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Introduction: Healthcare professionals frequently experience work-related fatigue, which may
jeopardize their health and put patient safety at risk. In this study, we applied a machine learning (ML)
approach based on data collected from a smartwatch to construct prediction models of work-related
fatigue for emergency clinicians.

Methods:We conducted this prospective study at the emergency department (ED) of a tertiary teaching
hospital from March 10–June 20, 2021, where we recruited physicians, nurses, and nurse practitioners.
All participants wore a commercially available smartwatch capable of measuring various physiological
data during the experiment. Participants completed the Multidimensional Fatigue Inventory (MFI) web
form before and after each of their work shifts.We calculated and labeled the before-and-after-shift score
differences between each pair of scores. Using several tree-based algorithms, we constructed the
prediction models based on features collected from the smartwatch. Records were split into training/
validation and testing sets at a 70∶30 ratio, and we evaluated the performances using the area under the
curve (AUC) measure of receiver operating characteristic on the test set.

Results: In total, 110 participants were included in this study, contributing to a set of 1,542 effective
records. Of these records, 85 (5.5%) were labeled as having work-related fatigue when setting the MFI
difference between two standard deviations as the threshold. Themean age of the participants was 29.6.
Most of the records were collected from nurses (87.7%) and females (77.5%). We selected a union of 31
features to construct the models. For total participants, CatBoost classifier achieved the best
performances of AUC (0.838, 95% confidence interval [CI] 0.742–0.918) to identify work-related fatigue.
By focusing on a subgroup of nurses <35 years in age, XGBoost classifier obtained excellent
performance of AUC (0.928, 95% CI 0.839–0.991) on the test set.

Conclusion: By using features derived from a smartwatch, we successfully built ML models capable of
classifying the risk of work-related fatigue in the ED. By collecting more data to optimize the models, it
should be possible to use smartwatch-based ML models in the future to predict work-related fatigue and
adopt preventive measures for emergency clinicians. [West J Emerg Med. 2023;24(4)693–702.]
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INTRODUCTION
Work-related fatigue is a major concern in the workplace.

Work-related fatigue amongmedical personnel can affect the
health and well-being of emergency healthcare professionals
(EHP) and put patient safety at risk.1–6 Causes of fatigue in
the workplace may be due to either physiological factors,
such as long work shifts or heavy workload, or psychological
aspects such as stress.2,7 Researchers found that if employees
workedmore than 55 hours per week, the chances of getting a
stroke or coronary heart disease would increase by 33% and
13%, respectively, compared to employees whose working
hours met the 55-hour standard.8 Another study showed that
doctors in Taiwan might have greater occupational pressure
and a higher depression rate (13.3%) than that found in the
general population (3.7%).9 To reduce healthcare workload
and prevent human errors during clinical practice by
determining how to detect work-related fatigue earlier and
adopt preventive measures is worthy of careful study.

Numerous studies have focused on work-related fatigue;
however, most were conducted subjectively by using self-
report measures such as questionnaires, surveys, or rating
scales completed after work.10–12 Until now, few studies have
looked at objective ways of collecting real-time data from
EPs and other healthcare workers while on shift. With the
advancement of information technology and the advent of
wearable devices capable of unobtrusively collecting
real-time biosensor data without affecting the workflow of
medical staff, it is possible to develop a smartwatch-based
prediction model of work-related fatigue for EHPs. In the
past, wearable devices focused more on health monitoring
for the elderly or fall detection in patients with movement
disorders.13 Now, wearable devices are used with machine
learning (ML) to determine whether a patient has depression
or to facilitate the delivery of high-quality cardiopulmonary
resuscitation.14,15

A recent review article by Martins et al focused on fatigue
monitoring through wearables. They retrieved a total of 612
articles in their literature search and included 60 articles for
analysis. Of the included research, the most common studies
were related to drowsiness detection for drivers (33), followed
by the detection of physical fatigue, mental fatigue, muscle
fatigue and, lastly, vigilance detection. Although four studies
focused on the healthcare domain, none looked at healthcare
professionals. Three of those studies were related to fatigue
detection for rehabilitation patients, and one examined mental
fatigue detection in a healthy population. Of the 60 studies
included in the reviewbyMartins et al, onlyfive reported on the
use of a smartwatch as the signal source for fatigue detection.16

Apart from that review, one study described the use of a
wearable photoplethysmography (PPG) biosensor to
evaluate the feasibility of collecting and analyzing PPG data
for burnout in EPs while they work. Since this study showed
no significant changes in pulse rate and pulse rate variability
over the course of an EP’s academic year, it suggested that

alternative methods would have to be explored to measure
stress among EPs at work.17

A smartwatch is a wearable device with the function of
both telling time and acting as a source for collecting
physiologic data derived directly from the wearer’s body
because of its proximity to the skin. Today most of the
commercially available smartwatches claim to have the
ability to track the wearer’s health by providing data, such as
number of footsteps, heart rate, blood pressure, and oximetry
via the embedded biosensors. Although the accuracy of the
measured data derived from smartwatches varies depending
on the device manufacturer, most mainstream devices can
reliably measure heart rate, steps, and other health
evaluation indicators.18

It is reasonable to conclude that we can collect real-time
physiologic data transmitted from the smartwatch worn by
healthcare workers to build a work-related fatigue prediction
model. By combining objective data collected from a
wearable device with the subjective results of the well-
validated Multidimensional Fatigue Inventory (MFI) (filled
out by the participants as a tool for fatigue labeling),19 we
sought to apply ML approaches to construct a work-related
fatigue prediction model for emergency healthcare
professionals.We hypothesized that a smartwatch-basedML
model could serve as a reliable method to detect fatigue for
EHPs working in the emergency department (ED).

Population Health Research Capsule

What do we already know about this issue?
Emergency healthcare professionals
frequently experience work-related fatigue,
which can impact their health and put patients
at risk.

What was the research question?
Can machine learning based on smartwatch
data predict work-related fatigue in
emergency healthcare professionals?

What was the major finding of the study?
CatBoost classifier achieved an area under the
curve of 0.838 (95% CI 0.742–0.918) for
identifying work-related fatigue in study
participants.

How does this improve population health?
By using smartwatch data and machine
learning, work-related fatigue can potentially
be identified and prevented, improving patient
safety and healthcare professionals’ health.
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METHODS
Study Settings

This prospective observational study was conducted
March 10–June 20, 2021 at the ED of National Taiwan
University Hospital (NTUH), a 2,400-bed, university-
affiliated, tertiary teaching hospital with a daily census of
≈300 emergency visits. We recruited emergency care
professionals, including EPs, nurses, and nurse practitioners
>20 years of age, excluding anyone who could not tolerate
wearing a smartwatch. Each participant was provided with
an ASUS VivoWatch SP (ASUSTeK Inc, Taipei, Taiwan), a
commercially available smartwatch capable of measuring
heart rate, blood pressure, oxygen saturation, and footsteps
using the embedded sensors. The smartwatch also features
calorie consumption, heart rate variability (HRV), and stress
index based on proprietary algorithms not shown to the
public. Participants were not allowed to remove the
smartwatch while they were at work. Nine smartphones
(ASUS Zenfone 7) were set up in the ED, acting as gateways
to synchronize and transmit data with a private cloud via
Bluetooth protocol (Bluetooth SIG, Inc, Kirkland WA).
Each phone was paired with 50 smartwatches over the course
of the study.

The Multidimensional Fatigue Inventory
The MFI is a 20-item self-report scale designed to

evaluate five dimensions of fatigue: general fatigue; physical
fatigue; reduced motivation; reduced activity; and mental
fatigue. This instrument was originally developed in the
Netherlands for patients with cancer and chronic fatigue
and has been translated and validated in several other
languages (including Mandarin) for different
populations.19–21 Each dimension contains four items (two
items in a positive and two in a negative direction) to be
scored on a five-point Likert scale ranging from 1 (yes, that
is true) to 5 (no, that is not true). The negative items (items 2,
5, 9, 10, 13, 14, 16, 17, 18, 19) must be recorded before the
scores are added up. The summation of the obtainable score
ranges from 20 (absence of fatigue) to 100 (maximum
fatigue).

For this study, the original MFI scale was translated
into a Traditional Chinese version based on previous
publications19,20 (Supplementary Table 1). Participants were
asked to complete anMFI web form before and after each of
their work shifts. We calculated the differences between each
pair of work-shift scores for the subsequent ML task of
labeling work-related fatigue. We set the between-score
difference of MFI with more than 10, more than one SD, or
more than two SDs as positive labels of work-related fatigue.
The research method was approved by the institutional
review board (NTUH-REC No.: 202011024RIND) of
NTUH. All participants signed an informed consent form
before participating in the study.

The Machine-Learning Method
In addition to participants’ demographic data and the

time series data of blood pressure, heart rate, HRV,
footsteps, and calorie consumption, we retrieved the stress
index transmitted from the smartwatches to the private cloud
as the main features for constructing ML models. We used a
set of time windows (first, second, and fourth hours) and
statistical functions (eg, minimum, maximum, mean, slope,
SD, etc) to create more features as the input variables. In the
feature space we also included the one-hot-encoded (a way to
convert variables for use inML algorithms) demographics of
the study participants. Missing data were automatically
imputed with dummy variables by the ML models. Initially,
696 features were included as the input variables for the
subsequent ML task.

We used several tree-based algorithms—including
random forest (RF), gradient boosting (GB), eXtreme
gradient boosting (XGBoost) (an open source software
library), light gradient boosting machine (LightGBM) (an
open source for a distributed gradient-boosting framework
for ML developed by Microsoft Corp, Redmond, WA), and
categorical boosting (CatBoost) classifiers—to construct the
prediction models of work-related fatigue for clinical staff in
the ED. We defined the between MFI score differences of
more than two SDs in each pair of work shifts as work-
related fatigue and used them as the binary classification
label for this study. We divided all records into two sets
chronologically, 70% of which were assigned to the training
and validation set and 30% to the test set. We used k-fold
cross-validation during the model training process by setting
k from 7 to 10 to obtain the best performances.

We adopted a two-step method as our feature selection
strategy. First, we deselected those features with high
correlation. Second, we ranked the selected features by using
entropy measures based on information gain theory.22

Iteratively, we built our models by trying from the top fifth
important features and added one more until the last selected
features, and finally found a set of features to construct the
best models in terms of the performance of area under the
curve (AUC) measure of receiver operating characteristic
(ROC). Features of continuous data were expressed as mean
and SD (or mode and interquartile range depending on the
normality test), whereas categorical data were expressed as
counts and proportions. We also presented univariate
descriptive statistics to evaluate differences between classes
by using Student t-test, chi-squared test, Fisher exact test, or
Mann-Whitney U test depending on the distribution.

To resolve the class imbalance problem for work-related
fatigue prediction, we used the synthetic minority
oversampling technique method (SMOTE), which
oversampled the minority class during the training process.23

The selection of the models was based on the AUC
performance in the test set, which was set as the primary
evaluation metric of the study. For each model we also
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reported other performance measures, including area under
the precision-recall curve (AUPRC), accuracy, negative
predictive value (NPV), precision (or positive predictive
value [PPV]), recall (or sensitivity, or true positive rate),
specificity (true negative rate), kappa, and F-1 score, The
entropy measures for feature ranking were performed using
Weka 3.8, a collection of ML algorithms for data-mining
tasks (University of Waikato, Hamilton, New Zealand).24

Other ML analyses were performed using Python 3.8 with
the package scikit-learn 0.23.1 installed (Python Software
Foundation, Fredericksburg, VA).25

RESULTS
We included 110 participants in this study, with a set

of 1,542 effective records collected. Each participant
contributed to at least one record, ranging from1–23 records.
Of them, 85 (5.5%) were labeled as having work-related
fatigue (two SDs as the threshold) based on our study
definition. The mean age of the participants was 29.6 years
(SD 6.3), and 77.5% of the records were for females. Most of
the collected records were from nurses (87.7%), followed by
nurse practitioners (7.7%) and EPs (4.5%) (P < 0.001). Up to
47.7% of the collected records were on the evening shift,
44.5% on the day shift, and 7.8% on the night shift (P < .001).
The characteristics of the demographic features in the study
population are shown in Table 1.

The characteristics and univariate analyses of the selected
features between participants with or without work-related
fatigue are summarized in Supplementary Table 2, shown
respectively for the training and testing sets. Based on our
feature selection strategy, finally there was a union of 31
features selected to construct the models. Of them, the work
start time was the only demographic feature selected. The
other 30 features were derived from the smartwatch, of which
11 were related to heart rate, seven to blood pressure, five to
stress index, three to HRV, three to calorie assumption, and
one related to footsteps.

The entropy measures for the ranking of the 31 selected
features are shown in Figure 1. The initially included 696
features and the percentages of data missing are shown in
Supplementary Table 3. The description of the three types of
the candidate features (demographics, sensor data from the
smartwatch, and statistical data derived from the sensor
data) are shown in Supplementary Table 4.

For total participants, the classification results (based on
the best AUC in terms of the different thresholds for
labeling), including AUC, AUPRC, appa, accuracy, F1-
score, precision (PPV), specificity, and NPV on the training
and testing sets are presented in Table 2. By adjusting the
threshold of work-related fatigue labeling from two SDs to
one SD or 20 points of the between differences of the MFI
score, herewe showmerely the top classifier in terms ofAUC.
By using the CatBoost classifier, the best performances of
AUC and AUPRC in the test set were 0.838 (95% confidence

interval [CI] 0.742–0.918) and 0.527 (95% CI 0.344–0.699),
respectively (Figure 2). Conducting further subgroup
analysis when focused on nurses <35 years of age, XGBoost
classifier achieved the best performance in terms of AUC of
0.928 (95% CI 0.839–0.991) when setting the threshold for
work-related fatigue as two SDs. Meanwhile, other
performance measures for this subgroup are presented in
Table 3. In this model, AUPRC was 0.781 (95% CI
0.617–0.0.919) (Figure 2).

DISCUSSION
In this study we applied ML techniques to predict work-

related fatigue for clinical staff who worked at the ED in a
tertiary hospital in Taiwan. Using 31 selected features
derived from a wearable device, we successfully built ML
models capable of classifying the risk of work-related fatigue
in the ED environment. Instead of using base models like
decision tree learning, we used several tree-based algorithms
to construct the prediction models. We chose these
algorithms for their ability to manage the non-linear relation
with better performance in coping with a small amount of
data. These algorithms were also less affected by missing
values and were independent to feature scale and
normalization as well.26 While setting the work-related
fatigue threshold as two SDs difference between the
before-and-after-work MFI scores, we obtained good
discriminatory performance to predict work-related fatigue
taking AUC as the performance indicator. Of the algorithms
we used, CatBoost (AUC 0.838) outperformed RF, GB,
XGBoost, and LightGBM classifiers when applied to the
testing set for the whole cohort of participants. Since younger
participants may have been more likely to have work-related
fatigue27 and nurses made up the majority of the research
group (and their work content might be different from EPs
and nurse practitioners), we performed a subgroup analysis
by focusing on nurses <35. In this subgroup analysis, the
XGBoost classifier (AUC 0.928) outperformed the others on
the testing set in this subgroup (Figure 2).

Feature Selection Using Entropy and Information Gain
Entropy is a measure of the uncertainty or randomness in

the data. It is calculated as the sum of the negative of the
probability of each class multiplied by the logarithm of the
probability of each class. In decision tree algorithms, entropy
is used to determine how much information a feature can
provide us with in reducing the uncertainty of the target
variable.24 The entropy is zero when all the instances in a set
belong to the same class and is maximum when the instances
are equally divided among all classes. Information gain is a
measure of how much a particular feature helps in reducing
the uncertainty of the target variable. In other words, it tells
us how useful a particular feature is in classifying the target
variable. Information gain is calculated by subtracting the
weighted average entropy of the target variable after the
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feature is used for classification from the entropy of the target
variable before the feature is used. The feature with the
highest information gain is chosen as the root node of the
decision tree.

We used entropy and information gain as a method of
feature selection (instead of the commonly used univariate
analysis), given its ability to rank the features in the order of
their respective information gains, so that we could select
features based on the threshold in the ML algorithms. As
shown in Figure 1, we can see the relatively low information
gain of 0.00525 given by the feature “maximum of heart rate

for the last 1-hour time interval” and the relatively higher
information gain of 0.036543 given by the feature “minimum
of systolic pressure divided by diastolic pressure for the first
4-hour time interval.” In summary, entropy and information
gain could be used to determine the best feature to use for
classification, with the goal of reducing the uncertainty of the
target variable and maximizing the information gain.

Comparison with Previous Studies
Work-related fatigue might have both physical and

psychological adverse effects on ED clinical staff, which

Table 1. Characteristics of the demographic features in the study population.

Variables (features)
Total

(N= 1,542)
Training cohort

(n= 1,079)
Testing cohort

(n= 463) P value

Gender .07

Female 1,195 (77.5) 850 (78.8) 345 (74.5)

Male 347 (22.5) 229 (21.2) 118 (25.5)

Age, mean (SD) 29.6 (6.3) 29.6 (6.4) 30.5 (3.5) .84§

Role <.001

Doctor 70 (4.5) 38 (3.5) 32 (6.9)

Nurse practitioner 119 (7.7) 104 (9.6) 15 (3.2)

Nurse 1353 (87.7) 937 (86.8) 416 (89.8)

Work type <.001

Night shift 121 (7.8) 34 (3.2) 87 (18.8)

Evening shift 735 (47.7) 519 (48.1) 216 (46.7)

Day shift 686 (44.5) 526 (48.7) 160 (34.6)

Work hours, mean (SD) 8.3 (0.8) 8.2 (0.7) 8.4 (1.0) <.001

Seniorityϕ, mean (SD) 6.3 (5.1) 6.4 (5.1) 5.3 (6.7) .76

Day of week .012

Monday 222 (14.4) 171 (15.8) 51 (11.0)

Tuesday 232 (15.0) 170 (15.8) 62 (13.4)

Wednesday 249 (16.1) 153 (14.2) 96 (20.7)

Thursday 222 (14.4) 153 (14.2) 69 (14.9)

Friday 213 (13.8) 155 (14.4) 58 (12.5)

Saturday 198 (12.8) 135 (12.5) 63 (13.6)

Sunday 206 (13.4) 142 (13.2) 64 (13.8)

Work start time <.001

7:00 AM 60 (3.9) 53 (4.9) 7 (1.5)

7:30 AM 569 (36.9) 437 (40.5) 132 (28.5)

8:00 AM 44 (2.9) 29 (2.7) 15 (3.2)

9:00 AM 13 (0.8) 7 (0.6) 6 (1.3)

2:30 PM 57 (3.7) 49 (4.5) 8 (1.7)

3:30 PM 678 (44.0) 470 (43.6) 208 (44.9)

8:00 PM 26 (1.7) 9 (0.8) 17 (3.7)

11:30 PM 95 (6.2) 25 (2.3) 70 (15.1)

§We used the Student t-test as the statistical method to compare the variable age and chi-squared test for remaining variables.
ϕSeniority means years of working as a healthcare professional.
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Figure 1.Feature importance ranked by the information gain (entropy). Arranged in an ascending order (from top to bottom), the relatively low
information gain of 0.00525 was given by the feature of “maximum of heart rate for the last 1-hour time interval” and the relatively higher
information gain of 0.036543 was given by the feature “minimum of systolic pressure divided by diastolic pressure for the first 4-hour time
interval.”

Table 2. Performance measures for the total participants.

Total participants

Training Testing

Threshold 2 SDs
(=35.8)

1 SD
(=17.9)

20 2 SDs
(=35.8)

1 SD
(=17.9)

20

Model CatBoost GradientBoosting XGBoost CatBoost GradientBoosting XGBoost

Positive count 57 163 277 28 46 96

AUC 1 1 0.996 0.838 0.759 0.647

AUPRC 0.991 0.998 0.989 0.527 0.43 0.354

F1 0.837 0.979 0.953 0.5 0.372 0.352

Kappa 0.829 0.975 0.937 0.477 0.288 0.182

Sensitivity 0.719 0.982 0.96 0.393 0.457 0.354

Specificity 1 0.996 0.981 0.989 0.89 0.828

PPV 1 0.976 0.947 0.688 0.313 0.351

NPV 0.985 0.997 0.986 0.962 0.937 0.831

Accuracy 0.985 0.994 0.976 0.952 0.847 0.73

AUC, area under the receiver operating characteristic curve; AUPRC: area under the precision recall curve; PPV, positive predictive value;
NPV, negative predictive value.
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could lead to harmful events both for them and their patients.
Until now, previous research studies for work-related fatigue
in healthcare practitioners were mostly conducted in the
form of a questionnaire survey rather than real-time
monitoring.10–12 With the advancement of wearable devices
and the development of artificial intelligence in medicine,
novel technology may facilitate real-time identification of
work-related fatigue in the healthcare domain. However,
previous studies using wearable monitoring methods
have focused more on drowsiness detection for drivers’
occupational health, or fatigue detection for rehabilitation
patients rather than for healthcare professionals.16 With the
combination of wearable technology and ML algorithms,
these models were considered to perform better than
traditional methods of detecting fatigue. However, little was
known about the data quality during the phase of model
development.16 In this study, we successfully constructedML
models based on a smartwatch to identify work-related

fatigue, which can serve as a basis to implement a work-
related fatigue prediction model for emergency healthcare
professionals.

Interpretation of Current Study
In addition to self-reported symptoms, the autonomic

nervous system, especially HRV, was thought to be an
indicator related to work-related fatigue.28 In our study,
of 31 features selected to construct the ML models, three
features were related toHRV, 11 to heart rate, seven to blood
pressure, five to stress index, three to calorie assumption, and
one was related to footsteps.

Our study included 1,542 before-and-after MFI scales
completed by participants who wore a smartwatch while on
shift from March 10–June 20, 2021. Of the participants, 85
(5.5%) showed work-related fatigue and were judged to have
work-related fatigue by our study definition. The training/
validation and testing sets were divided chronologically by a

Figure 2.Performancemeasures of the best machine learningmodel in terms of AUC andAUPRC for all samples and for subgroup of nurses
<35 years in age. (A) AUC on the training cohort (B) AUC on the testing cohort (C) AUPRC on the training cohort (D) AUPRC on the testing
cohort. AUC, area under the receiver operating characteristic (ROC) curves; AUPRC, area under the precision recall curve.
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ratio of 70∶30 to simulate a prospective, randomized
controlled trial. Our study achieved good AUC results for all
populations and obtained excellent performance in the
subgroup analysis for nurses <35 years old.

The rate of work-related fatigue in our population was low
(5.5%), which does not coincide with previously reported rates
of burnout for EPs. As addressed in two review articles, EPs’
burnout rates were estimated to be 25–60% depending on the
study.29,30 However, most of the reviewed studies focused on
research papers that used the Maslach Burnout Inventory
(MBI) to assess the prevalence of burnout. Although the
MBI is a well-validated tool and addresses three scales
(emotional exhaustion, depersonalization, and personal
accomplishment), it mainly focuses on the psychological
aspect of burnout rather than thefive dimensions of fatigue per
the MFI, which we used in our study.

In addition to AUC, we evaluated a series of performance
measures in our constructed models, including accuracy,
NPV, PPV (precision), sensitivity (recall), specificity, kappa,
and F1 score (Tables 2 and 3). Precision refers to how often
the predictions for positive class are true, while recall refers to
how accurately our model can retrieve the relevant records.
The class imbalance problem exists in this study. The
incidence of work-related fatigue is only 5.5% in our study.
Although we obtained an extremely high specificity value
(0.828 to 0.989) and NPV (0.831 to 0.962) in the constructed
ML models for all populations, our results showed that the
sensitivity values (0.354 to 0.457), precision (0.313 to 0.688),
and AUPRC (0.354 to 0.527) were relatively low (Table 2).
This implies that we must pay more attention to the clinical
staff with predicated work-related fatigue, rather than those
without.

Due to the excellent performances in specificity and NPV,
our ML models may also be used as a tool for identifying
clinical staff who are not at risk for work-related fatigue.
When such a high specificity tool yields a positive prediction,
we can confidently rule in the risk of work-related fatigue for
this EP or nurse. When we focused on nurses <35 years old,
our prediction models showed some degree of improvement
depending on themodels we used, whichmeans that different
healthcare professionals may have different patterns of
work-related fatigue (Table 3).

Feasibility for Clinical Application
Work-related fatigue would exert both physical and

psychological stress on clinical staff, which could further lead
to harmful events to healthcare professionals and patients as
well. From the previous research, work-related fatigue was
mainly reported in a form of a questionnaire survey rather
than detection in a timely fashion.10–12 With our constructed
ML model, work-related fatigue could be monitored and
documented in real time, and even in the early period of the
work shift because many of the 31 selected features were
extracted in the first one-hour or four-hour time interval
(Figure 1). When clinical staff are thought to have work-
related fatigue predicted by our model, we should try to
understand their physical and psychological health and
initiate risk assessment and preventive measures.

Moreover, we can even adjust and systemize the demand of
the workforce according to the frequency of the positive
output of work-related fatigue. Work-related fatigue may
result in a workforce shortage because of sick leave or
resignations.31 An insufficient workforce could lead to
increasing work-related fatigue due to additional stress from

Table 3. Performance measures for the subgroup of nurses younger than 35 years old.

Nurses <35 years old

Training Testing

Threshold 2 SDs
(=38.2)

1 SD
(=19.1)

20 2 SDs
(=38.2)

1 SD
(=19.1)

20

Model XGBoost RandomForest XGBoost XGBoost RandomForest XGBoost

Positive count 41 97 174 19 34 66

AUC 0.996 0.998 0.928 0.928 0.813 0.738

AUPRC 0.955 0.989 0.881 0.781 0.609 0.577

F1 0.905 0.926 0.75 0.556 0.429 0.462

Kappa 0.899 0.913 0.685 0.515 0.328 0.357

Sensitivity 0.927 0.969 0.638 0.789 0.618 0.364

Specificity 0.992 0.98 0.979 0.928 0.837 0.939

PPV 0.884 0.887 0.91 0.429 0.328 0.632

NPV 0.995 0.995 0.889 0.985 0.944 0.838

Accuracy 0.988 0.978 0.893 0.919 0.811 0.811

AUC, area under the receiver operating characteristic curve; AUPRC, area under the precision recall curve; PPV, positive predictive value;
NPV, negative predictive value.
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having to share a greater workload or unfamiliarity with the
work to be done. To escape the vicious circle, detecting clinical
staff who have work-related fatigue and then adjusting
workforce demand flexibly is of paramount importance for the
medical personnel in the ED and their patients.

LIMITATIONS
There are limitations to this study. First, we labeled work-

related fatigue by using a self-assessment scale, the MFI,
which could be subjective to reporting bias. However, the
bias may have been minimal since MFI is a well-validated
tool worldwide.20–21 Second, this study was conducted in an
ED of a single, tertiary teaching hospital with a small sample
size that included only a few overnight workers (7.8%), and
focused mostly on nurses who were <35 years in age (the
predominant nurse group working in our ED). Selection bias
may have been introduced since participants were enrolled
voluntarily and not all types of clinical staff in the ED were
enrolled. For the generalizability of the models, further study
may be required to collect more data from diverse medical
staff not included in this study.

Third, because of the low positivity rate of work-related
fatigue in our population, our constructed ML models
encountered the problem of imbalanced classification and
false negatives.32 To obtain better performances, we used the
SMOTE method during the model training process to
balance the dataset. In addition, we evaluated the prediction
performances of our models with most of the available
performance measures, including AUC, AUPRC, precision,
and recall, thereby avoiding over-interpretation by any of the
results. Fourth, our models achieved perfect performance
(AUC near one) in the training set but obtained only
excellent performance in the testing set, and that raised the
concern of overfitting. Such overfitting concern can also be
seen in the results of high variance (large confidence interval)
in the prediction model we built. In our next step, we plan to
collect more data and adopt more robust algorithms before
our model can be generalizable to the target population.

Fifth, we evaluated only the short-term, work-related
fatigue for a shift given that we labeled it by using the
between MFI difference as the labeling method. Further
study is needed to investigate the method that could measure
the longitudinal fatigue, stress, or burnout effects of working
in the ED. Finally, due to the policy of intellectual property
protection in the consumer electronics industry, the product
manufacturer would not disclose any detail related to the
data quality.We believe that even though the accuracy of the
signal derived from the sensor of the smartwatch is uncertain,
the trend and changes of the signal can still serve as the
features for building a fatigue-detection model.

CONCLUSION
We successfully constructed smartwatch-based, machine

learning models to predict work-related fatigue with great

discrimination ability based on the features monitored by a
smartwatch. Implementation of this tool may be useful to
identify ED clinical staff at risk of work-related fatigue.
Given the small sample size in this study, more data
collection and further prospective validation to determine
the effectiveness of usage of this prediction model will be
necessary before it can be applied in daily clinical practice.
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