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Metals in one spatial dimension are described at the lowest energy
scales by the Luttinger liquid theory. It is well understood that
this free theory, and even interacting integrable models, can sup-
port ballistic transport of conserved quantities including energy.
In contrast, realistic one-dimensional metals, even without disor-
der, contain integrability-breaking interactions that are expected to
lead to thermalization and conventional diffusive linear response.
We argue that the expansion of energy when such a nonintegrable
Luttinger liquid is locally heated above its ground state shows
superdiffusive behavior (i.e., spreading of energy that is interme-
diate between diffusion and ballistic propagation), by combining
an analytical anomalous diffusion model with numerical matrix-
product–state calculations on a specific perturbed spinless fermion
chain. Different metals will have different scaling exponents and
shapes in their energy spreading, but the superdiffusive behavior
is stable and should be visible in time-resolved experiments.

thermal conductivity | superdiffusion | Luttinger liquids |
anomalous transport

Quantum many-body systems are now, thanks to recent devel-
opments, understood to support multiple universal classes

of dynamical behavior at long length and time scales. Systems
may fail to thermalize to the conventional Gibbs ensemble
because there exist an infinite number of (sufficiently local) con-
servation laws: two well-studied examples in one spatial dimen-
sion include many-body localized systems (1–4) and quantum
integrable models (5, 6). However, most realistic condensed-
matter systems do not have more than a few conservation laws,
and the Gibbs ensemble or thermal state based on these is still
believed to be the asymptotic state of the system. The approach
to the thermal state in such a system is usually assumed to be
described either by conventional hydrodynamics, if momentum
is conserved, or by diffusion.

The point of this work is to argue that a simple problem of
energy transport in realistic one-dimensional metals generates a
type of anomalous or nonlinear diffusion, even though the system
is nonintegrable, thermalizing, and described in other aspects by
conventional linear response. The Luttinger liquid is the generic
metallic state of interacting one-dimensional fermions, analo-
gous to the Fermi liquid in higher dimensions but with several
fundamental differences (7). The low-energy limit of the Lut-
tinger liquid is a free bosonic theory, but real Luttinger liquids
contain integrability-breaking perturbations that are responsible
for thermalization. The irrelevance of these perturbations leads
to superdiffusive behavior when energy expands from an initial
finite heated region into the ground state. We study this type of
rapid energy spread in part because of experiments using laser
irradiation of a small region to generate an outward flux of heat
in a solid (8, 9). These could be performed on spin chain mate-
rials or others where thermal transport has been argued to show
signs of near-integrability, although disentangling disorder and
open-system effects can be complex (10, 11).

The problem of expansion of excitations into a region previ-
ously in the ground state has been studied in many models and
received new impetus with the advent of dynamical measure-

ments on ultracold atomic gases (12). Two illustrative classes of
possible behaviors come from considering classic physics: first,
the case of free particles whose different velocities lead to dis-
persion, and second, the classic fluid limit in which interactions
lead to nonlinear behavior and propagating wave fronts. Both of
these cases lead to ballistic behavior, and some kinds of interac-
tions in one dimension lead to integrable models that also have
this ballistic property. A third class covers diffusive behavior,
for example, of Brownian particles. Diffusion implies a para-
metrically slower rate of spreading of either particles or energy,
with finite linear-response transport coefficients. The results pre-
sented here show that even simple, well-studied problems in
quantum condensed-matter physics lead to long-time scaling that
is distinct from these three standard possibilities. Note that the
superdiffusion described in the present work is distinct from
that known to exist in momentum-conserving many-body systems
(13–16), in which linear-response coefficients are not finite in
the thermodynamic limit but rather diverge as a power law in
system size.

Our presentation starts with an explicit example of a local
lattice Hamiltonian that shows superdiffusive behavior and can
be studied quantitatively using time-dependent density-matrix
renormalization group (DMRG) methods. We then present a
simplified model of this behavior that is equally applicable to a
broad class of one-dimensional metals, because the superdiffu-
sive behavior originates in the continuous variation of the scaling
dimensions of irrelevant integrability-breaking operators in the
Hamiltonian. (Recall that continuous variation of the electron
operator’s scaling dimension leads to the well-known power-
laws in electron tunneling into a Luttinger liquid; ref. 17.) The
special aspect of energy expansion into the ground state of a
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realistic Luttinger liquid is that the system is never fully in the
linear-response regime because of the singular zero-temperature
thermal conductivity. The result is an anomalous diffusion equa-
tion with solutions of Barenblatt–Pattle type, which exhibit
superdiffusive space–time scaling.

The Microscopic Model
For a microscopic realization of universal Luttinger liquid
physics that is amenable to numerical simulation, we consider
a spin-1/2 XXZ chain in the presence of a staggered magnetic
field, with Hamiltonian H =

∑N
i=1 hi , where

hi = JS x
i S

x
i+1 +S y

i S
y
i+1 + ∆S z

i S
z
i+1 + (−1)ihS z

i [1]

(in the following, we set J = a = ~= 1, where a denotes the lat-
tice length scale). This model was studied in previous work (18,
19), and for ∆ 6= 0, the staggered field can be verified to break
integrability of the spin-1/2 XXZ chain by a level-statistics anal-
ysis. Meanwhile, the effect of the staggered field perturbation
on the low-energy physics of the system can be determined via
bosonization. For infinitesimal h , the bosonized Hamiltonian can
be written as

H =
u

2

∫ L

0

dx
(
Π2 + (∂xφ)2

)
+ ch

∫ L

0

dx cos
(

2
√
πKφ

)
+HUmklapp +Hband curvature +Hhigher terms inh , [2]

where L=Na and the momentum and phase degrees of freedom
satisfy canonical commutation relations [Π(x ),φ(y)] = iδ(x −
y). Here, the Luttinger parameter K is given by the Bethe ansatz
result 2K cos−1(−∆) =π, and various other coupling constants
can be determined exactly (20). From the scaling dimension
[h] = 2−K , it follows that the staggered field is relevant and
opens a gap for K < 2 or −

√
2/2<∆≤ 1. However, for K >

2, or −1<∆<−
√

2/2, this perturbation is irrelevant and the
model remains in a gapless Luttinger liquid phase. In this paper,
we focus on the latter regime.

In what follows, it is to be understood that the effective
Luttinger parameter in the gapless regime, K (∆, h), varies con-
tinuously with ∆ and h and, in particular, will differ from the
Bethe ansatz prediction for h 6= 0. For this reason, the values of
K that we quote for the specific values of ∆ and h considered
below are obtained from an independent ground-state DMRG
calculation (21, 22).

Low-Temperature Hydrodynamics
We now consider linear-response transport in the system Eq. 1.
The direct current (DC) charge and heat conductivities may be
defined by the Kubo formulae (23–26)

σc = lim
tM→∞

lim
N→∞

1

NT
Re

∫ tM

0

dt 〈Jc(t)Jc(0)〉, [3]

σh = lim
tM→∞

lim
N→∞

1

N
Re

∫ tM

0

dt 〈Jh(t)Jh(0)〉, [4]

where the respective current operators J =
∑N

i=1 ji are given by
the continuity equations

∂thi + jh,i+1− jh,i = 0 =⇒ Jh = i

N∑
i=2

[hi−1, hi ], [5]

∂tS
z
i + jc,i+1− jc,i = 0 =⇒ Jc = i

N∑
i=2

[hi−1,S z
i ]. [6]

A numerical study of the heat and charge conductivities σh(T )
and σc(T ) in the model Eq. 1 was performed in previous work

(18), using time-dependent, finite-temperature DMRG simula-
tions (21, 27–30). It was found that for h 6= 0, the AC thermal
conductivity exhibits an O(h2) broadening of the Drude peak
arising from integrability at h = 0. This broadening yields a finite
DC thermal conductivity σh(T ) for h 6= 0. (Obtaining the value
of σh(T ) numerically for low temperatures T . 0.2 appears to
be beyond the present state of the art.) In the same work, it was
argued that in the gapless phase of the Hamiltonian Eq. 1, the
DC charge conductivity should scale with temperature as

σc(T )∼T ν(K), T→ 0, [7]

at low temperatures, with ν(K ) some universal function depend-
ing only on the Luttinger parameter K characterizing the effec-
tive Hamiltonian Eq. 2. It was further verified that for several
values of ∆ and h in the gapless phase, the numerical values
of the Luttinger parameter K (∆, h) and the scaling exponent
ν(K ) obtained from DMRG are consistent with the analytical
bosonization prediction (31, 32)

ν(K ) = 3− 2K . [8]

This is an instance of a very general scenario whereby perturb-
ing a Luttinger liquid with an irrelevant vertex operator leads
to a nontrivial power-law dependence on temperature in the
low-T charge conductivity, which scales continuously with the
Luttinger parameter K . This result follows by nonperturbative
resummation of the charge–current autocorrelation function,
combined with a low-order Taylor expansion of the perturbation
self-energy in frequency (33–35). Although such nonperturba-
tive resummation techniques are not directly applicable to the
thermal conductivity σh(T ), it is natural to expect that the same
phenomenon occurs, with

σh(T )∼Tλ(K), T→ 0, [9]

for some exponent λ(K )< 0 that depends on K and the
scaling dimension of the irrelevant perturbation. For exam-
ple, the assumption that σc(T ) and σh(T ) are related by
Wiedemann–Franz scaling σh(T )∼Tσc(T ) would imply that
λ(K ) = 1 + ν(K ). Indeed, this holds for the tunneling electri-
cal and thermal conductances through a single impurity in a
Luttinger liquid (36), although the Lorenz number (the coeffi-
cient of the Wiedemann–Franz ratio) is modified from its Fermi
liquid value.

In general, one should not assume that λ(K ) and ν(K ) are
always so simply related (at least it is not clear to us that this must
be the case for all integrability-breaking perturbations), but even
without a specific value for λ(K ), the ansatz Eq. 9 has striking
consequences for the problem, mentioned in the Introduction,
of expansion of a small high-temperature region into a large low-
temperature background. To see this, let us write σh(T ) =CTλ,
where C is a nonuniversal, temperature-independent prefactor.
Then, in the linear-response regime and to leading order in tem-
perature, Eq. 9 implies that temperature gradients give rise to
heat currents according to jQ(x )∼−CTλ∂xT (x ). We now con-
sider states of the model Eq. 2 that are in local thermodynamic
equilibrium, in the sense that they are well described by smoothly
varying local temperature distribution, T (x , t). For flows in such
states that are driven purely by temperature gradients, the heat
current coincides with the energy current, and we can write down
a hydrodynamic equation

∂tρE = ∂x
(
CTλ∂xT

)
[10]

for small perturbations ρE (x , t) of energy density relative to the
ground state energy density, which is expected to hold to leading
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order in T and its gradients. At low temperatures, it is also true
that the temperature dependence of ρE (x , t) is fixed by a local
equation of state, of the form ρE (x , t)∼BT (x , t)2, where by the
low-energy properties of conformal field theories, B =πk2

B/6~v .
This gives rise to the nonlinear diffusion equation

∂tρE =D∂2
x (ρmE ) [11]

for ρE , where the exponent m is given in terms of λ by m =
(λ+ 1)/2, and the constant D =C/2mBm . For a Fermi liq-
uid with finite mean free path as T→ 0, λ= 1 and we recover
ordinary diffusion of heat. However, in the context of weakly
perturbed Luttinger liquids, for which we expect that λ 6= 1 in
general, more exotic scenarios can arise. If λ> 1, Eq. 11 is
the porous medium equation, whose solutions are characterized
by subdiffusive space–time scaling, while if λ< 1, this equa-
tion becomes the fast diffusion equation, whose solutions show
superdiffusive space–time scaling (37). Hence, this model shows
that the perturbed Luttinger liquid, even under the assumption
that thermalization is effective enough that linear-response the-
ory is applicable, can be expected to show superdiffusive scaling.
A transparent way to see this is from the fundamental solution
of Eq. 11, which for λ>−1 is the so-called “Barenblatt–Pattle”
solution to the nonlinear diffusion equation. Such solutions are
characterized by a space–time scaling that varies continuously
with λ,

x ∼ tα, α=
2

λ+ 3
. [12]

Thus, “weakly perturbed” Luttinger liquids, whose low-
temperature thermal conductivity exhibits the power-law depen-
dence of Eq. 9, may exhibit a continuous range of space–time
scaling exponents in their thermal transport. We now present
numerical evidence for superdiffusive transport of heat, in the
regime of weak integrability breaking for the Hamiltonian Eq.
1. We find that within this model, the spreading of thermal
wave packets is characterized by a single superdiffusive exponent
2/3<α< 1, which can be tuned by varying the strength of the
integrability-breaking staggered field h .

While the numerical evidence shows superdiffusion, it also
shows more complicated line shapes than predicted by the locally
thermalized model above, suggesting that full thermalization
does not take place during the expansion. Note that collapse
with a single exponent is not consistent with spreading (charac-
terized by moments of the distribution, for example) determined
by a ballistically propagating front with a weight that decays as
a power law in time, plus a central thermalized region. Rather,
there is a single limit shape that expands with a single scaling
behavior. We illustrate this behavior and then discuss its detailed
relation to nonlinear diffusion.

Numerical Calculations
In order to demonstrate anomalous low-temperature thermal
transport in Luttinger liquids, we perform DMRG simulations
(21, 27) of the microscopic model Eq. 2 at finite temperature
(28–30). The model parameters are first set to ∆ =−0.85 and
h = 0.2, which were found in previous work (18) to generate
a Luttinger liquid with effective Luttinger parameter K ≈ 2.4.
The initial data for our numerical simulation consists of a local-
ized heated region, with inverse temperature distribution (see
Materials and Methods for simulation details)

β(x ) =β− (β−βM )e−(x/la)2 . [13]

In Fig. 1, we find clear evidence for superdiffusive, rather than
diffusive, transport, both at the level of a naive rescaling of the
thermal wave packet and in the scaled logarithmic time deriva-
tives of its absolute moments, which, for nonlinear diffusion with

Fig. 1. Superdiffusion of a thermal wave packet in a perturbed Luttinger
liquid. The initial temperature profile is that of Eq. 16, with βJ = 12, βMJ = 8,
and l = 2. (Top) Diffusive rescaling of the wave packet (Left) is compared
with superdiffusive rescaling (Right), with exponent α≈ 0.9. (Bottom) Log-
arithmic time derivatives of the wave packet’s absolute moments indicate
superdiffusion controlled by a single-exponent α≈ 0.9 (dashed line) rather
than diffusive (α= 0.5) or ballistic (α= 1) scaling (dotted lines)

a single exponent α, should collapse to a single value at long
times,

1

n

d log 〈|x |n〉(t)
d log t

→α, t→∞. [14]

Both analyses are consistent with the superdiffusive exponent
α≈ 0.9. Note that for this model, the measured value of the
exponent agrees well with the Wiedemann–Franz prediction
α= 2/(7− 2K )≈ 0.91.

We next consider the effect of varying the integrability-
breaking staggered field h . The natural expectation is that
increasing the strength of the integrability-breaking perturbation
leads to a decrease in the exponent α, bringing transport closer
to normal diffusion. This is consistent with the numerical results
depicted in Fig. 2. For the model parameters in Fig. 2, the val-
ues of the Luttinger parameter measured using DMRG (22) are
found to be K ∼ 6− 11, which lie well outside the regime 2<
K < 2.5 in which the Wiedemann–Franz prediction yields mean-
ingful results. Nevertheless, the collapse to a single exponent is
still consistent with the power-law assumption, Eq. 9.

We now discuss more carefully the relation between these
numerical results and the model proposed in the previous sec-
tion. Strictly speaking, our model predicts that superdiffusive
spreading of a localized heated region will persist indefinitely
if the bulk temperature T = 0. In the more realistic scenario
of a small, nonzero bulk temperature T > 0, we expect that

Bulchandani et al. PNAS | June 9, 2020 | vol. 117 | no. 23 | 12715



Fig. 2. Decrease of the effective superdiffusion exponent as the strength
of the integrability-breaking staggered field h is increased. The initial wave
packet is given by Eq. 16 with βJ = 12, βMJ = 8, l = 2, the model anisotropy
is set to ∆ =−0.99, and only h is varied. Effective exponents are com-
puted from logarithmic time derivatives of absolute moments n = 2, 3, 4.
(Inset) Time evolution of a higher-temperature wave packet with βJ = 1,
βMJ = 0.2, l = 2, at anisotropy ∆ =−0.99, and staggered field h = 0.49.
Absolute moments n = 2, 3, 4, 5 demonstrate near-diffusive exponent α≈
0.58 (dashed line).

wave-packet spreading will transition from superdiffusive to dif-
fusive behavior after some characteristic time scale tD(T )∼
Tλ−1, that diverges faster than T−1 as T→ 0. The temperature
dependence of this time scale follows by linearizing the nonlin-
ear diffusion model Eq. 11 about a constant bulk temperature.
To corroborate this picture, we have checked numerically that
by increasing the bulk temperature T , the time scale tD(T ) can
be brought down until the effective exponent begins to decrease
toward α= 0.5 on the numerically accessible time scale. An
example for this is shown in Fig. 2, Inset. (One expects that the
same holds true for sufficiently shallow wave packets, but ver-
ifying this is beyond the reach of our numerics.) For the low
bulk temperature βJ = 12 considered in Fig. 1 and the main
plot of Fig. 2, our results indicate that the numerically accessi-
ble time scale (t ∼ 50) is in a regime t� tD(T ) during which
the dynamics is superdiffusive. That this dynamics represents
genuine anomalous diffusion, rather than a generic transient en
route to diffusion, is demonstrated by the numerical observa-
tion that effective exponents obtained from different moments
of the wave packet converge to the same superdiffusive value,
as in Eq. 14. We have additionally checked that in the limit of
bulk temperature T = 0, for which we expect tD→∞, superdif-
fusion is observed on accessible time scales. This was simulated
by initializing the system in the ground state of the Hamiltonian
H ′=H + δH , with H given by Eq. 1 and δH a localized inho-
mogeneity near x = 0, before time-evolving numerically under H
using pure-state time-dependent DMRG (21, 27).

Thus, the numerical collapse to a single exponent depicted in
Figs. 1 and 2 indicates that our simple hydrodynamic model for
propagation of heat in weakly perturbed Luttinger liquids, Eq.
11, is at least qualitatively correct, since it predicts that spread-
ing of localized initial wave packets at low temperature should
be controlled a single superdiffusive exponent, α. On the other
hand, the splitting of the wave packet into a doubly-peaked struc-
ture, as depicted in Fig. 1, is markedly different from the shape
of the Barenblatt–Pattle fundamental solution to the fast diffu-
sion equation (37), which exhibits a single maximum for all time.
Moreover, the doubly-peaked structure appears to be somewhat

robust to the details of the localized initial wave packet, as shown
in Fig. 3. This suggests that a more refined model than Eq. 11 is
required to capture the precise shape of the superdiffusing wave
packet. It is expected that using other perturbations to break
integrability, or considering multicomponent Luttinger liquids,
will lead to different scaling functions and exponents, but the
analytical model above suggests that superdiffusive or ballistic
behavior should be expected as long as the scaling of linear-
response thermal conductivity with temperature is larger than
linear in T as T→ 0.

Our results are therefore consistent with a generic sce-
nario of superdiffusive low-temperature heat transport in one-
dimensional metals. A natural question is whether the same
phenomenon could arise in spatial dimension d > 1. We claim
that this phenomenon can occur in higher dimensions, but it is
no longer as generic. In particular, physical systems in d > 1 that
are close to a noninteracting fixed point will exhibit superdif-
fusion of heat as T→ 0, for the same reason as the Luttinger
liquid; however, in higher dimensions, such systems represent the
exception when there is emergent conformal invariance rather
than the rule, since the conductivity of an interacting, confor-
mally invariant quantum critical point above one dimension is
generally finite, rather than divergent as in one dimension.

If particle-hole symmetry is abandoned, the clean Fermi liq-
uid with interactions on a lattice and a nonzero Fermi surface,
which is not conformally invariant, is an example of how there
can be a diverging conductivity as T→ 0 above one dimension.
Indeed, the conductivities diverge fast enough that an analysis of
the expansion of a lump of charge and energy into the vacuum in
terms of superdiffusion fails to be self-consistent. This could indi-
cate that the ultimate behavior is ballistic, but a different method
is needed for a reliable answer.

t = 0

t = 30

Fig. 3. Comparison of long-time shape of two different, localized initial
profiles with the same total energy, in a model with ∆ =−0.85 and h = 0.2.
The Gaussian initial profile (red dash) is as in Fig. 1. The quartic initial pro-

file (blue dash) has the form β(x)∝ e−cx4+dx2
, with c and d chosen to yield

approximately the same total energy as the Gaussian profile. Qualitatively
different initial profiles (Top) lead to a similar scaling form for the wave
packets at long times (Bottom).
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Discussion
We have shown that superdiffusive spreading of heat can occur in
a generic class of nonintegrable, thermalizing, one-dimensional
physical systems. This can be understood from a simple theoreti-
cal model, which assumes only that the temperature dependence
of the thermal conductivity in a weakly perturbed Luttinger liq-
uid is given by a power law, σh(T )∼Tλ, that diverges at low
temperature.

One desirable goal for future work is a direct calculation of the
low-temperature behavior of the thermal conductivity, σh(T ).
Analytical methods that capture the charge conductivity in a
weakly perturbed Luttinger liquid (31, 32) rely on the Dyson
series for computing correlation functions and do not readily
generalize to the four-point functions that are required for ther-
mal conductivities. Similarly, obtaining the power law accurately
appears to be beyond the present state of the art for time-
dependent DMRG methods (18). A possible way forward is the
Mori–Zwanzig memory-matrix approach; although this method
is approximate in practice, it could in principle be used to esti-
mate the thermal conductivity of a weakly perturbed Luttinger
liquid (38, 39).

An interesting question concerns the importance of prox-
imate integrability in the systems under consideration. The
simple anomalous diffusion model that we propose above cap-
tures the key qualitative feature of thermal wave-packet spread-
ing in these systems, namely superdiffusion characterized by
a single scaling exponent. However, the shape of the spread-
ing wave packet at low temperature differs from the simplest
Barenblatt–Pattle form. One possible explanation for the dis-
crepancy is that the spreading of the energy distribution and
the consequent decrease of energy density violate the local
thermalization assumption in the anomalous diffusion model:
energy moves through a region more rapidly than the region
can fully thermalize. The recently developed hydrodynamics of
quantum integrable systems (40, 41) might provide a starting
point for analyzing such effects, since it captures energy trans-
port in the XXZ model without a staggered field to a remarkable
degree of accuracy (41, 42), and there is a growing understand-
ing of how to capture integrability-breaking physics within this
formalism (43).

Another direction for future work is to extend the current
treatment to coupled charge and energy transport in systems
away from half-filling, when thermopower effects become impor-
tant (36). A subtlety is that the scaling of thermopower in
a generic Luttinger liquid will be controlled by the leading
integrability-breaking perturbation that also breaks particle-hole
symmetry, which, for the model Eq. 2, is the band-curvature
correction (44, 45), distinct from the perturbation that controls
thermal conductivity. At the same time, very slow relaxation of

energy in this regime (46) suggests an intriguing possibility for
ultrafast diffusion of heat.

Such refinements of the theory notwithstanding, our numer-
ical results are consistent with an emerging understanding
that for low-dimensional physical systems, the usual dichotomy
between ballistic and diffusive transport can break down, in
contexts ranging from classic one-dimensional systems (47,
48) to quantum integrable (49–53) as well as nonintegrable
(54) models and disordered quantum systems near the many-
body localization transition (55). The fact that anomalous heat
transport can arise from generic perturbations to the well-
studied Luttinger liquid indicates that the full richness of
transport in low-dimensional quantum systems remains to be
explored.

Materials and Methods
Numerical results are obtained from DMRG simulations (21, 27) of the
microscopic model

H = J
N/2−1∑

i=−N/2

Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆Sz
i Sz

i+1 + (−1)ihSz
i [15]

at finite temperatures, following the method of refs. 28–30. For Figs. 1–3,
we set J = 1, take N = 200 sites and consider couplings ∆ =−0.85, h = 0.2
in Figs. 1 and 3, and couplings ∆ =−0.99, h∈{0.05, 0.1, 0.2, 0.49} in Fig. 2.
The initial state in all cases is specified by a Gaussian inverse-temperature
profile,

β(x) = β− (β− βM)e−(x/l)2 , [16]

parameterized by bulk (β) and central (βM) inverse temperatures and a char-
acteristic width l. The resulting profile is used to define the initial density
matrix

ρ(0) =
e
−

∑N/2−1
j=−N/2

β(j)hj

tr

{
e
−

∑N/2−1
j=−N/2

β(j)hj

}, [17]

where hj denotes the jth summand in the Hamiltonian Eq. 15. This initial
density matrix is then evolved in time ρ(t) = e−iHtρ(0)eiHt , according to the
time-dependent DMRG scheme proposed in ref. 29. We use a Trotter step
size of ∆t = 0.2/J; the discarded weight is chosen such that the error of all
quantities is at most 1% on the scale of the corresponding plot.

Data Availability. All data were generated by the algorithm described in
this paper. Raw data for Figs. 1–3 have been deposited in the Open Science
Framework (https://osf.io/scw75/).
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