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Abstract 

Model Systems of Dysregulated Metabolic States 

by Keedrian Isaac Olmstead 
 

Doctor of Philosophy in Quantitative and Systems Biology 
University of California, Merced, 2021 

Professor Katrina Hoyer, Committee Chair 
 

Dysregulated metabolic states in human health are linked to chronic conditions 

such as diabetes, insulin resistance, and cancer, and can even impair immune 

function. Studying dysregulated metabolic states is a critical aspect in current 

biomedical research, as an aging population and a rise in emerging infectious 

diseases means that the prevention and management of these conditions is 

more important than ever. However, metabolism is a highly complex 

physiological phenomenon that is often inextricable in a practical sense from 

other systems such as immune function or hormone signaling. Therefore, 

models of altered metabolism are extremely useful for examining the effects of 

such perturbed metabolic states in comparative isolation, to elucidate the 

nature, role, and consequences of such states. 

This dissertation presents two examples of model systems that can be used to 

investigate dysregulated metabolism. The first is the Northern elephant seal, 

which undergoes temporary, reversible, tissue-specific insulin resistance while 

it fasts as a normal part of its life cycle. The large-scale shifts in substrate 

utilization and insulin response observed during long-term fasting in the 

elephant seal indicate that it can be used to untangle some of the questions 

about the evolution and regulation of insulin signaling, and provide significant 

answers to addressing insulin resistance in a clinical context. The second is an 

engineered cellular model in hepatocellular carcinoma (HCC) cells, examining 

the hexokinase enzyme switch. As hepatocytes transform into HCC cells during 

carcinogenesis, they undergo a shift from GCK to HK2 as the main hexokinase 

enzyme catalyzing the initial step in glycolysis. A unique cellular model was 

generated by knocking out HK2 in Huh7 HCC cells while simultaneously 

restoring HK4 expression, thus reversing the isoenzyme switch. The Huh7-

GCK+/HK2− cell line displayed a rewired metabolic network, and restored 

metabolic functions of normal hepatocytes such as lipogenesis and VLDL 

secretion. It also displayed increased innate immune response and sensitivity 

to NK cells, indicating the wide-ranging effects of the isoenzyme switch. 

Both approaches of model systems – identifying existing organisms with unique 

metabolic states and engineering specific cellular models – are explored in this 

work as an overview of the tools available to researchers in studying 

dysregulated metabolic states. 
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Chapter One: Introduction 
 

1.1 Overview of metabolism 

The classical understanding of central carbon metabolism in eukaryotic cells 
begins with glucose being imported to the cytosol by glucose transport proteins. 
In the cytosol, glucose is broken down into pyruvate through glycolysis, 
producing reduced nicotinamide adenine dinucleotide (NADH) and adenosine 
triphosphate (ATP)1. Pyruvate is converted to acetyl-CoA, which enters the 
tricarboxylic acid cycle (TCA cycle) in the mitochondrial matrix. The TCA cycle 
completes the oxidation of the carbon atoms, releasing them as carbon dioxide, 
and generating NADH, ATP, and reduced flavin adenine dinucleotide (FADH2)2. 
The high-energy electrons carried by NADH and FADH2 are fed into the 
electron transport chain (ETC), which pumps protons across the inner 
mitochondrial membrane, producing a proton gradient that is harnessed by ATP 
synthase to generate large amounts of ATP. The entire process, from glycolysis 
to ETC, generates a total of 36-38 molecules of ATP per molecule of glucose3. 

However, this simple framework belies the dynamic complexity of the metabolic 
network. Many of these reactions are reversible, so the direction of flux is not 
fixed. Additionally, the enzymes that catalyze the reactions are regulated both 
in their level of activity and their substrate specificity4. Most importantly, 
pathways for biosynthesis feed into and out of the pathways for energy 
generation at several key points, connecting these two cellular functions 
inextricably. Key metabolic enzymes can also have secondary roles in 
seemingly unrelated processes such as nuclear gene expression5 or 
apoptosis6. Thus, when the metabolic network is dysregulated, the 
consequences are multifaceted. 

 

1.2 Dysregulated metabolism states: Warburg effect 

One of the most significant examples of dysregulated metabolism is the 
Warburg effect. Since the 1920s, it has been known that cancer cells express 
a unique metabolic state wherein the vast majority of glucose uptake is diverted 
to lactate fermentation after glycolysis, instead of the TCA cycle7. Pyruvate, 
instead of conversion to acetyl-CoA, undergoes conversion to lactate via a 
reducing process that also oxidizes NADH to NAD+, thus replenishing the pool 
of NAD+ that can be used for glycolysis. Without the TCA cycle and ETC, the 
combined processes of glycolysis and fermentation only produce 2 ATP per 
molar equivalent of glucose. In an apparent paradox, rapidly proliferating 
cancer cells, with their increased bioenergetic requirements, preferentially 
utilize a metabolic pathway that suffers a more than 18-fold reduction in 
efficiency. 

The shift to glycolysis, however, allows the cell to divert TCA intermediates 
towards other pathways of biosynthesis, generating the building blocks to 
support rapid proliferation. Citrate is exported from the TCA cycle to serve as a 
building block for fatty acids which will ultimately become membrane lipids, 
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whereas amino acids like aspartate are derived from TCA intermediates. In 
order to replenish TCA intermediates, the cell upregulates the import of 
glutamine, which is deamidated to glutamate and then converted into α-
ketoglutarate. The energetic inefficiency of glycolysis, meanwhile, is 
compensated by a dramatic upregulation of glucose uptake and glycolytic 
enzyme activity, resulting in much higher flux through the glycolysis pathway 
and thus faster production of ATP than might otherwise be expected. 

This thorough reprogramming of cellular metabolism is so well associated with 
cellular malignancy that it is now considered one of the eight hallmarks of 
cancer8. However, in the century following Warburg's observations, it has been 
established that other, rapidly proliferating and non-malignant cell populations 
such as stem cells9,10 and activated lymphocytes11 also exhibit similar 
metabolism. This further supports the theory that this altered metabolism is a 
distinct metabolic state that promotes a replicative phenotype, rather than a 
consequence of defective mitochondria, as theorized by Warburg12. 

 

1.3 Dysregulated metabolism states: diabetes 

In mammals, insulin is a hormone that has widespread effects on both cellular 
and whole-body metabolism. Insulin signaling promotes uptake of circulating 
glucose by liver, fat, and skeletal muscle cells. Insulin further promotes anabolic 
processes in these cells such as lipid synthesis and amino acid uptake, while 
inhibiting catabolic processes such as proteolysis, lipolysis, and autophagy. 
Type 2 diabetes is a metabolic disorder wherein insulin signaling is impaired 
due to low insulin secretion, insulin resistance in target tissues, or both. This 
causes high amounts of circulating glucose, as well as upsetting the expected 
patterns of metabolism in the peripheral tissue cells. 

Insulin is secreted by β-cells in the pancreas in response to circulating 
glucose13. β-cells are highly sensitive to circulating glucose concentrations, and 
respond to glucose by upregulating glycolysis. A high concentration of 
mitochondrial shuttles ensures that most of the glycolytic output is funneled into 
the mitochondria for the TCA cycle and eventually oxidative phosphorylation. 
The high concentrations of ATP produced by mitochondrial respiration leads to 
the closure of ATP-sensitive K+ channels, resulting in membrane depolarization 
and the opening of voltage-gated Ca2+ channels. The influx of Ca2+ ions 
stimulates exocytosis of insulin granules into the bloodstream14. Inhibition of 
oxidative phosphorylation blocks glucose-stimulated insulin secretion, 
indicating a link between mitochondrial function and insulin secretion15. In the 
β-cells of diabetic mice, glucose utilization is reduced at every stage, including 
glycolysis, the TCA cycle, and the ETC16. Peripheral tissues also face 
dysregulated metabolism in diabetes. Skeletal muscle cells exhibit 
downregulation in genes associated with glycolysis, the TCA cycle, and lipolysis 
in diabetic patients17. 
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1.4 Dysregulated metabolism states: long-term fasting 

During periods of fasting in humans (and mammals in general), whole-body 
metabolism shifts from a reliance on glucose to a reliance on lipids, and later 
protein as starvation continues18. Increased lipolysis in adipose tissue leads to 
higher concentrations of free fatty acids in circulation, to be utilized by the liver 
for gluconeogenesis19. Insulin and insulin signaling are thus repressed during 
fasting20 as a part of this rewiring of metabolism. Skeletal muscle, in particular, 
is associated with insulin resistance in starvation, as it is the tissue most 
responsible for insulin-induced glucose uptake21. 

However, Northern elephant seals undergo a 3-month fast as part of their 
maturation from pups. During this fasting period, they rely exclusively on lipid 
oxidation, utilizing fat stores built up from the nursing period. Research 
indicates that, unlike the human model of starvation, Northern elephant seals 
exhibit whole-body insulin resistance, but maintain insulin sensitivity in skeletal 
muscle tissue22. Insulin resistance in adipose tissues allows for continued 
adipose secretion of fatty acids into circulating plasma, while insulin sensitivity 
in skeletal muscle may be an adaptation to prevent unnecessary proteolysis. 
This tissue-specific insulin resistance phenotype is then reversible, resulting in 
normal insulin sensitivity after the seals' fast ends. Elucidating the mechanisms 
behind the regulation of temporary, tissue-specific, and reversible insulin 
resistance in Northern elephant seals may lead to breakthroughs in the 
treatment of type 2 diabetes and other human metabolic disorders, in which 
chronic insulin resistance contributes to the pathological condition. 

 

1.5 In summary 

The dysregulated metabolism states illustrated above show that, although the 
cellular metabolic network is dynamic and robust, it can be distorted into 
alternate versions with distinct substrate preferences and outputs. Such 
permutations are usually a consequence of acute or systemic injurious 
conditions, and the dysregulated metabolic state can then further influence 
progression of organismal syndromes, which is especially seen in cancer23,24 
and diabetes25. As current biomedical research becomes increasingly more 
focused on the prevention and management of chronic health conditions, it thus 
becomes more important than ever to have in the scientist's toolbox an array of 
model systems with which to interrogate the dysregulated metabolism that 
underlies so many of those conditions. The ability to replicate an altered 
metabolic network allows for the study of its functions and mechanisms and the 
testing of novel treatments and inhibitors. The following chapters of this 
dissertation will outline two classes of model systems for dysregulated 
metabolism and discuss their use. 

The Northern elephant seal, as mentioned previously, displays unique 
metabolic plasticity, characterized by transient, reversible, tissue-specific 
insulin resistance. This makes it useful as a model system to study the onset, 
progression, and nature of insulin resistance in a clinical setting as it relates to 
human obesity and diabetes. The elephant seal can be taken as an example of 
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an organism selected to be a model system because of its biological properties, 
and this approach is highlighted in Chapter Three. 

Mutation in cancer cells is a complex and serpentine process, so each instance 
of tumorigenesis represents a sui generis genotype. There are, however, 
common mutational events that occur, especially within cancer types. 
Hepatocellular carcinoma (HCC), or cancer of the liver, is often characterized 
by a preferential switch from GCK to HK2 as the main isoform of the enzyme 
initiating glycolysis. This isoenzyme switch has knock-on effects throughout the 
cell that contribute to cancer progression in perhaps unusual areas. In order to 
study these consequences, I present an engineered cellular model wherein 
HK2 is knocked out and GCK expression restored, thus reversing the 
isoenzyme switch. The use of engineered cellular models to investigate 
extremely specific metabolic perturbations is explored in Chapter Four. 

Both of these examples serve to test the hypothesis that the choice of model 
system is instrumental in obtaining high-quality data on a particular disorder of 
dysregulated metabolism. Multifaceted, multi-organ disorders such as diabetes, 
insulin resistance, and dyslipidemia are best studied with animal models 
specially suited for the condition in question, whereas more specific metabolic 
perturbations, such as single mutations found in cancer or genetic diseases, 
can be studied in comparative isolation, using engineered cellular models. 
Using an inappropriate model system may overly complicate method 
development or even lead to irrelevancy in the data generated. In Chapter Five, 
the two approaches are compared.  
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Chapter Two: Methodology 
 

2.1 Cell culture 

Investigation of dysregulated metabolism in cancer was accomplished with in 
vitro cell cultures of cancer-derived cell lines. 

 

2.1.1 Cell culture 

Cell cultures were tested negative for mycoplasma contamination by PCR 
(mycoplasma check, eurofins). Huh7 cells were authenticated by Eurofins 
Medigenomix Forensik GmbH using PCR-single-locus-technology. 21 
independent PCR-systems Amelogenin, D3S1358, D1S1656, D6S1043, 
D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, 
vWA, D21S11, D7S820, D5S818, TPOX, D8S1179, D12S391, D19S433 and 
FGA (Promega, PowerPlex 21 PCR Kit) were investigated to determine their 
genetic characteristics. Huh7 cells and derivatives were grown as previously 
described in DMEM, 10% fetal calf serum (FCS), penicillin/streptomycin, 1 mM 
pyruvate, 2mM L-glutamine. Culture medium and additives were from Gibco 
except FCS (Dominique Dutcher). 

2.1.2 Establishing novel cell lines 

Huh7 cells (15×104) were transduced for GCK expression at different 
multiplicities of infection (lentiviral transduction using the pLEX-GCK construct). 
The Huh7-GCK+/HK2+ cells were then cultured for 7 days with puromycin (1 
μg/mL) before amplification. HK2 knock-out was achieved using the 
CRISPR/Cas9 system as previously described1 to obtain Huh7-
GCK+/HK2- cells. Briefly, a single guide RNA (sgRNA) pair was designed for 
double nicking using the CRISPR Design Tool (http://tools.genome-
engineering.org). The guide sequence oligos (sgRNA1(HK2): 5'-
CACCGTGACCACATTGCCGAATGCC-3' and sgRNA2(HK2): 5'-
CACCGTTACCTCGTCTAGTTTAGTC-3') were cloned into a plasmid 
containing sequences for Cas9 expression and the sgRNA scaffold 
(pSpCas9(BB)-2A-GFP, Addgene plasmid #48138). 48 h post-transfection, 
cells were sorted by FACS based on the transient expression of GFP and 
cloned by limiting dilution. Effective deletion of HK2 was assessed by qPCR. 

For HK2 knock-down, Huh7-GCK+/HK2+ cells were transduced with lentiviral 
vectors expressing HK2-targeting shRNAs, and antibiotic selection was applied 
(hygromycin; 100 µg/ml). The HK2-targeting sequence 5'-
CCGGCCAGAAGACATTAGAGCATCTCTCGAGAGATGCTCTAATGTCTTCT
GGTTTTTT-3' was cloned in the pLKO.1 hygro vector (a gift from Bob 
Weinberg; Addgene plasmid #24150). HK2 expression in Huh7-GCK+/HK2+ 
and Huh7-GCK+/HK2−Sh was analyzed on cell lysates by western blotting. 
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2.1.3 Enzymatic activity assays 

Cells were trypsinized, washed twice, and cell pellets were stored at −80°C. 
Protein extractions and assays were performed in specific buffers for 
hexokinase and pyruvate carboxylase assays as described below. 

2.1.3.1 Hexokinase activity assay 

The method used for monitoring HK activity in cells lysates was adapted from 
Kuang et al.2-4 Cellular pellets stored at −80°C were thawed and immediately 
homogenized (2×106 cells/100 µl) in precooled reaction buffer (0.05 M Tris–
HCl, 0.25 M sucrose, 0.005 M EDTA, 0.005 M 2-mercaptoethanol, pH = 7.4). 
After 20 min incubation on ice, homogenates were pulse-sonicated 15 s at half 
power (EpiShear Probe Sonicator). Homogenates were then centrifuged at 500 
g for 20 min at 4 °C. Supernatants were immediately used for determination of 
HK activity, which was measured spectrophotometrically through NADP+ 
reduction in the glucose 6-phosphate dehydrogenase-coupled reaction. HK 
activity was assayed in medium containing 50 mM triethanolamine (pH = 7.6), 
10 mM MgCl2, 1.4 mM NADP+, with variable concentration of glucose and 1 U 
glucose 6-phosphate dehydrogenase (S. cerevisiae), equilibrated to 37 °C. The 
reaction was started by addition of ATP (final concentration 1.9 mM), and 
absorbance was continuously recorded for 30 min at 340 nm (TECAN Infinite 
M200). 

2.1.3.2 Pyruvate carboxylase activity assay 

The method used for quantification of PC activity was adapted from Payne et 
al.5 Briefly, cells were centrifuged, washed twice with ice-cold PBS before 
homogenization in Tris-HCL 100 mM, pH = 8.0 using a Dounce homogenizer. 
Homogenates were pulse-sonicated 15 s at half power (EpiShear Probe 
Sonicator) before centrifugation at 500 g for 5 min. Supernatants were 
immediately used for the assay. PC activity was assayed in medium containing 
100 mM Tris-HCl, 50 mM NaHCO3, 5 mM MgCl2, 0.1 mM Acetyl-CoA, 0.25 mM 
6,6'-Dinitro-3,3'-dithiodibenzoic acid (DTNB), 5 mM ATP, 5 mM pyruvate, citrate 
synthase and cofactors. Reduction of DTNB by the generated free CoA was 
measured continuously by Abs at 412 nm and recorded for 30 min (TECAN 
Infinite M200). The same assay was performed in absence of pyruvate to 
subtract background signal. 

2.1.4 Cell migration assay 

Cells (2×104) were plated in the upper chamber of transwells (Sarstedt, PET 
8.0-μm, TL - 833932800) with DMEM without FCS to allow migration for 24 h 
at 37 °C. DMEM with 10% FCS was distributed in each well, below the 
chamber. Chambers were gently picked up before a brief PBS rinse and 0.05% 
crystal violet coloration. The migrated cells were analyzed a Leica M50 
microscope using a magnification factor of 20x. The number of cells that have 
migrated through the membrane and attached on the underside of the 
membrane were counted using the software Image J. 
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2.1.5 Intracellular lipid staining 

For fluorescence microscopy staining of intracellular lipids, cells were seeded 
and cultured during 48 h before staining with Oil-Red-O. Cells were fixed 15 
min at RT with a 4% formaldehyde solution, washed twice with water before a 
5 min incubation with isopropanol 60%. Isopropanol was then removed and Oil-
Red-O solution (Millipore Sigma-Aldrich) added on cells for 15 min at RT. Cells 
were then extensively washed with water to remove the exceeding dye before 
nucleus counterstaining with NucBlue Fixed Cell Stain ReadyProbes reagent 
(ThermoFisher Scientific) and observation with a Nikon Eclipse Ts2R 
microscope (x60). For the quantification of intracellular lipid droplets by flow 
cytometry, cells were stained with the BODIPY® 493/503 dye (Tocris 
BioTechne) after 48 h of culture. The cells were washed with PBS before being 
incubated for 5 min with a 5 μM BODIPY solution in PBS at 37 °C. Cells were 
then washed with PBS before trypsination and FACS analysis. A 7-AAD 
(BioLegend) staining of dead cells, prior to FACS analysis, allowed gating on 
living cells. 

2.1.6 Protein, ApoB, and lipid quantification 

Protein concentration was determined using the DC Protein Assay (Bio-Rad). 
ApoB concentration in medium and gradients fractions was determined by 
ELISA as previously described6. Total concentrations of cholesterol, 
phospholipids, and triglycerides (TG) were determined using specific assays 
from Millipore Sigma-Aldrich (ref. MAK043, MAK122 and MAK266 
respectively). Free Fatty Acids were quantified using a specific assay kit from 
Abcam (ref. ab65341). 

2.1.7 Western-blot analysis 

Cell lysates from 106 cells were prepared in lysis buffer (1% Triton X-100, 5 mM 
EDTA in PBS with 1% protease inhibitor cocktail (P8340; Millipore Sigma-
Aldrich) and 2 mM orthovanadate). After elimination of insoluble material, 
proteins were quantified, separated by SDS-PAGE and analyzed by western-
blot on PVDF membrane. After saturation of the PVDF membrane in PBS-0.1% 
Tween 20 supplemented with 5% (w/v) non-fat milk powder, blots were 
incubated 1 h at room temperature with primary antibody in PBS-0.1% Tween 
20 (1:2,000 dilution for all antibodies unless specified otherwise). Incubation 
with secondary antibody was performed after washing for 1 h at room 
temperature. HRP-labeled anti-goat (Santa Cruz Biotechnology), anti-rabbit 
(A0545, Millipore Sigma-Aldrich) or anti-mouse (Jackson ImmunoResearch 
Laboratories) antibodies were diluted 20,000-fold and detected by enhanced 
chemiluminescence reagents according to the manufacturer's instructions 
(SuperSignal Chemiluminescent Substrate, Thermo Fisher Scientific). Primary 
antibodies used for immunoblotting included mouse monoclonal antibody 
against human GCK (clone G-6, Santa Cruz Biotechnology), rabbit monoclonal 
antibody against human HK2 (Clone C64G5, Cell Signaling Technology), rabbit 
monoclonal antibody against human HK1 (C35C4, Cell Signaling), rabbit 
polyclonal antibody against human HK3 (HPA056743, Millipore Sigma-Aldrich), 
goat polyclonal antibody against human ACLY (SAB2500845, Millipore Sigma-
Aldrich), rabbit polyclonal antibody against human pACLY (phospho S455, Cell 
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Signaling Technology), rabbit monoclonal antibody against human PDH α1 
subunit (C54G1, Cell Signaling Technology), rabbit monoclonal antibody 
against human pPDH E1-alpha subunit (phosphor S293, Abcam), goat 
polyclonal antibody against human PC (SAB2500845, Millipore Sigma-Aldrich), 
rabbit monoclonal antibody against human GAPDH (D16H11, Cell Signaling 
Technology) and rabbit polyclonal antibody against human HIF-1α (NB100-134, 
Novus Biologicals; 1:500 dilution). 

2.1.8 Respiration assay 

Twenty-four hours prior measuring respiration in the Extracellular Flux Analyzer 
(Seahorse Bioscience), cells were seeded in XF 24-well cell culture microplates 
(Seahorse Bioscience) at 5×104 cells/well in 100 µL of DMEM medium 
supplemented with 10% FCS, 1 mM pyruvate, 2 mM L-glutamine, 
penicillin/streptomycin, and then incubated at 37 °C/5% CO2 during 5 h for cell 
attachment. Medium volume was adjusted to 250 µL and cells incubated 
overnight. The assay was initiated by removing the growth medium from each 
well and replacing it with 500 µL of Seahorse assay medium (XF DMEM pH = 
7.4 + 10 mM Glucose, 2 mM Glutamine and 1 mM sodium pyruvate) prewarmed 
at 37 °C. Cells were incubated at 37 °C for 1 h to allow media temperature and 
pH to reach equilibrium before the first measurement. The oxygen consumption 
rate (OCR) was measured using the following Seahorse running program: 
injection Port A – 1.5 µM Oligomycin; Injection Port B – 0.5 µM FCCP and 
injection Port C – 0.5 µM Rotenone; injection port D – 0.5 µM Antimycin A. The 
number of cells was determined at the end of the run after Hoechst staining and 
cell counting using Cytation 1 imaging reader (Biotek). 

2.1.9 RLR stimulation 

Cells were seeded in 96-well or 24-well plates. After 24 h, cells were co-
transfected with indicated doses of the RIG-I ligand 3p-hpRNA or the 
MDA5/TLR3 ligand poly(I:C) HMW together with the pISRE-luc (1.25 µg/ml; 
Stratagene) and pRL-SV40 (0.125 µg/ml; Promega) reporter plasmids using the 
JetPEI-Hepatocyte reagent (Polyplus Transfection). Manufacturer's 
instructions were followed. After 48 h, supernatants were collected for cytokine 
quantification. Firefly and Renilla luciferase expressions within cells were 
determined using the Dual-Glo luciferase Assay system (Promega) and an 
Infinite M200 microplate reader (TECAN). 

2.1.10 Cytokine assays 

Clarified culture supernatants were collected and stored at −20 °C. IL-8 was 
quantified using the Cytometric Bead Array for human IL-8 (BD Biosciences). 
Other cytokines were assayed using the LEGENDplex multiplex assay (Human 
Anti-Virus Response Panel, BioLegend). Fluorescence was analyzed using a 
FACS Canto II (BD Biosciences). 

2.1.11 Human NK cell purification 

NK cells were isolated from human buffy coats of healthy donors obtained from 
the Etablissement Français du Sang. Informed consent was obtained from 
donors and experimental procedures were approved by the local institutional 
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review committee. PBMCs were isolated by standard density gradient 
centrifugation on Ficoll-Hypaque (Eurobio). Mononuclear cells were separated 
from peripheral blood lymphocytes (PBLs) by centrifugation on a 50% Percoll 
solution (GE Healthcare). NK cells were purified from PBLs by 
immunomagnetic depletion using pan-mouse IgG Dynabeads (Thermo Fisher 
Scientific) with a cocktail of depleting monoclonal antibodies: anti-CD19 (4G7 
hybridoma), anti-CD3 (OKT3 hybridoma, ATCC, Manassas, VA, USA), anti-
CD4, anti-CD14 and anti-glycophorin A (all from Beckman Coulter). NK purity 
was >70% as assessed by CD56 labeling. 

2.1.12 NK cell cytotoxicity test 

Huh7 or Huh7-GCK+/HK2− were seeded at 1×105 cells per well in a 24-well 
plate in RPMI-1640 (Gibco) with 10% FCS and 40 µg/ml gentamycin. After 24 
h, 3×105 or 3×106 NK cells were added to the culture wells. The cytotoxicity 
assay was performed for 4 h at 37 °C, under 5% CO2. Target hepatoma cells 
were harvested after trypsination, labeled with propidium iodide (PI) and 
analyzed by FACS. Cell death was monitored after morphological gating on 
hepatocytes. 

 

2.2 Animal studies (Northern elephant seals) 

All procedures were reviewed and approved by the Institutional Animal Care 
and Use Committees of the University of California, Merced and California State 
University, Sonoma. Northern elephant seal pups constituting two different 
cohorts at Año Nuevo State Reserve were studied at two postweaning periods 
(n = 5/period): early (1-2 weeks postweaning; 127 ± 1 kg) and late (6-7 weeks 
postweaning; 93 ± 4 kg). Pups were weighed, sedated, and infused in the field 
as previously described7-9. Briefly, pups were sedated with 1mg/kg Telazol 
(tiletamine/zolazepam HCl, Fort Dodge Labs, Ft Dodge, IA) administered 
intramuscularly. Once immobilized, an 18 gauge, 3.5 inch spinal needle was 
inserted into the extradural vein. Blood samples were obtained, and infusions 
performed from this site. Continuous immobilization was maintained with 
~100mg bolus intravenous injections of ketamine as needed10. 

2.2.1 Insulin infusion protocol 

To determine the metabolomic and lipidomic responses to insulin as a function 
of fasting-induced, adipose-specific insulin resistance, fasting seal pups were 
infused (i.v.) with a mass-specific dose (0.065 U insulin/kg) (Humulin; Eli Lilly, 
Indianapolis, IN) as previously described9. Time-course responses to insulin by 
comparing the differences of the area under the curve (AUC) values yield 
information about the metabolic plasticity of the animals in the context of fasting 
duration. Prior to each infusion, a pre-infusion blood sample (i.v.) was collected 
(baseline or T0). Following the bolus infusion of insulin, blood samples collected 
at 10, 30, 60, and 120 min were used for this suite of metabolomic/lipidomic 
analyses. Procedures were terminated at 120 min out of concern for the safety 
of the animals. Immediately following the collection of the 120 min samples, 
glucose was infused slowly to assist in the restoration of pre-infusion levels. 
Blood samples were centrifuged on site for 15 min at 3000g, and the plasma 
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was transferred to cryo-vials, frozen by immersion in liquid nitrogen, and stored 
at −80°C. 

2.2.2 Plasma sample preparation 

Aliquots of plasma (30μL) stored at −80°C were thawed, extracted, derivatized, 
and the metabolite abundances quantified by gas chromatography time-of-flight 
(GCTOF) mass spectrometry (MS) as previously described11. Briefly, the 
aliquots were extracted with 1mL of degassed acetonitrile/isopropanol/water 
(3:3:2) solution at −20°C, centrifuged, the supernatant removed, and solvents 
evaporated to dryness under reduced pressure. To remove membrane lipids 
and triglycerides, dried samples were reconstituted with acetonitrile/water (1:1), 
decanted and taken to dryness under reduced pressure. Internal standards, 
C8-C30 fatty acid methyl esters, were added to samples and derivatized with 
methoxyamine hydrochloride in pyridine and subsequently by N-methyl-N-
(trimethylsilyl) trifluoroacetamide (Sigma-Aldrich) for trimethylsilylation of acidic 
protons. 

 

2.3 Metabolomics 

GCMS and LCMS were utilized for metabolomic analyses of both cultured cells 
and plasma extracts. Chromatography allows for clear separation of distinct 
compounds with high resolution, while mass spectrometry offers rapid 
identification of analytes.  

2.3.1 Metabolomics profiling 

Cells were seeded at 13×105 cells per 75 cm2 dishes. After 24 h, supernatant 
was removed and replaced by fresh culture medium. For quantification of 
metabolic flux from glucose, culture medium was supplemented with both [U-
13C]-glucose (Sigma-Aldrich; 389374-2 G) and unlabeled glucose at a 50:50 
ratio (final concentration of 25 mM glucose). After 24 h, cells were harvested, 
washed twice with ice-cold PBS and cell pellets were frozen at -80 °C until 
metabolites extraction. Cell pellets were transferred into a pre-chilled 
microcentrifuge tube with 1 mL cold extraction buffer consisting of 50% 
methanol (A452, Fisher Scientific) in ultrapure water. Samples were then frozen 
in liquid nitrogen, thawed, and placed in a shaking dry bath (Thermo Fisher 
Scientific, Waltham, MA) set to 1100 rpm for 15 min at 4 °C. After centrifugation 
for 15 min at 12500 g and 4 °C (Sorvall, Thermo Fisher Scientific) using a fixed-
angle F21-48×1.5 rotor, supernatants were collected and dried by vacuum 
centrifugation overnight. Dried metabolites were derivatized by addition of 20 
μL of 2.0% methoxyaminehydrochloride in pyridine (MOX, TS-45950, Thermo 
Fisher Scientific) followed by incubation during 90 min in shaking dry bath at 30 
°C and 1100 rpm. 90 μL of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA, 
701270.201, Macherey-Nagel) was added, and samples were incubated and 
shaken at 37 °C for 30 min before centrifugation for 5 min at 14,000 rpm and 4 
°C. Metabolites contained in the supernatant were then separated by gas 
chromatography (GC, TRACE 1310, Thermo Fisher Scientific) coupled to a 
triple-quadrupole mass spectrometry system for analysis (QQQ GCMS, 
TSQ8000EI, TSQ8140403, Thermo Fisher Scientific), equipped with a 0.25 mm 
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inner diameter, 0.25 μm film thickness, 30 m length 5% diphenyl / 95% dimethyl 
polysiloxane capillary column (OPTIMA 5 MS Accent, 725820.30, Macherey-
Nagel) and run under electron ionization at 70 eV. Using established separation 
methods12-14, the GC was programed with an injection temperature of 250.0 °C 
and splitless injection volume of 1.0 μL. The GC oven temperature program 
started at 50 °C (323.15 K) for 1 min, rising at 10 K/min to 300.0 °C (573.15 K) 
with a final hold at this temperature for 6 min. The GC flow rate with helium 
carrier gas (HE, HE 5.0UHP, Praxair) was 1.2 mL/min. The transfer line 
temperature was set at 290.0 °C and ion source temperature at 295.0 °C. A 
range of 50-600 m/z was scanned with a scan time of 0.25 s. 

2.3.2 Metabolomics data processing 

Metabolites were identified using TraceFinder (v3.3, Thermo Fisher Scientific) 
based on libraries of metabolite retention times and fragmentation patterns 
(Metaflux, Merced, CA). Identified metabolites were quantified using the 
selected ion count peak area for specific mass ions, and standard curves 
generated from reference standards run in parallel. Peak intensities were 
median normalized. The mean and standard deviation for each quantified 
metabolite was calculated for each cell line and treatment condition. A 
univariate t-test was used to compare treatment conditions for each metabolite 
and cell line. 

2.3.3 Metabolic network coherence computational analysis 

In order to measure the consistency of differentially expressed genes with a 
metabolic network, we employed the metabolic network coherence measure 
introduced by Sonnenschein et al.15 Here, we first extracted a gene-centric 
metabolic network from a given genome-scale metabolic model. This was 
achieved via the stoichiometric matrix and the gene-reaction associations 
contained in the metabolic model. We constructed the two projections of the 
bipartite graph represented by the stoichiometric matrix, yielding a metabolite-
centric and a reaction-centric graph. The metabolite-centric graph allowed us 
to identify high-degree nodes ('currency metabolites' like H2O, ATP, etc.), which 
are not informative about the network-like organization of the metabolic 
systems and need to be eliminated before interpreting the network architecture. 
The degree of a node is the number of neighbors the node has in the network. 
The percentage of remaining metabolites is one of the parameters of our 
analysis. Typical values are 90 to 98 percent (i.e., a removal of the highest 2 to 
10% of metabolites with the highest degree as currency metabolites). After 
recomputing the reaction-centric graph based on the reduced number of 
metabolites, we can now evaluate the gene reaction associations to arrive at a 
gene-centric metabolic network. Given a set S of differentially expressed genes 
and the gene-centric metabolic network G, we can now analyze the subgraph 
of G spanned by all genes in S. The average clustering coefficient C in these 
subgraphs serves as a measure of the connectivity of this subgraph. The 
metabolic network coherence MC is the z-score of C computed with respect to 
a null model of randomly drawn gene sets with the same size as S. In this way, 
MC has an intuitive interpretation: The value of MC indicates, how many 
standard deviations away from randomness the clustering of the subgraph 



14 
 

 
 

spanned by the observed gene set S actually is. The genome-scale metabolic 
models employed here are the generic human metabolic model Recon 222. In 
general, different network measures can be used for evaluation of MC. In the 
scope of this study, we have tested several of them, but opted for average 
clustering coefficient C, as it yielded strongest statistical signal. 

2.3.4 GCTOF data acquisition and processing 

Derivatized samples were analyzed on an Agilent 7890A gas chromatograph 
(Santa Clara, CA) with a 30m long, 0.25mm i.d. Rtx5Sil-MS column with 0.25μm 
5% diphenyl film with an additional 10m integrated guard column (Restek, 
Bellefonte PA)11,16. An aliquot (0.5μL) was injected at 50°C (ramped to 250°C) 
in splitless mode with a 25 sec splitless time. The chromatographic gradient 
consisted of a constant flow of 1mL/min, ramping the oven temperature from 
50°C to 330°C over 22 min. Mass spectrometry was performed using a Leco 
Pegasus IV time-of-flight mass spectrometer, 230°C transfer line temperature, 
electron ionization at −70V, and an ion source temperature of 250°C. Mass 
spectra were acquired at 1800V detector voltage at m/z 85-500 with 17 
spectra/sec. Acquired spectra were further processed using the BinBase 
database17-18. Briefly, output results were filtered based on multiple parameters 
to exclude noisy or inconsistent peaks16. Detailed criteria for peak reporting 
included mass spectral matching, spectral purity, signal-to-noise ratio, and 
retention time17. All entries in BinBase were matched against the Fiehn mass 
spectral library of 1,200 authentic metabolite spectra using retention index and 
mass spectrum information or the NIST11 commercial library. All samples were 
analyzed in one batch, and data quality and instrument performance were 
constantly monitored using quality control and reference plasma samples 
(National Institute of Standards and Technology 2011). Quality controls were 
comprised of a mixture of standards and analyzed every 10 samples, were 
monitored for changes in the ratio of the analyte peak heights, and used to 
ensure equivalent conditions within the instrument (p>0.05, t-Test comparing 
observed to expected ratios of analyte response factors) over the duration of 
the sample acquisition11. Pooled plasma samples (n=9) were included and 
served as additional quality controls to assess normalization efficiency. 
Metabolites were reported if present in at least 50% of the samples. Data 
reported as quantitative ion peak heights were normalized by the sum intensity 
of all annotated metabolites and used for further statistical analysis. 

2.3.5 Targeted metabolomics analyses of non-esterified fatty acids and 
endocannabinoids: Non-esterified fatty acid sample preparation, data 
acquisition, and processing 

Plasma NEFA were isolated as previously described19-20. Specifically, plasma 
aliquots (100mL) were enriched with 5mL 0.2mg/mL butylated 
hydroxytoluene/EDTA in 1:1 methanol/water, and a suite of extraction 
surrogates, which included deuterated-tri-palmitoyl glycerol (d31-16:0-TG; 
CDN Isotopes, Pointe-Claire, Quebec, Canada), deuterated 
distearoylphosphotidylcholine (d35-18:0-PC; Avanti Polar Lipids, Alabaster, 
Alabama), dodeca-(9E)-enoyl cholesterylesters (22:1n9-CE; NuChek Prep, 
Elysian MN) and dodecatrienoic acid (22:3n3; NuChek Prep). Lipids were then 



15 
 

 
 

extracted with cyclohexane/2-propanol/ammonium acetate (10:8:11). Enriched 
samples were mixed with cyclopropane/2-propanol (10:8:11) and the phases 
split with ammonium acetate. The organic phase was isolated and the aqueous 
phase was re-extracted with cyclohexane. The combined organic total lipid 
extract was reduced to dryness and reconstituted in 200μL of methanol/toluene 
(1:1), and the total lipid extract was used to quantify plasma fatty acids as 
methyl esters by GC-MS. Extracted samples were spiked with 15:1n5 free acid 
to track methylation efficiency, brought to a final volume of 200mL with 90:10 
methanol/toluene (v/v), and left at room temperature for 30 min before being 
dried. The remaining fatty acid methyl esters were re-constituted in a hexane 
(300mL)/44mM tricosanoate methyl ester (23:0; NuChek Prep) (10μL) solution 
(30,000:1) and vortexed. A 100μL aliquot was transferred to a GC-MS vial for 
analysis (Agilent 6890/5973N MSD, Agilent Technologies, San Jose, CA) with 
electron impact ionization and in simultaneous-selected, ion monitoring/full 
scan mode. Analytes were separated on a 30m/0.25mm/0.25μm DB-225ms 
column. Analytes were quantified with ChemStation vE.02.14 (Agilent 
Technologies) using internal standard methodologies against 5 to 8 point 
calibration curves. 

2.3.6 Endocannabinoid sample preparation, data acquisition, and 
processing 

Endocannabinoids were isolated by solid phase extraction on 10mg Waters 
Oasis-HLB cartridges (Milford, MA) as previously described21. Prior to 
extraction, cartridges were washed with 1 column volume ethyl acetate followed 
by 2 column volumes methanol, and conditioned with 2mL of 95:5 (v/v) 
water/methanol (MeOH) with 0.1% acetic acid. The column reservoir was 
spiked with 5μL anti-oxidant solution, (0.2mg/mL BHT/EDTA in 1:1 
MeOH/water), and 10μL 1000nM analytical surrogates. Sample aliquots (250μL 
media) were then introduced to the column reservoir and diluted with 1 column 
volume wash solution (5% MeOH, 0.1% acetic acid). The sample was gravity 
extracted and the sorbent bed was washed with 1 column volume of 20% 
methanol and 0.1% acetic acid. The solid-phase extraction cartridges were 
dried by vacuum (@ -7.5 in. Hg for 20 min). Analytes were then eluted by gravity 
with 0.2mL MeOH, followed by 0.5mL acetonitrile, followed by 0.5mL ethyl 
acetate into 2mL autosampler vials containing 10μL of a 20% glycerol/MeOH 
solution. Eluent was dried by vacuum evaporation for 35 min, and residues 
were re-constituted with 100μL of 100nM internal standard solution containing 
1-cyclohexylureido, 3-dodecanoic acid (CUDA), in 50:50 MeOH/acetonitrile. 
Vials were vortexed for 1 min to dissolve residues, chilled 15 min on wet ice, 
and extracts transferred to a centrifugal filter (0.1μm Durapore, Millipore, 
Billerica, MA). After centrifugation (3 min at <4500g and 6°C), the extracts were 
transferred to 150μL glass inserts in 2mL amber vials, capped, and stored at 
−20°C until analysis by UPLC-MS/MS. The internal standard was used to 
quantify the recovery of the deuterated extraction surrogates by ratio response. 

2.3.7 Endocannabinoid analysis 

Analytes in a 10μL injection of extract were separated with an Aquity C18 
Ethylene Bridged Hybrid (BEH) 1.7μm, 150mm × 2.1mm column utilizing a 
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Waters Acquity UPLC (Waters, Milford, MA). The solvent gradient is described 
in Table 1 with a slight modification from Shearer et al.22 The autosampler was 
maintained at 10°C. Resolved analytes were detected by positive mode 
electrospray ionization and multiple reaction monitoring on an API 4000 QTrap 
(AB Sciex, Framingham, MA, USA) using the following operating parameters: 
curtain gas = 20.0 psi, temperature = 500°C, ion-spray voltage = 5500.00V, 
collision gas = high, ion source gas 1 & 2 = 40.0 psi, collision cell exit potential 
= 10.0V, and entrance potential = 10.0V. Analyte retention times, mass 
transitions, optimized collision and declustering potential voltages, dwell times, 
and analytical surrogate associations for each analyte are shown in 
Supplemental Table 1. Analytes were quantified using isotope dilution and 
internal standard methodology with 5 to 7 point calibration curves (R2 ≥ 0.997). 
Calibrants and internal standards were either synthesized [CUDA] or 
purchased from commercial sources (Cayman Chemical, Ann Arbor, MI or 
Avanti Polar Lipids Inc., Alabaster, AL), unless otherwise indicated. Data was 
processed utilizing AB Sciex Analyst version 1.6.2. 

 

2.4 Statistical analyses 

All statistical analyses were performed using R version 3.0.1. The area under 
the curve (AUC) for t= 0, 10, 30, 60, and 120 min for each metabolite as a 
function of time post-insulin infusion at each fasting period was calculated 
based on trapezoidal rule integration. Calculated AUC values were used to 
summarize the relative change in metabolite concentrations as a function of 
time for each sample. Variance in AUC values accurately reflects the variance 
in sample-wise metabolite trends over time. Therefore, the AUC values 
represent efficient mathematical representations of the original data and enable 
comparisons between samples' metabolite concentrations over time. However, 
there is no assumed biochemical context encoded by the AUC method. 
Independent sample t-tests were conducted with adjustment for unequal 
variance. The probability of the test statistics (p-values) were adjusted for 
multiple hypotheses tested (adjusted p-value)23 and the false discovery rate 
was independently estimated (q-value). 

Cluster analysis was conducted using k-means on a self-organizing map 
(SOM). SOM was calculated on a 10 × 10 hexagonal grid from mean time 
course patterns for early or late fasting groups. The combined data set of early 
and late metabolite time course patterns were used to identify similarities 
between early and late groups. Cluster analysis was conducted using k-means 
on the 100 generated self-organizing map codebooks. The k-means cluster 
number was selected based on an evaluation of within-cluster distance for 2 to 
50 clusters, with 7 clusters identified as the optimal cluster number. Metabolite 
to k-means cluster assignments were recovered based on their assignment to 
SOM codebooks. 

Multivariate analyses, principal component analysis (PCA) and orthogonal 
partial least squares discriminant analysis (O-PLS-DA) were conducted on 
combined metabolite baseline and AUC values, which were mean centered and 
scaled to unit variance. PCA was calculated based on the singular value 
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decomposition24. PCA sample leverage (distance to center of mass in the PCA 
plane) and DmodX (projected distance to the PCA plane) were used to evaluate 
potential extreme and moderate outliers, respectively. O-PLSDA was used to 
build a classification model to discriminate between early and late fasting 
animal baseline and AUC patterns and to identify the top 10% of all variable 
contributions to the observed class discrimination between the two classes 
(feature selection). Leave-one-out cross-validation was used to fit a preliminary 
2 latent variable (LV) O-PLS-DA model. 

The top 10% of all AUC and baseline discriminants (features) were selected 
based on fulfilling two criteria: (1) correlation with model scores25 (Spearman's 
rho, P ≤ 0.1) and (2) the absolute value of the model loading on the first latent 
variable 1 (LV1) ≥ 90th quantile26, where LV1 is the model component capturing 
the maximum difference between early and late fasting groups. The 
classification performance of the selected and excluded feature models was 
validated and compared using Monte Carlo cross-validation (MCCV) and 
permutation testing. MCCV was carried out by randomly selecting 2/3 of the 
animals as a training set (to build models) and using 1/3 of the animals to test 
the models, while maintaining the proportion of late and early samples in the 
full dataset. This procedure was repeated 100 times and used to estimate 
distributions for the model performance statistics. Permutation testing 
(prediction of randomly assigned phenotype labels) was combined with the 
described MCCV model cross-validation and used to estimate the probability of 
achieving the model's predictive performance by chance, through comparison 
of the actual model Q2, AUC, sensitivity, and specificity to those of the NULL 
hypothesis as defined by the permuted models. Permutation p-values27 were 
calculated to describe the proportion of cross-validation results showing 
favorable (less than or greater than, depending on the specific metric) 
performance for the actual model compared to the permuted (random early or 
late class labels) and selected vs. excluded feature models. 

Metabolic trajectory analysis28 was carried out to display geometric differences 
in early and late fasting animals' response to insulin infusion. PCA was 
calculated on baseline (T0) adjusted, centered, and scaled to unit variance 
metabolomic measurements for t = 0, 10, 30, 60 and 120 min. Separate models 
were calculated based on all measurements or only the top 10% of all O-PLS-
DA selected metabolic discriminants between early and late fasting animals. 
PCA scores were annotated with median scores and standard errors for each 
group/time-point pair. 

Network analysis was used to assess statistically significant results within a 
biochemical context. A biochemical and chemical similarity network29 was 
calculated for all measured metabolites with KEGG30 and PubChem CID31 
identifiers using MetaMapR32. Enzymatic interactions were determined based 
on product-precursor relationships defined in the KEGG RPAIR database. 
Molecules not directly involved in biochemical transformations, but sharing 
structural properties, based on PubChem Substructure Fingerprints33 were 
connected at a Tanimoto similarity threshold ≥ 0.7. Pathway enrichment 
analysis was conducted using Metaboanalyst 3.034. Significantly different 
metabolites between early and late-fasting mammals were matched against the 
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Homo sapiens pathway library and analyzed using hypergeometric tests with 
out-degree centrality. 

 

2.5 Transcriptome profiling of Huh7 and Huh7-GCK+/HK2− cell lines 

Transcriptome profiling was performed by next-generation sequencing 
(ProfileXpert, Lyon, France). Briefly, Total RNA was extracted and purified from 
cell pellets using Direct-zol RNA purification kit (Zymo Research). 700 ng of 
total RNA were amplified (NextFlex Rapid Directional mRNA-Seq, PerkinElmer) 
to generate mRNA-seq libraries. Then, gene expression was analyzed by next-
generation sequencing (NGS) using Illumina NextSeq500. Reads were 
mapped on the reference genome Homo sapiens GRCh37/hg19. Raw data 
were processed using the DESeq2 pipeline35 to identify differentially expressed 
genes. See Supporting Information and Gene Expression Omnibus database 
with the accession number GSE144214 for entire raw data. 

2.5.1 Pathway analysis 

The list of transcripts differentially expressed in Huh7 and Huh7-GCK+/HK2− 
cell lines was analyzed by gene set enrichment analysis (IPA, Build version: 
486617 M, Qiagen) weighted by their corresponding fold change and p value. 
The fold change cut-off of mean expression for each transcript was set at 2 with 
an adjusted p value<0.05. The list of genes associated with "Type I-IFN 
signaling pathway" was defined in the AmiGO 2 database. Expression data of 
these genes were retrieved from the transcriptomes of Huh7-GCK+/HK2− and 
Huh7, and correspond for each gene to the most differentially expressed 
transcript. 
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Chapter Three: Insulin induces a shift in lipid and primary 
carbon metabolites in a model of fasting-induced insulin 
resistance 
 

Prolonged fasting in Northern elephant seals (NES) is characterized by a 
reliance on lipid metabolism, conservation of protein, and reduced plasma 
insulin. During early fasting, glucose infusion previously reduced plasma free 
fatty acids (FFA); however, during late-fasting, it induced an atypical elevation 
in FFA despite comparable increases in insulin during both periods suggestive 
of a dynamic shift in tissue responsiveness to glucose-stimulated insulin 
secretion. To better assess the contribution of insulin to this fasting-associated 
shift in substrate metabolism, we compared the responses of plasma 
metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary 
carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-
fasted NES pups (n = 5/group). 

In early fasting, the majority (72%) of metabolite trajectories return to baseline 
levels within 2 h, but not in late fasting indicative of an increase in tissue 
sensitivity to insulin. In late fasting, increases in FFA and ketone pools, coupled 
with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, 
ketone metabolism, and decreased protein catabolism. Conversely, insulin 
increased PCM AUC in late fasting suggesting that gluconeogenic pathways 
are activated. Insulin also decreased FFA AUC between early and late fasting 
suggesting that insulin suppresses triglyceride hydrolysis. 

Naturally adapted tolerance to prolonged fasting in these mammals is likely 
accomplished by suppressing insulin levels and activity, providing novel insight 
on the evolution of insulin during a condition of temporary, reversible insulin 
resistance. 
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Abstract 

Introduction— Prolonged fasting in Northern elephant seals (NES) is 
characterized by a reliance on lipid metabolism, conservation of protein, and 
reduced plasma insulin. During early fasting, glucose infusion previously 
reduced plasma free fatty acids (FFA); however, during late-fasting, it induced 
an atypical elevation in FFA despite comparable increases in insulin during both 
periods suggestive of a dynamic shift in tissue responsiveness to glucose-
stimulated insulin secretion. 

Objective— To better assess the contribution of insulin to this fasting-
associated shift in substrate metabolism. 

Methods— We compared the responses of plasma metabolites (amino acids 
(AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to 
an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). 
Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 
min post-infusion, and underwent untargeted and targeted metabolomics 
analyses utilizing a variety of GC-MS and LC-MS technologies. 
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Results— In early fasting, the majority (72%) of metabolite trajectories return to 
baseline levels within 2 h, but not in late fasting indicative of an increase in 
tissue sensitivity to insulin. In late fasting, increases in FFA and ketone pools, 
coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-
oxidation, ketone metabolism, and decreased protein catabolism. Conversely, 
insulin increased PCM AUC in late fasting suggesting that gluconeogenic 
pathways are activated. Insulin also decreased FFA AUC between early and 
late fasting suggesting that insulin suppresses triglyceride hydrolysis. 

Conclusion— Naturally adapted tolerance to prolonged fasting in these 
mammals is likely accomplished by suppressing insulin levels and activity, 
providing novel insight on the evolution of insulin during a condition of 
temporary, reversible insulin resistance. 

Keywords— Endocannabinoids; Fatty acids; Lipidomics; Metabolomics; 
Substrate metabolism 

  

3.1 Introduction 

The classical actions of insulin are to stimulate cellular glucose uptake and 
promote anabolic processes1. Thus, during periods of starvation or extended 
food deprivation, insulin and insulin signaling are suppressed to help preserve 
circulating glucose to support the energetic burdens imposed by the caloric 
restriction/reduction2. Therefore, brief and acute bouts of reversible insulin 
resistance are adaptive in most vertebrates to ameliorate the stress of short-
term or abbreviated periods of food deprivation. However, prolonged (2-3 
months) fasting is a natural component of the life history of the Northern 
elephant seal (NES) that is characterized by reliance on lipid oxidation, 
conservation of protein, and reversible adipose-specific insulin resistance3-7. 

Glucose-stimulated insulin secretion, similar to what is achieved during an oral 
glucose tolerance test (oGTT), typically reduces plasma non-esterified free fatty 
acids (NEFA)8, and this response is consistent during early fasting in NES 
pups9. However, during late fasting, an oGTT induced an atypical elevation in 
NEFA suggesting that prolonged fasting in seals initiates a dynamic shift in 
substrate utilization, especially as it relates to lipid metabolism. This phenotype 
in late-fasted seal pups is consistent with the development of adipose-specific 
insulin resistance and demonstrates the remarkable plasticity of their metabolic 
network (being able to switch between extreme stages of body mass gain and 
prolonged fasting independent of consequences on energy balance). 
Furthermore, a detailed acylcarnitine profile in early- and late-fasted NES pups 
revealed that total plasma acylcarnitine and acyl:free carnitine ratio increased, 
indicative of increased accumulation of plasma fatty acylcarnitines and of a 
higher degree of incomplete β-oxidation with fasting-induced insulin 
resistance10. The fasting-associated increase in plasma acyl:free carnitine ratio 
suggests that a temporal change in the dynamics of mitochondrial β-oxidation 
occurs with fasting duration in NES pups11. This acylcarnitine profile also 
revealed higher levels of medium-chain fatty acid acylcarnitine derivatives that 
are consistent with those observed in insulin-resistant mice12 and type 2 
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diabetic humans13. These patterns of acylcarnitine derivatives are also 
indicative of increased lipid metabolism and decreased protein catabolism10. 
Thus, high-throughput analyses such as acylcarnitine profiles are extremely 
useful in helping to elucidate potential cellular mechanisms and more 
thoroughly describe dynamic shifts in substrate utilization and metabolism. 

Extensive metabolomic studies in diabetic subjects14-19 and animals12,20, and 
the metabolomic response to an oGTT in humans have been performed21-24. 
These studies demonstrate distinct alterations in amino acid and branched-
chain fatty acid metabolism between normoglycemic and insulin 
resistant/diabetic subjects14-19,25. Furthermore, the difference in metabolomic 
response to an oGTT between normal weight/glycemic subjects and their 
obese/diabetic counterparts is strikingly distinct and can offer significant insight 
as to which cellular mechanisms are perturbed (i.e., TCA cycle, mitochondrial 
β-oxidation, gluconeogenesis, lipolysis etc.). However, during an oGTT, 
circulating insulin is elevated via glucose-stimulated insulin secretion, making it 
difficult to differentiate the direct glucose from the insulin-mediated effects. 
Unfortunately, to the best of our knowledge, the metabolomic and lipidomic 
responses to insulin infusion have not been reported. Therefore, to better 
assess this insulin-associated shift in substrate metabolism, we compared the 
response of plasma metabolites to insulin infusion in early- and late-fasted NES 
pups, which exhibit a unique insulin resistance-like metabolic phenotype with 
fasting duration. 

 

3.2 Methods 

3.2.1 Animals 

All procedures were reviewed and approved by the Institutional Animal Care 
and Use Committees of the University of California, Merced and California State 
University, Sonoma. Northern elephant seal pups constituting two different 
cohorts at Año Nuevo State Reserve were studied at two postweaning periods 
(n = 5/period): early (1-2 weeks postweaning; 127 ± 1 kg) and late (6-7 weeks 
postweaning; 93 ± 4 kg). Pups were weighed, sedated, and infused in the field 
as previously described5,9,26. Briefly, pups were sedated with 1mg/kg Telazol 
(tiletamine/ zolazepam HCl, Fort Dodge Labs, Ft Dodge, IA) administered 
intramuscularly. Once immobilized, an 18 gauge, 3.5 inch spinal needle was 
inserted into the extradural vein. Blood samples were obtained, and infusions 
performed from this site. Continuous immobilization was maintained with 
~100mg bolus intravenous injections of ketamine as needed27. 

3.2.2 Insulin infusion protocol 

To determine the metabolomic and lipidomic responses to insulin as a function 
of fasting-induced, adipose-specific insulin resistance, fasting seal pups were 
infused (i.v.) with a mass-specific dose (0.065 U insulin/kg) (Humulin; Eli Lilly, 
Indianapolis, IN) as previously described5. Time-course responses to insulin by 
comparing the differences of the area under the curve (AUC) values yield 
information about the metabolic plasticity of the animals in the context of fasting 
duration. Prior to each infusion, a pre-infusion blood sample (i.v.) was collected 
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(baseline or T0). Following the bolus infusion of insulin, blood samples collected 
at 10, 30, 60, and 120 min were used for this suite of metabolomic/lipidomic 
analyses. Procedures were terminated at 120 min out of concern for the safety 
of the animals. Immediately following the collection of the 120 min samples, 
glucose was infused slowly to assist in the restoration of pre-infusion levels. 
Blood samples were centrifuged on site for 15 min at 3000g, and the plasma 
was transferred to cryo-vials, frozen by immersion in liquid nitrogen, and stored 
at −80°C. 

3.2.3 Analysis of primary metabolites 

The MiniX database28 was used as a Laboratory Information Management 
System (LIMS) and for sample randomization prior to all analytical procedures. 

3.2.4 Sample preparation 

Aliquots of plasma (30μL) stored at −80°C were thawed, extracted, derivatized, 
and the metabolite abundances quantified by gas chromatography time-of-flight 
(GCTOF) mass spectrometry (MS) as previously described29. Briefly, the 
aliquots were extracted with 1mL of degassed acetonitrile/isopropanol/water 
(3:3:2) solution at −20°C, centrifuged, the supernatant removed, and solvents 
evaporated to dryness under reduced pressure. To remove membrane lipids 
and triglycerides, dried samples were reconstituted with acetonitrile/water (1:1), 
decanted and taken to dryness under reduced pressure. Internal standards, 
C8-C30 fatty acid methyl esters, were added to samples and derivatized with 
methoxyamine hydrochloride in pyridine and subsequently by N-methyl-N-
(trimethylsilyl) trifluoroacetamide (Sigma-Aldrich) for trimethylsilylation of acidic 
protons. 

3.2.5 GCTOF data acquisition and processing 

Derivatized samples were analyzed on an Agilent 7890A gas chromatograph 
(Santa Clara, CA) with a 30m long, 0.25mm i.d. Rtx5Sil-MS column with 0.25μm 
5% diphenyl film with an additional 10m integrated guard column (Restek, 
Bellefonte PA)29-30. An aliquot (0.5μL) was injected at 50°C (ramped to 250°C) 
in splitless mode with a 25 sec splitless time. The chromatographic gradient 
consisted of a constant flow of 1mL/ min, ramping the oven temperature from 
50°C to 330°C over 22 min. Mass spectrometry was performed using a Leco 
Pegasus IV time-of-flight mass spectrometer, 230°C transfer line temperature, 
electron ionization at −70V, and an ion source temperature of 250°C. Mass 
spectra were acquired at 1800V detector voltage at m/z 85-500 with 17 
spectra/sec. Acquired spectra were further processed using the BinBase 
database28,31. Briefly, output results were filtered based on multiple parameters 
to exclude noisy or inconsistent peaks30. Detailed criteria for peak reporting 
included mass spectral matching, spectral purity, signal-to-noise ratio, and 
retention time31. All entries in BinBase were matched against the Fiehn mass 
spectral library of 1,200 authentic metabolite spectra using retention index and 
mass spectrum information or the NIST11 commercial library. All samples were 
analyzed in one batch, and data quality and instrument performance were 
constantly monitored using quality control and reference plasma samples 
(National Institute of Standards and Technology 2011). Quality controls were 
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comprised of a mixture of standards and analyzed every 10 samples, were 
monitored for changes in the ratio of the analyte peak heights, and used to 
ensure equivalent conditions within the instrument (p>0.05, t-Test comparing 
observed to expected ratios of analyte response factors) over the duration of 
the sample acquisition29. Pooled plasma samples (n=9) were included and 
served as additional quality controls to assess normalization efficiency. 
Metabolites were reported if present in at least 50% of the samples. Data 
reported as quantitative ion peak heights were normalized by the sum intensity 
of all annotated metabolites and used for further statistical analysis. 

3.2.6 Targeted metabolomics analyses of non-esterified fatty acids and 
endocannabinoids: Non-esterified fatty acid sample preparation, data 
acquisition, and processing 

Plasma NEFA were isolated as previously described32-33. Specifically, plasma 
aliquots (100mL) were enriched with 5mL 0.2mg/mL butylated 
hydroxytoluene/EDTA in 1:1 methanol/water, and a suite of extraction 
surrogates, which included deuterated-tri-palmitoyl glycerol (d31-16:0-TG; 
CDN Isotopes, Pointe-Claire, Quebec, Canada), deuterated 
distearoylphosphotidylcholine (d35-18:0-PC; Avanti Polar Lipids, Alabaster, 
Alabama), dodeca-(9E)-enoyl cholesterylesters (22:1n9-CE; NuChek Prep, 
Elysian MN) and dodecatrienoic acid (22:3n3; NuChek Prep). Lipids were then 
extracted with cyclohexane/2-propanol/ammonium acetate (10:8:11). Enriched 
samples were mixed with cyclopropane/2-propanol (10:8:11) and the phases 
split with ammonium acetate. The organic phase was isolated and the aqueous 
phase was re-extracted with cyclohexane. The combined organic total lipid 
extract was reduced to dryness and reconstituted in 200μL of methanol/toluene 
(1:1), and the total lipid extract was used to quantify plasma fatty acids as 
methyl esters by GC-MS. Extracted samples were spiked with 15:1n5 free acid 
to track methylation efficiency, brought to a final volume of 200mL with 90:10 
methanol/toluene (v/v), and left at room temperature for 30 min before being 
dried. The remaining fatty acid methyl esters were re-constituted in a hexane 
(300mL)/44mM tricosanoate methyl ester (23:0; NuChek Prep) (10μL) solution 
(30,000:1) and vortexed. A 100μL aliquot was transferred to a GC-MS vial for 
analysis (Agilent 6890/5973N MSD, Agilent Technologies, San Jose, CA) with 
electron impact ionization and in simultaneous-selected, ion monitoring/ full 
scan mode. Analytes were separated on a 30m/0.25mm/0.25μm DB-225ms 
column. Analytes were quantified with ChemStation vE.02.14 (Agilent 
Technologies) using internal standard methodologies against 5 to 8 point 
calibration curves. 

3.2.7 Endocannabinoid sample preparation, data acquisition, and 
processing 

Endocannabinoids were isolated by solid phase extraction on 10mg Waters 
Oasis-HLB cartridges (Milford, MA) as previously described34. Prior to 
extraction, cartridges were washed with 1 column volume ethyl acetate followed 
by 2 column volumes methanol, and conditioned with 2mL of 95:5 (v/v) 
water/methanol (MeOH) with 0.1% acetic acid. The column reservoir was 
spiked with 5μL anti-oxidant solution, (0.2mg/mL BHT/EDTA in 1:1 
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MeOH/water), and 10μL 1000nM analytical surrogates. Sample aliquots (250μL 
media) were then introduced to the column reservoir and diluted with 1 column 
volume wash solution (5% MeOH, 0.1% acetic acid). The sample was gravity 
extracted and the sorbent bed was washed with 1 column volume of 20% 
methanol and 0.1% acetic acid. The solid-phase extraction cartridges were 
dried by vacuum (@ -7.5 in. Hg for 20 min). Analytes were then eluted by gravity 
with 0.2mL MeOH, followed by 0.5mL acetonitrile, followed by 0.5mL ethyl 
acetate into 2mL autosampler vials containing 10μL of a 20% glycerol/MeOH 
solution. Eluent was dried by vacuum evaporation for 35 min, and residues 
were re-constituted with 100μL of 100nM internal standard solution containing 
1cyclohexylureido, 3-dodecanoic acid (CUDA), in 50:50 MeOH/acetonitrile. 
Vials were vortexed for 1 min to dissolve residues, chilled 15 min on wet ice, 
and extracts transferred to a centrifugal filter (0.1μm Durapore, Millipore, 
Billerica, MA). After centrifugation (3 min at <4500g and 6°C), the extracts were 
transferred to 150μL glass inserts in 2mL amber vials, capped, and stored at 
−20°C until analysis by UPLC-MS/MS. The internal standard was used to 
quantify the recovery of the deuterated extraction surrogates by ratio response. 

3.2.8 Endocannabinoid analysis 

Analytes in a 10μL injection of extract were separated with an Aquity C18 
Ethylene Bridged Hybrid (BEH) 1.7μm, 150mm × 2.1mm column utilizing a 
Waters Acquity UPLC (Waters, Milford, MA). The solvent gradient is described 
in Table 1 with a slight modification from Shearer et al.35 The autosampler was 
maintained at 10°C. Resolved analytes were detected by positive mode 
electrospray ionization and multiple reaction monitoring on an API 4000 QTrap 
(AB Sciex, Framingham, MA, USA) using the following operating parameters: 
curtain gas = 20.0 psi, temperature = 500°C, ion-spray voltage = 5500.00V, 
collision gas = high, ion source gas 1 & 2 = 40.0 psi, collision cell exit potential 
= 10.0V, and entrance potential = 10.0V. Analyte retention times, mass 
transitions, optimized collision and declustering potential voltages, dwell times, 
and analytical surrogate associations for each analyte are shown in 
Supplemental Table 1. Analytes were quantified using isotope dilution and 
internal standard methodology with 5 to 7 point calibration curves (R2 ≥ 0.997). 
Calibrants and internal standards were either synthesized [CUDA] or 
purchased from commercial sources (Cayman Chemical, Ann Arbor, MI or 
Avanti Polar Lipids Inc., Alabaster, AL), unless otherwise indicated. Data was 
processed utilizing AB Sciex Analyst version 1.6.2. Surrogate recoveries are in 
Supplemental Table 1. 

3.2.9 Statistical analyses 

All statistical analyses were performed using R version 3.0.1. The area under 
the curve (AUC) for t= 0, 10, 30, 60, and 120 min for each metabolite as a 
function of time post-insulin infusion at each fasting period was calculated 
based on trapezoidal rule integration. Calculated AUC values were used to 
summarize the relative change in metabolite concentrations as a function of 
time for each sample. Variance in AUC values accurately reflects the variance 
in sample-wise metabolite trends over time. Therefore, the AUC values 
represent efficient mathematical representations of the original data and enable 
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comparisons between samples' metabolite concentrations over time. However, 
there is no assumed biochemical context encoded by the AUC method. 
Independent sample t-tests were conducted with adjustment for unequal 
variance. The probability of the test statistics (p-values) were adjusted for 
multiple hypotheses tested (adjusted p-value)36 and the false discovery rate 
was independently estimated (q-value). 

Cluster analysis was conducted using k-means on a self-organizing map 
(SOM). SOM was calculated on a 10 × 10 hexagonal grid from mean time 
course patterns for early or late fasting groups. The combined data set of early 
and late metabolite time course patterns were used to identify similarities 
between early and late groups. Cluster analysis was conducted using k-means 
on the 100 generated self-organizing map codebooks. The k-means cluster 
number was selected based on an evaluation of within-cluster distance for 2 to 
50 clusters, with 7 clusters identified as the optimal cluster number. Metabolite 
to k-means cluster assignments were recovered based on their assignment to 
SOM codebooks. 

Multivariate analyses, principal component analysis (PCA) and orthogonal 
partial least squares discriminant analysis (O-PLS-DA) were conducted on 
combined metabolite baseline and AUC values, which were mean centered and 
scaled to unit variance. PCA was calculated based on the singular value 
decomposition (Stacklies et al. 2007). PCA sample leverage (distance to center 
of mass in the PCA plane) and DmodX (projected distance to the PCA plane) 
were used to evaluate potential extreme and moderate outliers, respectively. 
O-PLSDA was used to build a classification model to discriminate between 
early and late fasting animal baseline and AUC patterns and to identify the top 
10% of all variable contributions to the observed class discrimination between 
the two classes (feature selection). Leave-one-out cross-validation was used to 
fit a preliminary 2 latent variable (LV) O-PLS-DA model. 

The top 10% of all AUC and baseline discriminants (features) were selected 
based on fulfilling two criteria: (1) correlation with model scores38 (Spearman's 
rho, P ≤ 0.1) and (2) the absolute value of the model loading on the first latent 
variable 1 (LV1) ≥ 90th quantile39, where LV1 is the model component capturing 
the maximum difference between early and late fasting groups. The 
classification performance of the selected and excluded feature models was 
validated and compared using Monte Carlo cross-validation (MCCV) and 
permutation testing. MCCV was carried out by randomly selecting 2/3 of the 
animals as a training set (to build models) and using 1/3 of the animals to test 
the models, while maintaining the proportion of late and early samples in the 
full dataset. This procedure was repeated 100 times and used to estimate 
distributions for the model performance statistics. Permutation testing 
(prediction of randomly assigned phenotype labels) was combined with the 
described MCCV model cross-validation and used to estimate the probability of 
achieving the model's predictive performance by chance, through comparison 
of the actual model Q2, AUC, sensitivity, and specificity to those of the NULL 
hypothesis as defined by the permuted models. Permutation p-values40 were 
calculated to describe the proportion of cross-validation results showing 
favorable (less than or greater than, depending on the specific metric) 
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performance for the actual model compared to the permuted (random early or 
late class labels) and selected vs. excluded feature models. 

Metabolic trajectory analysis41 was carried out to display geometric differences 
in early and late fasting animals' response to insulin infusion. PCA was 
calculated on baseline (T0) adjusted, centered, and scaled to unit variance 
metabolomic measurements for t = 0, 10, 30, 60 and 120 min. Separate models 
were calculated based on all measurements or only the top 10% of all O-PLS-
DA selected metabolic discriminants between early and late fasting animals. 
PCA scores were annotated with median scores and standard errors for each 
group/time-point pair. 

Network analysis was used to assess statistically significant results within a 
biochemical context. A biochemical and chemical similarity network42 was 
calculated for all measured metabolites with KEGG43 and PubChem CID44 
identifiers using MetaMapR45. Enzymatic interactions were determined based 
on product-precursor relationships defined in the KEGG RPAIR database. 
Molecules not directly involved in biochemical transformations, but sharing 
structural properties, based on PubChem Substructure Fingerprints46 were 
connected at a Tanimoto similarity threshold ≥ 0.7. Pathway enrichment 
analysis was conducted using Metaboanalyst 3.047. Significantly different 
metabolites between early and late-fasting mammals were matched against the 
Homo sapiens pathway library and analyzed using hypergeometric tests with 
out-degree centrality. 

 

3.3 Results 

3.3.1 Prolonged fasting increases β-oxidation and spares lean tissue 

We identified 41 out of 171 known metabolites that changed significantly in 
baseline (T0) values between early and late fasting (p<0.05) (Figure 1 and 
Supplemental Table 1). These metabolites clustered into seven distinct 
biochemical categories for analysis: (1) amino acids, (2) endocannabinoids, (3) 
fatty acids, (4) glucose, (5) ketone bodies, (6) organic acids, and (7) primary 
carbon metabolites (Figure 1). Prolonged fasting was associated with the most 
profound changes in FFA. The increases in baseline fatty acid concentrations 
ranged from 28% (palmitic acid) to 144% (elaidic acid). Similarly, the ketones 
acetoacetate and 3hydroxybutyric acid increased 133% and 347% in late 
fasting, respectively. 

Conversely, there were mixed changes with other primary metabolites and 
endocannabinoids over this time (Fig. 1 and Supplemental Table 1). The 
primary metabolite 1,5anhydroglucitol and endocannabinoid anandamide 
increased by 37% and 74%, respectively. Several of these metabolites are 
downstream products of lipid oxidation, providing additional evidence of 
upregulated lipid oxidation in late fasting. In contrast, endocannabinoid-like 
DHEA and SEA and glucogenic/ketogenic amino acids alanine, asparagine, 
cysteine, tryptophan, tyrosine and valine decreased. 
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When baseline levels were normalized to the animal's plasma volume 
(estimated by body mass) to correct for changes associated with fasting 
duration48, this correction had only a subtle effect on our results. The effect of 
this correction was observed in a few metabolites related to lipid oxidation. 
However, since many lipid oxidation products were significant without plasma 
volume adjustment, this did not change our interpretation of the results. 
Pathway enrichment analysis of significantly perturbed metabolites (p < 0.05) 
indicated 9 biochemical pathways that were significantly deregulated between 
early and late fasting in seals (p<0.05) (Supplemental Table 2). The most 
perturbed pathways included ketone and branched-chain amino acid 
metabolism. 

Collectively, the changes in baseline concentrations and path analyses 
demonstrate an increase in fatty acid and ketone pool size, coupled with a 
decrease in amino acids and primary metabolites in late-fasted seals indicating 
that fasting duration shifts substrate metabolism toward an increase in lipolysis, 
β-oxidation, and ketone metabolism as the primary sources of energy, 
associated with a robust conservation of protein (lean tissue) (Figure 1). 

3.3.2 Despite protracted fasting, insulin facilitates a shift toward fatty acid 
metabolism 

The time course trajectories following insulin infusion identified 23 of 171 
metabolites with significantly (p<0.05) perturbed AUC values between early and 
late fasting (Table 1) indicating that fasting duration alters the tissue's 
responsiveness to insulin. Fatty acid metabolism in response to insulin is 
characterized by decreased AUC values between early and late fasting, with all 
AUC values of FFA in late fasting being negative (Table 1). The responses of 
ketones and EC to the insulin infusion were similar suggesting that lipolytic and 
endocannabinoid pathways share common insulin-mediated processes (Figure 
2). In early fasting, these metabolite levels decreased, reaching a nadir at 30 
min post-infusion. For FFA, levels returned to baseline by 60 min and remained 
so for the rest of the measurement period, whereas ketones and EC peaked at 
60 min before returning to baseline at 120 min (Figure 2). Initially, insulin 
increased primary metabolites and amino acids before levels reached a nadir 
at 60 min and returned to baseline by 120 min (Figure 2). 

In late fasting, FFA and EC decreased similarly, reaching a nadir at 60 min 
before returning to baseline by 120 min (Figure 2). Ketones displayed a 
transient increase before a nadir at 60 min and returning to baseline by 120 min 
(Figure 2). Primary metabolites and amino acids AUC values increased (with 
all values being positive with the exception of isoleucine). In contrast to the early 
fasting response, insulin increased amino acid levels reaching a peak at 60 min 
before decreasing to baseline at 120 min (Figure 2). 

Principal component analysis (PCA) revealed that the maximum geometric 
distance occurred at 60 min for both early and late fasting, regardless of 
trajectory (Figure 3A, C). In the early fast the majority (72%) of metabolite 
trajectories return to baseline (+/− 30% of baseline) at 120 min. In contrast, the 
majority of metabolite concentrations in the late fast (53%) did not return to 
baseline (+/− 30% of baseline), and present a residual difference at 120 min 
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post-infusion. Collectively, the integrated insulin responses (AUC) and PCA 
data reveal that in late-fasted animals (characterized by insulin resistance) the 
available pool of free fatty acids is depleted quickly, and likely shuttled into the 
TCA cycle. Conversely, the insulin-induced increases in primary metabolites 
(AUCs) are indicative of activation of gluconeogenic precursors (Figures 3C–
D, 4C–D). 

3.3.4 Fasting duration alters the metabolic response to insulin 

Hierarchical clustering identified groups of metabolites with similar trajectories 
in both early and late fasting as well as in a joined cohort of both early and late 
fast. The seven main classes of metabolites grouped into four distinct clusters 
in early and 4 clusters in late fasting (Figure 4C–D). Clustering based on 
hierarchical (Figure 4C–D) and non-hierarchical methods on self-organizing 
maps (Figure 4A–B) aligned well with each other. In early fasting, ketone, EC, 
and TCA cycle metabolite profiles demonstrated a common peak and clustered 
together. Trajectories for amino acids and primary metabolites were closely 
related. The FFA profiles were characterized by a rapid, initial decrease 
recovering by 60 min, which was distinctive from the profiles for amino acids 
and primary metabolites. 

In late fasting, FFA and EC were correlated and clustered together with a 
decrease at 60 min (Figure 4C–D). A comparison of the metabolomic profiles 
between early- and late-fasted animals in response to the insulin infusion 
demonstrated profound shifts in cellular metabolism and biochemical 
processes as a function of fasting duration. Cluster analysis allowed for 
assessment of the transition from negative to positive AUC values with fasting 
duration. 

 

3.4 Discussion 

The reliance of the elephant seal on lipid oxidation (RQ = 0.73)7,49 to meet its 
energetic demands during their prolonged bouts of fasting, which are a natural 
and evolved component of the animal's life history, is unorthodox, if not unique. 
Animals, including humans, shift from reliance on one substrate (usually 
glucose initially) to another (lipids followed by protein) over the course of food 
deprivation or scarcity50, but rarely is the RQ fixed over a prolonged period of 
food deprivation. What makes this evolved behavior even more fascinating is 
that the animals develop reversible, tissue-specific insulin resistance5,9-10,26. 
Furthermore, fasting duration is associated with a decrease in plasma 
insulin9,26,51 suggesting that target tissues may be desensitized to insulin during 
this time to help maintain circulating glucose levels over the protracted fast. 
Despite exhibiting an insulin resistance-like phenotype and tolerating 
circumstances that would otherwise be considered detrimental, the fact that 
elephant seal pups developmentally thrive is truly remarkable. Here we show 
that: (1) despite an evolved mechanism to suppress circulating insulin with 
fasting duration, tissues remain responsive to insulin, (2) despite the reliance 
on lipid oxidation to fulfill their energetic needs, insulin has profound effects on 
endocannabinoids, ketones, and primary carbon metabolites, and (3) fasting 
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duration (and thus the development of insulin resistance) has remarkable 
effects on modulating insulin-mediated metabolism of endocannabinoids, fatty 
acids and TCA cycle components. These findings are significant because they 
shed light on the evolution of insulin actions on substrate metabolism in an 
animal model of reversible insulin resistance at a time when the identification 
of alternative models for the study of metabolic disorders is at a premium. 

An important and significant component of the current study was the use of a 
combination of untargeted and targeted metabolomics with the aims of 
identifying metabolic alterations associated with fasting status and insulin 
resistance in a large mammal. Furthermore, a thorough examination of the 
metabolic responses of early- and late-fasted seals to exogenous insulin 
provides previously unrealized insight into the metabolic programming or 
biochemical shifts induced by insulin. 

3.4.1 Fasting Duration Shifts the Metabolic Trajectories to Insulin Infusion 

An important and very compelling finding stemming from the insulin infusion 
studies is the extensive metabolomic characterization of the effects of fasting 
duration (and thus IR-like condition) on the cellular responses to insulin. Early- 
and late-fasted seals exhibit different metabolic profiles in responses to insulin 
indicating that fasting duration shifts the cellular sensitivity to insulin. The most 
striking distinctions were the responses in circulating FFAs, endocannabinoid 
and endocannabinoid-like metabolites, and ketones. In late-fasted seals, FFAs 
and the endocannabinoids, AEA and OEA, decreased during the first 60 min of 
insulin infusion followed by a return to baseline values. In hibernating bears, the 
growth hormone induced increase in insulin was associated with nearly a 
fourfold increase in FFA 7 days post-infusion suggestive of increased 
lipolysis52. The corresponding reductions in AEA and OEA are consistent with 
previous data demonstrating that endocannabinoid and N-acylethanolamides 
reflect changes in FFA concentrations53. On the contrary, 3-hydroxybutyric acid 
decreased during the first 60 min of insulin infusion and remained suppressed 
suggesting that under normal conditions insulin promotes the complete 
metabolism of ketones so that they do not accumulate. In contrast, the growth 
hormone-induced increase in insulin stimulated over a 6-fold increase in plasma 
β-hydroxy butyrate in hibernating bears52. The differential responses compared 
to hibernating bears most likely reflect differences in energetic demands 
between the two animals as hibernating bears are hypothermic and 
metabolically quiescent while fasting seal pups are metabolically active and 
normothermic. 

A consequence of diabetes is the accumulation of ketones, which may be the 
result of increased hepatic production and/or incomplete metabolism by 
extrahepatic tissues54. Furthermore, the corresponding trajectories in FFAs 
were inversely mirrored by carbohydrates suggesting that exogenous insulin in 
late-fasted seals facilitates a preferential switch from lipid oxidation to glucose 
utilization and the promotion of glycolysis consistent with the Randle cycle55. 
This is further supported by an increase in pyruvic acid with insulin infusion in 
late-fasted seals, which was not observed in early-fasted seals, suggesting that 
this shift toward a Randle cycle may be a significant metabolic shift to facilitate 



34 
 

 
 

the adipose-specific insulin resistance56-57. Many of the TCA intermediates 
exhibited a similar response to insulin suggesting that these intermediates are 
derived from carbohydrate metabolism rather than fatty acid oxidation or amino 
acid catabolism. If insulin has the potential to preferentially shift substrate 
utilization as suggested by the data, then this may help explain why insulin 
levels remain relatively low and decrease with fasting duration, ultimately, 
helping to support a fixed RQ of 0.73. Conversely, when the animals begin to 
feed in cold-water environments, a shift toward a reduced metabolic 
dependence on lipid oxidation would allow the seals to conserve fat stores 
(insulation), and increase carbohydrate metabolism. Nonetheless, these data 
demonstrate the very dynamic effects of insulin that would otherwise be 
masked by attempts to reconcile based solely on plasma levels. 

The switch to glucose and related-carbohydrate metabolism in late-fasted seals 
during insulin infusion may also explain the observed trajectories in most amino 
acids, particularly alanine. During baseline, late-fasted seals exhibited marked 
reductions in several amino acids compared to early-fasted seals, likely due to 
a combination of increased anaplerosis of ketogenic and gluconeogenic 
precursors, and a decrease in proteolysis (protein catabolism/ lean-tissue 
sparing). This is consistent with what has been reported previously4,6,58. 
However, during insulin infusion amino acids, particularly alanine, mimicked the 
metabolic trajectories of carbohydrates. Alanine is particularly relevant given its 
importance in protein synthesis (mainly in the muscles) as well as nitrogen 
disposal from peripheral tissue to the liver (where it is transaminated back to 
pyruvate). Pyruvate can then either be oxidized or converted to glucose via 
gluconeogenesis59. Collectively, the aforementioned changes in late-fasted 
seals during insulin infusion suggest that: (1) the reliance on fatty acid oxidation 
is decreased, (2) the utilization of carbohydrates is increased, (3) circulating 
amino acids for protein synthesis is altered, and (4) nitrogen disposal is 
increased, all of which may be a consequence of the buildup of nitrogenous 
waste associated with amino acid catabolism that occurs with food deprivation 
or starvation50,60. 

Also of note is the apparent lag in response to insulin infusion in late- compared 
to early-fasted seals. During early fasting, insulin infusion most often resulted 
in rapid, acute changes in metabolite concentrations that returned to baseline 
within the measurement period. Conversely, in late-fasted seals the responses 
were mostly either inverse, in cases where preferential usage of metabolic 
pathways changed, or their behaviors were similar with the exception that there 
was a lag affect in which concentrations did not return to baseline over the 
measurement period. This difference in the timing of responses to insulin 
between early- and late-fasted seals suggests that fasting duration alters the 
initiation of compensatory biochemical mechanisms that contribute to the 
maintenance of substrate homeostasis, particularly glucose. Given insulin's 
profound effects on perturbing metabolic pathways in elephant seal pups, this 
may partially explain the natural decrease in plasma insulin as an evolved 
adaptation to prolonged fasting as a means to: (1) alleviate the insulin-induced 
suppression of lipolysis, (2) abate increased cellular metabolism and the 
subsequent energetic burden (i.e., insulin-induced anabolism) in the absence 
of caloric intake, and (3) facilitate cellular homeostasis. If so, this would help 
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explain why impaired insulin signaling has such dire consequences on cellular 
metabolism and appropriate substrate metabolism in non-adapted mammals. 

3.4.2 Late fasted seals model an insulin resistance-like phenotype 

The increase in baseline free fatty acid values in late fasting, along with the 
concomitant decrease in primary carbon metabolites, is indicative of an insulin 
resistance-like (IR-like) phenotype. Temporary and reversible insulin resistance 
(IR) is a common response in mammals to conserve circulating glucose, but 
the fasting durations between those mammals and seals are not comparable. 
Additionally, the unique metabolic network constructed for seals here provides 
a framework to differentiate reversible, long-term IR-like phenotype and true 
insulin resistance. Similar to IR, the IR-like phenotype observed in seals is 
characterized by elevated plasma FFA and glucose levels. While the data 
clearly demonstrate that tissues remain responsive to insulin, the changes in 
plasma metabolites in response to insulin are shifted by approximately 30 
minutes suggesting that the sensitivity to insulin in peripheral target tissues is 
decreased. Thus, in addition to relatively low plasma insulin concentrations in 
fasting seal pups5,9,26-27,51 a decrease in tissue sensitivity is an adaptation to 
facilitate the development of an IR-like condition, which collectively, is important 
for the maintenance of circulating glucose to support the metabolism of 
glucose-dependent tissues. 

Additional comparisons of response curves to insulin reveal further unique 
differences. Notably, insulin increased plasma amino acid levels indicative of 
protein catabolism, which is not typically seen in other models of insulin 
resistance. However, this unique response is likely an evolved adaptation to 
facilitate the development of an IR-like phenotype that is not associated with 
detrimental outcomes. It is also important to note that the amino acid response 
to insulin is the opposite of their unstimulated, fasting metabolic state where 
protein is rigorously conserved. Collectively, these data define an IR-like 
phenotype that may characterize an intermediary phenotype and differentiate it 
from the human condition, which is associated with severe metabolic 
derangements and consequences, and the current condition, which is evolved 
and a natural component of the animal's life history and absent of irrecoverable 
metabolic detriments. 

3.4.3 Baseline Changes 

Consistent with the findings by others5,10,61-63, we observed an increase in 
baseline plasma free medium- (caprate and myristate) and long-chain (oleate, 
vaccinate, linoleate, EPA, and palmitate) fatty acids in late-fasted seals 
indicating that lipolysis increased, likely as a consequence of the increased 
demand for energy derived from the oxidation of FFA. Our findings are 
corroborated by previous data demonstrating that adipose lipases (LPL and 
ATGL) involved in regulation of non-esterified fatty acids (NEFA) are elevated 
with fasting in elephant seal pups10. Additionally, circulating ketones 
(acetoacetate and 3-hydroxybutyric acid) increased in late compared to early 
fasting animals64. During food deprivation and insulin resistance, ketones are 
frequently elevated, a consequence of the increased reliance on beta-oxidation 
of FFA and amino acid catabolism65. 
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In addition to the increase in ketones and FFAs, the endocannabinoid AEA was 
increased in late-fasted pups. Insulin resistance or diabetes is known to impact 
endocannabinoid metabolism66-67. The regulation of the endocannabinoids in 
adipocytes is compromised during insulin resistance, leading to enhanced 
endocannabinoid signaling66. Consequently, this dysregulation of ECs impairs 
metabolism resulting in changes in fatty acid synthesis and utilization, insulin 
sensitivity, and glucose utilization68. The impact of alterations in EC and EC-
like metabolism on insulin sensitivity and metabolic syndrome is of particular 
interest and remains a focal point in future studies. 

It has been postulated that up-regulation of the TCA cycle accommodates 
increased rates of FFA oxidation to prevent ketoacidosis via the accumulation 
of ketone bodies and to maintain endogenous glucose production27. 
Specifically, when glucose is limited or being preserved, anaplerotic reactions 
can supply the TCA cycle with intermediates27. In our study, ketogenic 
(tryptophan and threonine) and gluconeogenic precursors (alanine, asparagine, 
tryptophan, and threonine) decreased in late-fasted seals suggesting that the 
use of anaplerotic pathways increased with fasting69. Interestingly, the 
characteristic increase in circulating branched-chain amino acids with the 
exception of isoleucine, commonly observed in insulin resistant, obese 
diabetics63,70-71, was not observed in fasting seals. On the contrary, valine 
decreased in late-fasted seals. However, similar to previously published 
observations of decreased glucose and insulin levels in late-fasted seals5, not 
all metabolic changes resembled an obesity-related, insulin resistance 
phenotype. Thus, the observed alterations in branched-chain amino acid 
metabolism may have evolved differentially in elephant seals to provide a 
unique metabolic pathway during prolonged fasting that compensates for the 
fasting-associated insulin resistance described in fasting seal pups10. 

Consistent with the observed and previously reported26 decreases in glucose 
with fasting duration, other circulating sugars and sugar-alcohols were also 
reduced in late- versus early-fasted seals. This may suggest that utilization of 
other carbohydrate sources is increased to conserve circulating glucose levels 
as much as possible for use by glucose-dependent tissues. Circulating 1,5-
anhydroglucitol, a marker of glycemic control64,72-73, was increased in late-
fasted seals consistent with previously reported changes in both lactating and 
post-weaned pups64. The lack of a change in 1,5-anhydroglucitol in response 
to insulin suggests that any perturbations in carbohydrate metabolism (i.e., 
glycogenolysis) by insulin were not sufficient to induce detectable changes in 
1,5-anhydroglucitol, which is consistent with the fasting-associated increases 
in baseline levels in the presence of decreasing insulin levels51,64. 

3.4.4 Perspectives 

The present study describes the shifts in numerous metabolic pathways in 
fasted, insulin-infused Northern elephant seal pups that are characterized by 
temporary, reversible insulin resistance10. In particular, increases in fasting 
plasma ECs, FFAs, and ketones as well as decreased substrates for 
glutathione production were representative of this seemingly pathological, 
however, well-adapted condition. Nonetheless, the increase in 1,5-
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anhydroglucitol and decrease in AAs suggest that seal muscle may be 
comparatively more insulin sensitive than their adipose tissue, a contention 
supported by assessment of the phosphorylation of insulin receptor and other 
signaling proteins in adipose and muscle5,10. Previously published data on gene 
expression, enzyme activity, and endocrine regulation as well as glucose and 
triglyceride metabolism support the metabolomics results described herein5,26-

27,49. Thus, metabolomics proved to be an insightful tool to more thoroughly 
characterize this metabolic phenotype and to complement results gathered 
previously. Likewise, the results further support the establishment of the 
Northern elephant seal as a useful, tractable large mammalian model for the 
investigation of temporary, reversible insulin resistance. The use of 
metabolomic approaches to compliment the suite of other studies in seals 
clearly illustrates the dynamic effects of insulin and its potential importance in 
regulating substrate metabolism during prolonged food deprivation in a large 
mammal naturally adapted to such an extreme behavior. 

 

3.5 Significance Statement 

Insulin resistance is a complicated biological process, but it can be temporary 
and reversible in many mammals. Here we employed a metabolomics approach 
to illustrate the shifts in numerous metabolic pathways in fasted, insulin-infused 
Northern elephant seal pups that are characterized by temporary, reversible 
insulin resistance. The evolution of insulin effects appears to be extremely 
dynamic and potentially very perplexing especially in a large mammal that 
naturally exhibits relatively low levels. The present study highlights how the use 
of plasma levels alone to interpret the hormone's function could be problematic, 
and the dynamic effects of insulin and its potential importance in regulating 
substrate metabolism during prolonged food deprivation in a large mammal 
naturally adapted to such an extreme behavior. 
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Refer to Web version on PubMed Central for supplementary material. 
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Figure 3.1.  

Map of the seven plasma metabolite classes (amino acids, endocannabinoids, fatty acids, 
glucose, hydroxy acids, organic acids, and primary carbon metabolites) measured illustrating 
specific metabolites that were significantly different with adjusted p-values below 0.05 at 
baseline (T0) between early and late fasting periods in Northern elephant seal pups. The 
metabolite's pathway and metabolite class are identified. 

aMean AUC ± standard deviation 

bEndocannabinoid concentrations are in nM 

cFatty acids concentrations are in μM 

dFDR adjusted p-value < 0.05 
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Figure 3.2.  

Mean abundances ± standard deviation of metabolic trajectories (t = 0 to 120 min) for those 
metabolites which indicated significantly (raw p-value < 0.05) different AUCs (Table 1) during 
insulin infusion between early to late fasting mammals is shown. 

†Endocannabinoid and Endocannabinoid-like compounds are presented as nM; *free fatty acids 
are presented as μM  
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Figure 3.3.  

Schematic representation of a) metabolite trajectories, and b) principal component analysis plot 
explaining difference in outcome and direction of early- (solid line) and late-fasted (dashed line) 
response over time. Principal component analysis scores displaying the median points 
(±standard error) for early- and late-fasted Northern elephant seal pups in response to 
exogenous insulin infusion for c) all measured metabolites and d) orthogonal partial least 
squares discriminant analysis selected top 10% of all discriminating metabolites. The line color 
becomes darker as the time course runs from the first point (t = 0) to the end point (t = 120 min, 
arrowhead). Solid lines = early fast, dashed lines = late fast.  
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Figure 3.4.  

Self-organizing maps of the seven plasma metabolite classes (amino acids, endocannabinoids, 
fatty acids, glucose, hydroxy acids, organic acids, and primary carbon metabolites) measured 
for a) early- and b) late-fasted Northern elephant seal pups following an exogenous insulin 
infusion. Metabolite trajectories are shown within the map nodes. The seven metabolite classes 
were grouped by area under the curve (AUC) using hierarchical clustering into four clusters in 
both c) early and d) late fast. The circular diagram shows how each metabolite class transitions 
into a new cluster from early fast (left hemisphere) to late fast (right hemisphere). The 
metabolite classes are arranged according to their response to insulin with increasing values 
for AUC from top to bottom.  
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Table 3.1. 

Mean area under the curves (AUC; ± SD) for significantly different (p < 0.05) 
metabolites from the plasma metabolite classes (endocannabinoids, fatty acids, 
amino acids, carbohydrates, ketone bodies, and organic acids) measured for 
early- and late-fasted Northern elephant seal pups. The metabolite's pathway 
and metabolite class are identified. 

 

Metabolite Pathway Metabolite 
class 

Early Late 

Anandamide (AEA) Endocannabinoid 
metabolism 

Endocannabin
oid 

27 ± 71 −73 ± 27 

Oleoylethanolamide 
(OEA) 

Endocannabinoid 
metabolism 

Endocannabin
oid 

269 ± 690 −627 ± 490 

Myristic acid (C14:0) Lipid metabolism Fatty acid 36600 ± 7.2e+05 −2.4e+06 ± 
1.7e+06 

Palmitic Acid (C16:0) Lipid metabolism Fatty acid −3320 ± 6000 −13700 ± 
6400* 

Isoheptadecanoic 
acid (C17:0) 

Lipid metabolism Fatty acid −7910 ± 110000 −137000 ± 
47000 

Vaccenic Acid 
(C18:1n7) 

Lipid metabolism Fatty acid −304 ± 1700 −3380 ± 
2400 

Elaidic acid 
(C18:1n9) 

Lipid metabolism Fatty acid 4.2e+06 ± 1.6e+06 −5.5e+06 ± 
2.3e+06* 

Oleic Acid (C18:1n9) Lipid metabolism Fatty acid −3350 ± 11000 −29300 ± 
12000* 

Linoleic Acid 
(C18:2n6) 

Lipid metabolism Fatty acid −93 ± 540 −1290 ± 830 

Alanine Amino acid 
metabolism 

Amino acid −9.7e+06 ± 
4.6e+06 

5e+06 ± 
6.5e+06 

Beta-alanine Pantothenate and 
pyrimidine 
metabolism 

Amino acid −5740 ± 16000 21400 ± 
8100 

Isoleucine Amino acid 
metabolism 

Amino acid −1670000 ± 1e+06 −3.6e+06 ± 
1.2e+06 

N-acetylglutamate Amino acid 
metabolism 

Amino acid −9120 ± 9000 9730 ± 
13000 

Erythritol Carbohydrate 
metabolism 

Carbohydrate 607 ± 75000 125000 ± 
75000 

Hexuronic acid Carbohydrate 
metabolism, 
pentose 
phosphate 
pathway, ascorbic 
acid metabolism 

Carbohydrate 18600 ± 31000 81800 ± 
43000 

Isothreonic acid Carbohydrate 
metabolism, 
ascorbic acid 
metabolism 

Carbohydrate 28400 ± 35000 103000 ± 
38000 

D-arabitol Carbohydrate 
metabolism, 
pentose 
phosphate 
pathway 

Carbohydrate 9500 ± 28000 52000 ± 
15000 

Maltose Carbohydrate 
metabolism 

Carbohydrate −78600 ± 51000 34300 ± 
87000 
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D-Xylose Carbohydrate 
metabolism 

Carbohydrate 21100 ± 90000 179000 ± 
78000* 

3-Hydroxybutyric 
acid 

Ketogenesis, 
Ketolysis 

Ketone body 3.3e+06 ± 5.7e+06 −1.4e+07 ± 
7.2e+06 

Hydroxybutyric acid Ketogenesis, 
Ketolysis 

Ketone body 82600 ± 35000 194000 ± 
85000* 

Indole-3-lactate Amino acid 
metabolism 

Organic acid −2110 ± 31000 58200 ± 
24000* 

Pyruvic acid Glycolysis, 
gluconeogenesis, 
pyruvate 
metabolism 

Organic acid 6.5e+05 ± 4.9e+05 2.1e+06 ± 
7.6e+05* 

 

 

 

Symbol 

*FDR adjusted p-value <0.05
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Chapter Four: A hexokinase isoenzyme switch in human 
liver cancer cells promotes lipogenesis and enhances 
innate immunity 
 

During the cancerous transformation of normal hepatocytes into hepatocellular 
carcinoma (HCC), the enzyme catalyzing the first rate-limiting step of glycolysis, 
namely the glucokinase (GCK), is replaced by the higher affinity isoenzyme, 
hexokinase 2 (HK2). Here, we show that in HCC tumors the highest expression 
level of HK2 is inversely correlated to GCK expression, and is associated to 
poor prognosis for patient survival. To further explore functional consequences 
of the GCK-to-HK2 isoenzyme switch occurring during carcinogenesis, HK2 
was knocked-out in the HCC cell line Huh7 and replaced by GCK, to generate 
the Huh7-GCK+/HK2− cell line. HK2 knockdown and GCK expression rewired 
central carbon metabolism, stimulated mitochondrial respiration and restored 
essential metabolic functions of normal hepatocytes such as lipogenesis, VLDL 
secretion, glycogen storage. It also reactivated innate immune responses and 
sensitivity to natural killer cells, showing that consequences of the HK switch 
extend beyond metabolic reprogramming.  
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Abstract 

During the cancerous transformation of normal hepatocytes into hepatocellular 
carcinoma (HCC), the enzyme catalyzing the first rate-limiting step of glycolysis, 
namely glucokinase (GCK), is replaced by the higher affinity isoenzyme, 
hexokinase 2 (HK2). Here, we show that in HCC tumors the highest expression 
level of HK2 is inversely correlated to GCK expression, and is associated with 
poor prognosis for patient survival. To further explore functional consequences 
of the GCK-to-HK2 isoenzyme switch occurring during carcinogenesis, HK2 
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was knocked out in the HCC cell line Huh7 and replaced by GCK, to generate 
the Huh7-GCK+/HK2− cell line. HK2 knockdown and GCK expression rewired 
central carbon metabolism, stimulated mitochondrial respiration and restored 
essential metabolic functions of normal hepatocytes such as lipogenesis, VLDL 
secretion, glycogen storage. It also reactivated innate immune responses and 
sensitivity to natural killer cells, showing that consequences of the HK switch 
extend beyond metabolic reprogramming. 

  

4.1 Introduction 

Hepatocellular carcinoma (HCC) is the most common liver cancer and the 
fourth leading cause of cancer-related death1. HCC is closely linked to chronic 
liver inflammation, chronic viral hepatitis, exposure to toxins, and metabolic 
dysfunction such as non-alcoholic steatohepatitis (NASH). HCC is of poor 
prognosis, and treatments are essentially based on surgical resection, liver 
transplantation or aggressive chemo and/ or radiotherapy. In patients with 
advanced HCC, broad-spectrum kinase inhibitors are approved2 but with limited 
benefit3. Effective personalized therapies are needed but their development is 
impeded by our poor understanding of molecular mechanisms underlying HCC 
onset and progression. Efforts to characterize the disease on the basis of 
etiology and outcomes revealed metabolic deregulation as a hallmark of HCC 
progression4. Indeed, metabolic remodeling is critically required for tumor 
growth, since bioenergetic requirements and anabolic demands drastically 
increase5-7. For instance, HCC cells have lost their ability to secrete very low-
density lipoproteins (VLDL), a highly specialized function of hepatocyte and can 
only secrete low-density lipoproteins (LDL)-like lipoproteins, indicating a 
defective lipogenesis and/or lipoprotein assembly8. 

Metabolic reprogramming in cancer cells involves the modulation of several 
enzymes by oncogenic drivers6. Targeting these enzymes is now considered 
as a therapeutic strategy for several types of cancers6. Among these enzymes, 
hexokinase 2 (HK2) stands out because of its elevated or induced expression 
in numerous cancers, including HCC9. Hexokinases control the first rate-limiting 
step of glucose catabolism by phosphorylating glucose to glucose-6-phosphate 
(G6P), fueling glycolysis as well as glycogen, pentose phosphate and 
triglyceride synthesis. The human genome contains four genes encoding 
distinct hexokinase isoenzymes, named HK1 to HK4 (HK4 is also known as 
glucokinase or GCK), with distinct enzymatic kinetics and tissue distributions. 
A fifth putative hexokinase enzyme was recently discovered but has not been 
fully characterized yet10. A switch from GCK to HK2 isoenzymes is occurring 
during the transition from primary to tumor hepatocytes so that HCC cell lines 
express HK2 but no longer GCK. HK2 expression level has been correlated 
with disease progression and dedifferentiation of HCC cells11. When HK2 is 
artificially knocked down in HCC cell lines, glycolysis is repressed, and 
tumorigenesis is inhibited while cell death increases9. In addition, hexokinase 
function extends beyond metabolism towards autophagy, cell migration, and 
immunity, suggesting that the GCK-to-HK2 isoenzyme switch has broader 
consequences than initially suspected12-15. Here, we analyzed transcriptomic 
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data of HCC biopsies and correlated hexokinase isoenzyme expression level 
with patient survival. This led us to generate a new cellular model of human 
HCC expressing GCK instead of HK2. A comparative analysis of GCK+ vs HK2+ 
HCC cell lines provided a unique opportunity to look into HK isoenzyme-
dependent metabolic features, lipoprotein production and resistance to immune 
signals of liver cancer cells. 

 

4.2 Results 

4.2.1 Relative expression level of GCK and HK2 in HCC patients. 

Although an isoenzyme switch from GCK to HK2 has been observed during the 
carcinogenesis process16, whether hexokinase isoenzymes expression is 
predictive of patient survival is unclear. We first analyzed the transcriptomes 
(RNA-seq data) of 365 HCC biopsies from The Cancer Genome Atlas (TCGA) 
database17-18 (Supplementary Data 1). For each HK, the individual gene 
expression level was used to stratify patients into two subgroups according to 
Uhlen et al.18 and overall survival in the two subgroups was determined using 
a Kaplan-Meier's estimator. Although HK1 or HK3 expression level were not 
associated to patient survival rate (Fig. 1a), highest expression levels of HK2 
as previously described19 and lowest expression levels of GCK in the tumors 
were associated with a lower survival rate. We thus stratified patients based on 
the GCK/HK2 expression ratio to combine these two markers (Fig. 1b). When 
patients were stratified on the basis of HK2 or GCK expression levels, the 
median survival between the corresponding subgroups differed by 33.8 and 
36.5 months, respectively (Fig. 1a). This difference reached 42.8 months when 
the stratification of patients was based on the GCK/HK2 ratio (Fig. 1b). This 
demonstrated that the GCK/HK2 ratio outperforms HK2 or GCK expression 
alone as predictor of patient survival. Finally, correlation coefficients between 
patient survival in months and HK2 or GCK expression level were determined. 
For this, we only considered the subset of 130 patients for whom the period 
between diagnosis and death is precisely known (uncensored data), and 
performed a Spearman's rank correlation test (Fig. 1c). Patient survival was 
positively correlated to GCK expression but inversely correlated to HK2 
expression in line with the Kaplan-Meier analysis. In addition, GCK and HK2 
expression tends to be inversely correlated in tumor samples (Fig. 1c). 
Therefore, there is a trend for mutual exclusion of GCK and HK2 expression in 
HCC tumors, and this profile is associated to clinical outcome. 

4.2.2 Engineering a cellular model of the hexokinase isoenzyme switch. 

To decipher functional consequences of GCK or HK2 expression in a HCC 
model, we restored GCK expression by lentiviral transduction in the reference 
HCC cell line Huh7, and knocked-out the endogenous HK2 gene by 
CRISPR/Cas9. The exclusive expression of HK2 and GCK in Huh7 and Huh7-
GCK+/HK2− cell lines, respectively, was validated, while HK1 and HK3 were not 
expressed (Fig. 2a and Supplementary Fig. 1). The hexokinase activity in the 
presence of increasing concentration of glucose was determined in protein 
lysates from the two respective cell lines. Hexokinase activity in Huh7 lysate 
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reached its maximum at low glucose concentration, presenting a saturation 
curve according to Michaelis-Menten kinetics (Fig. 2b). In contrast, the 
hexokinase activity in Huh7-GCK+/HK2− lysates followed a pseudo-allosteric 
response to glucose20-21. Thus, the expected HK2 and GCK activities were 
observed in the Huh7 and Huh7-GCK+/HK2− cells respectively. The cell 
proliferation capacity remained identical between the two cell lines 
(Supplementary Fig. 2). We then compared the genome edited Huh7-
GCK+/HK2− and the parental Huh7 cell lines at a transcriptomic, metabolic and 
immunological level. 

4.2.3 Differential lipid metabolism in Huh7 and Huh7-GCK+/HK2−. 

The intracellular lipid content of the two cell lines was further analyzed. In Huh7-
GCK+/HK2−, an enrichment in phosphatidylcholine, cholesterol, triglycerides 
(TG) and free fatty acids was observed compared to Huh7 (Fig. 4a). One major 
function of hepatocytes is to secrete triglyceride-rich VLDL and this function is 
altered in HCC cells that secrete smaller lipoproteins with the density of LDL22-

23. The secretion of lipids and lipoproteins by both cell lines was analyzed after 
a 24h-culture in the absence of fetal calf serum (FCS) to exclude any 
participation of exogenous lipids in the production of lipoproteins. Huh7-
GCK+/HK2− secreted more free fatty acids than Huh7 while secretion of 
cholesterol and TG remained unchanged (Fig. 4b). 

However, under the same conditions, the secretion of apolipoprotein B (ApoB) 
by Huh7-GCK+/HK2− was reduced compared to Huh7. Since ApoB is a non-
exchangeable protein with only one copy in VLDL and LDL particles, an 
elevated TG/ApoB ratio indicates that ApoB+-lipoproteins secreted by Huh7-
GCK+/HK2− cells are enriched in TG compared to those secreted by Huh7 (Fig. 
4c). This was confirmed by the ApoB distribution in density gradient fractions. 
As expected, lipoproteins secreted by Huh7 sediment at the density of LDL, 
while those secreted by Huh7-GCK+/HK2− (Fig. 4d) match the density of VLDL 
found in human plasma or secreted by primary human hepatocytes in culture24-

25. This indicates that GCK expression is essential for the VLDL 
assembly/secretion pathway and could explain the loss of this crucial metabolic 
pathway in hepatoma cells expressing HK2 instead of GCK26. 

4.2.4 Differential activity of the tricarboxylic acid cycle (TCA) in Huh7 and 
Huh7-GCK+/HK2−. 

We observed that GCK expression increased the intracellular content in lipids, 
resulting in accumulation of lipid droplets and secretion of VLDL. A rewiring of 
cellular metabolism towards energy storage in Huh7-GCK+/HK2− was thus 
suspected and confirmed by the accumulation of glycogen, creatine and 
creatine-P (Fig. 5a, b), a feature of functional hepatocytes. To further determine 
the consequences of replacing HK2 by GCK, we quantified prominent 
intracellular metabolites via gas chromatography coupled to triple-quadrupole 
(QQQ) mass spectrometry (GC-MS). Figure 5c shows relative intracellular 
quantities of metabolites that are significantly different between Huh7 and 
Huh7-GCK+/HK2−. Among differentially represented metabolites, higher levels 
of glucose, glycerol-3-phosphate and lactic acid were detected in Huh7-
GCK+/HK2− cells. Several intermediates of the TCA cycle (succinic acid, 
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fumaric acid, alpha-ketoglutaric acid), and metabolites directly connected to it 
(GABA, glutamic acid, glutamine, aspartic acid) were also differentially present 
between the two cell lines. This supports a modulation of central carbon 
metabolism at both the level of glycolysis and TCA cycle. This led to investigate 
glucose catabolism in further details. Glucose consumption and stable isotope 
incorporation from [U-13C]-glucose into pyruvate were both increased in Huh7-
GCK+/HK2− compared to Huh7 cells (Fig. 5d, e). This increased glycolytic flux 
together with a reduced lactate secretion (Fig. 5d) is likely to account for the 
elevation of lactate levels and suggest that the increased pyruvate production 
essentially fuels mitochondrial TCA cycle in Huh7-GCK+/HK2− cells. 

Pyruvate entering the mitochondria downstream of glycolysis can be either 
oxidized by pyruvate dehydrogenase (PDH), producing acetyl-CoA, or 
converted into oxaloacetate (OAA) by pyruvate carboxylase (PC). Acetyl-CoA 
and OAA are then combined in the TCA cycle to form citrate. De novo 
lipogenesis requires citrate egress from the TCA cycle to serve as a precursor 
of cytosolic acetyl-CoA for further synthesis of fatty acids. In Huh7-GCK+/HK2− 
cells, we observed both an increased activity of PC (Fig. 5f) without changes in 
protein expression (Fig. 5g and Supplementary Fig. 7a) and an increased 
phosphorylation of pyruvate dehydrogenase (PDH), which is indicative of a 
reduced activity of this enzyme (Fig. 5h and Supplementary Fig. 7b). This is 
consistent with the increased expression of the PDH kinase PDK2 and the 
decreased expression of the PDH phosphatase PDP2 in Huh7-GCK+/HK2− 
cells that regulate the PDH phosphorylation state (Fig. 5i). A rebalanced usage 
of pyruvate in Huh7-GCK+/HK2− cells maintains a functional TCA cycle and 
supports lipogenesis. In Huh7-GCK+/HK2− cells, we also observed an 
increased phosphorylation of ATP citrate lyase (ACLY), the first enzyme of the 
fatty acid synthesis pathway, indicating an enhanced activity of this enzyme 
(Fig. 5j and Supplementary Fig. 7c). This reaction also regenerates OAA in the 
cytosolic compartment. Interestingly, transcriptomic data show that PCK1 
which converts OAA to phosphoenolpyruvate (PEP), is overexpressed in Huh7-
GCK+/HK2− cells compared to Huh7 (FC = 32). 

A shift from pyruvate oxidation to carboxylation is observed in cancer cells 
where succinate dehydrogenase (SDH) is inactivated by mutation and OAA can 
only be generated through PC activity27. SDH inhibition leads to succinate 
accumulation, especially in activated immune cells28. Interestingly, higher levels 
of succinate and a reduced activity of SDH were measured in Huh7-GCK+/HK2− 
compared to Huh7 cells (Fig. 5k, l). Even though SDH is also part of the 
complex II of the mitochondrial respiratory chain, we observed that the overall 
oxygen consumption was increased in Huh7-GCK+/HK2− (Fig. 5m) with 
increased basal and maximal respiration, ATP production and spare respiration 
capacity (Supplementary Fig. 8). Functional analysis of the respiratory chain 
showed that oxygen consumption in Huh7 and Huh7-GCK+/HK2− cells was 
mainly dependent on complex I activity (Fig. 5m, n). Thereby, the HK 
isoenzyme switch rewired the TCA cycle promoting carboxylation of pyruvate 
into OAA in the presence of a reduced SDH activity and increased respiration 
through complex I. 
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4.3 Discussion 

Metabolic network rewiring is a hallmark of cancer, although for most tumors, 
mechanisms at the origin of this metabolic reprogramming have not been 
elucidated. While GCK, but not HK2, is expressed in normal hepatocytes, the 
expression of HK2 occurs during cirrhosis and increases as the disease 
progresses to carcinoma. Several signaling pathways such as hypoxia 
inducible factors (HIF), peroxisome proliferator-activated receptors (PPAR) and 
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) might contribute to HK2 
induction in fatty liver disease and its evolution towards cirrhosis and 
carcinogenesis29-31. Consequently, HK2 induction has been proposed as a risk 
marker of HCC development16. Analyzing TCGA data from human HCC tumors, 
we observed that not only high levels of HK2 but also low levels of GCK are of 
poor prognosis. In contrast, neither HK1 nor HK3 expression levels were 
correlated with survival of HCC patients. GCK expression is very low or not 
detected in biopsies from a majority of patients (65.8% of patients show RSEM 
values <10), whereas HK2 is widely expressed16 (only 5.8% of patients show 
RSEM values <10). This probably explains that HK2 expression is a better 
prognostic marker than GCK for HCC. However, when GCK and HK2 
expression were combined into a single ratio, this prognostic marker 
outperformed HK2 or GCK expression alone. This suggests that both HK2 
induction and GCK loss play a role in HCC progression. As HK2 and GCK 
expression tend to be mutually exclusive, both HK2 induction and GCK 
downregulation might have consequences on the metabolic reprogramming 
during malignant transformation of hepatocytes. To compare the functional 
consequences of the HK isoenzyme switch in HCC, we therefore expressed 
GCK in the reference HCC cell line Huh7 and knocked-down HK2 expression. 
Our comparative transcriptomic, metabolic and functional studies demonstrate 
that the replacement of HK2 by GCK not only restored some essential 
metabolic functions of normal hepatocytes such as lipogenesis, VLDL secretion 
and glycogen storage but also reactivated innate immune responses and 
sensitivity to NK-mediated cell lysis. 

HCC cell lines predominantly secrete LDL-like particles, unlike normal 
hepatocytes, which secrete VLDL. Lipid loading of Huh7 cells with oleic acid 
can boost the secretion of ApoB+ particles but does not induce a shift from LDL 
to VLDL density, indicating that intracellular fatty acid accumulation of 
exogenous origin cannot rescue VLDL production26. Here we show that 
replacing HK2 by GCK in Huh7 cells restored de novo fatty acid synthesis, 
allowing VLDL assembly/secretion in the absence of exogenous lipids. To our 
knowledge Huh7-GCK+/HK2− is the first human cell model with a functional 
VLDL secretion pathway. Such a tool will strongly benefit the field of 
cardiovascular diseases and hepatic steatosis. 

De novo fatty acid synthesis from carbohydrates requires an adequate supply 
in metabolic substrates, especially citrate that is produced by the TCA cycle 
from incoming pyruvate. The glycolytic entry point into the TCA cycle is 
controlled by PDH and PC that convert pyruvate into acetyl-CoA or OAA, 
respectively. Our data revealed that in addition to the increased production of 
pyruvate from glucose, PC activity is increased whereas PDH is inhibited. This 
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suggests that pyruvate metabolism is rebalanced in favor of OAA in Huh7-
GCK+/HK2− cells, as described in healthy liver. Such a mechanism of 
anaplerosis is known to replenish TCA cycle intermediates and compensate 
citrate export out of the mitochondria for lipogenesis fueling. Increased PC 
activity is observed in both normal and pathological situations, mainly as a 
result of an increased transcription of the PC gene. In our model, mRNA and 
protein levels were not affected, indicating that PC activity can be regulated by 
alternative mechanisms depending on HK isoenzyme expression. This may 
relate to lower levels of oxalate, a known inhibitor of PC activity, in Huh7-
GCK+/HK2− cells (Fig. 5c and Fig. 7 discussed below). 

A rebalanced pyruvate usage in favor of OAA is also described for instance in 
SDH-deficient neuroendocrine tumor cells, where succinate accumulates and 
PC activity is increased to maintain OAA production, replenish the oxidative 
TCA cycle and support aspartate synthesis27. Interestingly, in comparison to 
Huh7 cells, succinate and aspartate levels are elevated in Huh7-GCK+/HK2− 
where SDH activity is reduced, suggesting a direct link between PC and SDH 
activity in hepatocytes. Several mechanisms inhibiting SDH have been 
described32. Modification of the expression of SDH subunits is unlikely as no 
variation was observed at the transcriptomic level. Itaconate is a weak inhibitor 
of SDH produced from aconitate by Immune-responsive gene 1 protein (IRG1; 
encoded by ACOD1), but this metabolite was not detected and IRG1 mRNA 
was absent from the transcriptome of both cell lines. Whether fumarate or other 
metabolites are responsible for the reduced SDH activity in GCK-expressing 
cells remains to be investigated. Finally, SDH-deficient cells and LPS-
stimulated macrophages have been shown to elicit a hypoxic-like phenotype 
through accumulation of large amounts of succinate and stabilization of HIF-
1α33-34. Despite an elevated succinate steady-state level in Huh7-GCK+/HK2− 
compared to Huh7 cells, we observed no difference in HIF-1α stabilization 
neither at basal level nor upon induction (Supplementary Fig. 12). This 
suggested that the reduction of SDH activity in Huh7-GCK+/HK2− cells was not 
strong enough to induce such a pseudo-hypoxic phenotype. 

Our gene-centric metabolic analysis of transcriptomic data revealed a wide 
spreading of metabolic modifications resulting from HK isoenzyme switch. 
Illustrating these modifications, Fig. 7 is an attempt to integrate the observed 
changes in central carbon metabolism and closely connected metabolic 
pathways. In particular, decreased level of alanine and increased aspartate 
concentration in Huh7-GCK+/HK2− cells could be an indirect effect of PC 
activation that uses pyruvate for the synthesis of OAA. As a consequence, 
hepatic transaminases may balance intracellular pools of OAA, aspartate, 
alanine and pyruvate. Glutamate and GABA levels were also modified, thus 
supporting anaplerosis of the TCA cycle through glutamine consumption and 
the GABA shunt pathway, respectively. We also observed lower levels of 
oxalate, an end-product of glyoxylate degradation. In Huh7-GCK+/HK2− cells, 
increased levels of alanine-glyoxylate and serine-pyruvate aminotransferase 
(AGXT) could account for this phenotype as it converts alanine and glyoxylate 
into pyruvate and glycine, which is also increased. Interestingly, high level of 
AGXT is a good prognostic marker for HCC35. Consistently, it was found that 
oxalate inhibits liver PC, resulting in reduced gluconeogenesis and 
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lipogenesis36-37. Thus, a higher PC activity could be explained by lower levels 
of oxalate in Huh7-GCK+/HK2− cells. We also observed that isoleucine and 
valine levels increased while branched chain amino acid transaminase 1 
(BCAT1) predominant transcripts decreased. This suggests a reduced 
catabolism of branched chain amino acids in Huh7-GCK+/HK2− cells. Again, 
low levels of BCAT1 is a good prognostic marker for HCC and oral 
supplementation with branched chain amino acids has been shown to reduce 
the risk of liver cancer in cirrhotic patients38-39. If some metabolic modifications 
seem to advocate for the restoration of a normal hepatocyte phenotype 
following the replacement of HK2 by GCK, it cannot be a general statement. 
Indeed, the urea cycle was also impacted in Huh7-GCK+/HK2− cells with lower 
levels of CPS1 and OTC, which are also observed in aggressive HCC tumors40. 
Altogether, our results demonstrate the broad impact of replacing HK2 by GCK 
in HCC cells, and the key role played by the HK isoenzyme switch in HCC tumor 
metabolism. 

Taken together, our data demonstrate that beyond glycolysis, the hexokinase 
isoenzyme switch in an HCC model rewires central carbon metabolism, 
promotes lipogenesis, enhances innate immune functions, and restores 
sensitivity to natural killer cells. 

 

4.4 Methods 

Unless otherwise specified, chemicals were from Merck Sigma-Aldrich. The 
RIG-I specific ligand 3p-hpRNA and the MDA5/TLR3 ligand poly(I:C) HMW 
(High Molecular Weight) were from Invivogen. 

4.4.1 Cell cultures. 

Cell cultures were tested negative for mycoplasma contamination by PCR 
(mycoplasma check, eurofins). Huh7 cells were authenticated by Eurofins 
Medigenomix Forensik GmbH using PCR-single-locus-technology. 21 
independent PCR-systems Amelogenin, D3S1358, D1S1656, D6S1043, 
D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, 
vWA, D21S11, D7S820, D5S818, TPOX, D8S1179, D12S391, D19S433 and 
FGA (Promega, PowerPlex 21 PCR Kit) were investigated to determine their 
genetic characteristics. Huh7 cells and derivatives were grown as previously 
described41 in DMEM, 10% fetal calf serum (FCS), penicillin/streptomycin, 1 
mM pyruvate, 2 mM L-glutamine. Culture medium and additives were from 
Gibco except FCS (Dominique Dutcher). 

4.4.2 Cell lines. 

Huh7 cells (15×104) were transduced for GCK expression at different 
multiplicities of infection (lentiviral transduction using the pLEX-GCK construct). 
The Huh7-GCK+/HK2+ cells were then cultured for 7 days with puromycin (1 
μg/mL) before amplification. HK2 knock-out was achieved using the CRISPR/ 
Cas9 system as previously described42 to obtain Huh7-GCK+/HK2− cells. 
Briefly, a single guide RNA (sgRNA) pair was designed for double nicking using 
the CRISPR Design Tool (http://tools.genome-engineering.org). The guide 
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sequence oligos (sgRNA1(HK2): 5'-CACCGTGACCACATTGCCGAATGCC-3' 
and sgRNA2(HK2): 5'-CACCGTTACCTCGTCTAGTTTAGTC-3') were cloned 
into a plasmid containing sequences for Cas9 expression and the sgRNA 
scaffold (pSpCas9(BB)-2A-GFP, Addgene plasmid #48138). 48 h post-
transfection, cells were sorted by FACS based on the transient expression of 
GFP and cloned by limiting dilution. Effective deletion of HK2 was assessed by 
qPCR. 

For HK2 knock-down, Huh7-GCK+/HK2+ cells were transduced with lentiviral 
vectors expressing HK2-targeting shRNAs, and antibiotic selection was applied 
(hygromycin; 100 µg/ml). The HK2-targeting sequence 
5'CCGGCCAGAAGACATTAGAGCATCTCTCGAGAGATGCTCTAATGTCTT
CTGGTTTTTT-3' was cloned in the pLKO.1 hygro vector (a gift from Bob 
Weinberg; Addgene plasmid #24150). HK2 expression in Huh7-GCK+/HK2+ 
and Huh7-GCK+/HK2−Sh was analyzed on cell lysates by western blotting 
(Supplementary Fig. 10). 

4.4.3 Enzymatic activity assays. 

Cells were trypsinized, washed twice, and cell pellets were stored at −80 °C. 
Protein extractions and assays were performed in specific buffers for 
hexokinase and pyruvate carboxylase assays as described below. 

4.4.4 Hexokinase activity assay. 

The method used for monitoring HK activity in cells lysates was adapted from 
Kuang et al.43-45 Cellular pellets stored at −80 °C were thawed and immediately 
homogenized (2×106 cells/100 µl) in precooled reaction buffer. (0.05 M Tris–
HCl, 0.25 M sucrose, 0.005 M EDTA, 0.005 M 2-mercaptoethanol, pH = 7.4). 
After 20 min incubation on ice, homogenates were pulsesonicated 15 s at half 
power (EpiShear Probe Sonicator). Homogenates were then centrifuged at 500 
g for 20 min at 4 °C. Supernatants were immediately used for determination of 
HK activity, which was measured spectrophotometrically through NADP+ 
reduction in the glucose 6-phosphate dehydrogenase-coupled reaction. HK 
activity was assayed in medium containing 50 mM triethanolamine (pH = 7.6), 
10 mM MgCl2, 1.4 mM NADP+, with variable concentration of glucose and 1 U 
glucose 6-phosphate dehydrogenase (S. cerevisiae), equilibrated to 37 °C. The 
reaction was started by addition of ATP (final concentration 1.9 mM), and 
absorbance was continuously recorded for 30 min at 340 nm (TECAN Infinite 
M200). 

4.4.5 Pyruvate carboxylase activity assay. 

The method used for quantification of PC activity was adapted from Payne et 
al.46 Briefly, cells were centrifuged, washed twice with ice-cold PBS before 
homogenization in Tris-HCL 100 mM, pH = 8.0 using a Dounce homogenizer. 
Homogenates were pulse-sonicated 15 s at half power (EpiShear Probe 
Sonicator) before centrifugation at 500 g for 5 min. Supernatants were 
immediately used for the assay. PC activity was assayed in medium containing 
100 mM Tris-HCl, 50 mM NaHCO3, 5 mM MgCl2, 0.1 mM Acetyl-CoA, 0.25 mM 
6,6'-Dinitro-3,3'-dithiodibenzoic acid (DTNB), 5 mM ATP, 5 mM pyruvate, citrate 
synthase and cofactors. Reduction of DTNB by the generated free CoA was 
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measured continuously by Abs at 412 nm and recorded for 30 min (TECAN 
Infinite M200). The same assay was performed in absence of pyruvate to 
subtract background signal. 

4.4.6 Metabolomics profiling. 

Cells were seeded at 13×105 cells per 75 cm2 dishes. After 24 h, supernatant 
was removed and replaced by fresh culture medium. For quantification of 
metabolic flux from glucose, culture medium was supplemented with both [U-
13C]-glucose (Sigma-Aldrich; 389374-2 G) and unlabeled glucose at a 50:50 
ratio (final concentration of 25 mM glucose). After 24 h, cells were harvested, 
washed twice with ice-cold PBS and cell pellets were frozen at -80 °C until 
metabolites extraction. Cell pellets were transferred into a pre-chilled 
microcentrifuge tube with 1 mL cold extraction buffer consisting of 50% 
methanol (A452, Fisher Scientific) in ultrapure water. Samples were then frozen 
in liquid nitrogen, thawed, and placed in a shaking dry bath (Thermo Fisher 
Scientific, Waltham, MA) set to 1100 rpm for 15 min at 4 °C. After centrifugation 
for 15 min at 12500 g and 4 °C (Sorvall, Thermo Fisher Scientific) using a fixed-
angle F21-48×1.5 rotor, supernatants were collected and dried by vacuum 
centrifugation overnight. Dried metabolites were derivatized by addition of 20 
μL of 2.0% methoxyaminehydrochloride in pyridine (MOX, TS-45950, Thermo 
Fisher Scientific) followed by incubation during 90 min in shaking dry bath at 30 
°C and 1100 rpm. Ninety μL of N-methyl-N-trimethylsilyltrifluoroacetamide 
(MSTFA, 701270.201, MachereyNagel) was added, and samples were 
incubated and shaken at 37 °C for 30 min before centrifugation for 5 min at 
14,000 rpm and 4 °C. Metabolites contained in the supernatant were then 
separated by gas chromatography (GC, TRACE 1310, Thermo Fisher 
Scientific) coupled to a triple-quadrupole mass spectrometry system for 
analysis (QQQ GCMS, TSQ8000EI, TSQ8140403, Thermo Fisher Scientific), 
equipped with a 0.25 mm inner diameter, 0.25 μm film thickness, 30 m length 
5% diphenyl / 95% dimethyl polysiloxane capillary column (OPTIMA 5 MS 
Accent, 725820.30, Macherey-Nagel) and run under electron ionization at 70 
eV. Using established separation methods47-49, the GC was programed with an 
injection temperature of 250.0 °C and splitless injection volume of 1.0 μL. The 
GC oven temperature program started at 50 °C (323.15 K) for 1 min, rising at 
10 K/min to 300.0 °C (573.15 K) with a final hold at this temperature for 6 min. 
The GC flow rate with helium carrier gas (HE, HE 5.0UHP, Praxair) was 1.2 
mL/min. The transfer line temperature was set at 290.0 °C and ion source 
temperature at 295.0 °C. A range of 50-600 m/z was scanned with a scan time 
of 0.25 s. 

4.4.7 Metabolomics data processing. 

Metabolites were identified using TraceFinder (v3.3, Thermo Fisher Scientific) 
based on libraries of metabolite retention times and fragmentation patterns 
(Metaflux, Merced, CA). Identified metabolites were quantified using the 
selected ion count peak area for specific mass ions, and standard curves 
generated from reference standards run in parallel. Peak intensities were 
median normalized. The mean and standard deviation for each quantified 
metabolite was calculated for each cell line and treatment condition. A 
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univariate t-test was used to compare treatment conditions for each metabolite 
and cell line. 

4.4.8 Intracellular lipid staining. 

For fluorescence microscopy staining of intracellular lipids, cells were seeded 
and cultured during 48 h before staining with Oil-Red-O. Cells were fixed 15 
min at RT with a 4% formaldehyde solution, washed twice with water before a 
5 min incubation with isopropanol 60%. Isopropanol was then removed and Oil-
Red-O solution (Millipore Sigma-Aldrich) added on cells for 15 min at RT. Cells 
were then extensively washed with water to remove the exceeding dye before 
nucleus counterstaining with NucBlue Fixed Cell Stain ReadyProbes reagent 
(ThermoFisher Scientific) and observation with a Nikon Eclipse Ts2R 
microscope (x60). For the quantification of intracellular lipid droplets by flow-
cytometry, cells were stained with the BODIPY® 493/503 dye (Tocris 
BioTechne) after 48 h of culture. The cells were washed with PBS before being 
incubated for 5 min with a 5 μM BODIPY solution in PBS at 37 °C. Cells were 
then washed with PBS before trypsination and FACS analysis. A 7-AAD 
(BioLegend) staining of dead cells, prior to FACS analysis, allowed gating on 
living cells. 

4.4.9 Protein, ApoB, and lipid quantification. 

Protein concentration was determined using the DC Protein Assay (Bio-Rad). 
ApoB concentration in medium and gradients fractions was determined by 
ELISA as previously described50. Total concentrations of cholesterol, 
phospholipids, and triglycerides (TG) were determined using specific assays 
from Millipore Sigma-Aldrich (ref. MAK043, MAK122 and MAK266 
respectively). Free Fatty Acids were quantified using a specific assay kit from 
Abcam (ref. ab65341). 

4.4.10 Iodixanol density gradients. 

Iodixanol gradients were prepared as previously described51. One mL of culture 
supernatant was applied to the top of 6 to 56% iodixanol gradients and 
centrifuged for 10 h at 41,000 rpm and 4 °C in a SW41 rotor. The gradient was 
harvested by tube puncture from the bottom and collected into 22 fractions (0.5 
mL each). The density of each fraction was determined by weighing. 

4.4.11 Metabolic network coherence computational analysis. 

In order to measure the consistency of differentially expressed genes with a 
metabolic network, we employed the metabolic network coherence measure 
introduced by Sonnenschein et al.52 This approach was previously applied to 
various disease-related transcriptome profiles53-54 and for extracting 
information on the genetic control of metabolic organization55. Recently, 
detailed theoretical analysis of the extended version of the method has been 
performed by Nyczka and Hütt56. Here, we first extracted a gene-centric 
metabolic network from a given genome-scale metabolic model. This was 
achieved via the stoichiometric matrix and the gene-reaction associations 
contained in the metabolic model. We constructed the two projections of the 
bipartite graph represented by the stoichiometric matrix, yielding a metabolite-
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centric and a reaction-centric graph. The metabolite-centric graph allowed us 
to identify high-degree nodes ('currency metabolites' like H2O, ATP, etc.), which 
are not informative about the network-like organization of the metabolic 
systems and need to be eliminated before interpreting the network architecture 
(see references53,57 for details). The degree of a node is the number of 
neighbors the node has in the network. The percentage of remaining 
metabolites is one of the parameters of our analysis. Typical values are 90 to 
98 percent (i.e., a removal of the highest 2 to 10% of metabolites with the 
highest degree as currency metabolites). After recomputing the reaction-centric 
graph based on the reduced number of metabolites (Supplementary Fig. 3), we 
can now evaluate the gene-reaction associations to arrive at a gene-centric 
metabolic network (Supplementary Fig. 3). Given a set S of differentially 
expressed genes and the gene-centric metabolic network G, we can now 
analyze the subgraph of G spanned by all genes in S. The average clustering 
coefficient C in these subgraphs serves as a measure of the connectivity of this 
subgraph. The metabolic network coherence MC is the z-score of C computed 
with respect to a null model of randomly drawn gene sets with the same size as 
S (Supplementary Fig. 4). In this way, MC has an intuitive interpretation: The 
value of MC indicates, how many standard deviations away from randomness 
the clustering of the subgraph spanned by the observed gene set S actually is 
(Supplementary Fig. 4 and reference58). The genome-scale metabolic models 
employed here are the generic human metabolic model Recon 259. In general, 
different network measures can be used for evaluation of MC. In the scope of 
this study, we have tested several of them, but opted for average clustering 
coefficient C, as it yielded strongest statistical signal. 

4.4.12 Western blot analysis. 

Cell lysates from 106 cells were prepared in lysis buffer (1% Triton X-100, 5 mM 
EDTA in PBS with 1% protease inhibitor cocktail (P8340; Millipore Sigma-
Aldrich) and 2 mM orthovanadate). After elimination of insoluble material, 
proteins were quantified, separated by SDS-PAGE and analyzed by western-
blot on PVDF membrane. After saturation of the PVDF membrane in PBS-0.1% 
Tween 20 supplemented with 5% (w/v) non-fat milk powder, blots were 
incubated 1 h at room temperature with primary antibody in PBS-0.1% Tween 
20 (1:2,000 dilution for all antibodies unless specified otherwise). Incubation 
with secondary antibody was performed after washing for 1 h at room 
temperature. HRP-labeled anti-goat (Santa Cruz Biotechnology), anti-rabbit 
(A0545, Millipore Sigma-Aldrich) or anti-mouse (Jackson ImmunoResearch 
Laboratories) antibodies were diluted 20,000-fold and detected by enhanced 
chemiluminescence reagents according to the manufacturer's instructions 
(SuperSignal Chemiluminescent Substrate, Thermo Fisher Scientific). Primary 
antibodies used for immunoblotting included mouse monoclonal antibody 
against human GCK (clone G-6, Santa Cruz Biotechnology), rabbit monoclonal 
antibody against human HK2 (Clone C64G5, Cell Signaling Technology), rabbit 
monoclonal antibody against human HK1 (C35C4, Cell Signaling), rabbit 
polyclonal antibody against human HK3 (HPA056743, Millipore Sigma-Aldrich), 
goat polyclonal antibody against human ACLY (SAB2500845, Millipore Sigma-
Aldrich), rabbit polyclonal antibody against human pACLY (phospho S455, Cell 
Signaling Technology), rabbit monoclonal antibody against human PDH α1 
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subunit (C54G1, Cell Signaling Technology), rabbit monoclonal antibody 
against human pPDH E1-alpha subunit (phospho S293, Abcam), goat 
polyclonal antibody against human PC (SAB2500845, Millipore Sigma-Aldrich), 
rabbit monoclonal antibody against human GAPDH (D16H11, Cell Signaling 
Technology) and rabbit polyclonal antibody against human HIF-1α (NB100-134, 
Novus Biologicals; 1:500 dilution). 

4.4.13 Statistics and reproducibility. 

All the statistical analyses were performed with GraphPad Prism or Analyse-it 
software. Details of statistical analyses can be found in figure legends. Two-
sided statistical analyses were performed on experiments reproduced at least 
3 times independently. The exact p values are indicated either directly in the 
figure or in the legend. The exact sample size (n) is given in the legend of each 
figure. The mean ± standard error of the mean (SEM) is displayed, unless 
otherwise stated. Confidence interval was set to 95% in all statistical tests. 

4.4.14 Reporting summary. 

Further information on research design is available in the Nature Research 
Reporting Summary linked to this article. 

 

4.5 Data availability 

The data generated or analyzed during this study are included in the article and 
supplementary files. The transcriptomes of the 365 HCC biopsies analyzed in 
the current study were obtained from The Cancer Genome Atlas (TCGA) 
database and are available in Supplementary Data 1. The RNA-seq data for 
Huh7 and Huh7-GCK+/HK2− cell lines are available in Supplementary Data 2 
and at the Gene Expression Omnibus database with the accession number 
GSE144214 for entire raw data. Source data and calculations for all 
experiments can be found in Supplementary Data 4. Uncropped images of 
western are provided in Supplementary Figs. 1 and 7. 
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Figure 4.1. Correlation between hexokinase expression levels in HCC 

tumors and patient survival. 

a) Kaplan-Meier estimates of the survival of HCC patients depending on the expression of 

HK1, HK2, HK3 and GCK (HK4) genes in tumor biopsies (n = 365; diploid samples; TCGA 

expression data retrieved from cBioPortal; Firehose Legacy)60-61. Duplicate analyses from the 

same patient were removed as well as patients who died when biopsied (overall survival=0 

months or not specified). Optimal stratification based on highest and lowest gene expression 

values was determined using Protein Atlas database18. 

b) Same as above but patients were stratified based on the GCK/HK2 gene expression ratio. 

The stratification showing the lowest p value when comparing subgroups of patients with the 

highest to the lowest GCK/HK2 expression ratio is displayed. Patient TCGA-DD-AAE9 

exhibiting undetectable levels of GCK and HK2 was removed from this analysis as the 

GCK/HK2 ratio could not be calculated. 

c) Correlations between patient survival, GCK expression and HK2 expression. Spearman’s 

rank correlation test on the subset 130 patients for whom the period between diagnosis and 

death is precisely known (uncensored data).  
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Figure 4.2. Hexokinase isoenzyme switch in Huh7 cells induces 

extended modifications of metabolic connections. 

a) Western blot analysis of HK1, HK2, HK3 and GCK expression in Huh7 and Huh7-

GCK+/HK2−. 

b) Hexokinase activity in homogenates of Huh7 and Huh7-GCK+/HK2− cells. Means ± SEM 

are presented (n = 3). 

c) Number of genes changing their expression pattern in Huh7 and Huh7-GCK+/HK2− cells 

(see Supplementary Data 2 for details). 

d) Heatmap showing clustering enrichment scores of the networks obtained when mapping 

differentially expressed genes to the human metabolic model Recon2. Clustering enrichment 

scores from the highest in red to the lowest in blue were calculated for different gene 

expression thresholds (Log2 | FC | ) and percentages of retained currency metabolites. 

e) Gene network corresponding to the maximal clustering enrichment score (Log2 | FC | > 3; 

removed currency metabolites = 2%). The transcription of nodes in green was upregulated 

and those in red downregulated in Huh7-GCK+/HK2− compared to Huh7 cells. Plain edges 

mark co-regulation between nodes and broken edges inverse regulation at the transcriptional 

level.  
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Figure 4.3. Huh7-GCK+/HK2− cells have a higher migration capacity and 

lipid droplets content. 

a), b) Results of transwell migration tests. a Representative images and b count of migrating 

cells (n = 3). 

c) Oil Red-O staining of lipid droplets (red) with nucleus counterstaining (blue). 

d) Quantification of intracellular lipids by FACS after BODIPY staining (n = 6). Means ± SEM 

are indicated and p values were determined by Student's t-test.   
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Figure 4.4. Lipogenesis and very-low-density lipoproteins (VLDL) 

secretion are restored in Huh7-GCK+/HK2− cells. 

a) Quantification of intracellular lipids in total cell extracts of Huh7 and Huh7-GCK+/HK2− cells 

(n = 3). 

b) Lipids and ApoB secretions in supernatants of cells cultured 24 h without FCS (n = 6 for 

Cholesterol, n = 3 for FFA and n = 10 for TG and ApoB). 

c) TG/ApoB molar ratio calculated from quantifications determined in b (n =10). 

d) Supernatants of Huh7 and Huh7-GCK+/HK2− were analyzed by ultracentrifugation on 

iodixanol density gradients. ApoB was quantified in each fraction by ELISA (one 

representative experiment). Presented data correspond to means ± SEM of indicated number 

of independent experiments and p values were determined by Student's t-test.   
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Figure 4.5. TCA rewiring after hexokinase isoenzyme switch in Huh7 

cells. 

a) Glycogen quantification. 

b) Creatinine and creatinine-P quantification. 

c) This bubble chart compares intracellular metabolomes of Huh7 and Huh7-GCK+/HK2− 

cells. Metabolite pool sizes larger in Huh7 are indicated in blue, whereas the one larger in 

Huh7-GCK+/HK2− are shown in red. The size of bubbles inversely scales with p values 

between 5.10−2 and 1.10−17 of differential metabolomics responses. 

d) Metabolic fluxes for overall glucose consumption and lactate secretion by Huh7 and Huh7-

GCK+/HK2− cells. Indicated values correspond to differences in glucose or lactate 

concentrations in extracellular culture medium before and after 24 h of culture. 

e) Mass isotopomer distribution vector of pyruvate in cells cultured with [U-13C]-glucose. 

Presented data correspond to n = 24 (c, d) or n = 16 (e) acquired spectra from N = 6 and N = 

4 independent specimens, respectively. 

f) Pyruvate carboxylase (PC) activity determined in cell homogenates. 

g) Western blot analysis of PC expression in Huh7 and Huh7-GCK+/HK2− cells. 

h) Western blot analysis of pyruvate dehydrogenase (PDH) E1-alpha subunit phosphorylation 

at Ser293. 

i) RNA-seq quantification of pyruvate dehydrogenase kinase 2 (PDK2) and pyruvate 

dehydrogenase phosphatase 2 (PDP2) (BH adjusted p value<0.05 from transcriptomic data). 

j) Western blot analysis of ATP-citrate Lyase (ACLY) phosphorylation at Ser455. 

k) Succinate quantification in cell homogenates. 

l) Succinate dehydrogenase (SDH) activity determined in cell homogenates. 

m) Oxygen consumption rate (OCR) in Huh7 and Huh7-GCK+/HK2− cells was determined 

with a Seahorse analyzer before and after the addition of oligomycin (Complex V inhibitor), 

FCCP (uncoupling agent), rotenone (Complex I inhibitor) and antimycin A (Complex III 

inhibitor) (n = 5). 

n) Non-mitochondrial, complex I-dependent and complex III-dependent maximal OCR were 

calculated from m. Except otherwise indicated, data correspond to means ± SEM of 3 

independent experiments and p values were determined by Student's t-test.  



76 
 

 
 

  

   



77 
 

 
 

Figure 4.6. Innate immune response is enhanced in Huh7-GCK+/HK2− 

cells. 

a) Sector chart from the transcriptomic study showing genes included in the GO-term "Type I-

IFN signaling pathway". 

b) List of genes significantly up-regulated in red or down-regulated in purple (| FC | > 2, BH 

adjusted p value<0.05) in Huh7-GCK+/HK2− compared to Huh7 cells (n = 3). 

c–e) Cells were stimulated or not for 48 h with 3p-hpRNA (RIG-I ligand) or poly(I:C) 

(IFIH1/MDA5 ligand). ISRE-luciferase expression was monitored and normalized to Renilla 

luciferase (c, d) (n = 3 for 3p-hpRNA and n = 4 for poly(I:C) treatments). Cell supernatants 

were assayed for cytokine concentration by multiplex assays (n = 3 to 7) (e). 

f) NK cell mediated lysis of Huh7 or Huh7-GCK+/HK2− cells. Hepatoma cells were seeded 24 

h before NK cells addition for 4 h at effector to target (E:T) ratio of 0, 3 or 30. After harvesting, 

cell lysis was determined by the percentage of PI+ cells on gated hepatocytes (n = 3). Means 

± SEM of indicated n independent experiments are presented and p values were obtained 

from 2-way ANOVA analyses comparing matched cell means with Sidak's correction for 

multiple comparison, with α = 0.05 
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Figure 4.7. Simplified scheme of central carbon metabolism and 

connected pathways showing differences between Huh7-GCK+/HK2− vs 

Huh7. 

Highlighted metabolites, enzymatic activities, and metabolism-associated 

genes were selected from transcriptomic (Figure 4.2e), metabolomic (Figure 

4.5c) and enzymatic analyses (Figure 4.5f–l).  
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Table 4.1. Analysis of differentially expressed genes in Huh7 and Huh7-

GCK+/HK2− using gene set enrichment analysis (| FC | > 2 with a p value 

<0.05). 

 

*Top-five enriched molecular and cellular functions are presented.  

Molecular and cellular 

function* 

p value range # of genes 

involved 

Cellular movement 7.68 × 10−6 – 4.66 × 10−25 701 

Lipid metabolism 2.00 × 10−6 – 3.12 × 10−14 414 

Molecular transport 5.63 × 10−6 – 3.12 × 10−14 361 

Small molecule biochemistry 5.63 × 10−6 – 3.12 × 10−14 462 

Protein synthesis 1.87 × 10−6 – 3.42 × 10−14 199 
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Table 4.2. Top-five ranked IPA-annotations associated to 'cellular 

movement'. 

  

Cellular movement functional 

annotations 

p value # of genes involved 

Migration of cells 4.66 × 10−25 585 

Cell movement 3.48 × 10−24 642 

Cell movement of blood cells 1.52 × 10−18 276 

Leukocyte migration 1.59 × 10−18 274 

Invasion of cells 5.33 × 10−17 306 



82 
 

 
 

Table 4.3. Top-five ranked IPA-annotations associated to 'lipid 
metabolism'. 

  

Lipid metabolism functional 

annotations 

p value # of genes involved 

Concentration of lipid 3.12 × 10−14 256 

Synthesis of lipid 2.37 × 10−10 233 

Fatty acid metabolism 4.31 × 10−10 166 

Quantity of steroid 4.48 × 10−09 138 

Concentration of cholesterol 6.58 × 10−08 94 
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Chapter Five: Conclusions 
 

5.1 Summary of contributions 

Dysregulated metabolic states in human health are linked to chronic conditions 
such as diabetes, insulin resistance, cancer, and even chronic obstructive 
pulmonary disease (COPD)1. Additionally, dysregulated metabolism can impair 
immune function2, resulting in more severe reactions to acute infection. 
Studying dysregulated metabolic states is thus a critical aspect in current 
biomedical research, as an aging population and a rise in emerging infectious 
diseases (such as COVID-19)3 mean that the prevention and management of 
these conditions is more important than ever. However, metabolism is a highly 
complex physiological phenomenon that is often inextricable in a practical 
sense from other systems such as immune function or hormone signaling. 
Therefore, models of altered metabolism are extremely useful for examining the 
effects of such perturbed metabolic states in comparative isolation, to elucidate 
the nature, role, and consequences of such states. 

The first study of this dissertation explores the use of Northern elephant seals 
(NES) as a model of insulin resistance. NES undergo temporary, reversible, 
tissue-specific insulin resistance as a natural component of their life history. 
Insulin resistance in humans is linked to diabetes, metabolic syndrome, and 
other chronic conditions, and thus the study of NES may carry implications for 
all of these. 

The second study of this dissertation centers around an engineered cellular 
model of the hexokinase isoenzyme switch. As hepatocytes transform into 
hepatocellular carcinoma (HCC) cells during HCC onset and progression, they 
undergo a shift from HK4 (also known as GCK) to HK2 as the main hexokinase 
enzyme catalyzing the rate-limiting step in glucose catabolism. To study the 
effects of the isoenzyme switch, a cellular model was generated by restoring 
HK4 expression while simultaneously knocking out HK2 in HCC. Such 
engineered models may be useful in studying very specific metabolic states 
such as the isoenzyme switch. 

In this concluding section, the results from these studies are discussed, along 
with their use of unique models of metabolism and future directions of study. 

 

5.2 Insulin induces a shift in lipid and primary carbon metabolites in a 
model of fasting-induced insulin resistance 

5.2.1 Summary of results 

This study measured plasma concentrations of metabolites over time following 
insulin infusion in early- and late-fasted Northern elephant seals. Prior research 
indicated that NES in late fasting displayed elevated plasma levels of free fatty 
acids (FFA) following glucose-stimulated insulin secretion4, in contrast to the 
reduction typically seen in early fasting5 and mammals in general6. This 
suggested a shift in substrate utilization over the course of the fasting period in 
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NES. In order to separate the glucose-mediated effects from insulin-mediated 
effects, the response to direct insulin infusion was studied. 

Forty-one plasma metabolites were observed to change significantly in baseline 
(T0, pre-infusion) values between the early-fasting group and the late-fasting 
group. Prolonged fasting was associated with the most profound changes in 
free fatty acids and ketone bodies, which were dramatically increased in the 
late-fasted NES. 

Conversely, there were mixed changes with other primary metabolites and 
endocannabinoids (EC). Some, such as primary metabolite 1,5-anhydroglucitol 
and endocannabinoid anandamide, increased. Several of these elevated 
metabolites are downstream products of lipid oxidation, providing additional 
evidence of upregulated lipid oxidation in late fasting. In contrast, 
endocannabinoid-like DHEA and SEA and glucogenic/ketogenic amino acids 
alanine, asparagine, cysteine, tryptophan, tyrosine, and valine decreased. 

Pathway enrichment analysis of significantly perturbed metabolites (p<0.05) 
indicated 9 biochemical pathways that were significantly deregulated between 
early and late fasting in seals (p<0.05). The most perturbed pathways included 
ketone and branched-chain amino acid metabolism. 

Collectively, the changes in baseline concentrations and pathway analysis 
demonstrate an increase in fatty acid and ketone pool size, coupled with a 
decrease in amino acids and primary metabolites in late-fasted seals, indicating 
that fasting duration shifts substrate metabolism toward an increase in lipolysis, 
β-oxidation, and ketone metabolism as the primary sources of energy, 
associated with a robust conservation of protein (lean tissue). 

Metabolite concentrations over time following insulin infusion were plotted and 
the area under the curve (AUC) was calculated as a representation of insulin 
response. A peak in plasma concentration, followed by a homeostatic return to 
baseline, is represented by a positive AUC value, while a decrease in plasma 
concentration in response to insulin infusion returns a negative AUC value. 23 
metabolites were observed to have significantly (p<0.05) perturbed AUC values 
between early and late fasting, indicating that fasting duration alters the tissue's 
responsiveness to insulin. 

Fatty acid metabolism in response to insulin is characterized by decreased AUC 
values between early and late fasting, with all AUC values of FFA in late fasting 
being negative. The responses of ketones and EC to the insulin infusion were 
similar, suggesting that lipolytic and endocannabinoid pathways share common 
insulin-mediated processes. In early fasting, these metabolite levels decreased, 
reaching a nadir at 30 min post-infusion. For FFA, levels returned to baseline 
by 60 min and remained so for the rest of the measurement period, whereas 
ketones and EC peaked at 60 min before returning to baseline at 120 min. 
Initially, insulin increased primary metabolites and amino acids before levels 
reached a nadir at 60 min and returned to baseline by 120 min. 

In late fasting, FFA and EC decreased similarly, reaching a nadir at 60 min 
before returning to baseline by 120 min. Ketones displayed a transient increase 
before a nadir at 60 min and returning to baseline by 120 min. Primary 
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metabolites and amino acids AUC values increased (with all values being 
positive except for isoleucine). In contrast to the early fasting response, insulin 
increased amino acid levels reaching a peak at 60 min before decreasing to 
baseline at 120 min. 

Principal component analysis (PCA) revealed that the maximum geometric 
distance occurred at 60 min for both early and late fasting, regardless of 
trajectory. In early fast the majority (72%) of metabolite trajectories return to 
baseline (+/− 30% of baseline) at 120 min. In contrast, the majority of metabolite 
concentrations in the late fast (53%) did not return to baseline (+/− 30% of 
baseline), and present a residual difference at 120 min post-infusion. 
Collectively, the integrated insulin responses (AUC) and PCA data reveal that 
in late-fasted animals (characterized by insulin resistance) the available pool of 
free fatty acids is depleted quickly, and likely shuttled into the TCA cycle. 
Conversely, the insulin-induced increases in primary metabolites (AUCs) are 
indicative of activation of gluconeogenic precursors. 

Hierarchical clustering identified groups of metabolites with similar trajectories 
in both early and late fasting as well as in a joined cohort of both early and late 
fast. The seven main classes of metabolites (amino acids, endocannabinoids, 
fatty acids, glucose, ketone bodies, organic acids, and primary carbon 
metabolites) grouped into four distinct clusters in early fasting and four clusters 
in late fasting. In early fasting, ketone, EC, and TCA cycle metabolite profiles 
demonstrated a common peak and clustered together. Trajectories for amino 
acids and primary metabolites were closely related. The FFA profiles were 
characterized by a rapid, initial decrease recovering by 60 min, which was 
distinctive from the profiles for amino acids and primary metabolites. 

In late fasting, FFA and EC were correlated and clustered together with a 
decrease at 60 min. A comparison of the metabolomic profiles between early- 
and late-fasted animals in response to the insulin infusion demonstrated 
profound shifts in cellular metabolism and biochemical processes as a function 
of fasting duration. Cluster analysis allowed for assessment of the transition 
from negative to positive AUC values with fasting duration. 

5.2.2 Northern elephant seals as a model of insulin resistance 

Insulin resistance is often discussed as a pathological condition associated with 
metabolic syndrome and type 2 diabetes7, but it can be temporary and 
reversible in many mammals. Insulin resistance is often a standard animal 
response to brief periods of starvation in order to preserve circulating glucose 
in the absence of a food supply8. The examination of the Northern elephant seal 
in this study elucidates some of the key aspects that make its insulin-resistance-
like state unique as exhibited during late fasting. Circulating glucose and FFA 
levels are elevated, in a manner similar to standard insulin resistance. Likewise, 
plasma insulin levels are decreased in late fast9, contributing to the reduction 
in insulin signaling. As seen in this study, the changes in plasma metabolite 
concentrations in response to insulin exhibit considerable lag time in late fast, 
suggesting decreased sensitivity to insulin. However, the tissues still remain 
responsive to insulin despite the lag time. Additionally, the shift in amino acid 
plasma concentration response to insulin in late fast indicates a level of protein 
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catabolism inconsistent with other models of insulin resistance. The increased 
response of amino acids also suggests that the muscles remain more sensitive 
to insulin than other tissues such as adipose. 

The combined targeted and untargeted metabolomics approach used in this 
study allowed for the visualization of the dramatic shifts in substrate utilization 
and insulin response from early to late fast. Although NES rely largely on lipid 
oxidation for energy during fasting periods, insulin has profound effects on 
endocannabinoids, ketones, and TCA metabolites, highlighting the extent to 
which the metabolic network must be remodeled in order to accommodate such 
fasting periods without lasting deleterious effects. The dynamic effects of insulin 
on regulating substrate metabolism during fasting, as well as the transient and 
tissue-specific nature of the insulin-resistant-like state, indicate that the 
Northern elephant seal can be used to untangle some of the questions about 
the evolution and regulation of insulin signaling, and provide significant answers 
to addressing insulin resistance in a clinical context. 

The use of engineered cellular models to study insulin resistance is not 
recommended at present. Much still remains to be understood regarding the 
genetic regulation of this complex syndrome, in pancreatic cells as well as the 
various target tissues, so a clear target for knockout is not obvious. The 
interplay between different organ systems and the implications on whole-body 
homeostasis mean that insulin resistance is ill-suited to be studied in vitro. A 
model organism such as the Northern elephant seal is a much better system to 
study the complexity of insulin resistance. 

5.2.3 Future perspectives 

Northern elephant seals continue to be studied for their uniquely transient state 
of insulin resistance. This year, studies were published examining oxylipin 
metabolism10 and GLP-1 response11 in late-fasted NES, which have 
implications for inflammatory signaling and diabetes treatment, respectively. 

Animal models, particularly rodents (mice and rats), have long been used to 
study nutrition and metabolism, including diabetes. However, this approach is 
not without its limits, as murine physiology differs from humans in a number of 
ways that can create difficulties in generating useful models or applying the 
conclusions to human health12-13. Generic animal models based on high-calorie 
diets show significant variation depending on the specific macronutrient profiles 
of the feed, and may not be generalizable to humans or even comparable to 
other studies within the field14. Thus, there is still a need for useful models of 
insulin resistance. Swine models see use due to their greater compatibility with 
human anatomy15-17. As noted earlier, the transient and tissue-specific nature 
of NES insulin resistance sets it apart from other animal models that seek to 
replicate human biology, and can provide insight into the evolution and 
regulation of the larger phenomenon of insulin resistance. The fact that NES 
exhibit insulin resistance as a standard part of their life history means that 
engineering animal models via techniques such as CRISPR/Cas9 or other, 
more traditional methods such as artificial selection18 may be unnecessary, 
reducing the complexity of any related studies. 
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5.3 A hexokinase isoenzyme switch in human liver cancer cells promotes 
lipogenesis and enhances innate immunity 

5.3.1 Summary of results 

This study focused on the shift in HCC cells from GCK to HK2 as the 
predominant hexokinase enzyme. Transcriptomic analysis revealed that 
overexpression of HK2 is negatively correlated with patient survival, as is GCK 
underexpression; furthermore, the ratio of GCK/HK2 expression outperforms 
either metric in predicting patient survival. In order to decipher the functional 
consequences of GCK or HK2 expression in a HCC model, GCK expression 
was restored by lentiviral transduction in the reference HCC cell line Huh7, and 
the endogenous HK2 gene was knocked out by CRISPR/Cas9. The hexokinase 
activity in the presence of increasing concentration of glucose was determined 
in protein lysates from the two respective cell lines. The cell proliferation 
capacity remained identical between the two cell lines. The genome-edited 
Huh7-GCK+/HK2− and the parental Huh7 cell lines were then compared at a 
metabolic level. 

The intracellular lipid content of the two cell lines was analyzed. In Huh7-
GCK+/HK2−, an enrichment in phosphatidylcholine, cholesterol, triglycerides 
(TG) and free fatty acids was observed compared to Huh7. One major function 
of hepatocytes is to secrete triglyceride-rich VLDL and this function is altered in 
HCC cells that secrete smaller lipoproteins with the density of LDL. The 
secretion of lipids and lipoproteins by both cell lines was analyzed after a 24h 
culture in the absence of fetal calf serum to exclude any participation of 
exogenous lipids in the production of lipoproteins. Huh7-GCK+/HK2− secreted 
more free fatty acids than Huh7, while secretion of cholesterol and TG remained 
unchanged. 

However, under the same conditions, the secretion of apolipoprotein B (ApoB) 
by Huh7-GCK+/HK2− was reduced compared to Huh7. Since ApoB is a non-
exchangeable protein with only one copy in VLDL and LDL particles, an 
elevated TG/ApoB ratio indicates that ApoB+-lipoproteins secreted by Huh7-
GCK+/HK2− cells are enriched in TG compared to those secreted by Huh7. This 
was confirmed by the ApoB distribution in density gradient fractions. As 
expected, lipoproteins secreted by Huh7 sediment at the density of LDL, while 
those secreted by Huh7-GCK+/HK2− match the density of VLDL found in human 
plasma or secreted by primary human hepatocytes in culture. This indicates 
that GCK expression is essential for the VLDL assembly/secretion pathway and 
could explain the loss of this crucial metabolic pathway in hepatoma cells 
expressing HK2 instead of GCK. 

GCK expression was observed to increase the intracellular lipid content, 
resulting in accumulation of lipid droplets and secretion of VLDL. A rewiring of 
cellular metabolism towards energy storage in Huh7-GCK+/HK2− was thus 
suspected and confirmed by the accumulation of glycogen, creatine and 
creatine-P, a feature of functional hepatocytes. To further determine the 
consequences of replacing HK2 by GCK, we quantified prominent intracellular 
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metabolites via gas chromatography coupled to triple-quadrupole (QQQ) mass 
spectrometry (GC-MS). Relative intracellular quantities of metabolites are 
significantly different between Huh7 and Huh7-GCK+/HK2−. Among 
differentially represented metabolites, higher levels of glucose, glycerol-3-
phosphate and lactic acid were detected in Huh7-GCK+/HK2− cells. Several 
intermediates of the TCA cycle (succinic acid, fumaric acid, alpha-ketoglutaric 
acid), and metabolites directly connected to it (GABA, glutamic acid, glutamine, 
aspartic acid) were also differentially present between the two cell lines. This 
supports a modulation of central carbon metabolism at both the level of 
glycolysis and TCA cycle. This led to investigate glucose catabolism in further 
details. Glucose consumption and stable isotope incorporation from [U-13C]-
glucose into pyruvate were both increased in Huh7-GCK+/HK2− compared to 
Huh7 cells. This increased glycolytic flux together with a reduced lactate 
secretion is likely to account for the elevation of lactate levels and suggest that 
the increased pyruvate production essentially fuels mitochondrial TCA cycle in 
Huh7-GCK+/HK2− cells. 

Pyruvate entering the mitochondria downstream of glycolysis can be either 
oxidized by pyruvate dehydrogenase (PDH), producing acetyl-CoA, or 
converted into oxaloacetate (OAA) by pyruvate carboxylase (PC). Acetyl-CoA 
and OAA are then combined in the TCA cycle to form citrate. De novo 
lipogenesis requires citrate egress from the TCA cycle to serve as a precursor 
of cytosolic acetyl-CoA for further synthesis of fatty acids. In Huh7-GCK+/HK2− 
cells, we observed both an increased activity of PC without changes in protein 
expression and an increased phosphorylation of pyruvate dehydrogenase 
(PDH), which is indicative of a reduced activity of this enzyme. This is consistent 
with the increased expression of the PDH kinase PDK2 and the decreased 
expression of the PDH phosphatase PDP2 in Huh7-GCK+/HK2− cells that 
regulate the PDH phosphorylation state. A rebalanced usage of pyruvate in 
Huh7-GCK+/HK2− cells maintains a functional TCA cycle and supports 
lipogenesis. In Huh7-GCK+/HK2− cells, we also observed an increased 
phosphorylation of ATP citrate lyase (ACLY), the first enzyme of the fatty acid 
synthesis pathway, indicating an enhanced activity of this enzyme. This 
reaction also regenerates OAA in the cytosolic compartment. Interestingly, 
transcriptomic data show that PCK1 which converts OAA to 
phosphoenolpyruvate (PEP), is overexpressed in Huh7-GCK+/HK2− cells 
compared to Huh7 (FC = 32). 

A shift from pyruvate oxidation to carboxylation is observed in cancer cells 
where succinate dehydrogenase (SDH) is inactivated by mutation and OAA can 
only be generated through PC activity. SDH inhibition leads to succinate 
accumulation, especially in activated immune cells. Interestingly, higher levels 
of succinate and a reduced activity of SDH were measured in Huh7-GCK+/HK2− 
compared to Huh7 cells. Even though SDH is also part of the complex II of the 
mitochondrial respiratory chain, we observed that the overall oxygen 
consumption was increased in Huh7-GCK+/HK2− with increased basal and 
maximal respiration, ATP production and spare respiration capacity. Functional 
analysis of the respiratory chain showed that oxygen consumption in Huh7 and 
Huh7-GCK+/HK2− cells was mainly dependent on complex I activity. Thereby, 
the HK isoenzyme switch rewired the TCA cycle promoting carboxylation of 
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pyruvate into OAA in the presence of a reduced SDH activity and increased 
respiration through complex I. 

5.3.2 Engineering cellular models of dysregulated metabolism 

Metabolism, by its nature, is a tightly interconnected process, with any one 
pathway intersecting with many others. Metabolic pathways are not segregated 
by function; bioenergetic pathways are connected to other pathways involved 
in biosynthesis, signaling, immune function, gene regulation, and more. As a 
consequence, isolating specific metabolic phenomena or reactions for study is 
difficult if not impossible to do in a practical sense. 

The rise in molecular biology techniques, especially the CRISPR/Cas9 system, 
to selectively edit cellular genomes has opened the door to a new era in 
customizable cellular models. Specific genes can be activated or inactivated 
with precision, including metabolic enzymes. Such unique cellular models 
would have taken vastly more time or resources to generate via traditional 
methods. The ability to use targeted, custom cell lines means that the function 
of an individual enzyme can be separated from confounding effects such as 
upstream regulation or substrate availability, greatly reducing the number of 
variables under study. 

The cell model used in this study is the result of two different molecular biology 
techniques. First, Huh7 cells (a reference HCC cell line) were transduced with 
a lentiviral vector carrying the GCK gene to induce stable GCK expression. The 
Huh7-GCK+ cells were then transfected with a plasmid containing the Cas9 
gene and a sgRNA sequence specific to HK2, which knocked out the HK2 gene 
in the Huh7 cells, resulting in the unique cell line Huh7-GCK+/HK2-. This cell 
line represents a reversal of the hexokinase isoenzyme switch seen in 
hepatocytes as they transition to HCC cells. Based on transcriptomic data, the 
ratio of GCK to HK2 expression was the best predictor of patient survival when 
studying the hexokinase family, so a double-transfection cell line was desired 
in order to study the role of the isoenzyme switch. The generation of such a 
double-transfection cellular model increases the complexity of the method: 
each transfection or transduction event must have its own selection (puromycin 
resistance and transient GFP expression, in this case) and must be validated 
separately to ensure that each step is effective. However, with modern 
molecular biology techniques, the specificity and customizability of cellular 
models available today represent an immense leap forward from the technical 
landscape of even a decade prior. 

There are multiple strategies for generating custom cellular models. 
CRISPR/Cas919 is the new standard for genome editing, given its ease of use, 
but zinc-finger nucleases and transcription activator-like effector nucleases 
(TALENs) still remain viable strategies as well20. Knockdown via RNAi (using 
lentiviral transduction) is also widely used for creating stable cell lines with a 
given expression phenotype21. 

The use of a model organism to study this particular phenotype is difficult. The 
fact that the hexokinase isoenzyme switch has such far-ranging effects means 
that there are many selection pressures and points of interaction with this 



90 
 

 
 

simple mutation. While aspects of the hexokinase switch may be elucidated 
with a broader physiological context, including the tumor microenvironment and 
further interplay with the immune system, the number of changing variables in 
the system rises dramatically, increasing the methodological complexity of any 
experiment. Engineered cellular models are an elegant solution to replicate, 
observe, and interact with simple and specific perturbations to the metabolic 
network. 

5.3.3 Future perspectives 

There are other emerging platforms as well to better study dysregulated 
metabolism. Mathematical modeling is a powerful approach, able to generate 
multiple permutations of a metabolic network with various fluxes and highlight 
potential novel targets for study22-24. However, computational models depend 
on biological elucidation of metabolic networks; without a baseline 
understanding of the system in question, no model can be generated, and so 
in vivo or in vitro models must still be investigated first. 

On the topic of the hexokinase isoenzyme switch, there is ongoing work to 
uncover precisely how HK2 is upregulated in HCC, with current evidence 
pointing towards nuclear receptor PPARγ25 and kinases PI3K and Akt26. The 
mechanisms that concomitantly suppress GCK are not fully known. 

Other instances of isoenzyme switches are worth investigating. The pyruvate 
kinase isoform PKM2 is highly upregulated in cancers compared to its splice 
variant PKM1, and there is evidence this exhibits an isoform switch in specific 
tissues27-28, though there are alternate theories29. An engineered cellular model 
of such a hypothetical switch may shed more light on the interplay between the 
different pyruvate kinase isoforms. 

 

5.4 Conclusions 

These studies exhibit two different approaches to cultivating useful model 
systems in which to study dysregulated metabolism: identifying existing models 
in nature of organisms with unique metabolic states, parallel to the states under 
study; and engineering a model specific to the question at hand using molecular 
biology techniques. Either approach has its advantages, disadvantages, and 
areas of applicability. 

Existing animal models of unique metabolic states has the benefit of simplicity, 
bypassing the need for technical benchtop approaches that carry the possibility 
of human error; however, they may not be exact matches for the desired human 
metabolic state, and care must be taken to not overemphasize their clinical 
relevance. Additionally, finding such unique animal models in the first place may 
be challenging, and is certainly not a high-throughput process. 

Engineered cellular models offer precision and customizability, as they can be 
generated and tailored to a specific problem, but are paired with a rise in 
methodological complexity. Furthermore, in vitro systems (as molecular biology 
techniques are commonly applied) are less applicable than in vivo systems, 
lacking the context of full physiology. In vitro cancer studies such as that 
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described in Chapter Four, for example, do not include the effect of the tumor 
microenvironment, which has a profound role in carcinogenesis. 

Another approach not fully discussed in this dissertation is the use of in silico 
models to describe a metabolic network, along with its permutations and fluxes. 
These and other model systems must be carefully weighed to determine the 
best method of replicating a dysregulated metabolic state for study. 
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