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Abstract

Prostate cancer is the most common and second most deadly form of cancer in men in the United 

States. The classification of prostate cancers based on Gleason grading using histological images 

is important in risk assessment and treatment planning for patients. Here, we demonstrate a new 
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region-based convolutional neural network (R-CNN) framework for multi-task prediction using a 

Epithelial Network Head and a Grading Network Head. Compared to a single task model, our 

multi-task model can provide complementary contextual information, which contributes to better 

performance. Our model achieved state-of-the-art performance in epithelial cells detection and 

Gleason grading tasks simultaneously. Using five-fold cross-validation, our model achieved an 

epithelial cells detection accuracy of 99.07% with an average AUC of 0.998. As for Gleason 

grading, our model obtained a mean intersection over union of 79.56% and an overall pixel 

accuracy of 89.40%.

Keywords

computer-aided diagnosis (CAD); Gleason grading; prostate Cancerous; region-based 
convolutional neural networks (R-CNN)

I. Introduction

PROSTATE cancer is the most prevalent form of cancer and the second deadliest cancer in 

men in the U.S. [1]. Pathologists use several screening methodologies to qualitatively 

describe the diverse tumor histology in the prostate. Normal prostate tissue includes stroma 

and glands. Stroma is the fibromuscular tissue surrounding glands. Each gland unit is 

composed of a lumen and rows of epithelial cells located in an orderly fashion around it. The 

stroma holds the gland units together. Cancerous tissue has epithelial cells that replicate in 

an uncontrolled manner, disrupting the regular arrangement of gland units. In high grade 

cancer, both stroma and lumen are generally replaced by epithelial cells.

One of the most reliable methods to quantify prostate cancer aggressiveness is through the 

Gleason grading system [2]. Gleason grades are used to describe growth patterns in prostate 

adenocarcinoma and are related to severity of disease. Gleason grades range from Gleason 1 

(G1) to Gleason 5 (G5), with a score of G1 corresponding to tissue with the highest degree 

of resemblance to normal tissue and best prognosis, and a score of G5 corresponding to 

poorly differentiated tissue and the poorest prognosis.

The Gleason grading system continues to be updated by the consensus of the International 

Society for Urological Pathology [3]. However, to date, most Gleason scores are assigned 

manually through pathologist review, a process that is time-consuming and plagued by inter- 

and intra-observer variability. This problem is particularly pronounced when differentiating 

Gleason 3 (G3) vs. Gleason 4 (G4), a distinction that may have substantial impact on further 

treatment [4], [5], [6].

Therefore, a CAD tool for Gleason grading could impact clinical practice by providing a 

repeatable and more precise method for grading prostate cancers. In this paper, we propose a 

novel model that can automatically diagnose prostate cancer and perform Gleason grading 

based on histological whole slide images. Compared with previous work, our proposed 

method achieves state-of-the-art performance in both epithelial cells detection and Gleason 

grading accuracy.
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II. Related Work

In this section, we first briefly review the previous CAD work on prostate cancer diagnosis. 

Then, several recent representative biomedical image segmentation methods are discussed. 

Finally, we review the region-based convolutional neural networks (R-CNN) approach for 

object detection and instance segmentation [7], upon which our proposed method is based.

A. Prostate Cancer Diagnosis and Gleason Grading of Histological Images

A few previous papers have been published in developing an automatic Gleason grading 

system for prostate cancer diagnosis. A commonly used approach is to extract tissue features 

and apply classifiers upon the selected features. Stotzka et al. [8] extracted statistical and 

structural features from the spatial distribution of epithelial nuclei over the image area. They 

used a hybrid neural network/Gaussian statistical classifier to distinguish moderately and 

poorly differentiated histological samples. Smith et al. [9] used the power spectrum of tissue 

images to represent their texture characteristics. They used a nearest neighbor classifier to 

assign the input image to Gleason grades 1 through 3 and the combined grades of 4 and 5. 

Wetzel et al. [10] proposed the use of features derived from spanning trees connecting cell 

nuclei across the tumor image to represent tissue images belonging to each grade. Jafari-

Khouzani and Soltanian-Zadeh [11] used features based on co-occurrence matrices, wavelet 

packets, and multiwavelets combined with a k-nearest neighbor (kNN) classifier to classify 

each image into grades 2 through 5. Farjam et al. [12] proposed a multistage classifier based 

on morphometric and texture features for Gleason grading. First, gland units are identified 

using texture features. Then, morphometric and texture features obtained from gland units 

are used in a series of classification stages to classify the image into grades 1 through 5. 

Tabesh et al. [13] aggregated color, texture, and morphometric cues at the global and 

histological object levels for classification and compared Gaussian, k-nearest neighbor, and 

support vector machine classifiers along with the sequential forward feature selection 

algorithm. Nguyen et al. [14] used structural features of prostate glands to classify 

preextracted regions of interest (ROIs) into benign, G3, and G4. Gorelick et al. [15] 

proposed a two stage Adaboost model to classify around 991 sub-images extracted from 50 

whole-mount sections of 15 patients.

Though most of these papers achieved good results on their datasets due to heavy reliance on 

feature extraction, the systems described above are prone to subjectivity and limited intra- 

and inter-system reproducibility. Moreover, all of the systems require accurate localization 

of the small image area (region of interest, RoI) to extract features from, which is a non-

trivial problem [16].

B. Deep Learning Models for Biomedical Image Segmentation

Recent developments using deep convolutional neural networks (CNNs) [17], particularly 

fully convolutional networks (FCNs) [18], have demonstrated success for biomedical image 

analysis [19], [20], [21], [22], [23]. These neural network approaches learn features directly, 

rather than using handcrafted features. Ronneberger et al. [24] proposed U-Net, a U-shaped 

neural network that consists of a contracting path to capture context and a symmetric 

expanding path that enables precise localization. The Multi-scale U-Net proposed by Li et 
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al. [25] incorporated different scale input information without overly increasing memory 

requirements and achieves better results than the original U-Net and the previous work by 

Gertych et al. [26]. A more comprehensive comparison was done by Ing et al. [27], where 

they tested four CNNs including FCN-8s, two SegNet variants, and multi-scale U-Net for 

performance in semantic segmentation of high and low Gleason grade tumors. Chen et al. 
[28] proposed DCAN, which added a unified multi-task object to the U-Net learning 

framework, which won the MICCAI2015 Gland Segmentation Challenge [29]. Based on 

DCAN, Yang et al. [30] proposed suggestive annotation, which extracts representative 

samples as a training dataset, by adopting active learning into their network design. With the 

refined training sample and optimized structure, suggestive annotation achieves state-of-the-

art performance on the MICCAI Gland Segmentation dataset [29]. More recently, Li et al. 
[31] have proposed a semi-supervised learning method using the expectation maximization 

in a deep learning framework for prostate cancer grading. The successes of the above 

methods demonstrate that deep learning has substantial applicability to medical image 

analysis. Moreover, multi-task learning that provides more information to train the network 

[28], and deep active learning [30] that helps the model focus on representative images, have 

both been proven to boost performance. In the same vein, we have developed a model that 

adopts an R-CNN into a larger framework.

C. R-CNN Approach on Image Segmentation

Object proposal methods were first adopted in CNNs [32] by R-CNN [33]. The R-CNN 

method trains CNNs end-to-end end to classify the proposed RoIs into object categories or 

background. Fast R-CNN [34] advanced R-CNN to allow extracting RoIs on feature maps 

using an RoIPool layer, improving both speed and accuracy. Faster-RCNN [35] followed this 

path and extended it by learning an attention mechanism with a Region Proposal Network 

(RPN), which simultaneously predicts object bounds and objectness scores at each position. 

The uniqueness of these R-CNN methods is that by using RPN components, the network 

learns where to focus within a given image.

Driven by the success of R-CNN and its extensions, many recent approaches to image 

segmentation are based on segment proposals. In particular, Mask R-CNN [7] added a third 

branch that outputted the object mask on the basis of Faster R-CNN [35] and demonstrated 

remarkable power on image instance segmentation. In their network settings, segmentation 

masks were generated for every class without competition among classes, while relying on 

the classification branch to predict the class label. This is different from previous deep-

learning based segmentation methods [18], [24], [25] where classification and segmentation 

tasks were coupled by a pixel-wise soft-max layer. This difference is the key for the 

improved instance segmentation results. In addition, Mask R-CNN proposes a “RoIAlign” 

layer, that faithfully preserves exact spatial locations. The “RoIAlign” layer properly aligns 

the extracted features from the network with the input image, which improves segmentation 

accuracy by a large margin. However, the “RoIAlign” layer extracts features for each RoI at 

the same scale; this works well for natural image instance segmentation but might not be 

effective for medical image analysis as we will discuss in Section V. We refer readers to [7] 

for more details of Mask R-CNN.
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The main contributions of our paper are twofold: first, by adding an Epithelial Network 

Head (EHN), we adapted the Mask R-CNN to be suitable for the histological image analysis 

for Gleason grading task with little additional computational overhead; second we developed 

a two-stage training strategy which enables our model to detect epithelial cells and predict 

Gleason grades simultaneously.

III. Methods

In this section, we first describe the dataset we used for our effort. After that, we formally 

define our problem in the context of image instance segmentation problem. Then, we 

describe the novel framework that we used to solve our problem in detail. Finally, we 

provide evaluation metrics on which our model was assessed and compared with previous 

efforts.

A. Dataset

Our dataset consists of 513 images, which were retrieved from archives in the Pathology 

Department at Cedars-Sinai Medical Center (IRB# Pro00029960). The 513 images are 

combined from two sets of tiles. 224 of the images are from 20 patients and contain stroma 

(ST), benign or normal glands (BN, rated as GG2 or below), low-grade cancer (LG, image 

areas rated as GG3) and high-grade cancer (HG, image areas rated as GG4) (Set A) [26]. 

The remaining 289 images are from 20 different patients and contain dense high-grade 

tumors including Gleason grade 5 (GG5) as well as Gleason grade 4 (GG4) with cribriform 

and non-cribriform glands. In addition, some of these images contain only stromal 

constituents such as nerve tissue and blood vessels (Set B) [27]. Slides from Set A were 

digitized using a high resolution whole slide scanner SCN400F (Leica Biosystems, Buffalo 

Grove, IL), whereas slides from the Set B were acquired through the Aperio scanning 

system (Aperio ePathology Solutions, Vista, CA). The scanning objective in both systems 

was set to 20x. The output was a color RGB image with the pixel size of 0.5 μmμ0.5 μm and 

8 bit intensity depth for each color channel. Representative tiles previously identified by the 

pathologist were extracted from whole slide images (WSIs) and then saved as 1200×1200 

pixel tiles for analysis. The content of each tile was hand-annotated by an expert research 

pathologist using an in house developed graphical user interface [26], [36], [37]. Figure 1 

shows three representative examples from the dataset we used in this paper. All annotated 

image tiles were cross-evaluated by the pathologists, and corrections made by consensus. All 

tiles were normalized to account for stain variability in the pre-processing stage [38]. Data 

augmentation including, image flip, mirror, and rotate, were applied to the tiles before being 

fed into the network. These two datasets were also used in previous studies in [26] and [27]. 

For more information about the Gleason grading system and how we classify the tissues into 

four categories, we refer readers to the Supplementary Information.

B. Problem Definition

Here, we formulate the prostate cancer diagnosis and Gleason grading problem in the 

context of a common computer vision problem, instance segmentation. We assigned the 

stromal components of the input images as the background class. Other epithelial cells in the 

input image that have been annotated by the pathologists as benign, low-grade or high-grade 
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were assigned as instance objects, i.e. the RoIs we want our network to find. Under these 

assignments, the epithelial detection is a natural binary classification problem, in which our 

network needs to output 1 if there are any specific RoIs in the image or 0 if the whole input 

image contains only stroma. The Gleason grading problem involves detection of the 

epithelial cells’ areas, classification of the grade of each area, and segmentation of the 

epithelial areas from the background. These questions can be solved by object detection 

(draw a bounding box around the epithelial cells’ areas), object classification (classify each 

epithelial cell’s area into different categories: benign, low-grade, etc.), and instance 

segmentation (draw a segmentation mask for each epithelial area). The right column of 

Figure 1 demonstrates this idea. Each epithelial area (RoI) is represented by a unique color, 

which has a bounding box, class label and segmented mask associated with it.

C. Model Definition

1) Network Architecture: Figure 2 shows the entire system and the components of the 

proposed model. We use ResNet as the backbone for our image parser. First, the image 

parser generates feature maps. These feature maps are then fed into two branches. In the left 

branch, we adopted the same two-stage procedure as in the Mask R-CNN. The feature maps 

are first used by a Region Proposal Network (RPN) that generates region proposals (RoIs). 

In the second stage, a Grading Network Head (GNH) is then used for predicting the class, 

box offset, and a binary mask for each RoI. To this we add a right branch that outputs an 

epithelial cell score that detects the presence of epithelial cells in the image. We refer to this 

part as the Epithelial Network Head (ENH). The final prediction of the network depends on 

the results of the ENH and GNH. Finally, a post-processing step based on a conditional 

random field is applied to the prediction. Because our model is inspired by Mask R-CNN 

[7], we name it Path R-CNN.

2) Objective Function: The goals of our model are to detect the presence of epithelial 

cells and to output a Gleason grade segmentation mask. The ENH and GNH are designed to 

complete these two tasks separately. In the GNH, there are three separate networks. We 

define classification loss Lcls, which evaluates whether the model can output Gleason grades 

accurately, bounding-box loss Lcls, which evaluates whether the model can locate the 

epithelial cells accurately, and mask loss Lmask, which evaluates whether the model can 

segment the epithelial regions’ boundaries accurately. The objective function for training the 

model follows the same spirit in Mask R-CNN [7] and Faster R-CNN [35] that applies 

bounding-box classification, regression and per-pixel sigmoid mask segmentation. In 

addition, we add an objectness prediction loss Lobj for the ENH, which represents 

misclassification of whether there are epithelial cells in the given pathological image. Lobj is 

designed as a common binary classification loss, which is given by

Lob j = ∑
i = 1

N
( − yi log(pi) − (1 − yi) log(1 − pi)) (1)

where N stands for the total image number in the training datasets; pi ∈ (0, 1) is the sigmoid 

layer output of our model, which can be interpreted as the probability of RoI presence in the 
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image; yi ∈ 0, 1 is the ground truth of the given image where yi = 1 if the given image has at 

least one RoI, otherwise yi = 0. Thus, the total loss L of our model is given by

L = Lob j
ENH

+ Lcls + Lbox + Lmask
GNH

. (2)

3) Transfer Learning: As with most medical image analysis domains, we are limited by 

a scarcity of accurately annotated training data due to the difficulty and cost of producing 

high quality data. We compensate for this limitation by using natural image data, which is 

known as transfer learning. Previous studies have shown that transfer learning in CNNs can 

alleviate the problem of insufficient training data [39], [40]. This is mainly because the 

learned parameters in the lower layers of neural networks are generic (edges, blobs etc.) and 

can be kept after the pre-training. Thus, transfer learning can help to reduce overfitting on 

limited medical datasets and allow us to take advantage of networks with more parameters.

Therefore, we utilized an off-the-shelf implementation of Mask R-CNN from Matterport 

[41], which was trained on the MS COCO dataset [42]. The MS COCO dataset contains 

more than 200,000 images with pixel-level annotations. Leveraging the effective 

generalization ability of transfer learning in deep neural networks, we initialized the layers 

using the pre-trained model followed by fine tuning the ENH and GNH (see details in 

Section III-C4).

4) Implementation and Training: Limited by the memory of our GPU, we first 

cropped our 1200×1200 pixel input image tiles into 16 patches (with overlap) and then 

downsampled each patch to be 512×512 pixels. These patches, along with their 

corresponding annotations, were served as the input data for the training stage. In the testing 

stage, we again first cropped the images to small patches and then stitched together the 

network output into the full tiles.

Our main Path R-CNN framework was implemented using the open-source deep learning 

library Tensorflow [43]. We developed a two-stage training strategy for our model:

• Stage 1 train the GNH along with the higher layers (stage 4 and 5 in 101 layer 

structure in [44]) of the ResNet backbone. We used the MS COCO pre-trained 

model to initialize the network. The network was optimized using stochastic 

gradient descent (SGD) with backpropagation following the outline of [44]. 

Adopting a backward fine-tuning strategy, we first trained the GNH for 25 

epochs. Then we fine-tuned the ResNet [44] upper layers along with the network 

head. Figure 3 shows a typical training process in Stage 1.

• Stage 2 takes the fixed weights trained in Stage 1 and only trains the ENH. We 

chose to fix the Stage 1 weights in this step because of our intuition that 

epithelial cell detection is a relatively simple task. We empirically found that this 

method worked very well in practice (see results in Section IV-B).
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5) Fully Connected Conditional Random Field Post-Processing: After 

generating predictions from our Path R-CNN model on each image patch, we stitched 

patches back into the original tiles. This stitching step can lead to artifacting on the edges of 

each individual patch, as shown in the last two rows of Figure 5. We used a fully connected 

conditional random field (CRF) model to address this problem. This method was first 

proposed by Krähenbühl et al. [45] to compute image segmentations efficiently, which 

demonstrated the ability to both capture fine edge details and make use of long range 

dependencies. Chen et al. [46] later incorporated this method into CNNs as a post-

processing step. A conditional random field (I, X) is characterized by 

P(X ∣ I) = 1
Z(I) exp( − E(X ∣ I)), where X is defined over the whole image {x1, x2, … xN}. xi 

denotes the label of the ith pixel, N is the total number of pixels. The model employs the 

energy function

E(X ∣ I) = ∑
i

θi(xi) + ∑
i, j

θi, j(xi, x j) (3)

where we refer to first term on the right hand side as the unary potential and the second term 

as the pairwise potential. The unary potential is defined as θi (xi) = −log P(xi), where P(xi) is 

the label assignment probability at pixel i as computed by the segmentation head in the 

GNH. The pairwise potential is θi, j = μ(xi, x j)∑m = 1
K ω ⋅ km( f i, f j), where μ(xi, xj) = 1 if xi ≠ 

xj, and zero otherwise. Each km is the Gaussian kernel, which depends on features (denoted 

as f) extracted for pixel i and j and is weighted by a learnable parameter ωm. Following the 

example of [46], we use bilateral position and color terms in the kernels

ω1 exp( −
‖pi − p j‖

2

2σα
2 −

‖Ii − I j‖
2

2σβ
2 ) + ω2 exp( −

‖pi − p j‖
2

2σγ
2 ) (4)

where p denotes pixel position and I denotes pixel color intensity. Thus, the first kernel term 

forces nearby pixels with similar color to be in the same class, while the second kernel term 

removes small isolated regions. The hyperparameters σα, σβ and σγ control the “scale” of 

the Gaussian kernels, which were obtained in the experiment empirically. For simplicity, we 

refer fully connected CRF as CRF in the later parts of this paper.

D. Evaluation Metrics

To make our model comparable with previous work [26], [24], [25], we use the standard 

metrics: mean Intersection Over Union (mIOU), Overall Pixel Accuracy (OPA) and 

Standard Mean Accuracy (SMA) to evaluate the performance of segmentation results. The 

definition of these metrics is as follows. Assume we have segmentation results f, ground 

truth label l, and a pixel-wise confusion matrix C, where Ci,j is the number of pixels labeled 

as li and predicted as fj. The mIOU is defined as the average of individual Jaccard 

coefficients, 𝒥i, for all classes li. To compute 𝒥i from the confusion matrix C, we use the 

Jaccard index definition:
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𝒥i = TP
TP + FP + FN =

Ci, i
T i + Pi − Ci, i

(5)

where Ti = ∑j=1 Ci,j denotes the total number of pixels with label li. Pj = ∑i Ci,j denotes the 

number of pixels predicted as fj [47]. The mIOU is then given by

𝒥 = 1
N ∑

N
𝒥i (6)

where N is the number of classes. The OPA is defined as

OPA =
∑iCi, i

∑i ∑ j Ci, j
. (7)

The standard mean accuracy is defined as

SMA = 1
N ∑

i

Cii
∑ j Ci, j

. (8)

IV. Validation Experiments

In this section, we will show our experiment design briefly followed by several experimental 

results to validate our design for the epithelial cell detection and Gleason grading tasks. The 

instance segmentation results from the model were converted to semantic segmentation 

results by choosing the largest probability instance class at each pixel location for the 

purpose of easy comparison with the previous work.

A. Experiment Design

We used a ResNet [44] in our Path R-CNN model for feature extraction from the input 

pathological image. Both the RPN and the GNH adopt a feature pyramid network (FPN) 

[48] structure by replacing single-scale feature maps with feature pyramids. As in [48], the 

FPN generates feature pyramids {P2, P3, P4, P5, P6}. For the RPN, we assigned different 

scale anchors (potential RoIs) {322, 642, 1282, 2562, 5122} at each feature pyramid 

respectively. The RPN is then trained with the parameters shared across all feature pyramid 

levels. For the GNH, we assign each RoIs of width w and height h (on the input image to the 

network) to the feature pyramid Pk by

k = k0 + log2( wh ∕ 224) . (9)
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Intuitively, Equation (9) means that if the RoI’s scale becomes smaller (say, ½ of 224), it 

should be mapped into a finer-resolution level (say, k = 3). Through this operation, the 

model extracts each RoI’s information in a similar scale to feed into the GNH. For more 

implementation detail, we refer readers to [48].

B. Results and Discussions

We first discuss quantitative results, which are shown in table II. We show the averaged 

performance (measured by OPA, SMA and mIOU) of our proposed method as well as of 

different baseline methods on our dataset. We then show the results of ablation studies that 

analyze the effect of adding the ENH and CRF to our framework.

1) 5-fold Cross Validation: For our tile-based model evaluation, the full 513 image 

tileset was randomly divided into 5 non-overlapping cross validation folds. During training, 

we observed quick convergence when using pre-trained weights trained on MS COCO 

dataset. Table II(Row 3) and Figure 4 show the performance of our model. our model 

achieves 79.56% mIOU, 88.78%SMA, and 89.40% OPA among the four classes. In these 

four classes, Path R-CNN has a relatively good performance in “stroma”, “benign”, and 

“high-grade” classification. However, it only achieves 79.54% IOU for “low-grade”. This is 

because of the large appearance variance of “low-grade” glands. In “low-grade”, the glands 

differ in size and shape, and are often long and/or angular. They are usually micro-glandular, 

however, some may be medium to large in size. This size and shape variation can be easily 

seen in the second column of Figure 4, where “low-grade” glands are shown by the green 

color.

2) Model Comparison: We compared our model with several baseline models. For the 

standard and multi-scale U-Net models, pixel-wise confusion matrices were summed across 

all 5 folds. Results from a support vector machine and random forest model based on 

handcrafted features [26] are also reported in Table II. Note that the IOU of the random 

forest model for “Low-Grade” class is calculated by combining “Low-Grade” and “High-

Grade” together, as done in their paper. Our proposed Path R-CNN achieved the highest 

performance in both the single class evaluation and the four class mIOU. We credit the 

performance improvement to the following five differences between our model and the 

baseline models. First, we adopted a two-stage approach in the left branch. Using the 

recently popular concept of neural networks with “attention” mechanisms, the RPN module 

(1st stage) tells the GNH module (2nd stage) where to focus. Second, compared to previous 

efforts that used a simple segmentation mask as the ground truth label, we extracted and 

provided more information (cancer ROI location, shape, and aggressiveness) to the network 

by using a multi-task framework. Training different tasks simultaneously using the GNH 

module helped regularize the network. Third, by adding the ENH to the framework, we 

solved the issue of models commonly predicting cancer areas in images consisting entirely 

of stroma, which helped boost performance by a large margin. Fourth, we used a large neural 

network, ResNet, for image feature extraction. ResNet was able to take advantage of a large 

number of parameters while avoiding the degradation problem [44]. Fifth, the GNH 

decouples the segmentation task and classification task, which proved to be key in boosting 

model performance [7].
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3) ENH Effect: Here, we analyze the important role that the ENH played in our system.

We first formulated our network as a multi-task framework that minimizes a multi-task loss 

function (Equation 2) simultaneously. However, this formulation did not yield substantial 

improvement over the baseline model [25]. We hypothesize two possible reasons for this: 1) 

The objectness prediction loss shown in Equation (1) for ENH, which is a per-image loss, is 

not within the same scale as the other losses, and 2) The ENH might interfere with the GNH 

in a complex manner that lowers the performance of every task when trained simultaneously. 

To solve this problem, we adopt a two-stage training approach as stated in Section III-C4 

under the assumption that epithelial cell detection is a relatively simple task.

To measure the performance of the ENH, we calculated the area under the curve (AUC) of 

the receiver operating characteristic (ROC) curve using the same 5-fold cross-validation 

method described previously. The ENH had superb performance, with an AUC of 0.9984 

± 1.329e-3. This result demonstrates that epithelial cell detection can be performed robustly 

using the simple network structure of the ENH.

We also demonstrate the mIOU results without the ENH in Row 5 of Table II and the first 

two rows of Figure 5. By comparing the results of Row 4 and Row 5 in Table II, we see that 

the ENH boosts the segmentation performance by a large margin. This is mainly because of 

the trade-off between objectness prediction accuracy and the segmentation accuracy in our 

model settings. Without ENH, if we want our system to have a high precision that minimizes 

failure to detect potential epithelial areas, we need to lower the detection threshold. This will 

give us a model that is intended to predict epithelial cells more often even in an image that is 

full of stroma; thus the performance will be reduced dramatically. This can been observed in 

the first two rows of Figure 5. In the last column, we see that the model is prone to predict 

ROIs in large areas of stroma. Thus, we conclude that the ENH is crucial for achieving good 

performance in our system. Additional rationale and advantages of the ENH are discussed in 

the Supplementary Information.

4) Post-Processing using CRF: Our results using the CRF show that adding the 

method helps remove unnatural boundaries created by stitching, as shown in last two rows of 

Figure 5. The red arrows in the figure (Row 3 and 4) indicate the unnatural boundaries 

output by the stitching process. After CRF post-processing, we observe these unnatural 

boundaries are removed. The CRF also helps improve mIOU slightly, as shown in Row 6 of 

Table II.

V. Limitations and Future Work

Here, we discuss some limitations of our work and provide potential research directions that 

could help address these limitations.

We note that the 5-fold validation used in our experiments is not a patient-wise validation. 

Unfortunately, we did not have patient-level information with which to perform a more 

rigorous patient-level stratification. This might result in a positive bias since a cancer can 

look similar in tiles within the same patient, especially in tiles that are spatially close to one 
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another. However, we argue that relative model comparisons in this work are fair as we used 

the exactly same train-test data split as in [27] across all models.

Additional careful tuning of the loss scale of Lcls, Lbox, Lmask, Lobj could allow all training 

to happen simultaneously (rather than in two stages) by achieving a better balance of trade-

offs between the losses. In this case, a single end-to-end training process could be achieved 

for the system.

Another area for potential improvement is the “RoIAlign” layer. The “RoIAlign” layer [7] 

extracts a small feature map from the corresponding feature pyramid layer for each RoI right 

before the network head by using Equation 9. It results in the loss of some scale information 

which might be important for histopathology. In particular, this information might be helpful 

for the Gleason grading task as different sizes of glands can be categorized into levels in the 

Gleason system. Therefore, incorporating scale information in the GNH might be helpful to 

improve the system’s performance.

Finally, we re-examined those individual images upon which our system performed worst. 

We found in some of these images that there were intrinsic difficulties that even expert 

pathologists might not agree upon. If we were to treat our model as another pathologist, 

some experts might agree with its predictions while others might not. This observation leads 

to bigger questions: how do we best form a “Doctor-AI Ecosystem”? How might the 

experts’ annotations affect the training of computer systems? How do our computer systems’ 

performance affect doctors’ decisions in practice? And what is a good criterion that we can 

use to tell if computer systems are trustworthy enough to make their diagnosis alone [49]. 

Those are the questions we need to answer in the future.

VI. CONCLUSION

In this paper, we present a novel framework that achieved state-of-the-art performance in 

epithelial cell detection and Gleason grading based on histological images. We adopted a 

two-stage model, R-CNN, to help the network focus on regions that need a careful 

inspection. By adding an Epithelial Network Head (EHN), our model performance was 

boosted by detecting epithelial cells and predicting Gleason grades simultaneously with little 

additional overhead. We also employed a fully connected conditional random field (CRF) as 

a postprocessing step to compensate for the artifacts caused by the system. Extensive 

experiments were conducted to validate the robustness of our method and the effectiveness 

of each module in our model. We envision that our method would help the pathologist to 

make the diagnosis more efficiently in the near future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Samples from the dataset used for this work. Three representative examples are shown. The 

top row shows a stroma-only example; the middle row is an example with a large benign 

region; the bottom row is an example with both high-grade and low-grade cancer. (Left 
Column): Original histological image tiles stained by H&E. (Middle Column): 
Micrographs annotated by pathologists for stroma (red), benign glands (yellow), low-grade 

cancer (green), and high-grade cancer (blue). (Right Column): Annotated data used to form 

a multi-task problem. We treat stroma as background (BG), and each cancer area as a 

separate object with a bounding box, class label, and segmented mask as its properties (BN: 

benign, LG: low-grade, HG: high-grade). (For best readability of the class labels, the reader 

is referred to the web version of this article.)
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Fig. 2. 
Overview of the proposed Path R-CNN model architecture. We use the ResNet model as a 

backbone to extract feature maps from the input image. Extracted feature maps are then fed 

into two branches. In the left branch, the region proposal network (RPN) first generates 

proposals to tell which regions the grading network head (GNH) should focus upon. The 

GNH is then used to assign Gleason grades to epithelial cell areas. In the right branch, an 

Epithelial Network Head (ENH) is used to determine if there is epithelial tissue in the 

image. The final output depends on the results of the ENH. If there is no epithelial cells, the 

model outputs the whole image as stroma. Otherwise the model outputs its results from the 

GNH.
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Fig. 3. 
The training process to train our proposed model in Stage 1. The model was initialized with 

the pre-trained weights on MS COCO dataset. The GNH was first trained for 25 epochs with 

a learning rate of 1e-3. The ResNet stage 4 and upper layers along with GNH were then fine-

tuned for 40 epochs with the same learning rate. After convergence of the model parameters, 

we reduced the learning rate to 1e-4 and trained to 55 epochs. Finally, we included the 

ResNet stage 3 and fine tuned for another 15 epochs with a learning rate of 1e-5.
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Fig. 4. 
Path R-CNN model results. (Left Column): Original histological image tiles stained by 

H&E. (Middle Left Column): Slides annotated by pathologist experts served as the ground 

truth to train Path R-CNN. (Middle Right Column): Multi-Scale U-Net Predictions. (Right 
Column): Path R-CNN Predictions.
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Fig. 5. 
Effectiveness of adding the ENH and CRF to our proposed Path R-CNN. The first two rows 

show two examples to demonstrate the effectiveness of the ENH. The last two rows show 

two additional examples to demonstrate the effectiveness of adding the CRF.
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TABLE I

Dataset summary.

No. Image No. Patient Label Set

SetA [26] 224 20 Stroma, Benign, Low-grade (CG3), High-grade (CG4)

SetB [27] 289 20 Stroma, Benign, Low-grade (CG3), High-grade (CG4, CG5)

    Total No. Image: 513     Total No. Patient: 40
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1The previous model by Gertych, et al. [26] only addressed three class segmentation by combining G3 and G4 together.
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