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1. INTRODUCTION

During the last few years, considerable effort has been dirécted
towards the solution of nonlinear initial-boundary value problems in
structural mechanics. The finite element method is one of the more
popular approaches employed to reduce continuum problems to nonlinear
algebraic, discrete problems. Finite element methodology is well docu-
mented in the literature (e.g., see [1]) and attention here is devoted
to procedures which may be emp]oyed to solve the resulting nonlinear
algebraic problem. While the general class of problems of interest
include both maferia] and geometric nonlinearities, attention in this
report is restricted to problems with material nonlinearity only. In
particular, we consider problems whose material behavior is described
by elastic/viscoplastic models (e.g., see Perzyna [2]).

In Section 2 we briefly review the application of the finite element
to problems in nonlinear continuum mechanics. The result is a large set
of nonlinear algebraic equations which must be solved for the state
variables (e.g., displacements and stresses). In §égtion 3 we indicate
how Newton's method is normally employed to splve nonlinear equations.
We include some discussion on operation count estimates, use of line
searches to enhance solution, convergence characteristics, and the advan-
tages and disadvantages associated with Newton's method. In Section 4
we briefly consider modified Newton's method. In general, Newton's
method possesses ideal characteristics of convergence and stability but
is too expensive to employ in solying large finite element problems.

On the other hand, modified Newton's method has desirable gperation count

estimates but also is too expensive to employ because of its low conyergence
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rate characteristics. Recently, Matthies and Strang [3] have suggested
that quasi-Newton methods be used to solve nonlinear finite element
problems. In Section 5 we summarize some of the quasi-Newton mefhods
which have been used in optimization methods. We include only the Broyden
method and the Broyden-Fletcher-Goldfarb-Shano (BFGS) method in our dis-
cussion. A comprehensive review of quasi-Newton methods is given in [a].
In Section 6 we present a summary of our results to date, which were
obtained by implementing the program given in [3] in the finite element
computer program FEAP described in Chapter 24 of [1]. Preliminary results
are very promising, and in Section 7, we conclude with recommendations
for work which may be considered for future studies. In particular, we
focus attention on methodologies which can be explored to improve cost
effectiveness of the quasi-Newton methods. These are primarily associated
with update costs and the costs encountered in solution and resolution

of large sets of linearized algebraic equations.
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2. THE FINITE ELEMENT METHOD FOR NONLINEAR PROBLEMS

In this report we consider problems in structural mechanics’which
are associated with nonlinear constitutive relations. In particular, we
will consider problems modeled by elastic/viscoplastic constitutive equa-
tions [2]. In these models the transition between elastic and viscoplastic
behavior leads to strong nonlinearities in the algebraic equations. We
believe that this problem is a severe test on the applicability of quasi-
Newton methods to solve the resulting nonlinear algebraic equations.

We begin with a brief summary of the application of the finite element
method to elastic/viscoplastic problems. Consider first the momentum
balance equation given by

o555+ by = ol; (1)

where °1j are the components of stress (Uij = oji)’ u; are components of
displacement, bi are body forces, p is density, ( )’j denotes partial
differentiation with respect to coordinate x, and a superposed dot, ('),
denotes differentiation with respect to time. A weék form of the momentum
balance equations, equivalent to virtual work, may be constructed by
multiplying (1) by an arbitrary function wi, integrating over the domain

of interest @, using integration by parts on the stress term and setting

the result to zero. Accordingly, we obtain

/(‘"1 pliy + Wy 5 0 - Wb )da - /wi T, dr = 0 (2)
Q

r
2
where, in addition to previously defined quantities, T} is a specified

traction and I‘2 is the part of the boundary where traction is specified.

For (2) to be valid, wi must vanish on Pl that part of the boundary where



-4 -

displacements are specified (i.e., u; = E} on rl). The traction is

related to stress through

t; = ny Gij | (3)

where nj are direction cosines of the outward normal to T.
The remainder of the problem consists of the strain displacement

relations
_ 1
€ =zl 3y ) (4)

in which eij are the components of strain, a statement of initial condi-

tions

ui(xk,O) = do(xk)
and . (5)

ﬁi(xk,o) = vo(xk)

and establishing constitutive equations. In the sequel, we use an elastic/

viscoplastic model of the form (e.g., see [2]) ’ {

) . 5F
€5 = Cisp O+ v<o(Flog,)> £ (6)

where Cijk] are elastic comp]iances; vy is a fluidity parameter, F is the

loading and yield function (i.e., the model is associative) and

6(F) for ¢ >0
<¢(F)> = { (7)
0 for ¢ ¢ O

In our work we let

(F) = (F/F)" (8)
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with Fo some reference value of F. Equation (6) is both nonlinear and
rate dependent. In order to construct a finite element model, we will

write a weak form of (6) in the form

. . . aF _ .
/Vij(eij - Cijk1 9 - y<o(F)> aoij) @ = 0 (9)
Q

In this form we will develop a mixed model representation in terms of

displacements, Ujs and stresses, oij’ In a finite element model, we

divide the domain Q into elements Qe and use approximations for u; and
04 5 which are C°-continuous and piecewise continuous, respectively [1].
In each element we let
4= I Nx) uy(t)
and (10)

g = IMG)glt)

where NI(x) and MJ(x) are shape functions in Q, which satisfy the C°

and piecewise continuous requirements cited above. The arbitrary weighing

functions also are approximated using these shape functions; as

W = ?"1(’5) W
and , (11)
LR

where now y and ! are arbitrary parameters. We employ a time-stepping
procedure (e.g., Newmark method [5]) to remove the time derivatives in
(2) and (9).

In the applications discussed in Section 6, we consider the behavior
of elastic/viscoplastic plane frames. Details for these finite element

developments are contained in [6]. The result of the application of the
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finite element method and a time-stepping procedure is a large set of
nonlinear algebraic equations for each discrete time, tn. These equations
are written as

Flx) = 0 (12)

where F is the composite of (2) and (9) and x is the state vector at
each time, tn, which consists of all the nodal displacements, uI(tn),

and the element stress parameters, oJ(tn).
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3. NEWTON'S METHOD

Employing the finite element method and a time-stepping metﬁod to
discretize the nonlinear structural mechanics problem 1leads to the large
set of nonlinear algebraic equations given by (12). If we write a
Taylor formula for (12) which is truncated with the linear term, we
obtain

Fxean) = E(x ) + Er(xy ) dy (13)

where k is an iteration number, gk is a change in Xk called the step
direction, and F is the Jacobian or tangent matrix of F defined by

Newton's method consists of setting (13) to zero, solving for d, from

Frix g = -Flx) (15)
and setting
Xl = Xt 9 ; [ (18)

Newton's method requires the 1nitia] guess X to be in a domain afg

(called the domain of attraction) such that convergence to a value 5*
1n,£> where 5(5*) is zero will occur. Furthermore, F must be differ-
entiable in AQ ‘and f'(f*) must be nonsingular so that (15) holds. In

practice it is often desirable to modify (16) to
Xe#l = Xt s 4 (17)

where Sk is a scalar step size which is used to enhance stabi]itonf the
algorithm. The value of Sk is determined from a line search as described

below.
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The algorithm for implementing Newton's method consists of choosing

~0
until convergence is achieved:

a good initial quess x_ and carrying out the following steps for k = 1,2,...

(i) given X) compute F(xk)

(i1) compute the Jacobian matrix F'(x )

(iii) solve F! (x ) d d = -F (5 ) for d

~k

+5s, d

(v k 9

update Xl = Xk

test for convergence

)
)
(iv) compute s, from a line search
)
(vi)
)

(vii) terminate if converged or repeat (i) to (vi)

There are several procedures which may be used to terminate the iteration.

These include:
(a) |lF(Xk)||<€max||F(x ||
(b) ||Uk|l<€2max||(u )|
(c) ||dk||<e3maxv|(d>||
(@) 14~ Fn )| 1<6, maxigy - £lx,)

where Ei are small positive constants. In our work we used Method (a).

Method (d) is computable for symmetric matrices when equations are solved;

however, for indefinite Jacobian may not be applicable.

3.1 Line Searches for Newton's Method

In the above presentation we have included a step size, s, , to make
Newton's method more stable. The magnitude of Sk is determined in such
a way as to minimize a norm of the residual, F(xk) A common procedure

used to determine Sk is to solve [3,4]
6(s,) = ¢ Flx, +s,d) = 0 (18)

It should be noted that (18) need not be solved accurately since xk+1

W SaS _ s N WS O SN §5 W /os OE_ Gn =y 8 N1
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computed by (17) is, in general, not a solution and the additional
function evaluations of E may be costly in finite element analyses.
In fact, when possible, the 1line search should be omitted. Mattﬁies
and Strang suggest computing G(sk) for s, equg] to 0 and 1 using
existing data and then set a threshold value for the need of a line

search. The value is called Sto1] in [3], and we have used an s value

tol
of 0.9 in all our calculations.

3.2 Operation Counts for Newton's Method

For purposes of subsequent cost comparisons, operation counts for

Newton's method are estimated to indicate the relative efforts needed

in-each step. For an n-dimensional x, the operation count estimates are:

(i) computation of E(fk) -0(n)
(ii) computation of E'(fk) -0(n?)
(i) direct solution of equations
-triangular decomposition of F' -0(n?)
-forward/backsubstitution ' -0(n?)
(iv) 1line search -0(n) |
(v) ubdate of solution . — -0(n)
(vi) convergence test -0(n)

While order of magnitude estimates are given, substantial differences in .
real effort exist between, for example, (1) and (vi). The majority

of effort is associated with Steps (i) to (iv), and comparisons between
Steps (i) to (iv) are meaningful. There is an order of magnitude increase
in Step (ii) over Step (i) or in Step (iii) over Step (ii). Consequently,
considerable efficiency can be achieved by eliminating or reducing the

number of expensive steps required.
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3.3 Cohvergence of Newton's Method

The rate of convergence of an algorithm will determine how fast the
iteration Xk approaches a solution x*. An acceptable algorithm must be

at least linearly convergent [4]; that is, given a solution x*, then
II§k+1 - §*Il < allfk - §*|| (19)

where o is a positive constant less than unity. Although (19) ensures
that the error norm is reduced by the factor a in each iteration, to be
competitive it is generally acknowledged that an algorithm must have
better than linear convergence. When Newton's method has continuously
differentiable F and a solution x* iné{g » then the error norm satisfies

the stronger condition

[Xpqq = 2*1 < o lx, - x]]

(20)
o > 0

which is called super-linear convergence. In addition, for cases where

F is twice differentiable in the neighborhood of X*s Newton's method is

quadratica11y convergent with
||§k+1 - f*ll < Bllfk - §*|‘2 (21)

For finite element applications, Newton's method will almost always have
at least super-linear, and most problems are such that quadratic conver-
gence will be achieved.

3.4 Advantages and Disadvantages of Newton's Method

Newton's method has at least two very desirable properties:

(i) Any Xy in a{o results in an Xk+1 in,@ ; consequently,

TE PR EE """ BT ' = N & = =BV
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the method is stable and convergent once any iterate
is ina{Q .
(ii) The method possesses at least super-linear convergence'
~ and often quadratic convergence [4].
On the negative side, we note that: |
(i) If p{Q is small, then very good initial approximations
to x* are required.

(i1) Evaluation of the Jacobian matrix and its triangular
decomposition is very costly in large finite element
problems.

The requirement of a good initial guess may be avoided in part by using
line searches and, for quasi-static problems, an evolution of the load
application [1]. In the sequel we address the possibility of reducing

computational factorizations of the tangent matrix.
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4, MODIFIED NEWTON'S METHOD

For large systems of equations, the main cost in Newton's mefhod
is the computation and triangular decomposition of the Jacobian matrix.
It is often advocated to use a previously computed and factored Jacobian
matrix as an approximation to the current tangent matrix. Such a method
is called modified (or simplified) Newton's method. The algorithm is
given for k = 1,2,... as

(i) given X, compute f(fk)

(ii) solve B,d, = -F(xk), where B

~k<k ~ 2 ~k
(iii) compute Sk from a line search

=Ex)s Tk

(iv) update Xeel = X ¥ Skgk

(v) test convergence

(vi) terminate if converged or else repeat (i) to (v)
Comparing this algorithm with that for Newton's method, we observe that
the 0(n?) operations to compute the Jacobian matrix and the 0(n®) opera-
tions to compute the triangular decomposition are avoided. The algorithm
still requires 0(n2?) operations to perform a reso]uf%on using the triangu-
lar factors of Ek' However, these savings are achieved at the expense of
the convergence rate since the modified Newton's method only converges
linearly, as given by (19). There will exist some number of iterations
p such that computation of a new Jacobian matrix will make the modified
Newton's method most efficient. Unfortunately, the value of p is problem
dependent (depends on the degree of problem nonlinearity) and cannot be
estimated easily.

In the next section we consider quasi-Newton methods which replace

the exact calculation of the tangent matrix by an update of the previous

N omS _Gag BN N By Bm {5 G _w GOm0 By A N
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tangent (or its inverse). It will be shown that many quasi-Newton
methods preserve the desirable 0(n?) operation count of the modified
Newton's method but can be constructed to have super-linear convérgence.
Modified Newton's method is not cost competitive with quasi-Newton

methods due to the difference in rate of convergence.
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5. QUASI-NEWTON METHODS

Quasi-Newton methods are a generalization of the one-dimensfona]
secant method to the n-dimensional problem. In the secant method, an
approximation to f'(fk) (i.e., Ek) is used for each iteration. This
concept is applied in multi-dimensions and a simple updating algorithm
is deduced to compute the new ?k from the previous value Ek-l‘ The
starting matrix go is normally taken as E'(fo); however, other choices
are possible (e.g., finite difference approximations [4]). The conver-
gence rate for all practical quasi-Newton methods is super-linear, and
the number of numerical operations for each iteration not requiring a
new Jacobian (e.g., a Eo) is 0(n2).

To deduce the "secant equation," we write a linear backward Taylor

formula-
Fix) = Flx q) - B0 - %00 (22)

If we use (22) as an equation to deduce the approximate Jacobian Bk’ we

can write
- (23)
By k-1 = Yk-1
where '
deo1 T X T Xke1 (24)
and
Yk-1 = EOx) - Elxq) (25)

The values in (24) and (25) must be computed to perform the Newton step

B, d = -F(x

By Ik Flx) (26)

5 OuS _Smg GNE oS G G 30 SO0 UBm Gom_ GBS BN 0S8 W §
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and (23) is called the quasi-Newton equation, which must be satisfied

by Ek’ In a one-dimensional problem, (23) is sufficient to determine
? completely; however, for multi-dimensional problems additionaf infor-
mation is required to specify gk’ This gives‘rise to many possibilities
for defining gk’ and the best one for each ¢1ass of problems probably will
be determined only after considerable numerical experimentation. In the
following sectins we will summarize two possibilities, Broyden's Method
and the BFGS Method. |

5.1 Broyden's Method

.In 1965 Broyden proposed a method for the approximate specification
of Ek by a simple update of the previous value. To compute Ek’ Broyden
assumed that Ek does not differ from Ek-l
orthogonal to gk-l' Accordingly,

when acting on any vector

z =B .z; 2d . = 0 (27)

B Bk-12 2 4

~k

Not only does (27) give an update relation for B> but when combined with
(23), a unique specification for B, will result. Broyden's/method is

given by

T
(Yk-1 = Bk-1 9k-1) k-1

By = Bt T (28)
~k-1 <k-1

Multiplying (28) by gk-l and z gives (23) and (27), respectively,
thus demonstrating the applicability of (28). If we use (26) in (28),

we may write the computationally more attractive form

T

F(x,) d
B, = B, +>k =kl (29)
Be = Bt T

dk-1 dk-1
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Broyden's method is super-linearly convergent [4]. Given an initial x0
and §0 we can use the available information to perform the quasifNewton
step. The algorithm would be identical to that for Newton's method,

except the computation of the Jacobian would be replaced by (29). The
factorization of B at each step is still required; consequently, it is
best to directly update the inverse of Bk 1 to obtain the inverse of Bk'
This will eliminate the need to compute the triangular decomposition of

B, and will result in an algorithm with 0(n?) operations in each step.

5.2 Computation of the Inverse of B,

_The inverse of matrices defined similar to (29) may be written as

(B+w)™ = B (30)

where g = 1 +w B'1 v.

~

T

If we let Hk be the inverse of Bk’ Broyden's method for the update of

the inverse becomes

(d Yo 1) al
M o= R 4 k-l k-1 Yk-1) 9k-1 Bk (31)
k- Zk-1 dT » /
k-1 Zk-1 Yk-1 |

provided dl_l H._1 Yk-1 1s nonzero. Broyden's method may be implemented

as

d, = F(x

dy (32)

X)

and requires two resolves per iteration (which may be computed as two
right-hand sides simultaneously).

5.3 Convergence of Quasi-Newton Methods

Convergence properties of quasi-Newton methods are discussed by
Dennis and More in [4]. 1In this study they restate an earlier result

that an iterative method is super-linearly convergent if

ImE BSE Sug S S 0 i 12 N 'Em =m_ 08 B m b2
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1im 118 - B 0x9] Xy = %1

0 (33)
Koo |1 %k+1 = Xkl | .

If B, converges to f'(§*), as for Newton's method where By equals f'(§k),
then convergence is always super-linear. However, the important result
of (33) is that when By only converges to f'(f*) in the direction gk’
convergence is also super-linear. Both the Broyden and the Broyden-
Fletcher-Goldfarb-Shano quasi-Newton mefhods (see below) satisfy (33)

for continuously differentiable f and are thus super-linearly convergent.

5.4 Methods for Symmetric Positive Definite Jacobians

Brodlie, Gourlay and Greenstadt have shown that certain rank-one
and rank-two corrections to symmetric positive definite matrices may be

conveniently expressed in the product form [7]
H = (I +w ”vT)H (1 + vI w,) (34)
~k ~ -~k ~k?<k-1'< " Ik <k

Matthies and Strang have demonstrated that this form has both the advan-

- tages of preserving symmetry and positive definiteness as well as compu-

tational advantages in the updating procedure. In [3] the algorithm is

related to the BFGS algorithm, which gives

_ 1
M T T o -1 (35)
9%-1 Yk-1
and .
d y 3
vo = Flx, ) |1 -fsklzk=l =L gy (36)
~R ~ ~k‘1 dT F(x ) ~ o~
k-1 T\ %1

The computational steps for implementing the BFGS method are very

straight-forward and consist of solving (32) with the following steps:



It should be noted that ﬂk-l may result from a previous BFGS update.
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_ T
for each k compute E(fk) and z = -(1 v, fk) F(fk)

-1 _
solve My g Uy = %

~

compute dk = (I + W vl) U

if required, compute a line search for Sk
update X+l = Xk + skdk
check convergence

~

Thus, Steps (i) and (ii1) may require several updates before the resolve

step is performed.

limited to positive definite tangent matrices.

Furthermore, this form of the algorithm is strictly

Indefinite forms

" resulting from Lagrange multiplier constraints may be considered by

BFGS but an alternative implementation is required (see [3] and [4]).

I Tug _On 0 g 0 Bm (5 m _ m m_00m By B A2
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6. APPLICATION OF THE BFGS METHOD TO PLANE FRAME
PROBLEMS IN VISCOPLASTICITY

The BFGS algorithm described in [3] has been implemented in the
finite element analysis program FEAP, which is described in Chapter 24
of [1]. The Algol program given in [3] was closely followed and trans-
lated into a FORTRAN module for FEAP. A listing for this module is
included in the Appendix. This program is experimental and undoubtedly
several improvements may be made to improve the computational performance.
For subsequent comparisons between Newton's, modified Newton's, and quasi-
Newtbn methods, we will only consider the number of iterations required
to reach a convergenced solution. This is justified because of the
rather small problems we have considered to date and possible ineffi-
ciencies that result in using the research-oriented program FEAP.

The first example We consider is a plane frame subjected to the
single load, as shown in Fig. 1. The load is large enough to cause
inelastic moments at both ends and directly under the load on the girder.
The'problem is solved using Newton's, modified Newton's and/the BFGS
quasi-Newton methods. Convergence was based on the residual force
vector with 61 equal to 10'4. For the first three time steps, the number
of iterations required for each method are summarized in Table 1. No
line searches are used for the Newton or the modified Newton methods.

It is evident in Table 1 that the quasf-Newton method is effective,
especially for the first step whére the initial guess of zero is very

far from the solution 5*. At later stages there is very little difference
since only small changes in the solution occur and the initial tangent

is good for all methods.
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Method
Time
Step Modified BFGS
Newton Newton Quasi-Newton
5 4
3 3 4 3

TABLE 1. NUMBER OF ITERATIONS REQUIRED FOR
PLANE FRAME EXAMPLE

As a second example, we consider the dynamic loading of a simply

supported beam. The load is applied at the beam center with a value

P sin2at; 0<t<mn/a
P(t) = { (0] 0 (0]

3 n/aO <t

The beam undergoes both loading and unloading, and the entire beam
behaves inelastically during a portion of the analysis. Table 2
indicates the number of iterations required to achieve tolerances for

the residual 1"or'ceso1°'10'4 and 10"5

of the maximum within each step.
The importance of super-linear convergence is evident by comparing the

differences in the total iterations to achieve one additional digit of

accuracy over the entire first 15 time steps for each method. Newton's

method requires only 6 iterations more to achieve the extra digit, the

BFGS quasi-Newton method requires 7 iterations, while the modified

Newton solution requires 12 iterations. The most significant difference

occurs in the 14th time step where considerable unloading occurs. The

effectiveness of the quasi-Newton method is evident in this step.

{3 SND OGS ONS NG OGN ONS Q3 0N Jom Gum_ NS By B N



NUMBER OF ITERATIONS FOR DYNAMIC LOADING

clw
Sl o] Numaw W W W WLW OO o
= —
v D
o=
o
o - <
gl o] ~nvmo LWL <+ T T OW S
3 —
=3
uwn
- | vnauma o VWOV WLW OO WO~ i
(¢ D I —
-— O
Y-
— =
To |9
2 | Nummw LWL T SO~ 3
—
]
—
N
© :
' o]l ~Nvmeow LWL < < <+ WO W .
c —
o
%
v | <
= ] N oy
o Mmoo Tt T oo S
) __
Q a =
EZ —“NMm W o~ 8 i R o
s =

0 om pu e e I-r-.l ) om 5 W W SN_SS W) DS IR =S

OF BEAM EXAMPLE

TABLE 2.



- 22 -

7. CLOSURE AND RECOMMENDATIONS FOR ADDITIONAL STUDIES

In this report we have summarized some of our preliminary e*periences
in applying quasi-Newton methods to nonlinear finite element equations for
viscoplasticity problems. The results are quite encouraging and support
those reported previously in [3]. The advantages of the super-linear
convergence of the BFGS method is clearly evident in both the quasi-static
analysis and the dynamic analysis we performed. The added effort over
that required for modified Newton methods is negligible for any significant
finite element analysis.

At the pre%ent time, quasi-Newton methods to solve nonlinear finite
element equations have been restricted to those with poﬁitive definite
Jacobians. We attempted to apply our implementation to a simple contact
problem' where the contact condition is enforced by Lagrange multiplier
constraints on those nodes indicating penetration and/or compressive
contact loads. The algorithm failed to converge. At this time it is
not clear whethér this is due to the particu1ar implementation of BFGS
we used (e.g., see [3] for one possible a1ternative_not restricted to
positive definite Jacobians) or due to lack of differentiability in the
nonlinear Lagrange muitiplier equations for the contact condition. Need-
less to say; modified Newton's method fails for this problem, too. However,
Newton's method is successful.

The current implementation of the quasi-Newton BFGS algorithm
requires occasional computation and factorization of the Jacobian matrix.
For large problems this can still remain the most costly step in the
analysis. Techniques to avoid this step should be explored. Recently,

much effort has been directed to the solution of 1linear equations by

i B G0 u s 05 0 2 Em W m_NE B S N
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iterative methods. One such method is the Lanczos algorithm as proposed
by Parlett [8], which is related to the conjugate gradient method.
Iterative methods are competitive only with proper preconditioniﬁg of
the equation; techniques to precondition nonlinear finite element equa-
tions need to be investigated to find methods which are cost effective
when used with particular iterative methods (e.g., use of incomplete
Choleski factorization with the conjugate gradient method enhances con-
vergence). The Lanczos method consists of rebresenting a coefficient

matrix B in terms of an orthogonal matrix Q and a tridiagonal matrix T

as
BQ = QT
where
Q'q - I

~

The possibility of directly updating I (with sparse updates) instead of
Broyden or product updates of § or ﬂ is attractive. It would combine
the advantages of traditional iterative methods with those of the quasi-
Newton method. Eventual success of such endeavors would ultimately depend
on how many vectors must be used for columns of the orthogonal matrix 9.

Other directions to pursue are the one-step BFGS forms of Crisfield
[9]. This work uses simple one-step BFGS updates of modified Newton
iterates, requikes very little extra effort and very little additional
storage. It may be particularly effective for dynamic problems with sig-
nificant inertia forces. The effectiveness of Crisfield's approach should
be assessed for finite element equations resulting from nonlinear material
(and geometric) behavior.

It is evident that the application of quasi-Newton methods to non-

linear finite element equations presents several alternative approaches.
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The surface has just been scratched and much additional effort is required
before the most effective methods are delineated. The result of studies
in this direction should be algorithms which are not only cheapef but are

more stable and reliable than those in use today.
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Figure 1. Quasi-Static Analysis of Plane Viscoplastic Frame.
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Figure 2. Dynamic Analysis of Viscoplastic Beam.
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Appendix

Listing of modules added to FEAP to implement BFGS method and
the viscoplastic frame element used in the analysis.
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