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Purpose: We examined gene expression, germline variant, and somatic mutation features 

associated with pathologic response to neoadjuvant durvalumab plus chemotherapy in basal-like 

triple negative breast cancer (bTNBC).

Experimental Design: Germline and somatic whole exome DNA and RNA sequencing, PD-L1 

immunohistochemistry, and stromal tumor infiltrating lymphocytes scoring were performed on 57 

patients. We validated our results using 162 patients from the GeparNuevo randomized trial.

Results: Gene set enrichment analysis showed that pathways involved in immunity (adaptive, 

humoral, innate), JAK-STAT signaling, cancer drivers, cell cycle, apoptosis and DNA repair were 

enriched in cases with pathologic complete response (pCR), whereas epithelial-mesenchymal 

transition, extracellular matrix, and TGFβ pathways were enriched in cases with residual disease 

(RD). Immune-rich bTNBC with RD was enriched in CCL-3,−4,−5,−8,−23, CXCL-1,−3,−6,−10, 

and interleukins-1,−23,−27,−34 and had higher expression of macrophage markers compared to 

immune-rich cancers with pCR that were enriched in IFNγ, interleukins-2,−12,−21, chemokines 

CXCL-9,−13, CXCR5, and activated T and B cell markers (GZMB, CD79A). In the validation 

cohort, an immune-rich 5-gene signature showed higher expression in pCR cases in the 

durvalumab arm (p=0.040) but not in placebo arm (p=0.923) or in immune-poor cancers. 

Independent of immune markers, tumor mutation burden was higher, and PI3K, DNA damage 

repair, MAPK, and WNT/β-Catenin signaling pathways were enriched in germline and somatic 

mutations in cases with pCR.

Conclusion: The TGFβ pathway is associated with immune-poor phenotype and RD in bTNBC. 

Among immune-rich bTNBC RD, macrophage/neutrophil chemoattractants dominate the cytokine 

milieu, and IFNγ and activated B cells and T cells dominate immune-rich cancers with pCR.

Introduction

Multiple randomized trials demonstrated increased pathological complete response (pCR, 

ypT0is/ypN0) rates when an anti-PD-1 (pembrolizumab) or anti-PD-L1 (atezolizumab, 

durvalumab) antibody is included with standard of care neoadjuvant chemotherapy in 

triple negative breast cancer (TNBC) (1–5). Patients who achieve pCR have excellent 

long-term survival, and two of these randomized trials also reported statistically significant 

improvement in recurrence free survival with immunotherapy (2,6). The pCR rates after 

combined neoadjuvant immunotherapy + chemotherapy range between 44–65% depending 

on the type of chemotherapy regimen indicating that many patients continue to have residual 

disease (RD) after therapy.

Several studies examined molecular predictors of pCR in neoadjuvant immunotherapy + 

chemotherapy trials and demonstrated that cancers with higher levels of tumor infiltrating 

lymphocytes (TILs) and greater expression of PD-L1 protein on immune cells have higher 

pCR rates compared to cancers with lesser immune infiltration (7). The presence of TILs 

and PD-L1 expression are associated with the expression of a broad range of immune gene 

expression signatures that also predict pCR (8,9). Tumor mutation burden (TMB) recently 

emerged as an independent predictor for pCR (10). However, all of these markers are 

predictive of pCR with or without immunotherapy (11–13), no validated molecular markers 

exist that could identify patients who selectively benefit from inclusion of immunotherapy 
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with their neoadjuvant chemotherapy. We recently reported that MHC class II protein 

expression on tumor cells may identify cancers that are selectively benefitting from 

neoadjuvant immunotherapy, but this observation will require independent validation (14).

The goal of the current study was to comprehensively characterize molecular features of 

basal-like TNBC (bTNBC) that achieved pCR after neoadjuvant anti-PD-L1 therapy plus 

chemotherapy compared to cases with RD in the overall study population and in the 

immune-rich subset. We focused on the basal-like subset of TNBC (bTNBC) to minimize 

molecular heterogeneity in our relatively small sample set and because of the clinical 

differences between bTNBC and other less frequent TNBC molecular subtypes (15,16). We 

performed whole exome and whole transcriptome RNA sequencing along with histologic 

assessment of pre-treatment needle biopsies collected during a single arm Phase II clinical 

trial to identify candidate markers of response (7). We assessed the association between our 

candidate response markers on the chemotherapy alone and chemotherapy plus durvalumab 

arms of the GeparNuevo randomized trial.

Materials & Methods

Patient population and biospecimens

Pretreatment core needle biopsies for research were obtained from patients with stage 

I-III TNBC who enrolled in a single arm neoadjuvant clinical trial (NCT02489448) and 

received durvalumab concurrent with weekly nab-paclitaxel x 12 followed by durvalumab 

plus dose dense doxorubicin/cyclophosphamide x 4 treatments. Primary efficacy results 

were previously published (7). Sixty female patients were enrolled in the trial, 2 patients 

were not evaluable for pathologic response and one patient withdrew consent, therefore the 

biomarker population includes 57 patients (pCR n=26, RD n=31) Supplementary Figure 

S1. All patients provided written informed consent for research on their donated tissues, 

including germline DNA sequencing. Ethical approval was obtained from the Yale Human 

Investigations Committee (Yale University, HIC# 1409014537). The validation data included 

targeted mRNA sequencing results of 2,559 transcripts generated from pretreatment biopsies 

of 162 patients enrolled in the GeparNuevo trial (NCT02685059) who received durvalumab 

or placebo every plus nab-paclitaxel x 12 weeks, followed by durvalumab or placebo plus 

epirubicin/cyclophosphamide x 4 treatments (2). The GeparNuevo protocol was approved by 

the respective ethics committee, institutional review board, and national competent authority. 

All studies were conducted in accordance with the Declaration of Helsinki.

Isolation of RNA and DNA

For the Yale cohort, RNA and DNA were extracted from one biopsy collected in 

RNAlater™ (Qiagen, Germantown, MD, USA) and stored at −80C. After homogenization 

with the TissueLyser II bead-milling system (Qiagen), DNA was isolated using the AllPrep 

DNA/RNA/miRNA universal kit, and the flow-through RNA was extracted with RNeasy 

Plus Kit (Qiagen) following the manufacturer’s instructions. The quality and concentration 

of isolated DNA and RNA were tested on the Agilent 2100 Bioanalyzer system. DNA and 

RNA sequencing were performed at the Yale Center for Genome Analysis.
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RNA sequencing and data processing

Paired-end sequencing of 100bp fragments of total RNA for a targeted depth of 50 

million reads was performed using the Illumina NovaSeq platform. Quality was assessed 

using FastqQC v 0.11.5 (17), adapter sequences were trimmed with Trimmomatic v0.36 

(RRID:SCR_011848) (18). Sequencing reads were aligned to human genome, hg38, with 

STAR v2.5.3a (RRID:SCR_004463) (19) using two-pass mode and default parameters; 

alignment quality and strandedness was checked using RSeQC v2.6.4 (RRID:SCR_005275) 

(20). Gene expression was quantified using RSEM v1.3.0 (RRID:SCR_013027) (21) and 

ENSEMBL release 91 (RRID:SCR_002344) was used to annotate reads to human genes. 

One specimen was excluded due to poor RNA quality. Molecular subtyping was performed 

using the AIMS, SCMOD2 and PAM50 methods. All methods identified the same 6 cases as 

non-basal-like and outlier analysis using principal component analysis (PCA) and uniform 

manifold approximation and projection (UMAP) of transcriptomic data confirmed these 

cases as distinct from the remaining samples. (Supplementary Figure S1; Supplementary 

Figure S2). All six non-basal cases had RD. In order to work with a molecularly 

homogeneous bTNBC set we excluded these 6 cases from further analysis resulting in 50 

bTNBC cases (n=25 pCR, n=25 RD).

Gene expression differences between pCR and RD samples were determined using 

“DESeq2” R package (RRID:SCR_000154) (22). To adjust for variable tissue composition 

from case to case, we added a previously published stromal score that quantifies tumor 

stromal content calculated using the ESTIMATE R package (23). Differentially expressed 

genes were defined as log-fold change >1, the Benjamini-Hochberg method was used to 

adjust for multiple comparisons and adjusted p<0.05 was considered significant. Gene 

set enrichment analysis was implemented using the fgsea R package (24). To quantify 

biological and immune processes, the NanoString Hallmarks of Cancer and Biological 

Pathways and Processes gene sets and a collection of previously published immune gene 

signatures (5,8) were used (Supplementary Data File Tables S1–S2). Immune signature-

based classification into immune high versus immune low status was performed using 

the median values of the Tumor Inflammation Signature (TIS), GeparSixto, NHI 5-gene, 

STAT1 gene signatures and expression of IFNγ single gene, respectively. Gene signature 

expressions were compared between pCR and RD groups using the Mann-Whitney test. 

Multivariate association between gene signatures expressions and pCR were assessed using 

logistic regression adjusted for age (continuous variable), tumor size (T1 vs ≥ T2), nodal 

status (N0 vs N1-N3), and stromal score (from ESTIMATE algorithm). Benjamini-Hochberg 

corrected P< 0.05 was considered significant.

For the GeparNuevo validation cohort, formalin-fixed and paraffin-embedded (FFPE) tissues 

were processed using an HTG EdgeSeq instrument (HTG Molecular Inc, Tucson, AZ, 

USA) with the Oncology Biomarker Panel according to the manufacturer’s instructions 

as previously described (2,10). Fisher’s exact test and Pearson’s chi-square were used 

to evaluate categorical variables (pCR status; sTILs (High; Low)) (10). Univariate 

and multivariate logistic regression models with adjustments for clinical covariates (as 

previously described) were used for assessment of predictive value of genes for pCR (10).
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Whole Exome Sequencing

Genomic DNA (1 μg) from tumor biopsies and matched peripheral blood buffy coats of 57 

patients were sheared to a mean fragment length of 140 bp and exomes were captured 

using the NimbleGen SeqCap EZ v2 kit. The resulting library was sequenced on an 

Illumina HiSeq 4000 instrument in paired-end 75-cycles mode to achieve an average target 

sequencing depth of 232x for tumor samples and 207x for matched normal samples. Reads 

were filtered by Illumina CASAVA 1.8.2 software, trimmed at the 30 end using FASTX 

v0.0.13 (RRID:SCR_005534), and aligned to the human reference genome (GRCh38) 

by Burrows-Wheeler Aligner v0.7.15a (RRID:SCR_010910) (25). PCR duplicates were 

removed with MarkDuplicates (Picard v 2.17.11, http://broadinstitute.github.io/picard/, 

RRID:SCR_006525) algorithm. Indelrealigner and RealignerTargetCreator kits of GATK 

(v3.4) (26) were used to align indel regions. Mutect (v.1.1.4) (RRID:SCR_000559) (27) 

was used to identify somatic single nucleotide variants (SNV). We used IndelGenotyper 

(36.3336) of GATK (v3.4) (RRID:SCR_001876) for somatic indel calling. We applied the 

HaplotypeCaller algorithm of GATK (26) to call high quality germline variants with default 

parameters. To control for the false positive rate of germline variants calling, we filtered 

low-quality variants with the following criteria: DP < 4, QD < 2.0, FS > 60.0, MQ < 35.0, 

MQRankSum < −12.5 and ReadPosRankSum < −8.0. Tumor mutation burden (TMB) was 

calculated as the total number of exonic somatic mutation divided by total length of exome 

capture probes (34MB).

The functional impact of germline missense variants was predicted using MetaSVM (28) 

and annotation from the ClinVar database (RRID:SCR_006169) (29). We considered a 

missense variant as high functional impact if it was classified as deleterious by MetaSVM 

or Pathogenic/Likely-Pathogenic in ClinVar. Loss-of-function (LoF) variants including 

frameshift indels, stop gain, and stop loss variants were also considered as high functional 

impact, as well as variants annotated as high-confidence loss of function in gnomAD (30). 

We used 723 cancer census genes from the Catalogue Of Somatic Mutations In Cancer 

database (COSMIC, release v94, 28th May 2021) (RRID:SCR_002260) (31) to generate 

the oncoplots for both germline and somatic mutations. Associations between pCR and 

gene or pathway level germline variants and somatic mutations were assessed using logistic 

regression. For the gene-level analysis, only genes affected in at least 5 out of 57 cases were 

considered for the association test.

To assess mutations at the pathway level, we collected 107 canonical biological pathways 

from the NanoString Hallmarks, NanoString Metabolic, and MSigDB Pathway databases 

(Supplementary Data File Table S2) and considered a pathway mutated if it had ≥1 member 

gene with mutation. To assess significance of pathway level mutation, we first calculated 

odds ratios of the response category (pCR or RD) versus the gene or pathway status 

(mutated versus wildtype) using logistic regression, next we randomly permuted the pCR or 

RD labels for 1000 iterations and the odds ratio for each gene or pathway was recalculated. 

The proportion of random permutations showing an odds ratio greater than the odds ratio of 

the unperturbed data was defined as the p-value.
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PD-L1 Immunohistochemistry and Stromal TILs Assessment

Stromal TILs (sTILs) were assessed on FFPE hematoxylin and eosin stained 4 μm sections. 

The slides were digitally scanned and independently scored by two pathologists. The sTILs 

score was calculated as the area occupied by mononuclear inflammatory cells over the total 

intratumoral stromal area (32). Immune high cancers were defined as sTILs ≥ 30%(33). 

PD-L1 protein expression was assessed with chromogenic immunohistochemistry (IHC) 

using the VENTANA PD-L1 (SP263) Assay following the manufacturer’s instructions. 

PD-L1 positivity was defined as ≥1% tumor and/or immune cells staining positive (32,34). 

Mann-Whitney test was used for sTILs scores and the Fisher’s exact test was use for PD-L1 

IHC positivity to determine if there were significant (p<0.05) differences between pCR and 

RD.

Data and materials availability

All data associated with this study are presented in this paper or Supplemental Materials. 

The whole exome and transcriptomic data from the Yale clinical trial (NCT02489448) are 

deposited in National Center for Biotechnology Information (NCBI) database of Genotypes 

and Phenotypes (dbGaP) under bioproject #PRJNA558949. To access the GeparNuevo 

(NCT02685059) dataset please refer to https://gbg.de/en/research/trafo.php.

Results

Differentially expressed genes and enriched pathways between bTNBC with pCR and RD

One hundred and forty-three and 66 genes were significantly overexpressed in cancers 

that achieved pCR and RD, respectively (Figure 1A; Supplementary Data File Table S3). 

Gene set enrichment analysis showed that adaptive immunity (p<0.001), cancer driver 

genes (p<0.01), cell cycle & apoptosis (p<0.05), DNA repair (p<0.05), humoral immunity 

(p<0.001), innate immunity (p<0.001), and JAK-STAT pathways (p<0.001) were enriched in 

patients with pCR (Figure 1B; Supplementary Data File Table S4). Epithelial-mesenchymal 

transition (p<0.05), extracellular matrix (p<0.01), and TGFβ (p<0.05) pathways were 

enriched in patients with RD (Figure 1B; Supplementary Data File Table S4). The leading-

edge genes from the enriched pathways showed that genes that regulate T cell and B cell 

activities drove the pathway enrichment in pCR, and genes that impacted macrophages, 

fibroblasts, and cancer cell response to cytotoxic therapy (i.e., decreased DNA repair 

machinery) drove pathway enrichment in RD (Figure 1C, Supplementary Data File Table 

S4). These findings confirm that high levels of immune gene expression are characteristics 

of highly chemotherapy sensitive cancers. However, a subset of immune-rich bTNBC fail to 

achieve pCR and what drives this difference remains unknown.

Differentially expressed genes and pathways between immune-rich TNBC with pCR and 
RD

We also performed differential gene and pathway expression analysis between cases 

with pCR versus RD restricted to immune-rich cancers only. To assess how the results 

might depend on the definition of immune richness, we applied two histology based 

methods including sTILs ≥ 30% and PD-L1 IHC positivity, and 5 immune gene signatures 
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dichotomized at the median (Tumor Inflammation Signature > 0.1249, GeparSixto gene 

signature > 0.26, NHI 5-gene score > 0.0014, STAT1 score > 0.07695, and IFNγ gene 

expression ≥ 0.20) to define immune-rich status (Supplementary Data File Tables S1–S2 

and S5) (5,8). The ranking of differentially expressed genes varied substantially depending 

on how immune-rich status was defined (Figure 2 A–G; Supplementary Data File Tables 

S6–S13). However, gene set enrichment analysis revealed highly consistent differences at 

pathway level between cancers with RD versus pCR, regardless of how immune-rich status 

was defined (Figure 3A; Supplementary Data File Tables S14–S20). The pathways that 

were significantly enriched in RD despite high immune infiltration included inflammation 

(p<0.05) and innate immunity (p<0.05), the TGFβ pathway and epithelial mesenchymal 

transition were also consistently enriched but failed to reach statistical significance. In 

cancers with pCR, adaptive immunity (p<0.05) and cancer driver gene pathways (p<0.01) 

were significantly enriched, several other pathways including, DNA repair, cell cycle, 

apoptosis, chromatin modifications, PIK3A, and RAS were also consistently enriched but 

failed to reach statistical significance. Examination of the leading-edge genes from the 

significantly enriched pathways revealed a substantially different cytokine/chemokine milieu 

with RD compared to pCR (Figure 3B; Supplementary Data File Tables S14–S20). In 

cancers with RD, the dominant chemokines were CCL-3,−4,−5,−8,−23, CXCL-1,−3,−6,−10, 

and cytokines were interleukins (IL)-1A/B,−23A,−27,−34. The chemokines CCL-3,−5 and 

CXCL-1, −6 are major chemoattractants for tumor associated macrophages and neutrophils 

that can exerting pro-tumorigenic effects (35). IL-34 promotes macrophage differentiation 

and IL-1 is the classical macrophage derived proinflammatory cytokine. Indeed, the leading-

edge genes of the innate immunity pathway enriched in RD included all the hallmarks of a 

strong macrophage presence; high expression of CSF1, CSF1R, CD14, scavenger receptor 

MARCO, and Toll like receptors (TLR)-1,−2,−3,−4,−5,−6.

In immune-rich cancers with pCR, the dominant cytokines were IFNγ, IL-2,−12A/B,−21, 

and chemokines CXCL-9 and CXCL-13 and its receptor CXCR5. IFNγ and IL-2 are the 

quintessential immune growth factors that play critical roles in activating and sustaining 

T cell response. IL-12 induces T helper cell differentiation and increases the cytotoxic 

activity of T cells; it also inhibits tumor associated macrophages and myeloid-derived 

suppressor cells. IL-21 regulates differentiation of B cells into plasma cells and increases 

cytotoxicity of T cells. CXCL-9 is a chemoattractant for activated T-cells, and CXCL-13 is a 

chemoattractant for B cells. Consistent with this highly immune activating cytokine milieu, 

the leading-edge genes also included many T cell (CD3, CD5, CD6, CD7, CD40LG) and 

B cell (MS4A1, CD19, CD38, CD22, CD37, CD79A) markers, human leukocyte antigen 

class II (HLA-D) molecules that present antigens to T cells, and granzymes that mediate 

cytotoxicity.

When we compared immune-poor cancers with pCR versus RD we identified different 

sets of differentially expressed genes, with < 40% overlap with the genes associated 

with response in immune-rich cancers, suggesting that different processes are involved in 

determining response or resistance depending on the immune microenvironment. Cancers 

with pCR were enriched in the adaptive (p<0.01), humoral (p<0.05), and innate immunity 

pathways (p<0.05) despite belonging to the overall immune-poor subset. Patients with 
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RD were enriched in the angiogenesis (p<0.01), extracellular matrix (p<0.05), and RAS 

pathways (p<0.05) (Supplementary Data File Tables S21–S34; Supplementary Figure S4).

The GeparNuevo randomized trial used an essentially identical durvalumab plus 

chemotherapy arm as our study and therefore represents an ideal validation cohort that 

also provides an opportunity to test the immunotherapy-specific predictive role of our 

response associated genes. We tested if the leading-edge genes that distinguished immune-

rich cancers with pCR from those with RD in the Yale cohort were also differentially 

expressed between pCR and RD in immune-rich cancers from the GeparNuevo trial. Only 

36 of the leading-edge genes associated with pCR in immune-rich bTNBC had expression 

data available from the GeparNuevo samples. Supplementary data File Table S35 lists the 

gene level validation results. Most importantly, we observed that from our gene list IFNG 

and IL21 were significantly positively associated with pCR in the chemotherapy alone 

arm and CXCL9, CXCL13, CD79A, and cytotoxins GZMA and GZMB were positively 

associated with pCR only in the durvalumab arm. Chemokines CXCL1 and CXCL3 were 

positively associated with RD in chemotherapy alone arm whereas CSF1, Toll-like receptor 

TLR3, CCL5, CXCL10, and CCL4 were associated with RD in durvalumab arm only. An 

immune-rich pCR signature created from the mean value of the scaled expression of IFNG, 

IL2, IL21, CD79A, and GZMB that individually showed a weak association with pCR 

(P<0.2) in GeparNuevo, showed significantly higher expression in cases with pCR in the 

durvalumab arm (p=0.040) but not in the placebo arm (p=0.923) or in immune-poor cancers 

irrespective of treatment (Figure 4).

Germline and somatic mutation landscape associated with response

We identified 206 protein coding genes with high functional impact germline variants 

affecting at least 5 (out of 57) patients. Among genes affected by germline variants, 

there were no significant differences in variant frequency by pathologic response after 

adjusting for multiple comparison (Figure 5A, Supplementary Data File Tables S36). 

Eight patients had germline BRCA1/2 mutation (5 pCR, 3 RD, p=0.2). Somatic mutations 

affected 3422 distinct genes, among these 1342 were mutated in only one cancer (Figure 

5B, Supplementary Data File Tables S37). The most frequently mutated gene was TP53 

(24 pCR, 22 RD). There was no statistically significant difference in somatic mutation 

frequencies by pathologic response for any gene after adjustment for multiple comparison. 

Next, we assessed associations between response and pathway level mutations separately 

for somatic mutations and high functional impact germline variants. Four pathways 

were significantly enriched in high functional impact germline variants including PI3K, 

DNA damage repair, MAPK, and WNT/β-Catenin signaling pathways (p<0.05) (Table 1; 

Supplementary Data File Table S38). These pathways were more frequently affected in cases 

with pCR. Somatic mutations were enriched in 22 pathways (p<0.05) including the same 4 

pathways identified in the germline analysis (Table 1; Supplementary Data File Table S39). 

Higher TMB was significantly associated with pCR and was independent of immune gene 

signature expression (Table 2; Supplementary Data File Tables S40).
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Discussion

Low levels of TILs and low expression of a broad range of immune genes were associated 

with lack of pCR after chemotherapy plus durvalumab therapy. The lower immune 

infiltration was accompanied by higher expression of TGFβ and mesenchymal features 

of the cancer. TGFβ is an important negative regulator of cellular immunity and has been 

implicated in immune evasion and resistance to PD-L1 blockade in multiple cancer models 

(36–38). These observations suggest that targeting TGFβ could remove a barrier to immune 

infiltration and create a more immune competent tumor microenvironment in immune-cold 

cancers.

While immune-rich cancers more frequently achieve pCR, a substantial minority continues 

to have viable residual cancer at surgery. We, therefore, examined transcriptional differences 

between immune-rich bTNBC that had pCR versus those with RD. Immune-rich cancers 

that achieved pCR were characterized by activated T cells and B cells, high expression 

of immunoglobulins, granzymes, granulysin, and HLA class II antigens. The dominant 

cytokines in the tumor microenvironment were IFNγ, IL-2,−12,−21, CXCL-9,−13 and 

CXCR5. These are classic chemoattractants and activators of T cells, B cells, and mediators 

of adaptive immunity (39). In contrast, immune-rich bTNBCs with RD were enriched in 

genes associated with myeloid/macrophage activity including monocyte chemoattractants 

CCL5 and CXCL10, interleukins that these cells secrete (IL-1,−23,−27,−34), and 

classic toll-like receptors (TLR-1,−2,−3,−4,−5,−6) that provide pathogen recognition and 

subsequent activation of innate immunity. RD samples were also enriched in genes 

inhibiting the complement system including CD46 and CD55. An impaired complement 

system can hinder both antibody-dependent and -independent cell death and diminish 

macrophage-mediated phagocytosis. These results suggest that some immune-rich cancers 

have a possibly dysfunctional innate, rather than adaptive immune response to the cancer 

that makes these cancers less responsive to cytotoxic and PD-L1 directed therapies. Altering 

the cytokine environment by targeting IL-1 (40) and the macrophage monocyte lineage 

might alter the balance between a dysfunctional innate and more effective adaptive immune 

response in otherwise immune rich TNBC.

In a single arm anti-PDL1 plus chemotherapy trial it is not possible to determine which 

response marker, if any, is selectively predictive of benefit from the combination versus 

individual components. Multiple studies have demonstrated that higher immune infiltration 

that can be captured by a large number of different immune gene signatures due to their 

highly correlated co-expression is associated with higher pCR rate to chemotherapy with 

or without immune checkpoint inhibitors. Our results indicated that there are significant 

differences in the cytokine and immune milieu of immune rich cancers that achieved pCR 

with durvalumab plus chemotherapy versus those that did not. We therefore tested if the 

leading-edge genes that distinguished immune-rich cancers with pCR from those with RD 

in the Yale cohort were also overrepresented in cancers with pCR in immune-rich cancers 

from the GeparNuevo trial, and if any of the genes could predict benefit selectively from 

durvalumab. We could only perform partial validation due to many missing genes in the 

GeparNuevo data, but reassuringly several genes showed a similar trend as seen in the Yale 

cohort and several cytokines showed a differential predictive role by treatment arm. We 
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created a 5-gene signature from genes individually weekly associated with pCR that showed 

significantly higher expression in immune rich TNBC with pCR in the durvalumab arm 

(p=0.040) but not in the placebo arm (p=0.923) or in immune-poor cancers irrespective of 

treatment.

Our study has limitations, as we could only partially validate our observations in the similar 

GeparNuevo trial due to missing information on many candidate genes. The GeparNuevo 

data was generated on a different RNAseq platform and represent targeted sequencing with 

a different dynamic range than whole transcriptome RNAseq. These differences decrease the 

power and accuracy of our validation attempt. We also recognize that the candidate genes 

were identified in the Yale cohort but the 5-gene durvalumab plus chemotherapy predictive 

signature itself was selected from the GeparNuevo data, and therefore further validation on 

independent data will be required. Due to co-linear expression of many immune genes, it 

is entirely possible that other genes could also provide the same, or even better, response 

discriminating function. However, the combined analysis of these two trials suggests that 

there are immunological differences between immune-rich TNBC that achieve pCR and 

those that do not. These differences can inspire new therapeutic strategies and may hold the 

key for developing new biomarkers for treatment selection.

We also examined associations between pathologic response and germline variants in 

coding genes and somatic mutations. We found no statistically significant differences in 

somatic mutation or germline variant frequencies by pathologic response for any gene. 

However, TMB was significantly higher in cancers with pCR. When mutations were 

mapped to biological pathways, we found that cancers with pCR had significantly more 

germline variants and somatic mutations in the PI3K, DNA damage repair, MAPK, and 

WNT/β-Catenin pathways. There were no statistically significantly more frequently mutated 

pathways in cases with RD. The more frequent mutations in cancer relevant signaling 

pathways and DNA repair genes might lead to a more immunogenic cancer, however we 

found no positive correlation between TMB and immune gene expression, similar to an 

earlier study (41). It is more likely that mutations in these cancer relevant pathways directly 

lead to increased chemotherapy sensitivity due to DNA damage repair deficiency (42–44).

In conclusion, genes in the TGFβ pathway are associated with immune-attenuated 

phenotype and lack of pCR. Among immune-rich cancers that fail to achieve pCR, 

macrophage/neutrophil and innate immunity related chemoattractants dominate the cytokine 

milieu, whereas in cancers with pCR, IFNγ and activated B and T cells and adoptive 

immunity related markers dominate the tumor microenvironment. Inhibitors of complement 

cascade blockers, TGFβ inhibitors and modulators of tumor associated macrophages may 

improve immunotherapy efficacy in basal-like TNBC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance Statement

We found that high tumor mutation burden and immune-rich microenvironment are 

independently associated with pathologic complete response (pCR) to anti-PD-L1 

therapy plus chemotherapy in basal-like triple negative breast cancer (bTNBC), whereas 

lack of pCR and immune-poor phenotype are associated with higher expression 

of TGFβ pathway and epithelial/mesenchymal markers. Immune-rich bTNBC with 

residual disease are characterized by higher expression of CCL-3,−4,−5,−8,−23, 

CXCL-1,−3,−6,−10, interleukins-1,−23,−27,−34 and more abundant in macrophage 

markers. Immune-rich bTNBC with pCR are characterized by activated T and B cell 

markers and expression of IFNγ, interleukins-2,−12,−21, CD79A, and GZMB. No 

mutation in single genes was associated with response, but cancers with pCR had 

significantly more germline variants and somatic mutations in the PI3K, DNA damage 

repair, MAPK, and WNT/β-Catenin pathways that could affect chemotherapy sensitivity.
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Figure 1. Differentially expressed genes and pathways between pCR and RD in basal-like TNBC 
treated with neoadjuvant durvalumab and standard of care chemotherapy.
(A) Volcano plot of differentially expressed genes. Statistically significant genes are in red, 

top 50 significant genes annotated in blue. (B) Pathway enrichment results. (C) Enrichment 

score plots of the leading-edge genes from significantly enriched pathways. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001.
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Figure 2. Differentially expressed genes between pCR and RD in basal-like immune-rich TNBC.
(A-G) Volcano plots of differentially expressed genes in immune high cancers defined by 

sTILs ≥ 30 %, PD-L1 positive, TIS > 0.1249, GS > 0.26, NHI 5-gene score > 0.0014, STAT1 

score > 0.07695, or IFNG ≥ 0.20, respectively. Statistically significant genes are in red, top 

50 significant genes annotated in blue. sTILs = stromal tumor infiltrating lymphocytes. TIS 

= Tumor inflammation signature. GS = GeparSixto signature. IFNG = interferon gamma 

single gene.
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Figure 3. Pathway enrichment differences between pCR and RD in basal-like immune-rich 
TNBC.
(A) Heatmaps of pathway enrichment results for 21 Cancer Hallmarks Pathways in each 

of the different ways immune-high status was defined (as on Figure 2). Pathways enriched 

in pCR are red and those enriched in RD are blue. (B) Enrichment score plots of the 

leading-edge genes from the pathways that were significantly and consistently enriched in 

cancers with pCR or RD. IFNG single gene expression was used to define the immune-rich 

cancers for this analysis. sTILs = stromal tumor infiltrating lymphocytes. TIS = Tumor 

inflammation signature. GS = GeparSixto signature. IFNG = interferon gamma. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001.
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Figure 4. Expression of a 5-gene index of leading-edge genes associated with pCR in immune-
rich bTNBC discovered in the Yale cohort and tested in the two arms of the GeparNuevo trial.
The five genes include IFNG, IL2, IL21, CD79A, and GZMB. Expression levels are shown 

in the durvalumab+chemotherapy and chemotherapy alone (i.e placebo) arms, each stratified 

by tumor infiltrating lymphocyte (TIL).
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Figure 5. Pathways affected by germline variants or somatic mutations in bTNBC with pCR and 
RD.
(A, B) Oncoplots of germline and somatic mutations in COSMIC genes ordered by 

pathologic response. (C) Significantly Germline and somatic variants pathway associations. 

Pathways with permutation P-values <0.05 are shown. (D) Multivariate analysis of 

association between pathologic response and tumor mutation burden (TMB) and the 

GeparSixto and tumor inflammation (TIS) gene signatures.
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Table 1.

Germline and somatic variants pathway associations. Pathways with permutation P-values <0.05 are shown.

Pathway Source Mutation
pCR 
(n=26)

RD 
(n=31)

Mutation 
Rate in 
pCR

Mutation 
Rate in 
RD

Permutation 
P value OR

OR 
Lower 
95% 
CI

PI3K
Nanostring
metabolic Germline 16 9 0.6154 0.2903 0.0082 3.9111 2.2232

DNA Damage Repair
Nanostring
metabolic Germline 10 5 0.3846 0.1613 0.0307 3.2500 1.7254

MAPK
Nanostring
metabolic Germline 8 4 0.3077 0.1290 0.0435 3.0000 1.5141

WNT_BETA
_CATENIN
_SIGNALING

MSigDB
Hallmark Germline 16 13 0.6154 0.4194 0.0493 2.2154 1.2870

INTERFERON_ALPHA
_RESPONSE

MSigDB
Hallmark Somatic 12 5 0.4615 0.1613 0.0048 4.4571 2.3808

MAPK
Nanostring
metabolic Somatic 25 23 0.9615 0.7419 0.0076 8.6957 2.8966

Myc
Nanostring
metabolic Somatic 24 22 0.9231 0.7097 0.0089 4.9091 2.1290

DNA Damage Repair
Nanostring
metabolic Somatic 25 23 0.9615 0.7419 0.0131 8.6957 2.8966

Transcriptional Regulation
Nanostring
metabolic Somatic 25 23 0.9615 0.7419 0.0175 8.6957 2.8966

Wnt_pathway
Nanostring
hallmarks Somatic 24 23 0.9231 0.7419 0.0184 4.1739 1.7971

Cell Cycle
Nanostring 
metabolic Somatic 24 23 0.9231 0.7419 0.0184 4.1739 1.7971

Transcriptional_misregulation
Nanostring
hallmarks Somatic 24 23 0.9231 0.7419 0.0217 4.1739 1.7971

WNT_BETA
_CATENIN
_SIGNALING

MSigDB
Hallmark Somatic 24 23 0.9231 0.7419 0.0217 4.1739 1.7971

MYC_
TARGETS_V2

MSigDB
Hallmark Somatic 7 3 0.2692 0.0968 0.0250 3.4386 1.6221

DNA_REPAIR
MSigDB
Hallmark Somatic 25 25 0.9615 0.8065 0.0268 6.0000 1.9645

HYPOXIA
MSigDB
Hallmark Somatic 16 12 0.6154 0.3871 0.0287 2.5333 1.4670

INTERFERON_GAMMA
_RESPONSE

MSigDB
Hallmark Somatic 15 10 0.5769 0.3226 0.0313 2.8636 1.6481

UV
_RESPONSE
_UP

MSigDB
Hallmark Somatic 12 8 0.4615 0.2581 0.0320 2.4643 1.3956

APICAL
_SURFACE

MSigDB
Hallmark Somatic 8 4 0.3077 0.1290 0.0333 3.0000 1.5141

Cell_cycle_and_apoptosis
Nanostring
hallmarks Somatic 25 24 0.9615 0.7742 0.0344 7.2917 2.4113

Cytokine & Chemokine 
Signaling

Nanostring
metabolic Somatic 25 24 0.9615 0.7742 0.0344 7.2917 2.4113

E2F
_TARGETS

MSigDB
Hallmark Somatic 25 24 0.9615 0.7742 0.0344 7.2917 2.4113
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Pathway Source Mutation
pCR 
(n=26)

RD 
(n=31)

Mutation 
Rate in 
pCR

Mutation 
Rate in 
RD

Permutation 
P value OR

OR 
Lower 
95% 
CI

PI3K
Nanostring
metabolic Somatic 25 24 0.9615 0.7742 0.0360 7.2917 2.4113
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Table 2.

Multivariate analysis of TMB and inflammatory gene signatures (GeparSixto; TIS).

Model
a Multivariate

pCR~TMB OR 1.62 (1.09 – 2.61)

P=0.0279

pCR~GeparSixto OR 2.86 (1.37 – 6.80)

P=0.0091

pCR~TIS OR 3.06 (1.44 – 7.56)

P=0.0073

pCR~TMB+GeparSixto OR 1.83 (1.16 – 3.29)

P=0.0213

pCR~TMB+TIS OR 1.81 (1.15 – 3.28)

P=0.0249

a
Model+Age+Tsize+Nstatus
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