energy
partitioning

MEI (MJ/d) is described by an exponential function,
which is used frequently to model intake in growing
pigs (e.g. ARC 1981). The function has two parameters

Table 1. Nutrient and energy composition of experimental diets

Item Diet 1 25–45 kg Diet 2 45–65 kg Diet 3 65–100 kg Diet 4 100–150 kg

Ingredient composition (g/kg)
Barley 335·11 360·07 500·00 500·00
Wheat 335·11 360·07 305·10 378·85
Wheat bran 0·25 0·18 0·20 0·08
Soybean meal 225·76 221·41 144·20 92·60
Fishmeal 13·88 – – –

Animal fat 60·00 30·00 20·00 –

Lysine 2·38 1·82 2·44 2·00
Methionine 0·66 0·48 0·52 0·22
Threonine 0·99 0·31 0·80 0·35
Limestone 10·99 10·46 9·75 10·33
Dicalcium phosphate 8·86 9·21 11·00 9·55
Salt 4·00 4·00 4·00 4·00
Vitamin mixture 2·00 2·00 2·00 2·00

Chemical composition
Dry matter (DM: g/kg of diet) 889 883 886 888
Net energy (MJ/kg of DM)* 8·96 8·41 8·26 8·11

Components and nutrients (g/kg DM)
Crude protein 213 204 179 162
Crude fat 86·3 54·5 44·4 26·8
Dietary fibre† 176 171 178 157
Lysine 12·4 10·8 9·51 7·88
Methionine 3·80 3·34 3·02 2·68
Cystine 3·58 3·46 3·26 3·13
Threonine 8·48 7·31 6·74 5·75

Minerals (g/kg DM)
Ash 56·2 53·0 50·3 45·5
Calcium 8·7 8·2 7·9 7·7
Phosphorus 6·0 5·9 6·1 5·7

* Estimated according to Just (1982), Just et al. (1983) and Boisen & Fernandez (1997).
† Non-starch polysaccharides+ lignin.
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that can be interpreted as the asymptotic (maximum)
MEI M (MJ/day) and the fractional change in MEI due
to a change in BW, k (1/kg), respectively. The energy
partitioning is modelled as follows: ME available for
growth (MEG, MJ/day) is calculated as the difference
between MEI and ME for maintenance (MEM, MJ/day).
The fraction (F, dimensionless) of MEG available for
PD is assumed not to be constant, but a linear function
of BW. Multiplication of MEG by F and by 1−F gives
ME for PD (MEPD, MJ/day) and ME for LD (MELD, MJ/
day), which are used with efficiencies kp and kf,
respectively. Combination of these equations pro-
posed by van Milgen & Noblet (1999) with the
equation for predicting MEI results in the following
simultaneous equations:

f (βi,BWij)1 = MEIij = Mi(1− e−ki×BWij )
f (βi,BWij)2 = PDij = kp(ci − di(BWij − 25))

× (MEij − aiBWb
ij )

f (βi,BWij)3 = LDij = kf (1− (ci − di(BWij − 25)))
× (MEij − aiBWb

ij )
(2)

Maintenance is specified as MEM=aiBW
b where ai

is the gender-specific maintenance requirement (MJ
ME/(kg BWb×day)) and b is the metabolic exponent
(dimensionless). It is assumed that F decreases linearly
with BW, i.e. Fij=ci−di(BWij−25). Here ci is the
fraction ofMEG used for PD at 25 kg BWand di (1/kg) is
the change in F per kg BW change. The gender-
specific parameter vector is βi=[Mi, ki, ai, ci, di]

T.
Another set of MEI, PD and LD equations, which

provides additional insight into the partitioning of ME
during growth, is presented below. This approach
requires a functional specification of the PD curve. The
concept of an upper limit for PD in growing pigs
is widely accepted, as pigs are limited by either their
genetic or feed intake capacity (at earlier stages of
growth). The Gompertz function is often the preferred
function for representing the pattern of maximum PD
(PDmax) in pigs (Whittemore & Green 2002) and it can
be parameterized to express the BW at maximum rate
of PD (BWPDmax, kg) and the associated PDmax (MJ/
day) (Strathe et al. 2010a), when PD is expressed as
a function of BW. Strathe et al. (2010a) used the
specialized Gompertz function in combination with
the Michaelis–Menten function to model effects of
ME supply on growth. However, the pigs used in the
present study were all fed close to ad libitum and thus
the effect of energy supply on PD cannot be separated

from the stage of growth. The equation set is given as

f (βi,BWij)1 = MEIij = Mi(1− e−k×BWij )
f (βi,BWij)2 = PDij = PDmaxi

BWPDmaxi
BWij

× log
BWPDmaxi × e

BWij

( )

f (βi,BWij)3 = LDij = kf(MEij − ai × BWb
ij − PDij/kp)

(3)
The gender-specific parameter vector is βi=

[Mi, ki, ai, PDmaxi ,BWPDmaxi ]T and e is the exponential
to 1. Equation sets (2) and (3) require the same number
of parameters to be estimated, but equation set (3)
provides complementary information about energy
utilization in growing pigs, i.e. PDmax estimation. The
fraction of MEG partitioned for PD can be calculated
from equation set (3) as

F(BW) =
PDmaxi

kp × BWPDmaxi
BW× log

BWPDmaxi × e
BW

( )

MEI(BW) − ai × BWb

(4)
Clearly, F changes non-linearly during the course of

growth. The quantity F is suggested here as a measure
of the priority for PD in energy terms. To facilitate
interpretation (when needed), the results are reported
in grams per day by assuming 23·8 kJ/g of protein and
39·6 kJ/g of lipid (ARC 1981).

Specification of priors

The prior specification is concerned with assigning
probability distributions to βi, Σ, kp, kf and b. Priors for
βi and Σ are

βi � MVN(μ,H);Σ � IW(R, ρ) (5)
where IW(·,·) denotes the inverse-Wishart distribution.
At this point, numerical values for μ, H, R and ρ
must be stated. Here, μ=[0,. . ., 0]T andH=1002× I are
used, where I is the identity matrix. The prior for βi is
minimally informative, leading to no restriction on
the partitioning of ME between growth and mainten-
ance. The inverse-Wishart distribution was selected
to represent the prior for the residual variance–
covariance because it is the only closed form
distribution that naturally imposes the appropriate
constraint, i.e. positive definiteness. Hence, R= I and
ρ=3, which specifies the vaguest possible proper prior
for Σ.

The above equation systems cannot be solved
properly without utilization of numerical information

Modelling energy deposition in growing pigs 767



about some of the parameters. Table 2 represents a
compilation of values from the literature for the partial
efficiencies kp and kf, which suggest that the efficien-
cies of PD and LD are c. 0·6 and 0·8, respectively.
Hence, conservative prior distributions can be de-
duced from Table 2. Normal and uniform distributions
are specified by assuming that kp*N(0·60, 0·102) or
kp*U(0·40, 0·80) and kf*N(0·80, 0·102) or kf*U
(0·60, 1·00). The 0·95 confidence intervals (CIs) for
parameters kp and kf specified by the normal dis-
tributions are (0·40–0·80) and (0·60–1·00), respect-
ively. However, the biological interpretation of the
assigned prior distributions is different because the
normal distribution states that it is more likely that kp
is 0·6 than 0·4, whereas the uniform distribution
states that these values are equally likely. Likewise,
the prior for b is b*N(0·60, 0·102) or b*U(0·40,
0·80). Finally, the two different prior distributions
also constitute a sensitivity analysis because two sets of
posterior distributions are produced, and hence the
conclusions may or may not differ between the
choices of priors (Gelman et al. 2004).

Convergence and model selection

Two chains were run with different initial over-
dispersed values. To assess convergence, four formal
convergence tests at the core of the convergence
diagnostic and output analysis (CODA) package were
used (Best et al. 1995), which are the Geweke,
Heidelberger–Welch, Raftery–Lewis and Gelman–
Rubin diagnostic tools.

Statistics, such as the mean, median, percentiles and
0·95 credible interval (CrI) can be calculated from the
samples making up the posterior distribution. The CrI is

the Bayesian version of the traditional CI and it
represents a non-parametric interval of the posterior
distribution. In Bayesian methodology, a parameter is
considered a random variable and thus the CrI may be
interpreted as the 0·95 probability that the parameter
lies within the interval (lower–upper) given the
observed data and prior distribution (Gelman et al.
2004). In Bayesian analysis, there is no standardmodel
selection/reduction criterion such as the likelihood
ratio test. In the current analysis, three criteria for
model selection were used. Firstly, a reduction in the
residual variance for three response variables fitted
to the two sets of equations. Secondly, the precision
of the estimated parameter/effect, which is judged by
its 0·95 CrI and computation of the proportion of
posterior samples that are different from zeros. This
proportion may be interpreted similar to a P-value of
the underlying hypothesis in traditional statistics.
Thirdly, the Deviance Information Criteria (DIC),
which is a general tool to assess the trade-off between
model fit (deviance:−2 log likelihood) and complexity
(number of effective parameters) was used. The notion
that ‘smaller is better’ is preserved in the DIC
(Spiegelhalter et al. 2002). Differences of 5 and 10
DIC units are considered a tendency and a substantive
improvement of fit to data, respectively (Spiegelhalter
et al. 2002).

Prediction procedure

The prediction procedure in the current paper
followed Bayesian modelling convention (Gelman
et al. 2004) and used the observed data (Y) and
posterior parameters (θ=[βi, kp, kf, b]

T) obtained from
the model estimation to make inferences about a
predicted quantity Yp, e.g. PD. Hence, the distribution
of Yp was obtained conditional on the observed data
and the model parameter (i.e. the posterior predictive
distribution of Yp) as

p(Yp Y| ) =
∫
p(Yp|θ)p(θ|Y)dθ (6)

The first of the two factors in the integral is the MVN
distribution for the future observations given the value
of θ (Eqn (1)). The second factor is the posterior
distribution of θ given the observed data. The posterior
predictive distribution of Yp can thus be thought of
as an average of the conditional predictions over the
posterior distribution of θ. The integral in Eqn (6) is not
analytically tractable, but it can be approximated by

Table 2. Compilation of literature values for the
partial efficiencies kp and kf

kf kp Reference

0·72–0·88 0·52–0·63 Strathe et al. (2010a)*
0·75 0·56 van Milgen et al. (2000)*
0·77–0·82 0·58–0·60 van Milgen & Noblet (1999)*
0·84 0·62 Noblet et al. (1999)†
0·76 0·54 NRC (1998)†
0·60 0·52 Tess et al. (1984)†
0·74 0·56 ARC (1981)†

* Partial efficiencies derived from multivariate modelling
approaches.
† Partial efficiencies derived from the factorial approach
(multiple linear regression).
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using Monte Carlo sampling from the posterior and
summarize the samples in median and 0·95 CrI.

All models were implemented in the general
purpose software for Bayesian modelling, WinBUGS
(Lunn et al. 2000).

RESULTS

Parameter estimates and their uncertainties are pre-
sented in Tables 3 and 4 for the two equation sets
under two different prior settings. Both equation sets
and both priors predicted the same MEI at various
stages of growth as the parameter estimates were
identical. The asymptotic MEI was estimated in the
range of 44–48MJ/day, which was not significantly
different between genders (P>0·05). Parameters (c, d,
PDmax and BWPDmax) describing energy partitioning
between PD and LD were unaffected by the different
priors as the estimates were numerically identical and
thus the representation of the prior setting was not
important. Figure 1 presents the posterior predictive
distribution of PD data with 0·95 CrI. Both models
covered the observed variability in the PD data.
However, equation set (3) provided a more realistic
trend for the PD data, as PDmax occurred at later stages
of growth, which suggests that the assumption of a
linear decline in F may not hold when growth is
studied from 25 to 150 kg BW. This was supported by a
better fit to the data with equation set (3), i.e. a DIC of
637 v. 642.

The estimates of the maintenance requirement
(a, MJ ME/(kg BWb×day)) were dependent on the
specification of the prior distributions, and the uniform
distribution produced lower point estimates of a
(Tables 3 and 4). ME maintenance requirement
point estimates ranged from 0·83 to 0·96MJ ME/(kg
BWb×day) and they were highly correlated to
estimates of b, kp and kf. These parameters did not
change much from their prior location of 0·60, 0·60
and 0·80, respectively, but their precision increased
because the standard errors (S.E.) were reduced by two-
thirds, i.e. S.E.&0·1 (prior) v. S.E.&0·03 (posterior).
Hence, the estimates of a, b, kp and kf derived here
were not unique as they were dependent on the setting
of the priors and thus they should be interpreted
with caution. Moreover, gender-specific maintenance
requirements should be reduced to a single parameter.
Parameter estimates and CrI given in Tables 3 and 4
showed that barrows and gilts could not be separated,
and hence these groups were combined in the
further analysis resulting in two groups, i.e. boars andTa
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barrows+gilts. The DIC statistic for the two reduced
models (Table 5) resulted in simpler models that were
obtained by grouping barrows and gilts. The associ-
ated DICs were 633 and 626 for the reduced versions
v. DICs of 642 and 637 for the original versions of
equation sets (2) and (3). Still, equation set (3) was the
preferred model, i.e. a DIC of 626.

Parameter values obtained by fitting the reduced
models to data and use normal priors are presented in
Table 5 for the two equation systems. Parameters
describing energy partitioning above MEM between
PD and LD in equation set (2) were not statistically
different between the two groups as posterior prob-
abilities for the expressions cboar−cbarrow+gilt>0 and
dboar−dbarrow+gilt>0 were 0·24 and 0·10, respect-
ively. A large numerical difference was observed, as
boars partitioned 5%more of MEG towards PD at 25 kg
BW. In general, energy was diverted from PD towards
LD with increasing BW because estimates of d for
both groups were significantly different from zero
(P<0·05). Evaluation of PDmax values estimated by
equation set (3) suggests that the boars deposited moreTa
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Fig. 1. Posterior predictive distribution for PD (g/day) given
by two different equation sets and three genders. The line
represents the posterior median and the grey shaded area is
the 0·95 CrI for the predictions.
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protein (P<0·001), i.e. 250 g/day (0·95 CrI: 237–263)
v. 210 g/day (0·95 CrI: 198–220). Furthermore, the
PDmax was reached at later stages of growth in boars
because BWPDmax was 109 kg (0·95 CrI: 93·6–130) for
boars and 81·7 kg (0·95 CrI: 75·6–89·5) for barrows
and gilts. The quantity F was suggested here as a
measure of the priority for PD in energy terms. Hence,
a contrast in F between boars and the combination of
barrows and gilts was computed at different stages of
growth (Fig. 2). Although F was related non-linearly to
BW in equation set (3), both equation sets estimated
the numerical difference between the two groups to
be c. 5–6% at 25 kg BW increasing to c. 10–11% at
150 kg BW. Moreover, boars partitioned significantly
more ME above MEM towards PD c. 50–60 kg BW as
the 0·95 CrI did not overlap zero, which was also
shown in both equation systems.

DISCUSSION

MEI

Similar to the current study, the ARC (1981) and
the NRC (1998) used asymptotic equations to
relate energy intake to BW. Figure 3 presents the
posterior predictive distribution for MEI (MJ/day)
plotted as a function of BW. The line represents the
posterior median and the grey shaded area is the
0·95 CrI for the predictions. The plot shows clearly
that adopting an asymptotic function was justified,
but MEI was c. 10–15% less in the current study
compared with those reported by the ARC and NRC

Table 5. Parameter values and 0·95 CI in parenthesis
estimated by two different equation sets*. Parameter
contrasts are computed for boars against
barrows+gilts

Parameter† Estimate P-value‡

Equation set (2)*
cbarrow+gilt 0·45 (0·40–0·51)
cboar 0·50 (0·42–0·59) 0·240
dbarrow+gilt (/kg) 0·0016 (0·0013–0·0019)
dboar (/kg) 0·0012 (0·0009–0·0015) 0·100
Mbarrow+gilt (MJ/d) 44·5 (42·2–46·9)
Mboar (MJ/d) 48·5 (44·9–53·0) 0·070
kbarrow+gilt (/kg) 0·021 (0·018–0·025)
kboar (/kg) 0·017 (0·014–0·021) 0·120

Equation set (3)*
PDmax, barrow+gilt

(g/d)
210 (198–220)

PDmax, boar (g/d) 250 (237–263) <0·001
BWPDmax,

barrow+gilt

(kg)

81·7 (75·6–89·5)

BWPDmax, boar (kg) 109 (93·6–130) 0.004
Mbarrow+gilt (MJ/d) 45·0 (42·7–47·7)
Mboar (MJ/d) 48·4 (44·6–53·2) 0·160
kbarrow+gilt (/kg) 0·020 (0·017–0·024)
kboar (/kg) 0·017 (0·014–0·021) 0·200

* See Materials and methods section for details.
† Here c is the fraction of ME for production (F ) used for PD
at 25 kg BW and d is the change in F per kg BW change.
ParametersM and k can be interpreted as the asymptoticMEI
and the fractional change in MEI due to a change in BW.
Maximum rate of PD is denoted by PDmax and the associated
BW at that point BWPDmax.
‡ The proportion of posterior samples that are different from
zero computed for the contrast boars against barrows+gilts.
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(assuming 0·95ME to DE ratio). The experiment
was conducted in metabolism cages, which may
reduce feed intake compared to that measured when
pigs are housed individually in pens. Therefore, care
should be taken when extrapolating the current
results to other situations, although it should be
noted that most modern genotypes will probably
consume less than those reported by ARC (1981) and
NRC (1998).

None of the previous multivariate approaches used
to analyse PD and LD data included simultaneous
modelling of MEI (van Milgen & Noblet 1999;
Strathe et al. 2010a). Moreover, measured MEI in the
preceding studies was used as an independent variable
and assumed to be free of error. Some consequences
of ignoring measurement error include masking
important features of the data, losing the power to
detect relationships among variables and introducing
bias in function/parameter estimation (Carroll et al.
2006). The severity of the problem depends on the
magnitude of error in the independent variables.
Dhanoa et al. (2007) presented alternative regression
approaches to the ordinary least square for modelling
energy components; however, their study was con-
cerned with estimating kg (efficiency of utilizing ME
for energy gain) and MEM, which were derived from
regressing energy gain on MEI. Their results showed
that accounting for measurement error in MEI in-
creased both kg and MEM, suggesting that these
parameters were biased downwards when the ordin-
ary least squares method was used (Dhanoa et al.
2007). The functional forms that were utilized in the
present study were non-linear, and therefore ‘classical’
regression models were not applicable. Shortcomings
of multiple linear regression models have been
covered by Koong (1977) and van Milgen & Noblet
(1999), including reversion of the relationship between
responses (PD and LD) and driver (MEI) and statistical
issues related to collinearity between independent
variables. Use of Markov Chain Monte Carlo (MCMC)
techniques for parameter estimation in these complex
models was straightforward, and hence measurement
error in the determination of MEI could be modelled.
The BW variable was assumed to be free of error,
which is a realistic assumption as measurement error
in the determination BW is small as fluctuations in
BW over time are animal driven, i.e. ‘animal intrinsic
variability’ (Strathe et al. 2009, 2010b) and hence,
utilizing the measured value can be justified. It would
be straightforward to include BW as a fourth trait in
the recursive equations, modelling the growth curve,

but then several more parameters would have to be
estimated and therefore it was decided not to do this in
the current study.

Partitioning of MEI into protein and lipid

Published estimates of the maximum PD for growing
pigs vary considerably from c. 80 to more than 200 g/
day. Tauson et al. (1998) investigated PD patterns in
boars of three breeds (Landrace, Duroc and Hamshire,
Danbred lines) and found that the breeds differed in the
capacity for PD, with Duroc and Hampshire being
superior to Danish Landrace boars. These Duroc and
Hampshire boars of high genetic potential had a
capacity for PDmax of c. 227 g/day and there was a
significant quadratic relationship between PD and
metabolic BW, showing that the shape of the PD curve
was non-linear. These results agree well with the
current results. In a later study, litter mates were serially
slaughtered, and a preliminary analysis of these data
has been presented by Danfaer & Strathe (2012). The
barrows and gilts in that study reached their PDmax at
c. 120 days of age, whereas the boars’ PD rate
continued to increase until c. 150 days of age. The
predicted maximum rates of PD were 229, 197, 186 g/
day at 113, 79 and 80 kg BW for boars, gilts and
barrows, respectively. The small discrepancies be-
tween the results on PDmax from Tauson et al. (1998),
from the present study and those obtained from
the serial slaughter study can be explained by
differences in experimental methodology. It is well
documented that the N balance technique over-
estimates the amount of PD because the deposition is
calculated as the remainder after correcting for N loss
in urine and faeces. These two components are more
likely to be under- than overestimated, and hence the
N balance tends to be overestimated (e.g. Quiniou
et al. 1995).

With increasing BW, an increasing part of MEI
above maintenance will be designated towards LD for
the three genders as the parameter d>0, i.e. energy
partitioned towards PD declined linearly with increas-
ing BW. vanMilgen &Noblet (1999) reported that lean
genotypes partitioned 0·49 of ME above MEM towards
PD at 20 kg BW, which agrees well with the current
estimates (Table 5). In addition, van Milgen & Noblet
(1999) observed that extremely lean boars maintained
a constant partitioning of energy within the observed
BW range (20–100 kg). This could not be confirmed in
the current study, perhaps due to the limited amount of
information between 25 and 75 kg BW.
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Utilization of prior information

In the current data analysis, informative prior distri-
butions for parameters b, kp and kf were used and this
gave numerical information crucial for estimation of
the model. The priors were derived from earlier data
analysis and hence represented the traditional way of
using priors in the Bayesian framework. In addition,
the prior distributions used in the current study did
not supply any controversial information, but were
strong enough to pull the data away from biologically
inappropriate inferences, which might have been
consistent with the likelihood (Strathe et al. 2011).
However, care also needs to be taken in implementing
these analyses to account for biologically supported
parameter spaces, because consideration must be
given to whether the pig population in the new
dataset resembles the population(s) from which the
prior information is borrowed – for example, priors for
parameters describing PD potential should be not be
taken fromMeishan pigs when aiming at modelling PD
data from Pietran pigs.
The prior information in the current study was

structured into two different proper prior distributions,
for purposes of sensitivity analysis, which is an
important part of Bayesian analysis (Gelman et al.
2004). It was shown that only the ME requirement
for maintenance was sensitive to the statement of
prior belief. The final estimate of the maintenance
component 0·91MJ ME/(kg BWb×day) (0·95 CrI:
0·78–1·09) should be interpreted with caution.
Nonetheless, introduction of prior information in the
data analysis eases comparison with literature values
for maintenance requirements in growing pigs and
the final estimates were similar to those reported by
vanMilgen&Noblet (1999) for leanmeat-type pigs. An
older Danish investigation reported anME requirement
for maintenance to be 0·93MJ ME/(kg BW0·60×day)
(Just et al. 1983), which aligned very well with the
current estimate(s).
The Bayesian framework enables the development

of robust probabilistic analysis of error and uncertainty
in model predictions by explicitly accommodating
measurement error, parameter uncertainty and model
structure imperfection. The current analysis presents a
Bayesian formulation for simultaneous calibrationof an
energy-based pig growth model, with prior precisions
of model parameters, data collected, measurement
error or inter-animal variability. The model was
developed initially within the statistical framework
presented by Strathe et al. (2010a), but it was noted that

parameter solutionswere sensitive to the starting values
provided to the routine. This was discovered by means
of a grid search and hence it was decided not to report
these results for comparison. The intent was to illustrate
how this novel approach can be used to transfer
knowledge in time (i.e. past to present), and therefore
used to calibrate an energy-based pig growth model to
sparse data, collected in an intensive metabolic study.
Moreover, it was illustrated that the analysis was
strengthened through integration of prior knowledge
in the modelling process. Finally, it must also be noted
that the value of the Bayesian modelling approach
increases with the complexity of the structural model.

CONCLUSION

Bayesian framework is a tool well-suited to modelling
MEI, PD and LD curves, when these traits are
considered as dependent variables. Utilization of
prior knowledge could be used directly in the data
analysis, which may be important when sparse
datasets are analysed due to issues related to parameter
identifiability. The concepts presented in the current
paper may be extended to form the basis of a complete
nutritional pig growth model in which all parameters
are expressed in terms of distributions that can be
updated/calibrated using MCMC methods.
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