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RESEARCH ARTICLE

Phylloxerids share ancestral carotenoid

biosynthesis genes of fungal origin with

aphids and adelgids

Chaoyang Zhao, Paul D. Nabity*

Department of Botany and Plant Science, University of California, Riverside, California, United States of

America

* pauln@ucr.edu

Abstract

Gene transfer among reproductively isolated organisms can lead to novel phenotypes and

increased fitness. Among the Sternorrhyncha, a suborder of plant sap-feeding hemipteran

insects, both aphids and adelgids acquired carotenoid biosynthesis genes from a fungal

donor that result in ecologically relevant pigmentation. Phylloxerids form another family that

are closely related to aphids and adelgids and share similar pigmentation, but are largely

uncharacterized for their presence and number of pigment genes that have duplicated

among aphids. Here, we examined the transcriptomes of nine phylloxerid species, and per-

formed PCR to amplify carotenoid genes from their genomic DNA. We identified carotenoid

cyclase/synthase and desaturase genes in each species and demonstrated that they share

the common fungal origin as those of aphids and adelgids based on their exon-intron gene

structures and phylogenetic relationships. The phylogenetic analyses also indicated that

carotenoid genes evolved following the differentiation of aphids, adelgids, and phylloxerids

at the levels of family, genus, and species. Unlike aphids that duplicated these genes in their

genomes, phylloxerids maintained only single copies, and some species may lack expres-

sion of certain genes. These results suggest that the phylloxerid lifestyle undergoes reduced

selection pressure to expand carotenoid synthesis genes, and provides insight into these

gene functions in insects.

Introduction

In contrast with traditional reproduction where genes are transmitted vertically from a parent

to offspring, horizontal or lateral gene transfer (HGT or LGT) is the transmission of genes

between reproductively isolated organisms. HGT is an important factor driving the evolution

of microorganisms, including the acquisition of new features like antibiotic resistance [1].

Although a great number of reported HGT events occur between microorganisms, recent

studies demonstrate that insects readily incorporate foreign genes into their genomes [2].

Next-generation sequencing technologies have facilitated the discovery of microbial genes

incorporated into the genomes of insect species belonging to a variety of orders including
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Diptera, Hymenoptera, Blattodea, Hemiptera, Coleoptera, Phasmatodea, and Lepidoptera [3–

11], but the function of many of these HGTs remains unresolved.

Insect endosymbionts are potential gene donors that may integrate DNA fragments as large

as their whole genome into those of their hosts [12]. Although some horizontally acquired

genes undergo degradation through mutational processes such as frame-shift gene mutations

and eventually become pseudogenes, many genes remain and evolve functional roles that

increase the fitness of recipient organisms. Several studies indicated that the acquisition of

microbial genes in insect genomes facilitates nutrient digestion and metabolism, including the

catabolism of dietary carbohydrates and the biosynthesis of amino acids, vitamins, and carot-

enoids [2, 13–19].

Carotenoids are lipophilic pigments that play important roles in photosynthesis and cell

protection because of their light energy absorbing and transferring, and anti-oxidant proper-

ties [20]. Plants, algae, and certain bacteria and fungi are the predominant carotenoid produc-

ers in nature. While animals require carotenoids for vision, communicative coloration,

immune-system enhancement, and other physiological functions, members of Animalia were

long believed to be incapable of synthesizing carotenoids de novo and thus must obtain them

from diets or through symbiosis [21–22]. However, this has been challenged since the discov-

ery of two carotenoid biosynthesis genes that encode a lycopene cyclase/phytoene synthase

fusion protein and a phytoene desaturase, respectively, in the genomes of aphids, mites, and

gall midges [13, 23–24]. These two proteins, composed of three enzymatic domains in total,

are highly conserved in both microbes and eukaryotes, and catalyze the earliest protein trans-

formations in the carotenoid pathway [25]. Interestingly, these arthropod-derived carotenoid

genes are all of fungal origins and were gained in different HGT events given the distant phylo-

genetic relationships among aphids, gall midges, and mites. Unlike carotenoid genes in plants,

algae, and bacteria, fungal cyclase/synthase and desaturase are typically arranged to form a tail-

to-tail cluster in the genome, giving these genes a distinct structural motif; arthropod caroten-

oid genes share this motif, confirming their fungal origins [24].

As the first animal species reported to be capable of producing its own carotenoids, the pea

aphid (Acyrthosiphon pisum) possesses multiple copies of both carotenoid cyclase/synthase

and desaturase genes [13]. One of the desaturase genes is of ecological significance because it

determines color polymorphism in aphid populations and impacts their susceptibility to natu-

ral enemies. Carotenoid genes, specifically desaturase, were later found to be commonly pres-

ent in other aphid species, as well as their close relatives, adelgids; all have various gene copy

numbers that are all closely related [26]. These patterns indicated that aphids and adelgids

share the same carotenoid gene origin, which was then diversified through lineage-specific

gene duplication and/or deletion. Of note, no carotenoid genes were detected from species of

Aleyrodidae and Psyllidae, families more distantly related to aphids within the suborder Ster-

norrhyncha [26].

Phylloxerids are herbivorous hemipterans closely related to aphids and adelgids. This fam-

ily (Phylloxeridae) consists of many species that are able to manipulate host physiological pro-

cesses and induce plant galls [27, 28]. Given the omnipresence of carotenoid genes in aphids

and adelgids but absence in whiteflies (Aleyrodidae) and psyllids, we were interested in under-

standing whether phylloxerids acquired fungal carotenoid genes as aphids and adelgids did.

Further, we attempted to answer whether these phylloxerid genes, if present, underwent dupli-

cation as observed in many aphid species [29], given their life histories: phylloxerids feed on

parenchyma whereas all other aphidomorphs feed on phloem. We hypothesize that 1) if phyl-

loxerids possess carotenoid genes they were acquired before the separation into aphids, adel-

gids, and phylloxerids, and thus 2) these genes can predict the phylogenetic relationships

among the Sternorrhyncha families as well as genera within Phylloxeridae.

Carotenoid biosynthesis gene evolution among aphidomorphs
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Materials and methods

1) Phylloxeridae insect genomic DNA extraction

Nine known species within Phylloxeridae were used for genomic DNA extraction. They were

all collected from fields in the United States as previously described [30]. Briefly, these include

eight Phylloxera species that form galls on Carya species and Daktulosphaira vitifoliae that galls

both roots and leaves of Vitis species. Among the former, three (P. caryaecaulis, P. subelliptica,

P. caryaemagna,) induce stem/petiole galls, three (P. caryaefallax, P. foveata, P. foveola) induce

leaf galls, and one (P. caryaevenae) feeds across hosts causing crinkle/folds in leaf veins on

hickories (Carya spp.), but one (P. quercus) lives freely on oaks (Quercus spp.).

Insect specimens were collected in the field and stored in 95% ethanol at -20˚C, and the

insect genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, USA)

according to the protocol provided. We used 10–20 individuals for DNA extraction per biolog-

ical replicate, and performed two replicates per insect species.

2) Carotenoid gene identification

Previously, we generated whole-body transcriptomes of the nine Phylloxeridae species

described above [30]. To identify Phylloxeridae carotenoid genes, we first used the Ac. pisum
carotenoid cyclase/synthase (XP_001943170.1) and desaturase (XP_001943225.2) protein

sequences to search against these nine transcriptome databases (TBLASTN, evalue< 1×10−5)

and retrieved the hit sequences whose coding regions were subsequently predicted using the

ORF Finder tool at NCBI (https://www.ncbi.nlm.nih.gov/orffinder/). We then validated

these sequences by searching (BLASTX, evalue < 1×10−5) them back to the NCBI non-

redundant protein database and those not hitting a carotenoid cyclase/synthase or a caroten-

oid desaturase were removed (see S1 and S2 Files). Because RNA-seq assemblies do not

contain information of unexpressed genes and comprise splicing variants and truncated

transcripts that are encoded by same gene loci, we chose to perform PCR to obtain the num-

ber of carotenoid genes from the genomic DNA, which would also allow us to resolve the

exon-intron structure of these genes. Degenerate PCR primers (see S3 File) were designed

based on the alignments of Phylloxeridae and Ac. pisum coding sequences with avoidance of

each primer crossing the exon-intron splice sites determined by the D. vitifoliae draft

genome sequence on AphidBase (http://bipaa.genouest.org/is/aphidbase/daktulosphaira_

vitifoliae/). For each carotenoid cyclase/synthase gene amplification, two nested PCR reac-

tions were separately performed to yield two overlapping DNA fragments: cs1 (cs1f1 and

cs1r1 as the first-round PCR primers, and cs1f2 and cs1r2 as the second-round primers),

and cs2 (cs2f1 and cs2r1 as the first-round primers, and cs2f2 and cs2r2 as the second-round

primers). For each carotenoid desaturase gene amplification, nested PCR was conducted

using the first-round primers ds-f1 and ds-r1 and the second-round primers ds-f2 and ds-

r2. The PCR condition is 94˚C for 5 min, followed by 35 circles of 94˚C for 15 sec, 52˚C for

20 sec and 72˚C for 2 min. The combination of degenerate primers and nested PCR

increases the chance of amplifying the carotenoid genes in all Phylloxeridae species and

meanwhile ensures PCR specificity. PCR products were subsequently purified using the

QIAquick PCR Purification Kit (Qiagen, USA) according to the supplier’s protocol and sub-

mitted for sequencing. The resulting sequences of carotenoid cyclase/synthase fragments cs-1
and cs-2 were merged into one, and the gaps in the coding regions were filled using the tran-

script sequences with identities � 99%, if available.

To identify all possible carotenoid genes in an Adelgidae species, we used the same Ac.
pisum carotenoid protein sequences (XP_001943170.1 and XP_001943225.2) for TBLASTN

Carotenoid biosynthesis gene evolution among aphidomorphs
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searches against Adelges tsugae transcriptome (NCBI # PRJNA242203), the only available pub-

lic adelgid transcriptome/genome database to our knowledge. The hit sequences were retrieved

for further analysis.

Regarding the Myzus persicae carotenoid gene identification, we performed a genome-

wide screening using the BLASTP searches against the My. persicae genome assembly and

its predicted gene models on AphidBase (http://bipaa.genouest.org/is/aphidbase/myzus_

persicae/). From the My. persicae Clone G006 Proteins OGS1.0 database, eight carotenoid

cyclase/synthase and five desaturase sequences were hit, respectively. The cyclase/synthase

hits are MYZPE13164_G006_v1.0_000134340 (only the last six digits are shown for simplic-

ity, i.e., 134340, hereafter for all My. persicae proteins), 134290, 134420, 134380, 134360,

134370, 134390 and 134400, and the desaturase hits are 134410, 134480, 203460, 134430,

and 134350. Among these, two cyclase/synthase hits, 134420 (1194-aa) and 134380

(1153-aa), and one desaturase hit, 134430 (725-aa), are abnormally long. Thus, we con-

ducted manual annotation on their corresponding genomic DNA sequences based on their

similarity to Ac. pisum carotenoid genes and predicted one new 134420 (599-aa), two new

134380 (namely, 134380–1 and 134380–2, 600-aa and 589-aa long, respectively), and one

new 134430 (530-aa) proteins. In summary, nine cyclase/synthase (134340, 134290, 134420,

134380–1, 134380–2, 134360, 134370, 134390 and 134400) and five desaturase (134410,

134480, 203460, 134430, and 134350) proteins were identified from the My. persicae
genome.

3) Phylogenetic analysis

Phylloxeridae carotenoid gene sequences obtained above were used to predict exon-intron

splice sites based on the transcript/genomic DNA sequence alignments of the same insect spe-

cies. In species that transcript sequences were not available or intact enough to resolve gene

structure, we aligned its gene sequence to the transcript sequence of a closely related species,

e.g., D. vitifoliae, to predict the exon-intron splice sites. The intron sequences were removed

and the resulting exons were merged into the coding sequences.

All carotenoid gene coding sequences retrieved were translated into protein sequences

using the DNA translation tool at http://web.expasy.org/translate/. The fungal and bacterial

protein sequences were obtained from the NCBI Non-redundant protein database using

BLASTP searches with the Ac. pisum carotenoid proteins as queries. Because carotenoid

cyclase and synthase are encoded by different genes in bacteria, we concatenated Salisaeta
longa cyclase (NCBI # WP_028566860) and synthase (NCBI # WP_028566847) into a single

sequence, as well as to Rhodothermaceae bacterium cyclase (NCBI # WP_068126813) and

synthase (NCBI # WP_068127706). All deduced cyclase/synthase and desaturase protein

sequences (see S4 & S5 Files), including those reported previously in Ac. pisum [13], Tetra-
nychus urticae [23] and Mayetiola destructor [24] were aligned, respectively, using MAFFT

(version 7.130) with ‘auto’ setting [31]. The poorly-aligned or highly divergent regions were

removed from the alignments on the Gblocks server with the less stringent options [32]. To

conduct maximum likelihood phylogenetic analysis, the optimal substitution model, which

was the ‘Le and Gascuel’ (LG) model [33] for both alignments incorporated a discrete

gamma distribution (+G, shape parameter = 2) to model evolutionary rate differences

among sites, was determined according to the Bayesian Information Criterion (BIC) using

the tool ‘Find Best DNA/Protein Models (ML)’ on MEGA (v6) [34]. The phylogenetic trees,

setting the bacterial sequences as outgroups, were constructed by testing 1000 replicates on

MEGA.

Carotenoid biosynthesis gene evolution among aphidomorphs
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Results

1) Single copy of carotenoid genes in Phylloxeridae

We used the pea aphid carotenoid cyclase/synthase (XP_001943170.1) and desaturase

(XP_001943225.2) protein sequences as queries to search their homologs from the transcrip-

tomes of nine Phylloxeridae species, including the grape phylloxera Daktulosphaira vitifoliae
and eight Phylloxera spp. [30]. Transcripts of both carotenoid cyclase/synthase and desaturase

genes were identified in all the nine species except no carotenoid desaturase was found in

P. foveola (see S2 File). To validate the number of carotenoid genes in each species and investi-

gate their exon-intron architecture, we designed degenerate primers (see S3 File) based on the

coding region sequence alignments of Phylloxeridae transcripts, and conducted nested PCR

using the Phylloxeridae genomic DNA extracted. Our primers were designed to amplify two

overlapping carotenoid cyclase/synthase fragments (cs-1 and cs-2), each of which crossed one of

the two putative introns of the gene, respectively, and one carotenoid desaturase fragment that

crosses the only putative intron of this gene. Of note, the number and the putative positions of

cyclase/synthase and desaturase introns were predicted according to the transcript/genome

DNA sequence alignments of D. vitifoliae whose genome has been sequenced. For each of the

nine Phylloxeridae species, a single DNA fragment was amplified from each nested PCR,

including cs-1, cs-2 and the carotenoid desaturase fragment (Fig 1), indicating that there may

Fig 1. PCR amplification of carotenoid genes. The agarose gels show single copies/genes for cyclase/synthase fragment 1 (cs-1, top panel),

fragment 2 (cs-2, middle panel), and the carotenoid desaturase fragment (bottom panel). The numbers 1 through 9 on the top represent species

Phylloxera caryaefallax (1), P. subelliptica (2), P. caryaemagna (3), P. caryaecaulis (4), P. quercus (5), P. foveata (6), P. foveola (7), P. caryaevenae

(8), and Daktulosphaira vitifoliae (9), respectively. Two biological replicates were used for each species. The locations of primers used for PCR are

shown in Fig 2.

https://doi.org/10.1371/journal.pone.0185484.g001
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be only a single copy of carotenoid genes in Phylloxeridae genomes. Sequencing these PCR

products validated that each contains one DNA sequence. In addition, screening of both carot-

enoid genes in the D. vitifoliae genome sequence hits a single locus, respectively. Interestingly,

the PCR products of carotenoid genes appeared to share similar size among all Phylloxeridae

species with exception of cs-1 amplicons in P. foveata and P. foveola that are apparently larger

than those of others (Fig 1).

2) Conservation of exon-intron structure

We determined the exon-intron junctions of Phylloxeridae carotenoid genes based on the

transcript/gene sequence alignments and found that both cyclase/synthase and desaturase are

highly conserved in the exon-intron gene structure in Phylloxeridae. Similar to their Ac. pisum
homologs, all Phylloxeridae cyclase/synthase genes share identical exon-intron splice sites and

are composed of three exons separated by two introns within the coding region (Fig 2). The

first and third exons are 913-bp and 426-bp long, respectively, in all Phylloxeridae cyclase/

synthase genes, as well as in ACYPI002354 which encodes the protein XP_001943170 of Ac.
pisum. In contrast, length of the second exon varies slightly which is 482-bp in three stem-gall-

inducing species, P. caryaecaulis, P. subelliptica, and P. caryaemagna, and 479-bp in all other

non-stem-galling Phylloxeridae. Compared to the conservation of exon sizes, however, the

intron sizes of cyclase/synthase are divergent in Phylloxeridae, especially for the first intron

that connects the first and second exons, with shortest (100-bp) in D. vitifoliae and longest

(~ 520-bp) in P. foveola. (Figs 1 & 2). Unlike Ac. pisum whose cyclase/synthase introns can be

Fig 2. Comparison of carotenoid cyclase/synthase exon-intron structure in Phylloxeridae and Acyrthosiphon pisum. Solid boxes

denote exons and lines connecting exons denote introns. Length of exons and introns is the number of base pairs indicated. Arrows on the

top indicate the positions of the primers used for nested PCR of the two fragments (cs-1 and cs-2) of carotenoid cyclase/synthase.

https://doi.org/10.1371/journal.pone.0185484.g002
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as long as 2318-bp, the Phylloxeridae homologs comprise relatively small introns with the sec-

ond one all shorter than 100-bp.

3) Phylogenetic relationships of Phylloxeridae carotenoid genes

We constructed two maximum-likelihood phylogenetic trees using the deduced carotenoid

cyclase/synthase and desaturase protein sequences identified in phylloxerids, Ad. tsugae and

My. persicae, and those previously reported in other arthropod species to infer their relation-

ships. Not surprisingly, Sternorrhyncha species clustered as unique clades closely related to

other arthropods and fungi in both trees inferred from cyclase/synthase and desaturase phy-

logenies, respectively (Figs 3 & 4). The clusters of Sternorrhyncha insects are strongly sup-

ported with 100% bootstrap values in both trees, indicating that aphids, adelgids and

phylloxerids share common ancestral carotenoid genes that were gained in a single event from

a fungal donor through the mechanism of horizontal gene transfer. In agreement with the tax-

onomic relationship of these three Sternorrhyncha families, both cyclase/synthase and desatur-

ase trees demonstrated that Phylloxerids and Aphids species form their own taxa with adelgids

being placed separately. High bootstrap values, 100% for carotenoid cyclase/synthase and 99%

for carotenoid desaturase proteins, strongly supported the clustering of Phylloxeridae species.

Within the Phylloxeridae clades of both trees, D. vitifoliae was placed outside of Phylloxera spe-

cies and three stem-gall-inducing species were clustered together as a monophyletic clade with

high confidence in spite of the slight positional differences of other leaf-galling, leaf-folding,

and free-living Phylloxera species (Figs 3 & 4).

In contrast to Phylloxeridae species, each of which appears to have only one cyclase/

synthase protein, Ad. tsugae possesses two, residing within the two Sternorrhyncha cyclase/

synthase groups (Group I and Group II, Fig 3), respectively. Group I comprises all Aphididae,

Adelgidae, and Phylloxeridae species used and each species contributes a single cyclase/

synthase to this group. However, there are no Phylloxeridae proteins within Group II cyclase/

synthases but multiple copies of Ac. pisum and My. persicae proteins are included, implying

the possible gene duplication having occurred in Aphididae. Specifically and supportively, six

My. persicae cyclase/synthase proteins (134360, 134370, 134380–1, 134380–2, 134390 and

134400) whose genes are located in tandem within the genome are clustered in Group II as the

closest homologs of Ac. pisum XP_001950787 (Fig 3).

In the phylogeny of desaturases, Phylloxeridae and Adelgidae species possess single proteins

that, together, form a monophyletic group that is separated from Aphididae proteins (Fig 4).

In contrast, Aphididae desaturases are present in multiple copies forming four subclades,

among which the XP_001943225 (Ac. pisum)/134350 (My. persicae) subclade is placed at

the base and hence is likely to represent the most ancient one (Fig 4). Three genes encoding

Ac. pisum desaturases (XP_001943225, XP_001946689, XP_001950764) are arranged, respec-

tively, in the tail-to-tail manner with three encoding cyclase/synthases (XP_001943170,

XP_003241668, XP_001950787) according to the sequenced Ac. pisum genome (http://bipaa.

genouest.org/is/aphidbase/). Interestingly, the fourth Ac. pisum desaturase (NP_001171302)

that does not pair with a cyclase/synthase gene in the genome was previously demonstrated to

confer color polymorphism in aphid populations [13].

Discussion

In this study, we identified the cartotenoid cyclase/synthase and desaturase genes in nine

Phylloxeridae species from their RNAseq assemblies and/or using a genomic DNA PCR

approach. These genes are likely to be encoded by the insect genomes and were acquired from

a fungal donor through HGT, rather than derived from sequence contaminants of insect

Carotenoid biosynthesis gene evolution among aphidomorphs
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endosymbionts, because: 1) nearly all of genes are identified both in insect transcriptomes and

from insect genomic DNA preparations; 2) the phylloxerid genes are most closely related to

adelgid and aphid genes of fungal origin compared to the microbial homologs; and 3) exami-

nation of the D. vitifoliae genome indicated that these genes are adjacent to those that are

highly conserved in insects; for example, the neighboring gene downstream of D. vitifoliae
cyclase/synthase is most similar to insect transcription initiation factor TIFIID subunit 1 in the

Fig 3. Maximum-likelihood inferred phylogeny of carotenoid cyclase/synthase proteins. Accessions of sequences retrieved from the public

databases are indicated in parenthesis as Proteins OGS1.0 numbers for My. persicae (Clone G006), Mayetiola destructor gene model number, or NCBI

number elsewhere. Phylloxeridae including Daktulosphaira and Phylloxera species are boxed in solid lines and Adelgidae is boxed in dotted lines. Three

stem gall-inducing Phylloxera species are highlighted in yellow. Carotenoid cyclase/synthases in red, blue and green shown here form tail-to-tail pairs,

respectively, with Ac. pisum desaturase with same color shown in Fig 4, based on their gene locations in the genome. Branches with bootstrap (1000

replicates) support values� 70% are labelled. The tree is rooted with bacterial homologs and is drawn to scale, with branch lengths measured in the

number of substitutions per site.

https://doi.org/10.1371/journal.pone.0185484.g003
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NCBI Non-redundant protein database with the top BLASTP (evalue = 0) hit Ac. pisum
XP_003241670 (NCBI accession #).

Although these Phylloxeridae carotenoid genes were horizontally acquired, they seem to be

derived from a single HGT event through which single copies of cyclase/synthase and desatur-
ase were incorporated into the genome of the common ancestor from a fungus, possibly an

endosymbiont of the ancestor. This hypothesis is supported by the strong phylogenetic cluster-

ing of both genes of these three Sternorrhyncha families, which are separated from homologs

of other arthropods and microorganisms (Figs 3 & 4). In addition, carotenoid gene-inferred

phylogenetic relationships are consistent to what have been suggested among the three families

and within the Phylloxeridae based on previous phylogenetic analysis [30]. Aphididae, Phyl-

loxeridae, and Adelgidae are very closely related, with the latter two families considered to

form a superfamily Phylloxeroidea, sister to Aphidoidea [35]. This pattern is also embodied in

the phylogeny of carotenoid cyclase/synthase and desaturase genes here. Within Phylloxeridae,

Fig 4. Maximum-likelihood inferred phylogeny of carotenoid desaturase proteins. Accession numbers in parenthesis, insect species boxed and

highlighted, Ac. pisum desaturases in red, blue and green, and other tree labels are indicated as in Fig 3. The Ac. pisum desaturase NP_001171302 in

orange is encoded by a gene that does not form a tail-to-tail pair with a carotenoid cyclase/synthase gene as other Ac. pisum desaturase genes do in the

genome.

https://doi.org/10.1371/journal.pone.0185484.g004
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both previous studies and this one suggest 1) that some leaf-feeding Phylloxera species first

switched to feeding on stem tissues and then recolonized stem organs across different hosts as

they speciated, and 2) that in a different genus, D. vitifoliae is separated from all other Phyllox-
era species [30]. The more-recent occurrence of stem-galling Phylloxera species is further

exemplified in their gaining of an extra 3-nt codon within the second exon of the cyclase/
synthase coding region, compared to non-stem-galling Phylloxera species (Fig 2), a potential

molecular marker to distinguish stem-galling from leaf-galling Phylloxera spp. These consis-

tencies of evolutionary and phylogenetic relationships, inferred from carotenoid genes and

previous studies, respectively, indicated that the carotenoid genes were gained by the common

ancestor of aphids, adelgids, and phylloxerids, and later evolved divergently with the differenti-

ation of insect families, genera and species.

In contrast with aphids that possess a variety of numbers of carotenoid genes in their

genomes [26], phylloxerids only encode a single copy, for both cyclase/synthase and desaturase
genes. It is likely that aphids experienced multiple lineage-specific gene duplications after their

separation from phylloxerids. This is supported by the six My. persicae cyclase/synthase genes

that are clustered in tandem within a genome region, and cluster phylogenetically with the

closest relative of the Ac. pisum gene encoding XP_001950787 (Fig 3). Because cyclase/synthase
and desaturase genes of arthropods are typically arranged to form a tail-to-tail pair, resembling

their fungal origin [24], we also examined the arrangement of the two D. vitifoliae carotenoid

genes in the genome and validated that they are likewise within a 25-kb region. Based on the

phylogenetic relationships, the number of carotenoid genes in each species, and their posi-

tional organization, we hypothesize that phylloxerid carotenoid genes and their closest adelgid

and aphid orthologs represent the ancestral forms, and that other carotenoid genes in adelgids

and aphids were more recently evolved through gene duplication. Specifically, Group I carot-

enoid genes evolved prior to Group II as shown in Figs 3 and 4.

Whether and how expansion of carotenoid genes post-HGT in a Sternorrhyncha species

are related to life history is an interesting subject. Genome-wide screening of carotenoid genes

identified nine cyclase/synthase and five desaturase genes in My. persicae in this study com-

pared to three and four, respectively, in Ac. pisum reported previously [13]. This suggests that

My. persicae experienced selection pressure favoring higher numbers of carotenoid genes pos-

sibly to support the generalist herbivore strategy of feeding broadly across hosts [36]. By com-

parison, Ac. pisum specializes only on legumes and has fewer carotenoid genes. Phylloxerids

are also specialists on few host species but differ in how they feed. Phylloxerids feed on paren-

chyma, not phloem as adelgids and aphids predominantly do. Compared to other tissues,

phloem has higher sugars, sugar alcohols, and osmotic pressure (see [37] and references

therein), and transports many defense metabolites [38]. Given that phloem feeders are known

to secrete enzymes whose cleavage of plant metabolites may generate free radicals [39], oxida-

tive stress induced during feeding could be quenched by carotenoid scavengers. In contrast,

parenchyma-feeding phylloxerids may not suffer from high oxidative stress generated from

phloem-feeding and thus may only require low number of carotenoid gene copies.

Recent evidence links carotenoid synthesis in mites to light-regulated diapause and suffi-

cient nutrition [40]. Although the majority of phylloxerids live inside plants, and thereby may

be less sensitive to light-regulated diapause, maintaining optimal nutrition likely plays a strong

role in phylloxerid evolution. In support of this role in nutrition, the ability to manipulate

plant host nutrient availability through galling constrains other insect nutrition genes (e.g.,

amino acid transporters; [30]) and duplications in carotenoid biosynthesis genes occur among

phloem feeding aphidomorphs where nutrients provided by sap are suboptimal. Because one

phylloxerid showed no carotenoid desaturase gene expression despite having a complete gene

copy, it is possible these genes can be modulated depending on the stress or nutrient
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environment the insect experiences. It is also possible, however, that the expression of this

desaturase gene was not detected due to the RNA sequencing and/or assembly errors. To

validate its expression profile, further analysis, e.g., reverse transcription PCR, should be

conducted.

Sternorrhyncha species include plant sap-feeding insects that may have limited access to

dietary carotenoids [29]. Within this suborder, Phylloxeridae is the third family that encodes

insect-derived carotenoid genes. Previous attempts of identifying carotenoid genes failed to

amplify a fragment from Bemisia tabaci (Family Aleyrodidae) and Pachypsylla venusta (Family

Psyllidae) using PCR, and failed to obtain a sequence hit from Diaphorina citri (Family Psylli-

dae) EST database [26]. Using the carotenoid gene identification protocol described in the

‘Materials and Methods’ above, i.e., TBLASTN searching Ac. pisum carotenoid proteins fol-

lowed by NCBI non-redundant protein database validation, we were unable to find carotenoid

genes in the genome assemblies of B. tabaci (NCBI # ASM185493v1) and Dactylopius coccus
(Family Coccidae, NCBI # GCA_000833685.1). These data suggest that Sternorrhyncha-

derived carotenoid genes may only be restricted to Aphididae, Adelgidae, and Phylloxeridae.

Intriguingly, B. tabaci harbors an obligate bacterial endosymbiont Portiera that synthesizes

carotenoids for its host as a different mechanism [29].

In conclusion, phylloxerids retain carotenoid genes with the same origin as those in aphids

and adelgids: horizontally transferred from a fungus. These genes did not duplicate but are

maintained as single copies in the genomes of phylloxerids, specialist species feeding on paren-

chyma rather than plant sap. This study provides insight into the evolution of Phylloxeridae

species, mechanisms underlying their nutritional adaptation, and insight into the role of carot-

enoid biosynthesis in animals.
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