
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load Balancing

Permalink
https://escholarship.org/uc/item/15c5r1hf

Author
Boardman, Beth Leigh

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/15c5r1hf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load

Balancing

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Engineering Sciences (Aerospace Engineering)

by

Beth Leigh Boardman

Committee in charge:

Sonia Martı́nez, Chair

Robert Bitmead

Jorge Cortes

Troy Harden

Ken Kreutz-Delgado

Melvin Leok

2017

Copyright

Beth Leigh Boardman, 2017

All rights reserved.

The dissertation of Beth Leigh Boardman is approved, and

it is acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2017

iii

DEDICATION

To Patricia, Aiden, and Savina. Always follow your dreams and never

give up.

iv

EPIGRAPH

Someday I must read this

scholar Everyone. He seems

to have written so much

– all of it wrong.

—Tamora Pierce, Emperor Mage

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xvi

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1

1.1 Literature Review . 2

1.1.1 Multi-Agent Coverage and Spatial Load Balancing . 6

1.2 Contributions . 7

1.2.1 Spatial Load Balancing 9

Chapter 2 Background . 11

2.1 The Asymptotically Optimal Rapidly-exploring Random Tree

Algorithm . 13

2.2 The Asymptotically Optimal Probabilistic Roadmap

Algorithm . 16

2.3 Deconfliction using Collision Cones 17

2.4 Notation . 20

Chapter 3 Improvements to Sampling-Based Motion Planning Algorithms . . 21

3.1 The Focused-Refinement Algorithm 21

3.2 The Grandparent-Connection Algorithm 23

3.3 Analysis of Grandparent-Connection Algorithm 25

3.4 Simulations . 28

3.4.1 Euclidean Metric 28

3.4.2 Dubins’ Vehicle . 30

3.5 Summary . 33

vi

Chapter 4 A Sampling-Based Algorithm for Replanning in Environments with

Unknown Static Obstacles . 34

4.1 The Goal Tree Algorithm 34

4.2 Optimality of Goal Tree algorithm 35

4.3 Simulations of the Goal Tree Algorithm 44

4.3.1 Euclidean Metric 44

4.3.2 Dubins’ Vehicle . 45

4.3.3 Seven Degree-of-Freedom Manipulator 46

4.4 Summary . 48

Chapter 5 A Sampling-Based Motion Planning Algorithm for Replanning in

Environments with Multiple Dynamic Agents 50

5.1 The Sampling-Based Collision Avoidance Algorithm 52

5.1.1 Perfect Information Case 52

5.1.2 Collision-Triggered Information Case 55

5.2 Analysis . 57

5.2.1 A New Deconfliction Maneuver 61

5.2.2 Collision-Triggered Algorithm Analysis 63

5.3 Simulations . 65

5.4 Summary . 69

Chapter 6 Sampling-Based Spatial Load Balancing for Multiple Robots . . . 71

6.1 Continuous Space Spatial Load Balancing 71

6.1.1 Unlimited Range Agents in Convex Spaces 73

6.1.2 Limited Ranges . 74

6.1.3 Continuous Space Algorithm 81

6.2 Graph-based Limited Range Spatial Load Balancing 83

6.2.1 Approximate General Voronoi Tessellations 85

6.2.2 Discrete Space Algorithm 89

6.3 Distributed Algorithm Properties 92

6.3.1 Alternate Definition of D̃ 92

6.3.2 Distributed Properties using Ṽ LR 94

6.4 Algorithm Analysis . 95

6.5 Simulations . 100

6.5.1 Area-Only Cost Function 100

6.5.2 Mixed Cost Function 101

6.5.3 Voronoi Graph Partitions 104

6.5.4 Evolution of H̃ . 106

6.6 Summary . 109

Chapter 7 Conclusion . 111

7.0.1 Future Work . 112

vii

Bibliography . 114

viii

LIST OF FIGURES

Figure 2.1: Depiction of a collision cone . 18

Figure 3.1: An illustrative example on choosing xnew when refining a single

path. The red rectangle is an obstacle in the environment. The blue

dots are the the set of vertices, VΠ, used to determine the region

from which xnew is sampled. 25

Figure 3.2: Typical Dubins’ vehicle trees in the 25 obstacle environment found

by the RRT*, Grandparent-Connection, Grandparent Connection

with Focused-Refinement, Focused-Refinement, RRT*-Smart, and

RRT with path smoothing algorithms. 31

Figure 4.1: Typical Dubins’ vehicle trees found when replanning in the 26 ob-

stacle environment using the RRT* and GT algorithms. 44

Figure 4.2: Left: The box is added to the environment so that it is in conflict

with the manipulator’s path. Right: The Goal Tree algorithm suc-

cessfully replans to find a collision-free path. 47

Figure 5.1: The initial paths (black) and final paths (colored). The red hexagons

are static obstacles that must be avoided. 66

Figure 5.2: The distance between agent i and the other agents over time 66

Figure 5.3: The difference between the true and uncertain position (left) and

velocity (right) of the agents . 67

Figure 6.1: An example of a limited range sub-partition for four agents, each

with a different ωi. 75

Figure 6.2: The final V LR partition that minimizes H area(P,V LR) with agent

trajectories. 101

Figure 6.3: The evolution of H area(P,V LR). 101

Figure 6.4: The evolution of the limited range radii for H area(P,V LR). 102

Figure 6.5: The final V LR partition that minimizes H mixed(P,V LR) with agent

trajectories. 102

Figure 6.6: The evolution of H mixed(P,V LR). 103

Figure 6.7: The evolution of the limited range radii for H mixed(P,V LR). 103

Figure 6.8: The initial (left) and final (right) 5,000 node graph Ṽ weighted for six

agents obtained by solving Problem 3 with H̃ centroid 104

Figure 6.9: The Initial (left), final with c = 3 (center) and final with Rmax = 3.5

(right) 5,000 node graph Ṽ LR for six agents obtained by solving

Problem 3 with H̃ area . 105

Figure 6.10: The final 5,000 node graph Ṽ LR with c = 3 (left) and with Rmax =

3.5 (right) for six agents solving Problem 3 with H̃ mixed 105

ix

Figure 6.11: The evolution of H̃ centroid obtained by solving Problem 3 using

Ṽ weighted, where the solid line is the 5,000 node graph and the

dashed is the 2,000 node graph . 106

Figure 6.12: The evolution of H̃ area (left) and H̃ mixed (right) by solving Prob-

lem 3 using Ṽ LR from the 2,000 node graph with c = 3 (blue dash-

dot line), Rmax = 3.5 (red solid line), from the 5,000 node graph

with c = 3 (cyan dashed line), Rmax = 3.5 (magenta dotted line) . . 107

Figure 6.13: A 5,000 node graph initial (left) and final (right) Ṽ LR for seven

agents obtained by solving Problem 3 with H̃ area 108

Figure 6.14: The evolution of H̃ area (left) and H̃ mixed (right) obtained by solving

Problem 3 using Ṽ LR from a 5,000 node graph with c = 3 (blue

dash-dot line), Rmax = 3.5 (red solid line) 108

Figure 6.15: The evolution of H̃ area (left) and H̃ mixed (right) obtained by solving

Problems 3 for Dubins’ vehicle using Ṽ LR, where the blue dashed

line is with c = 7 and solid red line is with Rmax = 8 109

x

LIST OF TABLES

Table 3.1: The mean and standard deviation results for the Euclidean metric.

This is a summarization that compares the Grandparent-Connection

and Focused-Refinement algorithms to the RRT*, RRT*-Smart, and

RRT with path smoothing. 29

Table 3.2: Mean with standard deviation results summarizing the comparison of

the Grandparent-Connection and Focused-Refinement algorithms to

the RRT*, RRT*-Smart, and RRT with path smoothing for Dubins’

Vehicle. 32

Table 4.1: Mean with standard deviation Euclidean metric results summarizing

the comparison the Goal Tree and RRT* Algorithms. 45

Table 4.2: Mean with standard deviation results summarizing the comparison

the Goal Tree and RRT* Algorithms for Dubins’ Vehicles in the 25

obstacle environment. 45

Table 4.3: Mean with standard deviation results summarizing the comparison of

the Goal Tree and Grandparent-Connection Algorithms for Dubins’

Vehicles in the 25 obstacle environment. 46

Table 4.4: Mean results summarizing the comparison between the Goal Tree

algorithm and RRT* algorithm for the seven degree-of-freedom ma-

nipulator. 48

Table 5.1: Comparison of the results for three different simulations with eight

agents each. The first two simulations have the same setup as Fig. 5.1.

The third simulation has the same initial agent configuration as the

other two but there are no static obstacles in the space. 69

xi

ACKNOWLEDGEMENTS

I would like to thank everyone who has supported me throughout the years. In

particular, I would like to acknowledge:

The University of California, San Diego professors for sharing their expert knowl-

edge. Especially those in the Mechanical and Aerospace Engineering Department.

Los Alamos National Laboratory (LANL) and the Engineering Institute for pro-

viding the funding for my PhD research. Without programs like this I, and many other

graduate students, would be unable to pursue a PhD.

This work was supported by Los Alamos National Laboratory and is approved

for public release under LA-UR-17-29319. Los Alamos National Laboratory, an af-

firmative action/equal opportunity employer, is operated by the Los Alamos National

Security, LLC for the National Nuclear Security Administration of the U.S. Department

of Energy under contract DE-AC52-06NA25396. By approving this article, the pub-

lisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to

publish or reproduce the published form of this contribution, or to allow others to do so,

for U.S. Government purposes. Los Alamos National Laboratory requests that the pub-

lisher identify this article as work performed under the auspices of the U.S. Department

of Energy. Los Alamos National Laboratory strongly supports academic freedom and a

researcher’s right to publish; as an institution, however, the Laboratory does not endorse

the viewpoint of a publication or guarantee its technical correctness.

Prof. Sonia Martinez, thank you for being my research advisor these last five

year. I truly appreciate all the hard work you have done to help me complete my PhD

research. Our discussions during research meeting have been invaluable to my work.

My Los Alamos National Laboratory mentor and advisor, Troy Harden. I cannot

thank you enough for all the advice you have given me over the last five years. The

opportunities to do robotics research that you helped provide have been instrumental in

xii

me completing my PhD.

My committee members, Professor Robert Bitmead, Professor Jorge Cortes, Pro-

fessor Ken Kreutz-Delgado, and Professor Melvin Leok.

The Applied Engineering and Technology division of LANL, especially group

5, who hired me on as an intern during the summers. The experience I gain by working

for AET-5 has beed invaluable. I have thoroughly enjoyed working with the members

of AET-5; they are an excellent group of hardworking people.

My fellow lab mates, in particular Evan Gravelle and Aaron Ma. Thank you

have all the conversations both research and non-research related. All of the lunch time

breaks we shared we a lot of fun and great way to recharge before going back to work.

Good luck in the rest of your adventures, what ever they may be.

My fellow LANL student interns, especially Katherine Jensen. Thanks for the

friendship and making the summers at LANL that much more enjoyable. I appreciate

all of our conversations and research discussions. I would also like to thank you for all

of your hard work on getting the SIA5 robot up and running.

My first graduate advisor, Prof. Kristi Morgansen. Thank you for hiring me

into your lab as a masters student. The research I did while working in your lab was an

excellent foundation for pursuing my PhD. I also appreciate all of the control theory I

learned from you, both in the classroom and in our research meeting.

My parents, Mark and LeAnn Boardman, for encouraging my interest in science

and math. I appreciate all the life lessons that you instilled upon me as I was growing up.

Those lessons have made me a better person and given me the tools I need to succeed in

my chosen field.

My grandparents, Larry and Shirley Stokes, Paul and Marion Brittain, and Richard

and Sue Boardman, for always believing in and encouraging me.

Nao Murakami, for being my friend. Without you I don’t know how I would

xiii

have survived graduate school. I appreciate all the times you have let me bounce ideas

off of you, answered MATLAB, math, and physics questions, read and edited papers for

me, for listening to all my rants when I was frustrated, and most important, sharing in

the joy of all the little accomplishments that led to a PhD.

Chapter 3, in part, contains material as it appears in ASME International De-

sign Engineering Technical Conferences and Computers and Information in Engineering

Conference 2015. “Focused Refinement in the RRT*: Trading Optimality for Improved

Performance”, Boardman, Beth; Harden, Troy; Martı́nez, Sonia. The dissertation author

was the primary investigator and author of this paper.

Chapter 3, in part, contains material submitted to ASME Journal of Dynamic

Systems, Measurement and Control 2017. “Improved Performance of Asymptotically

Optimal Rapidly-Exploring Random Trees,” Boardman, Beth; Harden, Troy; Martı́nez,

Sonia. The dissertation author was the primary investigator and author of this paper.

Chapter 4, in part, contains material as it appears in the proceeding of the 52nd

Annual Allerton Conference on Communication, Control, and Computing 2014. “Opti-

mal kinodynamic motion planning in environments with unexpected obstacles”, Board-

man, Beth; Harden, Troy; Martı́nez, Sonia. The dissertation author was the primary

investigator and author of this paper.

Chapter 4, in part, contains material submitted to ASME Journal of Dynamic

Systems, Measurement and Control 2017. “Improved Performance of Asymptotically

Optimal Rapidly-Exploring Random Trees” Boardman, Beth; Harden, Troy; Martı́nez,

Sonia. The dissertation author was the primary investigator and author of this paper.

Chapter 5, in part, contains material that will be submitted, “Reactive Multi-

Agent Path Planning: Combining the RRT* with Collision Cones” 2017. Boardman,

Beth; Harden, Troy; Martı́nez, Sonia. The dissertation author was the primary investiga-

tor and author of this paper.

xiv

Chapter 6, in part, contains material as it appears in American Control Confer-

ence 2016. “Spatial load balancing in non-convex environments using sampling-based

motion planners” Boardman, Beth; Harden, Troy; Martı́nez, Sonia. The dissertation

author was the primary investigator and author of this paper.

Chapter 6, in part, contains material as it appears in American Control Confer-

ence 2017. “Limited range spatial load balancing for multiple robots” Boardman, Beth;

Harden, Troy; Martı́nez, Sonia. The dissertation author was the primary investigator

and author of this paper.

Chapter 6, in part, contains material that has been submitted to Autonomous

Robots 2017. “Limited Range Spatial Load Balancing in Non-Convex Environments

using Sampling-Based Motion Planners”, Boardman, Beth; Harden, Troy; Martı́nez,

Sonia. The dissertation author was the primary investigator and author of this paper.

xv

VITA

2010 B. S. in Aeronautics and Astronautics, University of Washington,

Seattle

2012 M. S. in Aeronautics and Astronautics, University of Washington,

Seattle

2017 Ph. D. in Engineering Sciences (Aerospace Engineering), Univer-

sity of California, San Diego

PUBLICATIONS

B. Boardman and T. L. Hedrick and D. H. Theriault and N. W. Fuller and M. Betke and

K. A. Morgansen, “Collision avoidance in biological systems using collision cones”,

American Control Conference (ACC), Washington D.C., USA, June 2013.

B. Boardman and T. Harden and S. Martı́nez, “Optimal kinodynamic motion planning

in environments with unexpected obstacles”, Communication, Control, and Computing

(Allerton), 52nd Annual Allerton Conference on, Monticello, IL, USA, October 2014.

B. Boardman and T. Harden and S. Martı́nez, “Focused Refinement in the RRT*: Trad-

ing Optimality for Improved Performance”, ASME International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference,

Boston, MA, USA, August 2015.

B. Boardman and T. Harden and S. Martı́nez, “Spatial load balancing in non-convex

environments using sampling-based motion planners”, American Control Conference

(ACC), Boston, MA, July 2016.

B. Boardman and T. Harden and S. Martı́nez, “Limited range spatial load balancing for

multiple robots”, American Control Conference (ACC), Seattle, WA, USA, May 2017.

B. Boardman and T. Harden and S. Martı́nez, “Limited Range Spatial Load Balancing

in Non-Convex Environments using Sampling-Based Motion Planners”, Submitted. Au-

tonomous Robots, 2017.

B. Boardman and T. Harden and S. Martı́nez, “Improved Performance of Asymptotically

Optimal Rapidly-Exploring Random Trees”, Submitted to Journal of Dynamic Systems,

Measurement and Control, 2017.

B. Boardman and T. Harden and S. Martı́nez, “Reactive Multi-Agent Path Planning:

Combining the RRT* with Collision Cones”, To be Submitted. 2017.

xvi

ABSTRACT OF THE DISSERTATION

Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load

Balancing

by

Beth Leigh Boardman

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2017

Professor Sonia Martı́nez, Chair

The common theme of this dissertation is sampling-based motion planning with

the two key contributions being in the area of replanning and spatial load balancing

for robotic systems. Here, we begin by recalling two sampling-based motion planners:

the asymptotically optimal rapidly-exploring random tree (RRT*), and the asymptoti-

cally optimal probabilistic roadmap (PRM*). We also provide a brief background on

collision cones and the Distributed Reactive Collision Avoidance (DRCA) algorithm.

The next four chapters detail novel contributions for motion replanning in environments

with unexpected static obstacles, for multi-agent collision avoidance, and spatial load

xvii

balancing. First, we show improved performance of the RRT* when using the proposed

Grandparent-Connection (GP) or Focused-Refinement (FR) algorithms. Next, the Goal

Tree algorithm for replanning with unexpected static obstacles is detailed and proven

to be asymptotically optimal. A multi-agent collision avoidance problem in obstacle

environments is approached via the RRT*, leading to the novel Sampling-Based Col-

lision Avoidance (SBCA) algorithm. The SBCA algorithm is proven to guarantee col-

lision free trajectories for all of the agents, even when subject to uncertainties in the

knowledge of the other agents’ positions and velocities. Given that a solution exists,

we prove that livelocks and deadlock will lead to the cost to the goal being decreased.

We introduce a new deconfliction maneuver that decreases the cost-to-come at each

step. This new maneuver removes the possibility of livelocks and allows a result to be

formed that proves convergence to the goal configurations. Finally, we present a limited

range Graph-based Spatial Load Balancing (GSLB) algorithm which fairly divides a

non-convex space among multiple agents that are subject to differential constraints and

have a limited travel distance. The GSLB is proven to converge to a solution when max-

imizing the area covered by the agents. The analysis for each of the above mentioned

algorithms is confirmed in simulations.

xviii

Chapter 1

Introduction

Robotics and automation are being integrated into our everyday lives more and

more. We mostly see automation that is very structured, resulting in repetitive motion.

Theses robots are designed to do one, and only one, task efficiently. More recently,

robotics has ventured into accomplishing versatile tasks. This includes navigating vari-

ous environments, known, unknown, or uncertain.

We have also seen an increase in human-robot interaction. Robots are being used

to improve safety and efficiency for humans. The key to humans and robots working

cooperatively is trust. The human needs to trust that the robot will avoid collisions

and move in a predicable, natural manner. The research presented here works toward

developing motion planning algorithms that produce paths, in an uncertain environment,

that are efficient and smooth.

Motion planning is about determining how a robot should move to complete a

given task. The possible tasks include navigation, coverage, localization, and mapping.

Motion planning can be model based (offline planning), sensing based (reactive plan-

ning), a hybrid that switches between sensing or modeling based, or probabilistic which

fuses together modeling and sensing based.

1

2

Some of the challenges facing robotic motion planning are non-convex spaces,

agents subject to differential constraints, high dimensional robots, uncertainties, and

dynamic and uncertain environments, all of which have a great impact of the speed of

the algorithms. Unlike more classical algorithms, sampling-based motion planners find

a solution quickly, handle non-convex environments easily, and are able to find a solution

for high dimensional robots. Even though current sampling-based motion planners are

quick, they do not return an optimal or near optimal solution in real-time.

Sampling-based motion planning algorithms sample the environment incremen-

tally and quickly connect samples from the free configuration space to find a collision-

free path from an initial configuration to a goal configuration. Improving the perfor-

mance of sampling-based algorithms, in convergence speed and its adaptation to moving

obstacles, is key in the development of real-time motion planning algorithms. This moti-

vated for the research in this dissertation. The research contained within this dissertation

develops novel improved performance sampling-based motion planning algorithms with

applications to environments with unknown static and dynamic obstacles. The last part

of this dissertation applies sampling-based motion planners to a novel multi-agent cov-

erage problem, by which dynamic agents with a limited travel range aim to balance the

coverage area of a region in a fair way.

1.1 Literature Review

Rapidly-exploring Dense Tree algorithms (RDTs, also known as RRTs) [37] and

Sampling-Based Roadmaps (SBRs, including Probabilistic Roadmaps (PRMs) [31]) are

sampling-based motion planners which are resolution or probabilistically complete, and

are able to find a feasible path to the goal without the explicit modeling of the config-

uration space. As opposed to SBRs, RDTs do not require pre-processing and can find

3

a path relatively quickly. However, the path produced by these planners can be very

jagged and result in unnecessary motion that can increase the execution time. Conse-

quently, this motivated research into how to obtain better paths from these planners.

One way to obtain improved paths is to apply a post-processing algorithm.

In [61], one of such algorithms is presented and applied on any given path. The al-

gorithm limits the allowable deviation from the original path and results in a new path

with fewer nodes. A divide and conquer method is used in [11] in order to shorten a

given path by connecting the first and last nodes in the path directly. If not successful,

then the set of nodes in the path list is bisected until the connections are successful. Sim-

ilarly, the post-processing algorithm in [54] randomly selects two points from the path

list and attempts to replace the segment between them with a straight line. This process

is repeated a predetermined number of times.

A subsequent effort focuses on obtaining paths that guarantee asymptotic op-

timality with probability one. At the core of this line of work are the PRM* and

RRT* [29]. The RRT* handles any-time applications [30] and manipulators [50]. The

RRT* paths can be composed of many more nodes than is strictly necessary. The Ball-

tree algorithm, [57], is a sampling-based motion planner that improves the performance

of the RRT and RRT* by using volumes of free-space instead of points as the vertices

of the tree. More recently, the RRT# [2] is another sampling-based planner that returns

an optimal path by maintaining a graph and a spanning subtree. The RRT# separates the

exploration and exploitation tasks so the algorithm can be run in parallel to improve per-

formance. Another algorithm, the Fast Marching Tree (FMT*) [24], performs a “lazy”

dynamic programming recursion on samples from the configuration space to produce a

tree of paths. A key result from [24] is the algorithm convergence rate.

The following papers also study the effects of exploitation versus exploration on

the RRT*. Akgun et al. [1] uses local biasing to choose the sampling point based upon

4

the current best path to the goal. The RRT*-Smart in [22] finds an initial path to the

goal, then it optimizes it using first a smoothing technique, and then it further shapes it

by biasing sampling to balls around the nodes in the optimized path. While these two

papers share the same idea of exploitation of a given path to the goal, the method focuses

on a single path only, which results, at most, in a locally-optimal path.

The idea of re-adapting motion plans when finding new unexpected obstacles

has been exploited significantly in the literature. The discrete-time D*, and D* lite

algorithms [32], [58] re-adapt A* algorithms to find the optimal path in a discretized

space. However, these algorithms become intractable as the dimensionality increases,

while they have a limited ability to handle differential constraints.

The sampling-based algorithms in [19], [64] [8], [39], and [21] all extend the

RRT algorithm to deal with dynamic environments. The Dynamic Rapidly-exploring

Random Tree (DRRT) [19] roots the tree at the goal and trims branches in the tree that

are obstructed by the new obstacle. The trimming is done by removing nodes that are

within a region that contains the obstacle and whose edge is in conflict. The descendants

of the affected nodes are also removed so that only one tree is maintained. The remaining

paths in the tree still lead to the goal but are not optimal.

In [39] the Reconfigurable Random Forest (RRF) algorithm maintains a forest

of trees. The trees are from previous plannings and have been broken apart according

to the new obstacle information and initializing new trees at the new initial and goal

configuration. The RRF attempts to connect the trees as in the RRT-connect [23] making

this framework good for multi-query problems. The trees are trimmed by removing all

nodes from within a bounding box containing the obstacle that are determined to be in

conflict with the new obstacle. The RRF also prunes its trees to maintain a manageable

number of nodes to reduce searching time. The lazy reconfiguration forest (LRF) is

presented in [21], and uses the idea of maintaining multiple RRT trees from the RRF but

5

only checks for invalid edges along the task path instead of checking the entire tree.

To rebuild a tree from the initial position, way points from the previous tree are

reused to increase the likelihood of a successful connection in the execution extended

RRT (ERRT) [8]. The ERRT also uses an adaptive cost function that improves the

generated paths. The multipartite RRT (MP-RRT) [64] combines several of the above

mentioned planners and an opportunistic strategy for reusing information during replan-

ning in a dynamic environment. However, none of these algorithms produce optimal

paths. An asymptotically optimal replanning algorithm, RRT X , was developed by the

authors of [47]. The RRT X maintains a graph and a shortest path sub-tree rooted at the

goal. When an obstacle is added or removed only the effected edges are updated.

The following selection of works deal with multiple agents in a workspace. A

first sampling of papers solve the multi-agent path planning problem without a graph

or uncertainty. The algorithm in [6] is based on vectorized particle swarm optimization.

A real-time algorithm is presented in [12] that uses sequential convex programming. A

dynamic programming scheme is used in [41] to develop an online coordinated motion

planner. While the algorithms in [56] and [44] use graphs, they do not use sampling-

based motion planners. Sampling-based motion planners such as the RRT are used in

[62] and [52].

Most similar to the reactive path planning research presented here are [60, 45,

33] which all use RRT based planners and uncertainties. The motion planning problem

with uncertain obstacles is solved using a game theoretic formulation in [60]. Sequential

path finding is used in [45] to develop a real-time algorithm that handles uncertainties

and disturbances. The real-time algorithm that handles uncertain dynamic obstacles

in [33] uses chance constraints.

6

1.1.1 Multi-Agent Coverage and Spatial Load Balancing

The gradient-based descent Lloyd algorithm, [40], is the basis of many multi-

agent coverage strategies. A limited sample of work building on this approach includes

limited sensor footprints [38], heterogeneous agents (different sensing radii) [59, 51],

non-holonomic agents [35, 18, 55], and power constraints [34]. The area-constrained

problem is studied in [14, 48, 49], where a partition of the environment, dependent on

weights, is employed. This partition, combined with an appropriately modified objec-

tive, is sufficient to enforce agents’ regions to have the desired area. In [25], a sink node

is used to aggregate information collected by all of the agents. While the communication

cost is minimized, the agents must all communicate with the sink node. These papers

assume the agents have unlimited ranges and are deployed in a convex environment.

In [42], a convex area covered by sensors is maximized by minimizing the area uncov-

ered in the agents’ cell. Even though the algorithms have certain distributed properties,

they are not, in general, implementable over a limited-range communication graph.

The research on multi-agent coverage in non-convex environments is closely re-

lated to the research found in Chapter 5. A first paper is [10], which employs a diffeomor-

phism to transform the non-convex environment into an almost convex one, where only

a finite number of points have been subtracted. The coverage problem is then solved in

the transformed environment and a solution is obtained via the inverse transformation.

The diffeomorphism limits this algorithm to two-dimensional environments. Environ-

ments with polygonal obstacles are considered in [63, 7]. A solution to the multi-agent

coverage problem for non-point robots in non-convex environments can be found in [51].

The approach to solve the non-convex multi-agent coverage problem taken by [26] is to

use visibility-based Voronoi diagrams while maximizing the coverage area. The authors

of [26] extend their work in [27] to include heterogeneous sensing. Most of the above

papers do not present solutions for agents subject to differential constraints. And those

7

papers that do account for differential constraints do not consider obstacles.

The following papers are for coverage in an unknown non-convex environment

with agents not subject to differential constraints. A Voronoi partition and potential field

is used in [53] to find a solution to the coverage problem in non-convex environments

with unknown obstacles. The authors of [5] let the agents learn and build a gridded envi-

ronment map and then determine which grid points belong to each agents’ generalized

Voronoi cells. This grid-based approach is limited to low dimensional spaces and dif-

ferential constraints are difficult to handle in this manner. The paper [4] is an extension

of [5] to Reimannian manifolds with non-convex boundaries.

1.2 Contributions

The following section details the contributions of the motion planning research

contained within this manuscript. The contributions fall into four categories: improved

performance, replanning, multi-agent deconfliction and spatial load balancing.

We detail two algorithms that improve the performance of the RRT*, then present

extended simulations and analysis results. The two algorithms are the Focused-

Refinement (FR) and the Grandparent-Connection (GP).

The Focused-Refinement (FR) algorithm is a modification of the RRT* that re-

duces the computation time needed to obtain a low-cost path to the goal. This is done by

exploring the environment quickly until a set of paths to the goal is found. Then, the al-

gorithm focuses on lowering the cost of the paths in this set while periodically exploring

the environment. In this way, the algorithm quickly returns an asymptotically optimal

path within the regions that are more intensively exploited. We present a novel way of

uniformly sampling randomly within these regions that, with the right parameters, can

recover the entire configuration space.

8

The Grandparent-Connection (GP) is a modification to the RRT* algorithm that

attempts to connect the added vertex to its grandparent instead of its parent vertex. This

essentially straightens the computed paths and lowers the cost. We prove that the asymp-

totic optimality and probabilistic completeness results for the RRT* are maintained

when using the GP modification. The GP is also proven to recover the optimal path

to the goal for all configuration in the visible set.

In the area of replanning, we developed the novel Goal Tree (GT) algorithm that

is used to reduce the RRT* replanning time in the presence of a new obstacle. The Goal

Tree (GT) algorithm reuses information from the RRT* rooted at the goal configuration,

TG. More precisely, when a previously unknown obstacle obstructs the best path, TG

is trimmed to reflect this information. The tree is then incrementally extended in the

affected region of the configuration space. In this setting, we identify a new sampling

region, strictly contained in the configuration space, such that, when used with the GT

algorithm, guarantees the recovery of an asymptotically optimal path. First, a region

is proven to exist, then a characterization is provided for a general robot in a d dimen-

sional environment. By exploiting the known path types of vehicles with no differential

constraints in a d dimensional configuration space and a Dubins’ vehicle, alternative

characterizations of the new planning region are given.

Next, we approach multiple robot coordination problems using sampling-based

motion planners. The SAMPLING-BASED COLLISION AVOIDANCE (SBCA) algorithm

combines motion planning with collision avoidance for multiple agents. The agents

travel to their individual goal configurations while avoiding collision. Each of the N

agents builds an RRT* that is used to determine the best path to its goal from all other

configurations. While executing the current best path, the agent checks for conflict

with the other agents in the environment. When a conflict is determined, the agent per-

forms a deconfliction maneuver. The deconfliction maneuver is based on the Distributed

9

Reactive Collision Avoidance (DRCA) from [36] which uses collision cones. The de-

confliction maneuver updates the agents’ velocity so that it is not in conflict with any

of the other agents. A new node is added to the agents’ RRT* that corresponds to the

new velocity. The agent then updates its current best path and continues to travel along

repeating the above process. The algorithm is first given for perfectly known position

and velocity of the other agents. The algorithm is then extended to handle uncertainty

in the position and velocity knowledge of the other agents.

We analyze the SBCA algorithm to prove that the agents will never collide with

one another or a static obstacle. A proof is given for both the certain and uncertain algo-

rithm. We prove that, under certainty assumptions, the agents will, with probability one,

reach their goal configurations. The simulations show that the agents reach their goal

configuraions on a collision free trajectory. The simulations also examine the amount of

uncertainty seen by the agents.

1.2.1 Spatial Load Balancing

In Chapter 5, we consider a limited range, non-convex spatial load balancing

problem for dynamically constrained agents. We approach this problem by employing

locational optimization techniques that are based on generalized Voronoi partitions of

the environment. Due to the obstacles and differential constraints, obtaining an exact

Voronoi region description can be difficult. Thus, we expand our objective by employing

an approximation of the agents’ configuration space by means of a probabilistic roadmap

star (PRM*).

More precisely, we start from a continuous-space version of the load balanc-

ing problem subject to a variable area constraint. With the objective of obtaining dis-

tributed algorithms, we introduce limited ranges and associated area and mixed-type

performance metric functions. To solve the problem, we introduce “sub-partitions” of

10

the space, V LR(P,ω), dependent on a set of weights, ω, and agent positions, P. Then,

we prove the existence of a set of weights that make the sub-partition satisfy the vari-

able area constraint and thus solve the problem. Based on this, we provide an update

law for agents that allows them to converge to a set of such weights. The agent positions

are updated using a gradient law aimed at decreasing the cost function with respect to

position. We then define a class of deployment algorithms for solving the problem, and

show convergence to a solution for the area-type performance metric case.

Building on the continuous-space version, the graph-based algorithm builds a

PRM* type graph to recover the cost of an agent subject to differential constraints mov-

ing between any two configurations in a known non-convex environment. In this way,

the coverage regions are approximated by assigning each agent a subset of nodes from

the PRM*. This subset of nodes is further employed to estimate the coverage regions’

corresponding areas. We provide a characterization of how the limited range algorithm

is distributed over a communication graph for radially-unbounded cost functions. We

provide an analysis of algorithm convergence as the number of nodes in the optimal prob-

abilistic roadmap tends to infinity. Finally, we present in simulation the convergence of

agents whose cost to move is given by the Euclidean norm squared.

Chapter 2

Background

This chapter introduces some basic background, terminology, and notation re-

lated to motion planning. For a more in-depth review of the topics discussed in this

chapter refer to [13, 43]. This dissertation focuses on navigation and coverage. Motion

planning algorithms can be offline, online, or have elements of both. Offline algorithms

completely determine the robots trajectory before execution is begun. Online algorithms

determine the robot’s path during execution.

A robot’s path is determined in its configuration space. A robot configuration is a

complete description of the robot. A configuration space is a collection of all robot con-

figurations. The obstacle space is a description of the obstacles and robot self collisions

in the configuration space. The free space is the configuration space minus the obstacle

space. The robot can occupy any configuration in the free space and be collision free.

Here, the d-dimensional configuration space is denoted as X ⊆ Rd . The obstacle space

is Xobs and the free space, Q = X \Xobs.

Sampling-based motion planners construct graphs to help in the determination

of the robot’s path. A graph is a collection of nodes and edges, G .(V,E). The nodes,

v ∈ G .V , are at specific configurations in a configuration space. Each edge, e ∈ G .E, is

11

12

an ordered pair of nodes e1,2 = (v1,v2), where v1 is the parent and v2 is the child. Each

edge in G has a cost associated with it, denoted cedge(e). If two nodes are connected by

an edge, (v1,v2) ∈ G .E, then they are considered neighbors.

Graphs can have special attributes, such as directed or undirected and sinks or

sources. A directed graph, contains edges that must be followed in a specific direction,

i.e. from node v1 to node v2. Let G be a directed graph and v∈G .V , then (v,v1)∈G .E is

said to be an outgoing edge (from v to v1) and (v2,v) ∈ G .E an incoming edge (entering

v from v2). A undirected graph means the edge can be followed in either direction, i.e.

from node v1 to node v2 or from node v2 to node v1. A sink is a graph node that only

has incoming edges. A source node is the opposite, where all the edges associated with

the source are outgoing edges. A Cycle is a closed loop set of edges that leads back to

itself, {(v1,v2),(v2,v3),(v3,v1)}.

A specific type of graph used heavily in this thesis is a tree, T . A n node tree has

n−1 edges and no cycles. The trees used here have a sink (or source) that is referred to

as the root. This root is the starting or ending configuration for the robot’s path.

Before we introduce the sampling-based algorithms this research is related to,

the general algorithm properties of optimality and completeness are defined. Optimal-

ity refers to the minimization of a cost function that is, possibly, subject to a set of

constraints. When an algorithm accurately returns a solution, or that a solution does

not exist, in a finite amount of time, the algorithm is said to be complete. Two weaker

notions of completeness are resolution complete and probabilistically complete. A res-

olution complete algorithm will return the correct solution in a finite amount of time,

but if a solution does not exist the algorithm will run forever. LaValle, [37], defines an

algorithm as probabilistically complete if ”with enough points, the probability that it

finds an existing solution converges to one.

The research presented in this dissertation builds on previously developed

13

sampling-based motion planners. In particular, we use the Asymptotically Optimal

Rapidly-exploring Random Tree Algorithm (RRT*) and Asymptotically Optimal Prob-

abilistic Roadmap (PRM*). A brief description on the build process of both motion

planners is given below in Sections 2.1 and 2.2, respectively. The final section in this

chapter, Section 2.3, gives an introduction to collision cones in relation to collision

avoidance.

2.1 The Asymptotically Optimal Rapidly-exploring Ran-

dom Tree Algorithm

The RRT* algorithm by Karaman and Frazzoli is theoretically analyzed in [29].

The kinodynamic RRT* is presented in [28].

The RRT*, outlined in Algorithm 1, builds a tree, T which is dense with prob-

ability one in the entire configuration space, X , as the number of samples, n, goes to

infinity. We use Cost as the notation for the cost function being minimized. In the

original work by [29], the edge cost considered is the cost-to-go; that is the cost of

e1,2 = (v1,v2) is the cost of moving from the parent v1 to the child v2. Most of our work

uses a cost-to-come, or the cost of moving from child to parent. This allows use to build

a tree rooted at the goal configuration instead of the initial configuration. Then, the cost

of a vertex, Cost(v), is the sum of the costs of the edges connecting the root to v. The

paths in T are asymptotically optimal, meaning that as n→∞ the optimal path from the

initial configuration, xI ∈ Xfree, to any other configuration in Xfree is recovered. More

precisely, the functions involved in the RRT* process are described as follows. With

some abuse of notation, we will define a robot configuration as xv instead of v.

After initializing T at xI , the RRT* begins by using the Sample function to output

xrand, a uniformly sampled random configuration from Xfree. The Nearest function finds

14

the nearest vertex, xnearest ∈ T , and extends T a distance ε from xnearest to get xnew.

Next, the function Near determines the set Xnear, which is the of vertices from T

that are near xnew. Vertices that are farther than δT = min(ε,γT (log(nv)/nv)
(1/d)), where

nv is the number of vertices in T , d is the dimension of the configuration space, and γT is

an independent parameter, are omitted from Xnear. The best parent for xnew, determined

in FindBestParent, is the vertex in Xnear that has a collision-free path with the lowest

Cost(xnew), as outlined in Algorithm 2. The paths that connect the vertices to each other

(determined using Steer), do so according to the system dynamics. Only collision-free

edges are added to T . The collision checker, CollisionCheck, returns true if the edge is

collision-free. If xnew is added to T , then Rewire attempts to add the other vertices in

Xnear as children of xnew based upon a lower cost and collision-free edge. The Rewire

function is outlined in Algorithm 3.

Algorithm 1 T = (V,E)← RRT∗(xI,ε)

T ← InitializeTree();
T ← InsertNode(/0,xI,T);
for i = 1 to i = N do

xrand← Sample(i);
xnew← Nearest(T ,xrand,ε);
Xnear← Near(T ,xnew);
xparent← FindBestParent(Xnear,xnew);
if xparent 6= NULL then

T ← InsertNode((xparent,xnew),xnew,T);
T ← Rewire(T ,Xnear,xnew);

end if

end for

return T

15

Algorithm 2 xparent← FindBestParent(Xnear,xnew)

xparent← /0;

cmin← ∞;

for xnear ∈ Xnear do

enear,new← Steer(xnear,xnew);
cnear← Cost(xnear)+ cedge(enear,new);
if cnear < cmin and CollisionFree(enear,new) then

xparent← xnear;

cmin← cnear;

end if

end for

return xparent;

Algorithm 3 T ← Rewire(T ,Xnear,xnew)

for (xnear) ∈ Xnear do

enear,new = Steer(xnew,xnear);
if Cost(xnew)+ cedge(enear,new)< Cost(xnear) then

if CollisionFree(enear,new) then

xoldparent← Parent(T ,xnear);
T .remove((xoldparent,xnear));
T .add((xnew,xnear));

end if

end if

end for

return T ;

16

2.2 The Asymptotically Optimal Probabilistic Roadmap

Algorithm

The second sampling-based motion planner the work in this dissertation uses

is the asymptotically optimal probabilistic roadmap (PRM*) [29]. This section briefly

describes how to construct a PRM*, denoted as G, which assumes the environment is

known. While there are similarities between the RRT* and PRM*, the greatest dif-

ference is the graph structure. The PRM* can have multiple incoming and multiple

outgoing edges. Note that the PRM* is limited to dynamics that can be solved with a

two point boundary value problem.

The graph G allows the agents to recover the approximately optimal path cost

between two configurations in the graph as the sum of the costs of the edges defining

the path. The edge cost is the cost of an agent to travel between the nodes that define

the edge, e.g. it can be given by length of the edge. The graph G is composed of a set

of nodes NG and a set of edges EG constructed as follows. A node q ∈ NG is a sam-

pled configuration from Q, and each edge, e ∈ EG, is an ordered pair, e = (q1,q2),

which corresponds to an optimal path in Q, satisfies all constraints, and has a cost

Je(q1,q2). The cost J(q1,q2) is assumed to be additive; given an optimal path from

q1 to q2, and a node q′ in that path, it holds that, J(q1,q2) = J(q1,q
′)+ J(q′,q2). We

denote the out neighbors of q in G as N out
G (q) = {q j ∈NG | (q,q j) ∈ EG}.

Each iteration of the construction of G begins by taking a uniformly sampled

random configuration from the free-space, qrand ∈ Q. Next, all graph vertices that are

within a ball centered at qrand with radius, δG = γG(log(m)/m)1/d, are determined. Here,

γG is a fixed parameter, m is the number of vertices currently in NG, and d is the dimen-

sion of Q. Let the near vertices of qrand be denoted as Qnear. If Qnear is empty, then the

graph vertex that is closest to qrand is added to Qnear. The least-cost paths, whose cost

17

is Je(qrand,qnear), from qrand to qnear ∈Qnear are determined; these are outgoing edges of

qrand. If the direction matters, as is the case with differential constraints, then the least-

cost path from qnear to qrand is also determined, these are the incoming edges of qrand.

Each collision-free path, e, is added to EG as an edge. The application of the PRM* to

this work requires that G be strongly connected; a necessary condition is that all q ∈NG

must have both an outgoing and incoming edge, so that if an agent reaches that node

it may also leave that node. A sufficient condition is to construct a graph which only

allows edge pairs, that is, (q1,q2) ∈ EG if and only if (q2,q1) ∈ EG.

The free-space Q is discretized by G while maintaining an asymptotically op-

timal roadmap of the environment. Each node q ∈ NG has an associated area, β(q),

which is calculated as follows. Let NX = NG ∪Nobs, where Nobs is a set of configu-

rations inside Xobs. Then, determine the Voronoi partition of X using NX . The β(q)

for each q ∈ NG is the area of its associated cell in this partition. A description of the

external boundary of X is needed, and we assume this is available. In this dissertation,

nodes refer to the vertices in the graph, q ∈NG, and not to the n agents that move in the

environment.

2.3 Deconfliction using Collision Cones

This section is based on the collision cones and collision avoidance algorithm

in [36]. Let N be the number of agents in the R2 environment. Collision cones are a way

of determining whether or not two agents are in conflict. Two agents i, j ∈ {1, . . . ,N}

are in conflict if, by staying on their current trajectory (heading and speed), they will

eventually collide. Deconfliction is the act of an agent i changing its velocity to avoid

future collision.

Let each agent i be approximated as a circle with radius ρi ∈ R>0 and let dsep,0

18

Figure 2.1: Depiction of a collision cone

be the minimum allowable separation distance between any two agents. Then, agents

i and j can be approximated as points that are to be separated by a minimum distance,

dsep,ij = ρi + ρ j + dsep,0. Agents i and j have position vectors, ri and r j and velocity

vectors vi and v j, respectively. The relative position vector between agent i and j is

defined as ri j = r j− ri and the relative velocity vector is defined as vi j = vi−v j. The

speed of agent i is denoted as vi = ‖vi‖.

The collision cone half angle is defined as αi j = arcsin
(dsep,ij

‖ri j‖
)
. The angle be-

tween the relative position and relative velocity vectors is βi j = arccos
(ri j·vi j

‖ri j‖‖vi j‖
)
. The

two edges of the collision cone between agents i and j are defined using the unit vector

ĉi j = R (±αi j)
ri j

‖ri j‖
. Note that the half angle αi j = α ji and that each cone contains the

circle centered at agent j’s position with radius dsep,ij. A depiction of a collision cone is

in Fig. 2.1. The following proposition characterizes conflicts between pair of agents in

terms of their collision cones.

Proposition 1 ([36]). Let βi j = ∠vi j−∠ri j, αi j = arcsin
(dsep,ij

‖ri j‖
)

and ri j be the relative

position vector at the time conflict is being checked. A necessary and sufficient condi-

tion for there to exists no conflict is |βi j| ≥ αi j.

Agent i determines the collision cones between itself and all other agents j 6= i

in the environment. When in conflict with at least one other agent, agent i applies a

19

deconfliction maneuver. This maneuver moves agent i out of conflict with all other

agents while minimizing its change in velocity,

v′i = argmin
v∈Vi

‖v−vi‖,

where v′i is the new velocity vector picked from a set Vi of feasible velocities Vi deter-

mined by the maneuvers described below.

If the agents cannot speed up or slow down then a constant speed maneuver is

executed. The new velocity vector is chosen from the set Vi,

Vi = {v j−ai jĉ}, ∀ j 6= i,

where

ai j = ĉ⊤v j±
√

(ĉ⊤v j)2−v⊤j v j +v⊤i vi.

Note that ai j has two values and only its real positive values are valid. If Vi is non-empty,

then,

v′i = argmin
v∈Vi

‖v−vi‖,

such that v′i is not put agent i in conflict with any other agents. If Vi is an empty set

or there are no velocities in Vi that are conflict free, then v′i = 0. Theorem 2 from [36]

gives conditions on the existence of an admissible constant speed velocity, i.e. Vi will

be non-empty.

When agents have the ability to change their speed, a variable speed maneuver

is executed. Let vi,max be the maximum allowable speed of all agents. The new velocity

20

for agent i will result from one of three maneuvers:

1. nearest point on each edge of the cones,

v′i = ĉĉ⊤vi j +v j,

2. intersection between vi,max,

v′i = v j− ĉĉ⊤v j± ĉ
√
(ĉ⊤v j)2−v⊤j v j + v2

i,max,

3. intersection between two cones.

Each maneuver described above produces a set of possible velocities to be checked for

feasibility and put into the set Vi. Agent i checks the set of potential velocities from each

maneuver type until it finds the v′i that minimizes its change in velocity, has a speed less

than the maximum allowable ‖v′i‖ < vi,max, and is conflict free. Again if Vi is empty or

does not contain a feasible velocity, v′i = 0. Theorem 3 from [36] gives conditions on

the existence of an admissible variable speed velocity, i.e. Vi will be non-empty.

2.4 Notation

Finally, some notation that is used throughout this dissertation is define. The

set of natural numbers, {1,2,3, ...}, is denoted as N. A two dimensional ball, cen-

tered at x with radius r is B(x,r) Let 1n = (1, . . . ,1)⊤ ∈ Rn and 0n = (0, . . . ,0)⊤ ∈ Rn.

The two dimensional rotation matrix is defined as R ⊂ R2×2. Finally, the 2-norm is

‖
[

x y

]⊤
‖=

√
x2 + y2.

Chapter 3

Improvements to Sampling-Based

Motion Planning Algorithms

In this chapter, two sampling-based algorithms are developed that modify the

RRT* to improve the performance by lowering the path cost more quickly. The de-

tails of the Focused-Refinement (FR) algorithm is in Section 3.1 and the Grandparent-

Connection (GP) is in Section 3.2. Section 3.3 analyzes the Grandparent-Connection

algorithm. The GP algorithm is probabilistically complete and in convex configuration

space produces the optimal path. The simulations confirming the results for the FR and

GP algorithms are presented below. The simulations also compare our two algorithms

to similar algorithms.

3.1 The Focused-Refinement Algorithm

As shown in [29], the RRT* initially constructs a tree that is the same as the

RRT and then, as more nodes are added, the RRT* begins to look at many neighboring

vertices to recover an asymptotically optimal path. The RRT* finds and refines all paths

21

22

in the configuration space. Refer to Section 2.1 for the detail of the RRT* algorithm. The

refinement extension, Focused-Refinement (FR), focuses on refining only those paths

that have already reached the goal region in hopes of reducing the amount of time needed

to find a sufficiently optimal path.

The FR begins the construction of a tree using the RRT* algorithm until there

exists at least one path that reaches the goal region. This set of paths is denoted as Π,

with p vertices defining a set VΠ. The FR has two options: exploring the configuration

space or exploiting Π to lower its cost. If exploring, the algorithm proceeds as the

RRT*, but if exploiting, the set of vertices in Π, VΠ, is determined. The sample xnew

is determined by perturbing a vertex randomly drawn from the set VΠ. The FR then

proceeds as the RRT*.

The pseudo code for the FR is presented in Algorithm 4, and uses three parame-

ters. The first is Cexploit ∈ N, the number of consecutive iterations the FR will exploit Π.

The number of consecutive iterations to explore Xfree is the second parameter needed,

Cexplore ∈N. The third parameter, Creset ∈N, tells the algorithm when to update VΠ. The

sampling region defined by VΠ does not change dramatically every iteration, therefore,

to save computation time, the set VΠ is only updated every Creset +Cexplore iterations. If

Cexploit = 0 and Cexplore = ∞, the FR becomes the RRT*. In order to take advantage of

the exploitation property of the FR, Cexploit should be greater than Cexplore. In environ-

ments with multiple routes to the goal, Cexplore can be increased in hopes of finding a

better route than what was initially found.

Exploitation only occurs if GoalReach returns true (there exists at least one path

to XG) and exploitation has occurred less than Cexploit consecutive times. Once Π has

been exploited Cexploit iterations, the RRT* is allowed to explore the space for Cexplore

iterations. The following are the details on choosing xnew during the exploitation stage

of the FR.

23

The new sample, xnew, is determined as illustrated in Fig. 3.1 and in Algo-

rithm 5. Given a d-dimensional configuration space, X ⊂Rd , consider k ∈ {1,2, · · · ,d}.

First, the minimum and maximum k-component from VΠ ∈ Rd×p, wmin = minV k
Π and

wmax = maxV k
Π, are found. Here, V k

Π is the set of all k-components of the vertices in VΠ.

Next, the k-component of xnew (xk
new) is taken as a uniformly random sample between

wmin− ε and wmax + ε, ε > 0. For every j 6= k, the j-component of the vertex whose

k-component is nearest to xk
new is determined, x

j
nearest, xnearest = argminx∈VΠ

‖xk
new−xk‖.

The j-component of xnew is uniformly sampled between x
j
nearest− ε and x

j
nearest + ε. The

FR alternates which k-component is used to determine xnew, this provides a uniform

distribution of samples around Π. As ε is increased, the entire configuration space is

uniformly sampled randomly, thus recovering the original RRT*.

Note that VΠ can consist of multiple distinct paths to the goal. Determining

distinct paths is non-trivial and potentially time-consuming. In general, and in the sim-

ulation section, VΠ is taken to be only the current best path. Efficiently determining

distinct paths is a subject of future work. Because the FR restricts exploration of the

entire free configuration space, it is not ideal for use in conjunction with the GT.

3.2 The Grandparent-Connection Algorithm

The Grandparent-Connection (GP) algorithm was inspired by reducing the num-

ber of nodes in, and cost of, a given path. Before adding a node to the tree, the modi-

fied algorithm attempts to connect directly to its grandparent node, as outlined in Algo-

rithm 6. A successful connection to the grandparent occurs when a lower cost, collision-

free path is found. It is also predicted that the GP algorithm will produce smoother

paths with fewer nodes. Because the GP algorithm is applied during construction of the

tree as every node is added to the tree, the grandparent connection smooths out every

24

Algorithm 4 T = (V,E)←
FR(xi,ε,d,Cexploit,Cexplore,Creset)

T ← InitializeTree();
T ← InsertNode(/0,xi,T);
creset = 1; cexploit = 1; cexplore = 1; k = 1;

for i = 1 to i = N do

if GoalReach and cexploit <Cexploit then

if creset = 1; then

VΠ = PathSet(T);
end if

(creset,cexploit)← UpdateParameters(creset,cexploit,Creset);
xnew = NewPointPathSet(VΠ,ε,k,d);
k← UpdateDimension(d);

else

(cexplore,cexploit)← UpdateParameters(cexplore,cexploit,Cexplore);
xrand← Sample(i);
xnew← Nearest(T ,xrand,ε);

end if

Xnear← Near(T ,xnew);
xparent← FindBestParent(Xnear,xnew);
if xparent 6= NULL then

T ← InsertNode((xparent,xnew),xnew,T);
T ← Rewire(T ,Xnear,xnew);

end if

end for

return T

Algorithm 5 xnew← NewPointPathSet(V,ε,k,d)

wmin = min(V k);
wmax = max(V k);
xk

new = Rand(wmin− ε,wmax + ε);
xnearest = NearestComponent(V,xk

new);
for j = 1 to j = d; do

if j 6= k then

vmin = x
j
nearest− ε;

vmax = x
j
nearest + ε;

x
j
new = Rand(vmin,vmax);

end if

end for

25

ε

ε ε

x
k

x
j
new

x
k

new

xnearest

wmin wmax

x
j

Figure 3.1: An illustrative example on choosing xnew when refining a single path. The

red rectangle is an obstacle in the environment. The blue dots are the the set of vertices,

VΠ, used to determine the region from which xnew is sampled. The k-component of xnew

is a uniform random sample between the maximum and minimum (plus and minus

ε, respectively) k-component values from VΠ. Next, with respect to xk
new, determine

the nearest k-component from VΠ and label its corresponding j-component as x
j
nearest.

Finally, the x
j
new is a random value from between x

j
nearest − ε and x

j
nearest + ε, ε > 0.

Sample xnew is represented as the green dot.

path in the tree. The GP gains the advantage over smoothing a single path when paired

with the Goal Tree (GT) algorithm, our novel replanning algorithm introduced in Chap-

ter 4, or similar replanning algorithms. The grandparent connection can also be used in

combination with the FR algorithm of Section 3.1.

3.3 Analysis of Grandparent-Connection Algorithm

The same probabilistic completeness and asymptotic optimality results for the

RRT* algorithm in [29], also hold true for the Grandparent-Connection algorithm. The-

orem 1 is a restatement of Theorems 23 and 38 from [29] but for the GP algorithm.

Proposition 2. If the RRT* and GP algorithms solve the same path planning problem,

using the same parameters, then the vertex sets of both graphs are equal, V RRT*
n =V GP

n ,

∀ n ∈ N.

Proof. Proof by induction. When n = 1, no Grandparent-Connection is possible, there-

26

Algorithm 6 xparent← FindBestParent(Xnear,xnew)

xparent← /0;

cmin← ∞;

for xnear ∈ Xnear do

enear,new← Steer(xnear,xnew);
cnear← Cost(xnear)+ cedge(enear,new);
if cnear < cmin and CollisionFree(enear,new) then

xparent← xnear;

cmin← cnear;

end if

if xparent 6= /0 then

xgrandparent← T .parent(xparent);
egrandparent,new← Steer(xgrandparent,xnew);
cgrandparent← Cost(xgrandparent)+ cedge(egrandparent,new);
if cgrandparent < cmin and CollisionFree(egrandparent,new) then

xparent← xgrandparent;

cmin← cgrandparent;

end if

end if

end for

return xparent;

27

fore, both the vertex and edge sets are identical. When n = 2, even though in the last

step of the iteration the added vertex may connect to its grandparent the vertex is still

added to the tree, making both vertex sets identical but the edges set different. When

n = 3, because the vertex sets are the same, the vertex to be added, xnew, is the same for

both algorithms, so is the set Xnear. Then, if an edge exists between xnew and an x ∈ Xnear

in one algorithm it also exists in the other. Therefore, even if the parents are different

xnew will be added to both trees, maintaining the identical vertex sets.

Theorem 1. The GP algorithm is probabilistically complete. Furthermore, for any ro-

bustly feasible path planning problem (Xfree,xi,Xgoal), there exist constants a > 0 and

n0 ∈ N, both dependent only on Xfree and Xgoal, such that,

P({V GP
n ∩Xgoal 6= /0})> 1− e−an ∀ n > n0.

Also, if γ > (2(1+ 1
d
)

1
d (µ(Xfree)

ζd
)

1
d , then the GP algorithm is asymptotically optimal.

Proof. First, from Prop. 2, we have V RRT*
n =V GP

n . Then, by construction, the GP builds

a connected graph. Therefore, the probabilistic completeness of the GP follows from

the probabilistic completeness of the RRT*. Finally, the asymptotic optimality result

comes from costRRT*
n (xi,x)≥ costGP

n (xi,x) for all x ∈ (V RRT*
n =V GP

n).

Lemma 1. When Xfree is convex, the GP recovers the optimal path from xi to Xgoal.

Furthermore, define the visibility set of xi as the subset of Xfree such that ∀ x ∈ Vis(xi)

there exists a collision-free geodesic from xi to x. Then, the GP algorithm will recover

the optimal paths in Vis(xi).

Proof. By construction, with a convex Xfree, every vertex in the graph has xi as its parent.

Then, extending to other metric spaces, any node in the visibility set has xi as its parent.

28

3.4 Simulations

There are two different robot types simulated in this section: Euclidean metric

and Dubins’ vehicle.

3.4.1 Euclidean Metric

This set of simulation results is for a point robot with no dynamics and Euclidean

Metric edge cost. There are three environments, 25, 50, or 75 obstacles, which were

chosen to compare how the different algorithms do with various obstacle densities. The

results are an average of 25 simulations.

First, the Grandparent-Connection and Focused-Refinement are compared to the

RRT*, RRT*-Smart, and RRT with path smoothing, Table 3.1. The algorithms were

run for 100 seconds in the 25 obstacle environment, 120 seconds in the 50 obstacle

environment, and 450 seconds in the 75 obstacle environment. The mean initial cost

of each algorithm is compared to the RRT*’s mean initial cost to obtain the percent

difference. A negative percent difference indicates that the cost is less than the RRT*’s

cost. As expected the GP algorithms find the lowest cost initial path, without incurring

much of a time increase. While the GP algorithms’ initial path cost is about the same

as the path found by an RRT with a post-processing path smoothing technique, the cost

difference in the final path is much larger. The GP and FR algorithms have lower final

path costs than the RRT*.

29

T
a
b

le
3
.1

:
T

h
e

m
ea

n
an

d
st

an
d
ar

d
d
ev

ia
ti

o
n

re
su

lt
s

fo
r

th
e

E
u
cl

id
ea

n
m

et
ri

c.
T

h
is

is
a

su
m

m
ar

iz
at

io
n

th
at

co
m

p
ar

es
th

e
G

ra
n
d
p
ar

en
t-

C
o
n
n
ec

ti
o
n

an
d

F
o
cu

se
d
-R

efi
n
em

en
t

al
-

g
o
ri

th
m

s
to

th
e

R
R

T
*
,
R

R
T

*
-S

m
ar

t,
an

d
R

R
T

w
it

h
p
at

h
sm

o
o
th

in
g
.

R
R

T
*

G
P

F
R

F
R

-G
P

R
R

T
*

-S
m

ar
t

S
m

o
o

th
in

g

In
it

ia
l

C
o

st

2
5

1
7

.6
5

(0
.8

3
)

1
4

.7
8

(0
.5

5
)

1
7

.6
5

(0
.8

3
)

1
4

.7
8

(0
.5

5
)

1
7

.6
5

(0
.8

3
)

1
5

.1
3

(0
.6

5
)

5
0

1
8

.0
8

(1
.0

1
)

1
5

.9
9

(1
.0

2
)

1
8

.0
8

(1
.0

1
)

1
5

.9
9

(1
.0

2
)

1
8

.0
8

(1
.0

1
)

1
6

.3
9

(0
.9

8
)

7
5

1
8

.8
4

(1
.2

3
)

1
7

.9
0

(1
.2

0
)

1
8

.8
4

(1
.2

3
)

1
7

.9
0

(1
.2

0
)

1
8

.8
4

(1
.2

3
)

1
8

.7
4

(1
.2

3
)

%
D

if
fe

re
n

ce

2
5

0
-1

6
.3

0
-1

6
.3

0
0

-1
4

.2
9

5
0

0
-1

1
.5

3
0

-1
1

.5
3

0
-9

.3
2

7
5

0
-4

.9
8

0
-4

.9
8

0
-0

.5
3

In
it

ia
l

T
im

e

2
5

1
3

.7
7

(7
.3

9
)

1
2

.9
8

(6
.6

2
)

1
3

.7
7

(7
.3

9
)

1
6

.2
0

(9
.3

1
)

9
.6

9
(6

.0
7

)
1

1
.9

2
(5

.2
3

)

5
0

3
7

.7
2

(1
6

.8
2

)
3

2
.9

2
(1

5
.3

8
)

3
5

.6
1

(1
6

.5
3

)
3

2
.8

7
(1

5
.3

0
)

2
2

.1
0

(1
1

.3
2

)
3

4
.0

0
(1

3
.6

4
)

7
5

1
3

9
.3

(4
7

.4
)

1
1

5
.7

(5
5

.4
)

1
4

0
.2

(4
7

.4
)

1
1

9
.4

(5
7

.1
)

1
3

7
.2

(4
6

.7
)

8
1

.1
9

(3
0

.7
2

)

F
in

al
C

o
st

2
5

1
5

.3
3

(0
.3

2
)

1
4

.6
0

(0
.3

4
)

1
4

.5
9

(0
.3

7
)

1
4

.5
4

(0
.2

7
)

1
5

.0
1

(0
.5

9
)

1
5

.1
3

(0
.6

5
)

5
0

1
5

.9
3

(0
.5

0
)

1
5

.4
5

(0
.7

8
)

1
5

.1
5

(0
.6

4
)

1
4

.9
8

(0
.6

4
)

1
5

.8
0

(0
.7

2
)

1
6

.3
9

(0
.9

8
)

7
5

1
6

.8
5

(0
.9

0
)

1
6

.6
0

(1
.0

5
)

1
6

.6
7

(0
.9

8
)

1
6

.4
6

(0
.9

4
)

1
6

.4
6

(0
.9

4
)

1
8

.7
4

(1
.2

3
)

%
D

if
fe

re
n

ce

2
5

0
-4

.7
9

-4
.8

9
-5

.2
1

-2
.1

5
-1

.3
3

5
0

0
-2

.9
8

-4
.9

1
-5

.9
5

-0
.7

8
2

.9
2

7
5

0
-1

.5
2

-1
.1

2
-2

.3
1

-2
.3

1
1

1
.2

30

3.4.2 Dubins’ Vehicle

The simulations results in this section are for a Dubins’ vehicle in the 25 and 50

obstacle environment. Each algorithm is averaged over 10 runs in each environments.

Typical trees found by the RRT* and GT algorithm’s are in Figs. 3.2a- 3.2f. The tree

produced by the RRT* is the only one with many excessive loops in its final path.

Table 3.2 compares the Grandparent-Connection and Focused-Refinement algo-

rithms to the RRT*, RRT*-smart, and RRT with path smoothing. The loops and curves

of the path found by the RRT* increase the path cost significantly. This translates to the

GP algorithms finding initial paths that have costs 50% less than the initial cost of the

RRT*. The RRT with path smoothing and GP algorithms have initial path costs that are

about the same. The excess loops and curves are not present in the GP algorithms final

paths, and are reduced in the FR and RRT*-smart algorithms’ final path.

31

(a) RRT* (b) Grandparent-Connection (c) GP and FR

(d) Focuses Refinement (e) RRT*-Smart

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

(f) RRT + Path Smoothing

Figure 3.2: Typical Dubins’ vehicle trees in the 25 obstacle environment found by the

RRT*, Grandparent-Connection, Grandparent Connection with Focused-Refinement,

Focused-Refinement, RRT*-Smart, and RRT with path smoothing algorithms.

32

T
a
b

le
3
.2

:
M

ea
n

w
it

h
st

an
d
ar

d
d
ev

ia
ti

o
n

re
su

lt
s

su
m

m
ar

iz
in

g
th

e
co

m
p
ar

is
o
n

o
f

th
e

G
ra

n
d
p
ar

en
t-

C
o
n
n
ec

ti
o

n
an

d
F

o
cu

se
d
-R

efi
n
em

en
t

al
g
o
ri

th
m

s
to

th
e

R
R

T
*
,

R
R

T
*
-

S
m

ar
t,

an
d

R
R

T
w

it
h

p
at

h
sm

o
o
th

in
g

fo
r

D
u
b
in

s’
V

eh
ic

le
.

R
R

T
*

G
P

F
R

F
R

-G
P

R
R

T
*

-S
m

ar
t

S
m

o
o

th
in

g

In
it

ia
l

C
o

st
2

5
3

4
2

.1
(3

9
.1

)
1

3
2

.6
(7

.8
)

3
4

2
.1

(3
9

.1
)

1
3

2
.6

(7
.8

)
3

4
2

.1
(3

9
.1

)
1

2
6

.9
(3

.0
)

5
0

3
6

5
.6

(4
5

.4
)

1
4

0
.9

(5
1

.5
)

3
6

5
.6

(4
5

.4
)

1
5

8
.3

(1
9

.2
)

3
6

5
.6

(4
5

.4
)

1
3

1
.6

(7
.4

)

%
D

if
fe

re
n

ce
2

5
0

-6
1

.2
3

0
-6

1
.2

7
0

-6
2

.9

5
0

0
-6

1
.4

5
0

-5
6

.7
1

0
-6

4
.0

0

In
it

ia
l

T
im

e
2

5
9

.4
6

(9
.0

2
)

4
7

.6
4

(4
4

.1
7

)
9

.0
5

(8
.7

1
)

3
4

.2
7

(1
7

.5
1

)
1

4
.6

3
(1

5
.9

3
)

1
8

.7
3

(1
1

.7
3

)

5
0

3
4

.7
0

(1
9

.7
9

)
1

3
0

.5
(1

0
2

.4
)

4
4

.6
3

(2
6

.3
7

)
1

1
6

.2
(4

4
.1

)
3

8
.8

2
(2

1
.2

1
)

1
8

7
.6

(2
2

6
.8

)

F
in

al
C

o
st

2
5

3
0

0
.1

(6
1

.1
)

1
3

1
.2

(7
.2

)
2

6
0

.0
(5

2
.0

)
1

2
8

.7
(4

.0
)

1
3

4
.4

(6
.0

)
1

2
6

.9
(3

.0
)

5
0

3
4

9
.4

(3
2

.2
)

1
5

2
.3

(1
2

.0
)

2
8

0
.9

(2
8

.3
)

1
4

9
.9

(1
6

.2
)

1
5

1
.9

(1
1

.8
)

1
3

1
.6

(7
.4

)

%
D

if
fe

re
n

ce
2

5
0

-5
6

.2
9

-1
3

.3
6

-5
7

.1
2

-5
5

.7
2

-5
7

.7
0

5
0

0
-5

6
.4

0
-1

9
.5

9
-5

7
.0

9
-5

6
.5

3
-6

2
.3

3

33

3.5 Summary

The Focused-Refinement, and Grandparent-Connection are the two algorithms

presented in this chapter that improve the performance of the asymptotically optimal

Rapidly-exploring Random Tree (RRT*). The GP algorithm is proven to maintain the

asymptotic optimally of the RRT*. The simulations for the Euclidean metric show that

our algorithms improve performance most in the initial cost. The Dubins’ vehicle sim-

ulations show the GP and FR algorithms can lower the initial and final path cost signifi-

cantly.

Publications associated with this chapter

Chapter 3, in part, contains material as it appears in ASME International De-

sign Engineering Technical Conferences and Computers and Information in Engineering

Conference 2015. “Focused Refinement in the RRT*: Trading Optimality for Improved

Performance”, Boardman, Beth; Harden, Troy; Martı́nez, Sonia. The dissertation author

was the primary investigator and author of this paper.

Chapter 3, in part, contains material submitted to ASME Journal of Dynamic

Systems, Measurement and Control 2017. “Improved Performance of Asymptotically

Optimal Rapidly-Exploring Random Trees,” Boardman, Beth; Harden, Troy; Martı́nez,

Sonia. The dissertation author was the primary investigator and author of this paper.

Chapter 4

A Sampling-Based Algorithm for

Replanning in Environments with

Unknown Static Obstacles

This chapter extends the RRT* to allow for path planning when encountering

unexpected static obstacles. Section 4.1 details the Goal Tree algorithm and then the

algorithm is proven to produce an asymptotically optimal tree in Section 4.2. Fianlly,

the Goal Tree and the Goal Tree with Grandparent-Connection algorithms are compared

to the RRT* in Section 4.3.

4.1 The Goal Tree Algorithm

In this section, the Goal Tree (GT) algorithm is described in detail. The GT is

a method for replanning when unexpected or moving obstacles obstruct the execution

of the path determined by the RRT*. The RRT* produces paths that are asymptotically

optimal from the initial configuration to any other point in the configuration space. By

34

35

a slight modification to the RRT* algorithm, one can produce a tree, TG, rooted at the

goal configuration, xG, such that the asymptotically optimal path from any point in Xfree

to xG can be recovered. To do this, the cost associated with each edge e1,2 = (v1,v2) in

the RRT* tree becomes the cost-to-come; i.e. the cost of traveling from the child v2 to

the parent v1.

Once the new obstacle, O, has been discovered, the GT trims TG and then it is

extended, use the RRT*, in some subset R ⊆ X \O. To trim TG, the edges are checked

for conflict with O and removed using PropagateCost. Instead of checking every edge

in TG we can define a subregion that contains all possible vertices whose trajectories are

in conflict with O. We want to define the region as all points within some Euclidean

distance from a point in O. Denote the center point of O as xc, and the maximum

Euclidean distance from xc to the boundary of O as rmax. A graph search is done over TG

to determine the maximum edge cost, rcost = maxe∈T .E{cedge(e)}. Since cedge(e1,2) ≥

‖x1− x2‖, the set of vertices whose trajectories are in conflict with O is contained in

Vconflict = {v ∈ TG.V | ‖xc,xv‖ ≤ rmax + rcost}.

All trajectories of the vertices in Vconflict are checked for conflict with O. All vertices

found in conflict with O, and their descendants, are trimmed from TG.

4.2 Optimality of Goal Tree algorithm

Reducing the sampling region for rebuilding TG can lead to faster convergence

but can also prevent global optimality. We first prove that there exist a generic restricted

region of the space which can be used to extend TG so that convergence to a globally

optimal path is guaranteed. Then we aim to characterize these regions for common

cases.

36

Theorem 2. Let X = [0,1]d be a d-dimensional C-space, d ∈ N and d ≥ 2. Let Xobs be

the C-obstacles space. Assume O is newly found obstacle information, i.e. O 6⊂ Xobs,

and there exists a ball, B(xG,r) ⊂ (Xobs ∪O)c, r > 0. Suppose the feasible dynamic

paths of vehicles in a free environment are at least C 3. Then, there exists a generic

R (X such that if TG is originally built in X using the RRT* with information Xobs, then

trimmed using O, and finally extended in R using the RRT* with information Xobs ∪O,

then an optimal path, π : xI→ xG, can be asymptotically recovered by the GT algorithm

as n→ ∞.

Proof. The ball B(xG,r) is an obstacle free environment where the restricted optimal

solution is a sufficiently smooth curve. A generic property of smooth curves is that they

have a finite number of inflection points and vertices; see [9] focusing on planar curves,

but from which results are valid for curves in any dimensions. Thus, there exists a final

piece of the optimal path, say σ, to xG which is convex or concave and does not contain

any vertex or inflection point in it. Using σ, there exists a smaller radius r′ < r such that

B(xG,r
′)∩σ reduces to a single intersection point. The optimal path π from xI′ to xG

must go through the ∂B(xG,r
′) at this point. Then, taking R = X \B(xG,r

′) will yield π

asymptotically.

In d dimensional environments, a rebuilding region guaranteed to recovery an

asymptotically optimal trajectory can be found as follows. Consider the goal and new

initial configurations, xGand xI′ , and a new obstacle O such that xI′,xG /∈ O. For simplic-

ity, assume that O ∩Xobs =∅.

First, a region in the environment is defined and then, using this region for sam-

pling, the GT is proven to recover a geodesic from xI′ to xG. Due to the obstacles in the

environment, any configuration in Xfree could have more than one geodesic to xG. Note

that in the following, the distinction is made between position and configuration. Posi-

tion is the (p1, p2, ...) position in the environment, while configuration can also include

37

orientations or velocities.

Definition 1. The shadow of xG on O, SO , is the envelope or hull, as defined by position

rather than configuration, formed by the geodesics from all configurations in Xfree going

to xG that are in conflict with O.

Note that xI′ ∈ SO must be true, otherwise, there is no need for replanning. Also

note that SO is a set of positions and not configurations. In this way each position could

have an infinite number of possible configurations associated with it.

Definition 2. Let S⊂ X be a set such that xI′ ∈ S and whose boundary is denoted as ∂S.

Then, an outgoing configuration on ∂S is defined as a configuration whose position is in

∂S and whose orientation or velocity will force the vehicle to leave S.

Lemma 2. All outgoing configurations on ∂SO have geodesics to xG that are not in

conflict with O.

Proof. Let x be an outgoing configuration on ∂SO . Consider a geodesic from x to xG

which is in conflict with O, then by the definition of an outgoing configuration on ∂SO ,

any motion from x forces the vehicle position strictly outside ∂SO . However, this is

in contradiction with the definition of SO , which contains all positions obtained from

geodesics to xG that are in conflict with O. Therefore, there must only exist geodesics

from x to xG that are not in conflict with O.

The main result, Theorem 3, states that using the shadow of xG on O as the new

sampling region will allow the Goal Tree algorithm to asymptotically recover an optimal

path from xI′ to xG. Due to the tree structure used by the GT, only one of the geodesics

from xI′ to xG will be recovered.

Theorem 3. Let SO be as in Definition 1. If the Goal Tree algorithm uses SO as the new

sampling region to rebuild TG, then it will converge to a globally optimal path as n→∞.

38

Proof. Let π be an optimal path from xI′ to xG. If π lies entirely in SO , then, it will be

recovered by sampling in SO . Otherwise, π must cross ∂SO at an outgoing configuration.

Let x1 be the outgoing configuration in π that first crosses ∂SO . Then the subpath of π,

from xI′ to x1, lies entirely in SO and can be recovered by sampling in SO . By Lemma 2,

a geodesic from x1 to xG is in TG. Thus, the GT algorithm can recover a geodesic from

xI′ to xG by sampling in SO .

By exploiting what is known about geodesics in the Euclidean metric, we can

provide an alternative characterization of a feasible sampling region for use in the GT

by a robot with no differential constraints.

Theorem 4. Let X be a d-dimensional C-space such that d ∈N and d ≥ 2. Let the initial

obstacle space be Xobs and let O 6⊂ Xobs be new obstacle information. For simplicity,

assume that O ∩Xobs =∅. If

1. X is the Euclidean metric space,

2. O ⊂ R⊂ X,

3. R is convex, and

4. xI′ ∈ R

then the GT algorithm will converge to a globally optimal path, π, as n→ ∞ by em-

ploying TG with the previous Xobs and trimming TG using the O information and then

extending TG in R.

Proof. In Euclidean space, an optimal path, π, is composed of straight lines and seg-

ments that follow the boundary of the obstacles. In particular, an optimal path from xI′

to any point on ∂R, with respect to the new obstacle information, is a concatenation of

path segments included among the following:

39

1. collision-free straight line paths from xI′ to a point on the boundary of O; i.e., a

visible point on ∂O from xI′ .

2. any path along the boundary of O and the boundary of the convex hull of O, and

3. collision-free straight line paths from ∂O to the visible boundary of R.

The convexity of R implies that all straight lines that begin and end in R are entirely

contained in R. Any path that follows ∂O is entirely in R because O ⊂ R. A globally

optimal path from xI′ to xG will have to cross ∂R if xG /∈ R. Let the boundary point at

this crossing be xB. By the above discussion, the subpath from xI′ to xB can be recovered

asymptotically by means of sampling in R with the new obstacle information. Consider

the optimal subpath from xB to xG with respect to the old obstacle information Xobs. By

the same considerations as above, this optimal subpath is made of a concatenation of

segments from the list above but with respect to Xobs. Thus, it can be asymptotically

recovered by means of TG with information in Xobs.

Note that, if O ∩Xobs 6= ∅, then R would have to be a convex region containing

the connected component of O∪Xobs that contains O. This connected set would then be

used in the above proof in place of O.

The region characterization from Definition 1 can be used to approximately de-

termine where to sample from the geodesics obtained from the initial tree for planning

problems. However, and as for the Euclidean case, alternative regions can be used if the

particular dynamics are amenable to direct analysis. The following leads to a character-

ization of a new sampling region, R, for use in rebuilding TG during replanning with the

Dubins’ vehicle. The Dubins’ vehicle has three states, x- and y-position and orientation

40

θ. The dynamics for the Dubins’ vehicle are

ẋ(t) = vcos(θ)

ẏ(t) = vsin(θ)

θ̇(t) = u, |u| ≤ v

ρ
,

where v is the speed of the vehicle and ρ is the minimum turning radius. It is assume that

both v and ρ are constant. The optimal trajectory between two configurations for these

dynamics are discussed in [17]. The locally optimal trajectory defined by the above

dynamics is one of six paths, RSL, LSR, RSR, LSL, RLR, and LRL, where L means

left, R means right, and S means straight. Geodesics with respect to Euclidean length

are characterized as concatenations of circular arcs and straight lines. The minimum

turning radius for the Dubins’ vehicle is denoted as ρ.

The following lemmas are useful in obtaining the main Dubins’ vehicle result of

this subsection.

Lemma 3. Given a circular arc that begins at x1 and ends at x2, that has an angle

strictly less than π radians, let xc be the point where the tangent lines of the arc at x1

and x2 cross. Then, the outer approximation is defined as the union of the line from x1

to xc with the line from xc to x2. Then, the length of the outer approximation of a given

circular arc is greater than or equal to the arc length.

Lemma 4. Given a circular arc that begins at x1 and ends at x2, define the inner approx-

imation as the straight line connecting x1 to x2. Then, the length of the inner approxi-

mation of a given circular arc is less than or equal to the arc length.

The proof of Lemma 3 and 4 follows directly from basic geometric considera-

tions employing the triangular inequality and the convexity of circular arcs. It can be

41

seen that the result can be extended to any convex curve and any inner approximation

defined using points on the curve and joining them through lines in a similar way.

Now, using O, a region that contains at least one valid path around O is defined.

Definition 3. Define the region RO as the smallest convex set that contains the union of

O with circles of radius 2ρ centered at each corner of O.

Now, RO is extended to contain feasible paths from xI′ to the previous region RO .

Definition 4. Define the region R, as the smallest convex region that contains RO and

B(xI′,2ρ).

The first Dubins’ vehicle result of this subsection states the existence of valid

trajectories in R.

Lemma 5. The region R, as in Definition 4, contains at least one feasible Dubins’ vehi-

cle trajectory from xI′ to any outgoing configuration on ∂R.

Proof. First, it is shown that the Dubins’ vehicle dynamics can be satisfied while trav-

eling from xI′ to any point on ∂B(xI′,2ρ). To do this, note that the Dubins’ vehicle

can leave xI′ and travel on a curve of radius ρ for π radians that places the vehicle on

the boundary of R. This will put the Dubins’ vehicle 2ρ way from xI′ and the vehicle

can now travel along ∂B(xI′,2ρ). From ∂B(xI′,2ρ) the Dubins’ vehicle can travel to RO

along the tangent line forming part of the boundary of the convex hull between RO and

B(xI′,2ρ). The Dubins’ vehicle is now on ∂RO , the circles centered at the corners with

radius 2ρ allow it to stay on ∂RO traveling completely around the obstacle. Given that

∂R is 2ρ from ∂O, implies that the vehicle can do a circular maneuver from some point

on ∂R to get to a specific outgoing configuration on ∂R. Thus, R will contain at least one

trajectory, not necessarily optimal, from xI′ to any outgoing configuration on ∂R.

42

The second result is that, the optimal path, from a configuration inside R to an

arbitrary outgoing configuration on ∂R, will be entirely inside R.

Lemma 6. Let σ be a feasible path for a Dubins’ vehicle that starts at xI′ and ends at an

outgoing configuration xend ∈ ∂R. If σ leaves and returns to R, then there exists another

path, π, from xI′ to xend, that is entirely in R and that has a lower path length than σ.

Proof. Define Bρ to be a ball

1. of radius ρ

2. that is tangent to both ∂R and σ

3. that is contained in R, Bρ ⊆ R.

Every time σ crosses ∂R, two such balls can be created. Take Bρ1 to be the Bρ that is

tangent to σ before leaving R and that is closest to where σ crosses back into R. Let

x1 be the configuration in σ that is tangent to Bρ1. Now, take Bρ2 to be the Bρ that is

tangent to σ after returning to R and that is closest to where σ crossed outside of R. Let

x2 be the configuration in σ that is tangent to Bρ2.

Break σ into three subpaths: σI′1 from xI′ to x1, σ12 from x1 to x2, and σ2end

from x2 to xend. Now, construct π as follows. Let πI′1 = σI′1 and π2end = σ2end. The

subpath π12 is taken to be the path from x1 that travels along ∂Bρ1 until it reaches ∂R,

concatenated with the path that travels along ∂R until it reaches ∂Bρ2, and concatenated

with the path that travels along ∂Bρ2 until it reaches x2.

Now, π has been constructed to be a path, from xI′ to xend, that is entirely inside

R. To prove that π has a shorter path length than σ, outer approximate every arc in π12,

πo
12, and inner approximate every arc in σ12, σi

12. This leaves us with two paths that

start at x1 and end at x2 and that are only composed of straight lines. By construction,

πo
12 is convex (because R and the outer approximation are convex). From the triangle

43

inequality and the convexity of πo
12, the length of σi

12 cannot be longer than the length of

πo
12. Which means the length of π12 must be less than the length of σ12. Combining this

with the fact that the length of πI′1 is equal to the length of σI′1 and the length of π2end is

equal to the length of σ2end, the length of π is less than the length of σ. Therefore, any

feasible Dubins’ vehicle path that leaves and returns to R can be shortened to a path that

is entirely inside R.

The main Dubins’ vehicle result of this subsection says that R is a sampling

region that allows the GT to recover the optimal path. This is stated more precisely in

Theorem 5.

Theorem 5. Consider a Dubins’ vehicle at xI′ for which minimum-length paths are to

be found to xG. Assume that the new obstacle, O, is a convex polygon and does not

intersect any other obstacles. Let R be as in Definition 4 and assume xG /∈ R. If the Goal

Tree algorithm uses R as the new sampling region to rebuild TG, then it will converge to

a globally optimal path as n→ ∞.

Proof. By Lemma 5, there exists a path in R from xI′ to any xend, an outgoing configura-

tion on ∂R. Then, by Lemma 6, if the optimal path π∗ to any xend leaves and returns to R,

a shorter path can be found, which is a contradiction to the optimality of π∗. Therefore

π∗ must be entirely in R and can be found by sampling in R. Let xB be the outgoing

configuration on ∂R where the optimal path from xI′ to xG crosses outside of R. From

the above, the path from xI′ to xB can be recovered asymptotically by sampling in R with

the information from O. Now consider the path from xB to xG, this path is outside of

R and can be asymptotically constructed by sampling outside of R with respect to Xobs.

Thus, the optimal path from xB to xG can be recovered asymptotically from TG.

44

(a) RRT* (b) Goal Tree

Figure 4.1: Typical Dubins’ vehicle trees found when replanning in the 26 obstacle

environment using the RRT* and GT algorithms.

4.3 Simulations of the Goal Tree Algorithm

There are three different robot types simulated in this section: Euclidean metric,

Dubins’ vehicle, and a seven degree-of-freedom manipulator. These simulations find an

approximation of the shadow for use as their sampling set when replanning. The shadow

approximation, S̃ , is a collection of all the vertices removed from the original tree as a

consequence of O. The S̃ can be made denser by adding samples via the primitive

NewPointPathSet.

Figs. 4.1a and 4.1b show two typical trees produced by the RRT* and GT al-

gorithms when replanning. The original environment has 25 obstacles, one unknown

obstacle is found, therefore the replanning is done in a 26 obstacle environment. The

empty space in Fig. 4.1b is from trimming.

4.3.1 Euclidean Metric

Table 4.1 compares replanning in the 50 obstacle environment using the GT with

the RRT* algorithms. The Goal Tree algorithm’s initial path cost and its path cost at the

mean time the RRT* first finds a path are compared to the initial path cost of the RRT*.

The GT algorithm out performs the RRT* in initial path cost by 13%. The cost of

45

Table 4.1: Mean with standard deviation Euclidean metric results summarizing the

comparison the Goal Tree and RRT* Algorithms.

Time (s) Cost %

Initial
Goal Tree

0.69 (0.76) 7.23 (0.90) -13.5

2.02 (0.01) 7.19 (0.90) -13.9

RRT* 2.02 (2.16) 8.35 (1.33) 0

Final
Goal Tree 80.01 (0.01) 6.37 (0.14) -2.8

RRT* 80.01 (0.01) 6.55 (0.22) 0

Table 4.2: Mean with standard deviation results summarizing the comparison the Goal

Tree and RRT* Algorithms for Dubins’ Vehicles in the 25 obstacle environment.

Time (s) Cost %

Initial
Goal Tree

0.16 (0.03) 260.8 (68.1) 4.5

6.13 (0.03) 228.4 (44.5) -8.4

RRT* 6.10 (5.15) 249.6 (47.8) 0

Final
Goal Tree 80.03 (0.03) 209.8 (16.1) -3.2

RRT* 80.01 (0.01) 216.8 (21.8) 0

the final path found, after 80 seconds, by each algorithm is much closer, only a 2.7%

difference.

4.3.2 Dubins’ Vehicle

The Dubins’ vehicle Goal Tree algorithm simulation comparison results are in

Table 4.2. The GT algorithm’s initial path cost and path cost at the time the RRT* finds

an initial path are compared to the initial path cost of the RRT*. The GT has a mean

initial cost that is higher than the RRT*, but that path is found much quicker. By the

time the GT algorithm reaches the mean time it take the RRT* to find an initial path (6

seconds) the GT has reduced the path cost significantly. The GT, after 6 seconds, has

a path cost 8% lower than the RRT* initial path cost. The comparison of the final path

cost (at 80 seconds) drops to 3%.

The Grandparent-Connection can be incorporated into the Goal Tree Algorithm.

Table 4.3 compares the Goal Tree with Grandparent-Connection (GT-GP) to the Grand-

46

Table 4.3: Mean with standard deviation results summarizing the comparison of the

Goal Tree and Grandparent-Connection Algorithms for Dubins’ Vehicles in the 25

obstacle environment.

Time (s) Cost %

Initial
GT-GP

4.97 (1.45) 106.9 (22.1) 3.2

241.5 (0.3) 98.1 (15.1) -5.4

GP 240.6 (201.8) 103.6 (17.1) 0

Final
GT-GP 2500.6 (0.5) 92.92 (5.36) -0.48

GP 2500.7 (0.6) 93.36 (5.74) 0

parent - Connection algorithm. The GT with GP was able to find an initial path quicker

in comparison to the GP. At the mean time the GP finds an initial path to the goal, the

GT with GP has a path to the goal whose cost is 5.4% better. The final cost for both

algorithms, after running for 2500 seconds, is very close, with only a 0.48% difference.

4.3.3 Seven Degree-of-Freedom Manipulator

A Motoman seven degree-of-freedom manipulator is simulated using MoveIt!

in Robot Operating System (ROS). The Goal Tree and RRT* algorithms are run in the

Open Motion Planning Library (OMPL). The RRT* finds the best path for the manipula-

tor in an obstacle free environment. Next, a box that is in conflict with the manipulator’s

path is introduced to the environment, Fig. 4.2a. The Goal Tree and RRT* algorithms

are then each used to replan and find a collsion-free path. The RRT* algorithm in the

obstacle free environment is run 10 times. For each of the 10 obstacle free trees, the

Goal Tree algorithm is run 10 times. Each 10 runs of the Goal Tree algorithm is referred

to here as a set, therefore there are 10 sets of 10 runs each. Fig. 4.2b is a typical collision-

free path found by the Goal Tree algorithm. For comparison, the RRT* algorithm is run

in the same environment 25 times. The results of this setup are summarized in Table 4.4.

Table 4.4 compares the mean costs and initial iterations. The table shows that

47

(a) (b)

Figure 4.2: Left: The box is added to the environment so that it is in conflict with

the manipulator’s path. Right: The Goal Tree algorithm successfully replans to find a

collision-free path.

the Goal Tree algorithm out performs the RRT* in the quality of the initial path. While

the mean cost of the final path found by the Goal Tree algorithm is better than the

mean cost of the RRT* algorithm it is not significantly less. The percent difference

is calculated as the difference between the mean costs divided by the RRT* mean cost.

These percentages reiterate that the Goal Tree algorithm finds a much better mean initial

path compared to the RRT*. The mean number of iterations to find an initial path is

significantly lower for the Goal Tree algorithm compared to the RRT*. This is because

the Goal Tree algorithm reuses part of the original tree, therefore it already starts with

nodes in the tree. At the bottom of the table is the failure rate that was encountered

during the simulations. The percentage is calculated as the number of failures divided

by the total number of attempted runs for each algorithm. The Goal Tree algorithm is

probably less likely to fail because it reuses part of the original tree, therefore has a

shorter path to determine.

48

Table 4.4: Mean results summarizing the comparison between the Goal Tree algorithm

and RRT* algorithm for the seven degree-of-freedom manipulator.

Initial Cost
Goal Tree 8.83 (0.84)

RRT* 9.66 (1.95)

Final Cost
Goal Tree 7.694 (0.65)

RRT* 7.78 (0.93)

% Cost Difference
Initial Cost -8.7%

Final Cost -1.1%

Initial Iterations
Goal Tree 19.54 (17.66)

RRT* 143.0 (151.2)

% Failure
Goal Tree -23.7%

RRT* -39.0%

4.4 Summary

The Goal Tree (GT) algorithm for replanning due to unexpected static obstacles

is introduced and detailed. The GT algorithm is then proven to asymptotically optimal.

Simulations show that the GT algorithm has improved performance compared to rerun-

ning the RRT* algorithm. When run on the seven degree-of-freedom manipular, showed

the most improvement in the initial path cost and showed that the initial path was found

more quickly.

Publications associated with this chapter

Chapter 4, in part, contains material as it appears in the proceeding of the 52nd

Annual Allerton Conference on Communication, Control, and Computing 2014. “Opti-

mal kinodynamic motion planning in environments with unexpected obstacles”, Board-

man, Beth; Harden, Troy; Martı́nez, Sonia. The dissertation author was the primary

investigator and author of this paper.

Chapter 4, in part, contains material submitted to ASME Journal of Dynamic

Systems, Measurement and Control 2017. “Improved Performance of Asymptotically

49

Optimal Rapidly-Exploring Random Trees” Boardman, Beth; Harden, Troy; Martı́nez,

Sonia. The dissertation author was the primary investigator and author of this paper.

Chapter 5

A Sampling-Based Motion Planning

Algorithm for Replanning in

Environments with Multiple Dynamic

Agents

We extend from replanning due to static obstacles to replanning due to dynamic

agents in this chapter. Specifically, we develop a novel approach, the SAMPLING-

BASED COLLISION AVOIDANCE algorithm, to multi-agent motion planning where the

other agents are not known perfectly.

There are N agents in an environment tasked with getting from their initial con-

figurations, xI,i, to their goal configurations, xG,i. The agents must also never collide

with any of the other agents or static obstacles. We say that, two agents i, j ∈ {1, . . . ,N}

are in conflict if, by staying on their current trajectory (heading and speed), they will

eventually collide before reaching their destinations. Deconfliction is the act of an agent

i changing its velocity to avoid future collision. Each agent, i ∈ {1, . . . ,N} is approxi-

50

51

mated as a two dimensional ball, centered at x with radius ρi, B(x,ρi).

To reach its goal configuration while avoiding collision, the agent follows a pre-

dicted path from an RRT*. At each node in the path, the agent checks for conflict with

the other agents. If there is no conflict, then the agent updates its velocity to follow the

next edge in the predicted path. The path minimizes the distance traveled by the agent.

When there is a conflict, the agent updates its velocity using a maneuver described in

Section 2.3. This maneuver minimizes the change in velocity and not the distance trav-

eled.

Agent i describes the environment with a configuration space, Xi ∈ R2. The

agents are all in R2 therefore, Xi = X j = X . The static obstacles, but not the other agents,

are accounted for in the agent’s obstacle space, Xobs,i. Then, the free space for each

agent is, Qi = X \Xobs,i. Agent i has position, ri ∈ Qi, and velocity, vi ∈ R2, both in the

world frame. The final executed path for agent i, Πi, is entirely in Xfree,i and collision

free with respect to the other agents.

Our solution to this problem requires communication between the agents. Ini-

tially we solve the problem with all agents communicating their position and velocity

with all agents at every time step. Then, the solution is extended using an event-triggered

approach to limit the communication by only requesting the position and velocity from

a fellow agent when certain conditions are met. In the initialization of the problem, all

agents are given the maximum velocity and the approximation radius, ρi, of all other

agents.

Section 5.1 details the Sampling-Based Collision Avoidance (SBCA) algorithm

that merges the RRT* (Section 2.1) with collision cones (Section 2.3). Section 5.2

presents results and Section 5.3 simulations for the SBCA algorithm.

52

5.1 The Sampling-Based Collision Avoidance Algorithm

This section presents two algorithms for multi-agent motion planning with colli-

sion avoidance in the presence of static obstacles. First, we combine the RRT* algorithm

with the deconfliction strategy based on the collision cones of Section 2.3 for an algo-

rithm under perfect information, see Section 2.1. This requires perfect communication

among all agents. In order to reduce communications among agents, we then present an

alternative algorithm in Subsection 5.1.2 that employs RRT*s with dynamically growing

collision cones, in order to account for the uncertainty on other agents under sporadic

communication.

Both algorithms are run on each agent independently of other agents, therefore

they are described from the point of view of a single agent i. Each agent uses its motion

planning tree Ti, defined in Section 2.1, to determine, and update, its path to the goal

and avoid the static obstacles. The collision cones are then used to keep the agent from

colliding with other agents. Below, information is used in reference to position and

velocity knowledge of the other agents.

5.1.1 Perfect Information Case

Pseudo code for the SAMPLING-BASED COLLISION AVOIDANCE with perfect

information is presented in Algorithm 7. A quick overview of the algorithm that each

agent runs is as follows. First, the agent extracts a path to the goal. While the agent is

not at the goal and no conflicts are detected, it moves along its path. At each node in

the path, the agent receives the current position and velocity from the other agents. If a

conflict is detected, βi j < αi j, for some other j, then the agent updates its own velocity

and gets a new path to the goal. The agent also keeps track of the path it traveled. The

details of each step are shown below.

53

Algorithm 7 Πi← Sampling−BasedCollisionAvoidance(xI,i,xG,i,ε)

[T , πi]← RRT∗ (xI,i,xG,i,ε);
ri = xI,i;

Πi.add(ri);
while ri 6= xG,i do

ri,vi←Move along path πi to next node

r j,v j← Communicate with ALL agents

if Conflict (βi j < αi j) with agent j then

vi← Update velocity via maneuvers, Section 2.3;

if r′i ∈ Xobs,i then

Add obstacle to agent list

Restart while iteration

else

πi← GetPath(T ,ri,xG,i);
end if

end if

Πi.add(ri);
Remove obstacle from agent list

if v j = 0 ∀ j then

Replan

end if

end while

vi = 0;

return Πi

54

To initialize the algorithm, each agent recovers its best path to the goal from Ti.

The path for agent i is denoted as πi = {xi(t1) = xI,i,xi(ti2), . . . ,xi(tim), . . . ,xi(ti f
) = xG,i},

where m ∈ N. Note that each agent may reach its specific goal at different times, ti f
.

Once at the goal the agents resets its velocity to zero, vi = 0. The algorithm also requires

both the constant and variable speed agents to be able to stop.

As agent i travels along its path, it checks for conflict with the other agents j 6= i.

For each node in the path πi, agent i knows its current time tim, position, ri = xi(tim) ∈ πi,

and velocity vi = vi
xi(tim+1

)−xi(tim)

‖xi(tim+1
)−xi(tim)‖ . The time to the next node in the path is tim+1

and

dt = tim+1
−tim. Agent i receives the current position, x j(tim), and current velocity, v j(tim),

from all agents j 6= i.

Once agent i has all the information for tim , it calculates the collision cones. If

there is a conflict, the new velocity vector, v′i, is calculated using one of the maneuvers

from Section 2.3. When performing a variable speed maneuver that increases the speed,

the next position of agent i, r′i = ri + v′i dt, will be farther away from ri = xi(tim) than

xi(tim+1
). When this occurs, dt is decreased so that r′i = ri + v′i dt = xi(tim+1

), dt =

‖xi(tim+1
)− ri‖

‖v′i‖
.

In some cases the new node added to the tree is really close to another node al-

ready in the tree, creating tiny edges. These tiny edges can cause the agent to spend more

time doing algorithm calculations than moving. To avoid this, the edges can be removed

as follows. Recall, the current path for agent i is πi = {xi(ti1),xi(ti2),xi(ti3), . . . ,xi(ti f
)}.

If an edge in π is less than 75% of the smallest edge length in the original tree, say for

the first edge, ‖xi(ti1)− xi(ti2)‖< 0.75min(T original.E), then xi(ti2) is removed from πi

so that πi = {xi(ti1),xi(ti3), . . . ,xi(ti f
)}.

The collision cones do not account for the static obstacles, this is done to reduce

computation time, and therefore, must make sure their next position, r′i, is not in colli-

sion with a known obstacle from Xobs. If the r′i calculated is in collision with Xobs, then

55

the obstacle that is part of the collision needs to be accounted for when updating the

agent’s velocity. The obstacle is treated as an agent with zero velocity, vobs = 0. Agent

i then recalculates an updated velocity vector. If there is not a feasible new velocity

vector, then, agent i stops. Agent i can move again after at least one other agent has

changed its velocity vector and if it finds a conflict free velocity vector.

If agent i was in conflict, the new velocity vector, v′i is related back to Ti. The

new position, r′i, is added to Ti as xnew in the usual way, see Section 2.1. Once agent i

adds r′i to Ti, the path to the goal, πi is updated. In this way, the deconfliction maneuver

will make sure the agents never collide and the underlying RRT* will make sure that the

agents’ reach their respective goal configurations.

5.1.2 Collision-Triggered Information Case

Here, we introduce uncertainty into the position and velocity knowledge of the

other agents j 6= i. It is at the expense of this increased uncertainty that agents can reduce

their communications with other agents. Thus, agent i only receives r j and v j when the

uncertain information makes agent i think it is in collision or a solution to v′i does not

exist. In the first case, agent i only needs to update the r j and v j for the agent that is

causing the “collision.” In the second case, information from all other agents needs to

be updated.

We introduce a few key differences with respect to Algorithm 7 when uncertainty

is added. Algorithm 8 is the pseudo code for the new algorithm, with those differences

highlighted in blue and italics. First, note that the variables r j and v j are not received at

each path node but rather only when a “collision” is determined. Once that information

is updated, the while loop iteration restarts. If a conflict is determined but there is no

feasible v′i then all r j and v j are updated and the loop is restarted.

Let ti j be the time agent i last received r j and v j from agent j. Every time

56

Algorithm 8 Πi← Sampling−BasedCollisionAvoidance

[T , πi]← RRT∗ (xI,i,xG,i,ε);
ri = xI,i;

Πi.add(ri);
while ri 6= xG,i do

ri,vi←Move along path to next node

if ‖ri− r j(ti j)‖< d̃sep,ij then

r j,v j← Communicate with agent j ONLY

Restart While Iteration

else if Conflict (βi j < αi j) with agent j then

vi← Update velocity

if vi Does Not Exist then

for j 6= i do

r j,v j← Communicate with ALL agents

end for

Restart While Iteration

end if

if r′i ∈ Xobs,i then

Add obstacle to agent list

Restart while iteration

else

πi← GetPath(T ,ri,xG,i);
end if

end if

Πi.add(ri);
Remove obstacle from agent list

if v j = 0 ∀ j then

Replan;

else if Livelock then

vi = 0;

end if

end while

vi = 0;

return Πi

57

information is requested, ti j = tim , agent i calculates v′i using perfect information from

agent j. In time δt = tim− ti j from the last information update, agent j can be anywhere

within a ball centered at r j with radius v j,maxδt, B(r j,v j,maxδt). Agent i estimates the

velocity of agent j by calculating of ṽ′j. The uncertain values are used in place of

the certain values when calculating the collision cones and possible velocity update

maneuvers. The separation distance is now, d̃sep,ij = dsep,ij + v j,maxδt. The uncertain

relative position is r̃i j = r j(ti j)− ri and the uncertain relative velocity is ṽi j = vi −

ṽ j. This leads to an uncertain half angle, α̃i j = arcsin

(
d̃sep,ij

‖r̃i j‖

)
, and a uncertain angle

between the relative velocity and position, β̃ = arccos
(r̃i j · ṽi j

‖r̃i j‖‖ṽi j‖
)
.

5.2 Analysis

This section details the analytical results for the Sampling-Based Collision Avoid-

ance Algorithm. First, we prove that the algorithm using perfect information will never

cause an agent to collide with another agent or a static obstacle. Next, we prove that the

algorithm with uncertainty will also never cause a collision.

This first result, Lemma 7, guarantees that the agents will remain collision free

while running the SBCA algorithm.

Lemma 7. Let there be N agent in an environment with static obstacles all running the

SBCA algorithm. If the agents begin collision free then, with probability one, they will

stay collision free.

Proof. There are two things an agent could collide with, other agents and static obstacles.

First, we look at guaranteeing that agents will not collide with one another. Recall that

the agents check and update their velocity at each node in the RRT* graph. Because

the RRT* is built using random samples, the probability that more than one agent will

update their velocity at the same time is zero. Every time an agent is in conflict, see

58

Proposition 1, it updates its velocity to be out of conflict with all other agents. This

keeps the agent from colliding with another agent. Recall, that if the agent’s updated

velocity will put it in collision with a static obstacle it then treats the static obstacle as

a static agent. Thus, we can use the above discussion on avoiding agents to again show

the agent is collision free with static obstacles as well. Finally, we address the case

when there are no feasible velocities. Here, the agent will stop and therefore not collide

with any other agent or static obstacle. These three pieces combine to cover all possible

scenarios an agent may encounter, thus keeping the agent collision free.

There are two types of situations that may cause the agent to never reach their

goal: deadlock and livelock. A deadlock occurs when none of the agents are able to find

a feasible velocity and therefore must set their velocities to zero to avoid collision. A

livelock is when the agents can find a feasible velocity but will never reach their goals.

A cyclic livelock is a specific type of livelock where the agents end up at the

same set of nodes over and over. Lemma 8.

Lemma 8. Agents using the SBCA algorithm will never enter a cyclic livelock.

Proof. For an agent to arrive at a node in the graph the agent must be conflict free. If

the agent arrived at the same set of nodes over and over, i.e. a cyclic path, all the nodes

would be in the graph. Here, the graph is a tree, therefore it contains no cyclic paths. If

the agent is in conflict, then it is creating new nodes; this new node has probability zero

that it is already in T since the nodes are randomly sampled. Since this node has not

been visited, the path created could not be cyclic and a cyclic livelock is avoided.

The following is a procedure that will determine if the agents are in a livelock.

To do this, we compare the M previously visited node in Π, Πlast. This sequence of M

nodes is then compared to sequences of M nodes in Π. In particular, the agent takes one

59

node xm ∈Πlast and find all nodes in Π\Πlast, that are within 0.75min(T original.E) from

xm,

Xmin = {x ∈Π\Πlast | ‖x− xm‖< 0.75min(T original.E)}.

Now, the agent needs to check Πlast against the sequence of M nodes in Π that corre-

sponds to x ∈ Xmin. If each corresponding node from the sequences is within

0.75min(T original.E) of each other, then the agent may be in a livelock. The agent

then stops, vi = 0. If all of the agent stop then they can proceed with replanning as

discussed in the deadlock case. This procedure on determining livelock is conservative

in the sense that, if a livelock occurs the agents will stop, but they may also stop even

when they are not in a livelock.

First, we introduce Assumption 1 on the deadlock situation. Assumption 1 says

there will always exist a solution for at least one agent.

Assumption 1. At all times, there is at least one agent able to treat the other agents as

enlarged static obstacles and replan using the RRT* to find a collision free path to the

goal. Let agent i be at node ri in path π and let the path after replanning be πnew. The

other agents are enlarged to encompass how far that agent could travel in the time it

takes for agent i to reach a node, x ∈ πnew, that has a lower cost-to-come compared to

the cost-to-come before replanning, Cost(ri ∈ π)> Cost(x ∈ πnew).

To prove that the agents converge to their goal configurations, we need to show

that the agent’s cost-to-come satisfies the discrete time Lyapunov stability theorem. We

do this by showing the cost-to-come is always decreasing. This is difficult to do with

only local information and a decentralized algorithm.

The first part of the discrete time Lyapunov theorem is showing that the goal

configuration is the only configuration that has a cost-to-come of zero. This is true by

60

construction of the RRT* tree. The second piece of the discrete time Lyapunov theorem

is to prove that at each node the cost-to-come is decreased.

Under Assumption 1, we prove that, with probability one, the agents will always

decrease their cost-to-come, when exiting a deadlock or livelock, Lemma 9

Lemma 9. Let there be N agent in an environment with static obstacles all running

the SBCA Algorithm 7. Let Assumption 1 hold and when an agent has reached its goal

configuration, it will not keep any other agent from reaching its goal configuration. Then,

with probability one, all agents will decrease their cost-to-come when exiting a deadlock

or livelock.

Proof. First, from Lemma 7, we know, with probability one, that the agents will never

collide with one another or with the static obstacles in the environment. If all the agents

stop, Assumption 1 says at least one will be able to replan, either using a replanning

algorithm such as the Goal Tree or re-run the RRT* after adding the agents to Xobs,i, and

then find a collision free path to the goal. Also, from Assumption 1, we know that the

one agent can travel along their new path without collision until the cost-to-come has

decreased to below the cost-to-come before replanning.

Lemma 8 says the agents will never enter a cyclic livelock. The livelock case

that is still unreasoned occurs when the agents are on a path whose limit is a cyclic

path. In this case, the agent may never reach the cyclic path, but stays near the cyclic

path, and therefore, never reach its goal. Once a livelock is discovered, the agents stop.

Now, using Assumption 1 again, we follow the procedure outlined above for relieving

deadlock.

61

5.2.1 A New Deconfliction Maneuver

This section describes a new deconfliction maneuver that that minimizes the

agent’s cost-to-come instead of its change in velocity. This new maneuver allows the

agents to all agents eventually reaching their goal configurations via a collision free path,

with probability one.

The minimization problem for the new deconfliction maneuver is defined as,

Problem 1.

min Cost(ri)

s.t. Cost(ri) = Cost(r′i)+‖ri− r′i‖

Cost(ri ∈ πi) ≥ Cost(ri ∈ πi,new)

r′i ∈ (Xnear = {x ∈ T | ‖x− ri‖ ≤ δT})

αi j < βi j(v
′
i = ‖r′i− ri‖).

In other words, the cost-to-come is minimized such that the new cost-to-come is

less than or equal to the current cost-to-come at ri. The next agent position r′i will be

within δT (see Section 2.1) of ri. Finally, the new velocity, v′i = ‖r′i− ri‖, must make

agent i conflict free.

In Theorem 6, agents using the new deconfliction maneuver are shown to de-

crease the cost-to-come at each step when subject to Assumption 1.

Theorem 6. Let there be N agent in an environment with static obstacles all running the

SBCA Algorithm 7 with the deconfliction maneuver that solves Problem 1 . Let Assump-

tion 1 hold and when an agent has reached its goal configuration, it will not keep any

other agent from reaching its goal configuration. Then, with probability one, all agents

will decrease their cost-to-come at each step and converge to their goal configurations.

62

Proof. The agent will either move to the next node in πi, perform the new deconfliction

maneuver, or stop.

First, we will examine the situation where the agent travels to the next node in πi.

Recall that the RRT* tree for each agent is asymptotically optimal with respect to the

goal configuration for that agent. If the agent is traveling along a path extracted from its

RRT* then the cost-to-come decreases,

Cost(ri ∈ πi)> Cost(r′i ∈ πi).

Secondly, we look at the deconfliction maneuver case. By changing the maneu-

vers to minimize the cost-to-come, Problem 1 (instead to the change in velocity), we can

guarantee that at each step the cost-to-come decreases,

Cost(ri ∈ πi)> Cost(r′i ∈ πi).

Lastly, we address the situation where the agent stops. The agent could be part

of a deadlock or the agent could start moving again because another agent moved.

When the agent stops (not in a deadlock) and is able to start moving again, the

cost evolves as,

Cost(ri ∈ πi) = Cost(ri ∈ πi)> Cost(r′i ∈ πi).

Lastly, we address the deadlock situation. Let Assumption 1 hold. The dead-

locked agents replan treating the other agents as static obstacles, v j = 0. Recall that

the agents are overestimated to account for the movement before the SBCA algorithm

can take over. When agent i stops at node ri, the cost-to-come stays constant, Cost(ri ∈

πi) = Cost(ri ∈ πi), after replanning it may increase, Cost(ri ∈ πi) ≤ Cost(r′i ∈ πi,new).

Recall that from Assumption 1,agent i will move to node r′i which will decrease the

63

cost-to-come,

Cost(ri ∈ πi)> Cost(r′i ∈ πi,new).

Also, note that the other agents are moving along their paths in a similar fashion.

The other agents are therefore decreasing their cost-to-come, Cost(r j ∈ π j). From the

above we can see that the cost-to-come (and sum of the cost-to-come) decreases at every

node. Therefore, we have shown that the agents will asymptotically converge to their

goal regions.

Finally, we prove that the agents will in fact reach their goal configurations in

finite time. The sum of the cost-to-come of the agents cannot converge to a strictly

positive value. This is due to the fact that, by construction of the RRT* trees, the edges

have a cost that is uniformly lower bounded away from zero. Recall, the SBCA removes

any edge that has a cost less than 0.75min(T original.E). Therefore, the RRT* tree will

never add an infinite number of edges between any two nodes already in the tree.

5.2.2 Collision-Triggered Algorithm Analysis

Now we turn to the algorithm with uncertain information. First, we look at a

result that proves the existence of conflict free velocity due to the variable speed maneu-

vers, Proposition 3. The existence result mirrors Theorem 3 from [36] but for agents

with no uncertainty. A similar result hold for the existence of a velocity due to constant

speed maneuvers.

Proposition 3. For vehicle i of an N-vehicle system in the plane, let vehicle i’s speed

be constrained by ‖vi‖ ≤ vi,max, while each other vehicles’ speed is constrained by the

uniform bound ‖v j‖ ≤ vmax. Let Xobs be the set of static obstacle. There exists an

admissible velocity vector, v′i, which is conflict-free with the other N− 1 vehicles and

64

Xobs, given that vehicle i is separated from the other vehicles such that

∑
j∈D

α̃i j ≤





arcsin(
vi,max

vmax
), vi,max < vmax

π
2
, vi,max ≥ vmax,

Proof. The uncertainty in velocity does not change the proof from Theorem 3 [36] be-

cause the worst case scenario is when the j agents are at max velocity. The uncertainty

in the position is placed into the dsep,ij, therefore we use α̃i j instead of αi j.

Next, the collision cone defined by the uncertain information is compared to the

collision cone defined by the true information. Lemma 10 states that the true collision

cone is contained within the uncertain collision cone.

Lemma 10. If d̃sep,ij ≤ ‖ri− r̃ j‖ for all time then dsep,ij ≤ ‖ri− r j‖ for all time.

Proof. By definition of d̃sep,ij, we know d̃sep,ij≥ dsep,ij and ‖r̃ j−r j‖≤ v j,maxdt = d̃sep,ij−

dsep,ij. The triangle inequality gives ‖ri−r j‖+‖r̃ j−r j‖ ≥ ‖ri− r̃ j‖. Putting everything

together gives,

d̃sep,ij ≤ ‖ri− r̃ j‖ ≤ ‖ri− r j‖+‖r̃ j− r j‖,

d̃sep,ij ≤ ‖ri− r j‖+ d̃sep,ij−dsep,ij,

d̃sep,ij− d̃sep,ij +dsep,ij ≤ ‖ri− r j‖,

dsep,ij ≤ ‖ri− r j‖.

The following Theorem 7 is the parallel result to Lemma 9 or Theorem 6, but for

the collision-triggered algorithm.

65

Theorem 7. Let there be N agent in an environment with static obstacles all running

the SBCA algorithm 8. Let Assumption 1 hold and when an agent has reached its goal

configuration, it will not keep any other agent from reaching its goal configuration. Then,

with probability one, all agents will eventually reach their goal configurations via a

collision free path.

The proof for Theorem 7 follows that of Lemma 9 or Theorem 6, but using the

uncertain values. If Lemma 9 or Theorem 6 holds, then, agent i is never within d̃sep,ij of

any agent j and will reach its goal configuration. Then, by Lemma 10, agent i is never

within dsep,ij of any agent j and will remain collision free.

5.3 Simulations

The following simulations involve eight agents initially spaced around the edge

of the space. There are ten randomly placed static obstacles that must also be avoided.

The underlying RRT* trees are constructed with respect to these obstacles. The agents

are all approximated using the same radius, ρi = ρ j for all i, j ∈ {1, . . . ,N}. The maxi-

mum velocities for each agent are all different.

The black lines are the initial best path found by the tress. The colored paths are

the final paths determined by the algorithm that avoids the agents and static obstacles.

The the separation distance between an agent i and all other agents j is shown in

Fig. 5.2. The black line is the minimum separation distance, dsep. There are three agents

that get close to agent i but never violate the dsep condition.

Figures 5.3a and 5.3b compare the true and estimated values of position and

velocity. Both figures look at the percent difference, defined as % =
‖r j− r̃ j‖
‖r j‖

∗ 100.

The dots indicate when agent i did a conflict check and the stars indicate the maximum

uncertainty before the information was updated. In Fig. 5.3a, the uncertainty increases

66

0
0

1
2

2

3
4

4

5
6

6

7
8

8

9
10

10

Figure 5.1: The initial paths (black) and final paths (colored). The red hexagons are

static obstacles that must be avoided.

Iterations

S
ep

er
at

io
n

D
is

ta
n

ce

0
0

5

10

10

15

20 30 40 50 60 70

Figure 5.2: The distance between agent i and the other agents over time

67

Iterations

%
D

if
fe

re
n

ce
:

P
o

si
ti

o
n

0
0

10

10

20

20

30

30 40 50

(a)

Iterations

0
0 10 20 30 40 50

%
D

if
fe

re
n

ce
:

V
el

o
ci

ty

200

400

600

800

1000

1200

(b)

Figure 5.3: The difference between the true and uncertain position (left) and velocity

(right) of the agents

monotonically until the information is updated. This is not the case with the velocity

in Fig. 5.3b. The velocity estimation calculation allows the uncertainty to increase and

decrease.

There are three different simulations compared in Table 5.1, each simulation has

eight agents. The first two simulations are in the same environment depicted in Fig. 5.1

but with different underlying RRT* graphs. The third simulation was done in an envi-

ronment without any static obstacles, but the same initial and final agent configurations

as in Fig. 5.1. The results for each simulation are broke down by agent, number of

algorithm iterations done by each agent, mean number of times an agent does not com-

municates with a particular agent, percentage of non-communication is calculated as the

mean divided by number of iterations, peak difference columns compares the true value

to the uncertain value, maximum error in the positions and velocities of the other agents,

and finally, the mean peak error.

The mean peak looks at how much the error grows before a communication oc-

curs. The final column is the maximum ρ value each agent saw during the algorithm.

The most interesting thing to note is that in the second simulation there is an agent that

communicates with all agents at every iteration. That same simulation had four of the

68

eight agents not communicating with other agents over half of the time. The mean per-

centage of non-communications for each simulation are not that far off from each other,

indicating (at least in this case) that the obstacles do not affect the communication be-

tween the agents. The error also seems unaffected by the obstacles. This is because the

obstacles are already accounted for in the underlying graph. The only time an obstacle

would affect the algorithm would be if an agent was about to collide with one. An envi-

ronment dense with obstacles could see an increase in communication compared to the

same setup without any, or fewer, obstacles.

69

Table 5.1: Comparison of the results for three different simulations with eight agents

each. The first two simulations have the same setup as Fig. 5.1. The third simulation

has the same initial agent configuration as the other two but there are no static obstacles

in the space.

Non-Communications Peak Difference: Position Peak Difference: Velocity

Agents Iterations Mean Percentage Maximum Mean Maximum Mean Max ρ

1 77 18.14 23.56 7.86 0.56 3.49 1.03 4.53

2 53 30.00 56.60 10.55 0.28 3.63 0.70 3.48

3 65 3.14 4.84 8.09 0.30 1.81 0.60 4.33

4 54 26.00 48.15 10.52 0.20 2.05 0.55 3.90

5 70 20.57 29.39 8.73 0.36 3.34 1.00 4.19

6 41 0.86 2.09 7.49 0.26 1.40 0.36 3.00

7 61 10.71 17.56 1.35 0.40 3.21 1.14 3.54

8 47 27.43 58.36 10.65 0.34 3.56 0.82 3.79

Mean 58.5 17.11 30.07 8.16 0.34 2.81 0.77 3.84

1 76 22.71 29.89 12.90 0.33 3.17 1.18 5.97

2 44 24.14 54.87 13.71 0.31 3.09 0.67 4.75

3 56 0 .00 0.00 0.00 0.00 0.00 0.00 0.50

4 52 29.71 57.14 13.61 0.37 3.07 0.70 4.71

5 68 18.29 26.89 12.51 0.40 2.86 0.94 6.00

6 48 28.43 59.23 13.63 0.31 3.12 0.63 5.42

7 81 15.00 18.52 7.76 0.41 2.98 1.17 4.54

8 50 27.43 54.86 13.70 0.26 3.02 0.73 4.30

Mean 59.3 20.71 37.67 10.98 0.30 2.66 0.75 4.52

1 67 12.86 19.19 1.34 0.40 2.49 0.78 3.10

2 42 22.86 54.42 10.13 0.42 2.67 0.76 3.32

3 65 29.71 45.71 9.32 0.40 3.18 0.87 3.50

4 48 10.00 20.83 7.64 0.79 2.27 1.23 4.27

5 70 11.86 16.94 7.53 0.56 2.84 1.09 4.62

6 47 25.14 53.50 10.09 0.41 3.07 0.71 3.25

7 67 13.43 20.04 2.82 0.61 2.86 1.52 4.24

8 49 31.00 63.27 10.34 0.40 2.99 0.81 3.61

Mean 56.9 19.61 36.74 7.40 0.50 2.79 0.97 3.74

5.4 Summary

This chapter detailed our algorithm for multi-agent path planning under uncer-

tainty. The algorithm merges the sampling-based path planner RRT* with collision

cones for collision avoidance. The algorithm is shown to handle uncertainty in an agent’s

knowledge of the position and velocity of the other agents. After the RRT* and collision

cones are introduced the algorithm details are given. The algorithm is analyzed to prove

that the algorithm with perfect and uncertain information will never cause the agents

to collide. Simulations show that a collision free solution is found under uncertainty

70

knowledge.

Publications associated with this chapter

Chapter 5, in part, contains material that will be submitted, “Reactive Multi-

Agent Path Planning: Combining the RRT* with Collision Cones” 2017. Boardman,

Beth; Harden, Troy; Martı́nez, Sonia. The dissertation author was the primary investiga-

tor and author of this paper.

Chapter 6

Sampling-Based Spatial Load

Balancing for Multiple Robots

In this final chapter, we study a problem for multiple robots. Sampling-based

motion planning is an integral part of our proposed algorithm, as it allows us to handle

differential and obstacle constraints. Our research extends the notion of spatial load

balancing when robots have limited travel ranges after reaching their equilibrium con-

figuration.

6.1 Continuous Space Spatial Load Balancing

The limited range spatial load balancing problem aims to find optimal locations

for n agents, with positions P = {p1, . . . , pn}, pi ∈ Q, i ∈ {1, . . . ,n}, and region assign-

ments Wi ⊆ Q, i ∈ {1, . . . ,n}, as described below. Let the optimal cost of robot i to

move from configuration q1 ∈ Q to q2 ∈ Q when subject to the differential constraint,

ṗi = f (pi,ui) with control input ui, be J(q1,q2) ≥ 0. A probability density function,

φ(q), defined over Q, φ : Q→ R≥0, describes the likelihood of an event occurring at a

71

72

configuration in Q.

Let a1, . . . ,an ∈ R>0, be targeted cell areas that distribute the load of covering

Q among the group of agents. The ai, i ∈ {1, . . . ,n}, are such that ∑n
i=1 ai =

∫
Q φ(q)dq,

which can be understood as a full load-balancing condition. Ideally, we would like to

achieve
∫

Wi
φ(q)dq = ai, for i ∈ {1, . . . ,n}, with the region assignment {Wi}n

i=1. How-

ever, if the {Wi}n
i=1 strictly satisfy ∪n

i=1Wi = Q′ (Q, full load balancing will not be

achievable. Because of this, a new variable area constraint is defined,

a′i =
ai

∫
Q′ φ(q)dq∫

Q φ(q)dq
, i ∈ {1, . . . ,n},

which corresponds to load-balancing over the restricted space Q′. Of particular interest

is the equal area case, ai = a j for all i, j, which results in a′i = a′j, for all i, j ∈ {1, . . . ,n}.

Note that, when Q′ = Q, we recover the original, full load-balancing condition. Then,

the objective is to find positions, pi, and regions, Wi ⊆ Q, for i ∈ {1, . . . ,n}, that solve

the following minimization problem subject to the area and dynamic constraints,

Problem 2 (Multicenter Optimization Problem with Dynamic and Area Constraints).

min H (P,W)

s.t. pi ∈ Q, ṗi = f (pi,ui),

a′i =
∫

Wi

φ(q)dq, i ∈ {1, . . . ,n}.

In other words, the n agents want to minimize a cost functional while making

sure each agent’s cell, Wi in the partition W , has area a′i. The agents cannot leave Q and

must obey the differential constraints that define their movement. In what follows, we

describe specific H and types of subpartitions motivated by coverage control objectives.

73

6.1.1 Unlimited Range Agents in Convex Spaces

The solution to Problem 2 with limited ranges builds on the previous work in [14,

48, 49] where Q is convex and the agents have unlimited range such that ∪n
i=1Wi = Q.

Then ai = a′i and the cost function that is minimized takes the form,

H centroid(P,W) =
n

∑
i=1

∫
Wi

J(pi,q)φ(q)dq.

The cost function H centroid(P,W) quantifies the network performance and is called cen-

troid because the agent positions that minimize it are the centroids of the cells. This is

the problem solved in [14].

For trivial first order dynamics, the results in [14] state that, given a set of posi-

tions, P, there exists a weight assignment, ω, that makes a generalized weighted Voronoi

partition, V weighted(P,ω;J), feasible and that this partition is the best among all the par-

titions W that satisfy the area constraint. Here, V weighted(P,ω;J) = {V weighted
i (ω)}n

i=1

is such that, for all i ∈ {1, . . . ,n},

V
weighted

i (ω) = {q ∈Q | J(pi,q)−ωi ≤ J(p j,q)−ω j, ∀ i 6= j}.

The feasible set of weights is U = {ω ∈ Rn | |ωi−ω j| ≤ J(pi, p j) i, j ∈ {1, . . . ,n}}. If

ω 6∈U , then at least one cell is empty. In convex environments, given a partition, the best

agent positions are the centroids of their cells. For certain metrics, such as Euclidean

metrics, these centroids are given by a closed-form formula. However, in non-convex

environments multiple agent positions may minimize the cost function, referred to as a

generalized centroid.

74

6.1.2 Limited Ranges

When the agents have a limited travel range, referred to as limited range, a sub-

partition, ∪n
i=1Wi ⊂ Q, is found and ai ≥ a′i. Here, limited travel range refers to the

maximum distance an agent can travel from its final coverage configuration position.

Since the area of the sub-partition changes as a function of agent position, the cost

function being minimized is modified to account for the current area covered by the

agents. This leads to a cost function that either maximizes the area covered by the

regions,

H area(P,W) =−
n

∑
i=1

∫
Wi

φ(q)dq,

or combines H centroid(P,W) and H area(P,W) in the convenient form of,

H mixed(P,W) =
n

∑
i=1

(∫
Wi

J(pi,q)φ(q)dq− ki

∫
Wi

φ(q)dq

)
,

where ki ∈ R>0, are constants, see Section 6.1.3 for a particular choice.

Limited Range Sub-Partition

Define the limited ranges of the agents as the reachable sets, D = {D1, . . . ,Dn},

such that, for all i ∈ {1, . . . ,n},

Di = {q ∈ Q | J(pi,q)−ωi +
1

n

n

∑
k=1

ωk ≤ c},

where c ∈ R is the travel range of the agents and is a constant. When ωi =
1
n ∑n

k=1 ωk,

then J(pi,q)≤ c making c the upper bound, or limited range, on the cost J(pi,q). When

ωi 6= 1
n ∑n

k=1 ωk, those terms act as a perturbation on the limited range c. This is why

the affective limited range for each agent can be different. There are certain properties

75

Figure 6.1: An example of a limited range sub-partition for four agents, each with a

different ωi.

of V weighted from [14], that the limited range sub-partition should maintain in order to

obtain analogous results. One such property is that the cells, V
weighted
i , are invariant

under translation of ω, V
weighted
i (P,ω;J) =V

weighted
i (P,ω+ t ·1n;J). This property leads

to the area of V
weighted
i also being invariant under translations of ω. Including the mean

of ω term allows the set Di to be invariant under translation in ω. The limited range

sub-partition is defined as V LR(P,ω,c) = {V LR
i }n

i=1, such that, for all i ∈ {1, . . . ,n},

V LR
i = V

weighted
i ∩Di. An example of a limited range sub-partition can be found in

Fig. 6.1. The shared boundaries are from V
weighted
i while the unshared arcs are from

Di. Note that one of the agents has no shared boundaries, so its cell V LR
i = Di. In this

example, the Di boundaries are circular arcs because the cost is the Euclidean norm

squared, J(pi,q) = ‖pi−q‖2.

The limited range sub-partition defines a graph which is used to describe the

algorithm and its properties. This graph, GLR(P,ω) = (N ,E), has vertices, vi ∈N , that

correspond to the n agents. In this graph, e = (vi,v j) ∈ E , between agents i and j, if

and only if V LR
i ∩V LR

j 6= /0. If agents i and j share an edge in GLR(P,ω), (vi,v j) ∈ E ,

then agents i and j are neighbors. Let Ni denote the set of neighbors for agent i. When

Q′ 6= Q, GLR(P,ω) may not be connected. The edges of GLR(P,ω) change as the agent

positions and weights are updated. Because Di, and hence V LR
i , is dependent upon all

agent weights, GLR(P,ω) is not necessarily representative of the agents’ communication

76

graph. The remainder of the chapter will abbreviate GLR(P,ω) as GLR. This graph is

analyzed further in Section 6.3.2.

Let η be the number of connected components in GLR and Gl be a single con-

nected component of GLR such that GLR = ∪η
l=1Gl and Gl ∩ Gl′ = /0 for all l, l′ ∈

{1, . . . ,η} and l 6= l′. Denote the number of vertices in Gl as nl . Define the vector

vl ∈Rn, such that, if agent i is in Gl then the ith entry of vl is a one and a zero otherwise.

Note that {vl} for l ∈ {1, . . . ,η} form an orthogonal basis.

Existence and Choice of Weights

This section proves the existence of weights that allow V LR to satisfy the vari-

able area constraint. Recall, V LR is invariant under translations in the weights and define

the weights-to-area map as,

M (P,ω) =

(∫
V LR

1 (ω)
φ(q)dq, . . . ,

∫
V LR

n (ω)
φ(q)dq

)
.

For conciseness, in the following V LR
i =V LR

i (ω).

Lemma 11. The weights-to-area map, M , is gradient, ∇F =−M , where F : Rn→ R,

F(ω) =
−n

1−n

n

∑
j=1

∫
V LR

j

(J(p j,q)−ω j +
1

n

n

∑
k=1

ωk− c)φ(q)dq.

Proof. Take the derivative of F(ω) with respect to ωi, using the Leibniz rule [20], which

77

applies over general domains,

∂F(ω)

∂ωi
=
−n

1−n

(
n

∑
j=1

∫
V LR

j

−[∂q

∂ωi
× (

∂

∂q
(J(p j,q)−ω j +

1

n

n

∑
k=1

ωk− c)φ(q))] ·dq

+
n

∑
j=1

∫
∂V LR

j

∂q

∂ωi
· ((J(p j,q)−ω j +

1

n

n

∑
k=1

ωk− c)φ(q))dq

+
n

∑
j=1

∫
V LR

j

∂

∂ωi

(
(J(p j,q)−ω j +

1

n

n

∑
k=1

ωk− c)φ(q)

)
dq

)
.

The first term,

n

∑
j=1

∫
V LR

j

−[∂q

∂ωi
× (

∂

∂q
(J(p j,q)−ω j +

1

n

n

∑
k=1

ωk− c)φ(q))] ·dq = 0.

There are two vectors in the (q1,q2) plane being crossed, resulting in a vector perpendic-

ular to the (q1,q2) plane, in dot product with a vector in the (q1,q2) plane, thus resulting

in a zero value. The second term becomes

n

∑
j=1

∫
∂V LR

j

∂q

∂ωi

· ((J(p j,q)−ω j +
1

n

n

∑
k=1

ωk− c)φ(q))dq

=
n

∑
j=1

∫
△i j

n̂⊤
∂q

∂ωi

((J(p j,q)−ω j +
1

n

n

∑
k=1

ωk− c)φ(q))dq

+
n

∑
j=1

∫
Λ j

n̂⊤
∂q

∂ωi

((J(p j,q)−ω j +
1

n

n

∑
k=1

ωk− c)φ(q))dq.

This term then vanishes along △i j because the opposing normal vectors are multiply-

ing the same terms which then cancel each other out. For all q ∈ Λ j, J(p j,q)−ω j +

78

1
n ∑n

k=1 ωk− c = 0. The third term,

n

∑
j=1

∫
V LR

j

∂

∂ωi

(
(J(p j,q)−ω j +

1

n

n

∑
k=1

ωk− c)φ(q)

)
dq

=
n

∑
j=1

∫
V LR

j

(

✚
✚
✚
✚
✚❃

0∀ j

∂J(p j,q)

∂ωi
φ(q)−

✓
✓
✓✓✼

1, i = j

∂ω j

∂ωi
φ(q)+

1

n
�

�
�
��✒

1, i = k
n

∑
k=1

∂ωk

∂ωi
φ(q)−

✓
✓
✓✓✼

0∀ j

∂c

∂ωi

)
φ(q)

+(J(p j,q)−ω j +
1

n

n

∑
k=1

ωk− c)
�
�
��✒

0∀ j

∂φ(q)

∂ωi
dq

=
1−n

n

∫
V LR

i

φ(q)dq.

Putting everything together results in

∂F

∂ωi

=−
∫

V LR
i

φ(q)dq =−Mi(ω), i ∈ {1, . . . ,n}.

The following shows how to update an initial weight assignment, ω0, to new

weights that satisfy the area constraints.

Define A , ∑n
i=1 Mi(ω

0) and

āi , A
ai∫

Q φ(q)dq
. (6.1)

In the equal area case, ai = a j =
1
n

∫
Q φ(q)dq and āi =

A
n

. Note that Mi(ω
0) = āi does

not necessarily hold. Define, U0 = {ω ∈U |
n

∑
i=1

Mi(ω) =
n

∑
i=1

Mi(ω
0)}. Restrict M to

ω ∈U0, and denote this restriction as M 0.

Lemma 12, which gives properties for the Jacobian of M 0, is analogous to Prop.

IV.2 from [14] but has a more complicated proof due to the sub-partition, V LR. Note

that M 0 is a continuous function of ω.

79

Lemma 12. Let J(M 0) denote the Jacobian matrix of M 0 : U0 ⊂ Rn→ Rn. Then

1. J(M 0) is symmetric;

2. Choose ω ∈U0, and consider the graph GLR(P,ω) with η connected components

and associated 1n and vl, for all l ∈ {1, . . . ,η}. Then, these are eigenvectors of

J(M 0)(ω) with eigenvalue 0;

3. The rank of J(M 0)(ω) is n−η.

Proof. Fact 1 follows from M , and thus M 0, being gradient. For Fact 2, by definition,

the sum of M 0 stays constant when ω is updated, therefore, the range of M 0 is in

{m ∈ Rn
≥0 |1⊤n m = A}, and thus, 1⊤n J(M 0) = 0n. Because J(M 0) is symmetric, 1n is

a right eigenvector with eigenvalue 0. Recall that there are η connected components to

GLR and that each connected component, Gl , has a corresponding vector vl associated

with it. Then, because each Gl maintains a constant area during the weights update,

additional eigenvectors with eigenvalue zero can be defined, v⊤l J(M 0) = 0n. For fact

(3), first show that for i ∈ {1, . . . ,n} and (ω1, . . . ,ωi, . . . ,ωn), (ω1, . . . ,ω
′
i, . . . ,ωn) such

that ω′i ≥ ωi,

M 0
i (ω1, . . . ,ω

′
i, . . . ,ωn)≥M 0

i (ω1, . . . ,ωi, . . . ,ωn),

M 0
j (ω1, . . . ,ω

′
i, . . . ,ωn)≤M 0

j (ω1, . . . ,ωi, . . . ,ωn), j 6= i.

Recall, V LR
i = V

weighted
i ∩Di. First, how ∂V

weighted
i changes with respect to ω is exam-

ined. From Eq. 6.1.1, when q ∈ △i j then J(pi,q)−ωi = J(p j,q)−ω j. If ωi increases,

then the boundary△i j moves further away from pi which increases the area of V
weighted
i

and decreases the area of V
weighted
j . Second, examine the change in the boundary of Di.

Let Jmax(pi,q) be the cost at the boundary of Di, then Jmax(pi,q) = c+ωi− 1
n ∑n

k=1 ωk.

If ωi increases then so does Jmax(pi,q) which in turn increases the area of Di. For D j, if

80

ωi increases then Jmax(p j,q) decreases and hence the area of D j decreasesWhitehaven.

Then, the partial derivatives of M 0 for V LR satisfy

∂M 0
i

∂ωi

≥ 0,
∂M 0

j

∂ωi

≤ 0, j 6= i.

The above, when combined with Facts 1 and 2, leads to J(M 0) being the Laplacian of

GLR. Because GLR has exactly η connected components, the rank(J(M 0)) = n−η.

From here, the existence of a weight assignment that satisfies the āi constraint

can be proven. The proof of Theorem 8 follows that of Prop. IV.4 from [14] except that

here GLR is not necessarily connected.

Theorem 8. Let a1, . . . ,an > 0 such that ∑n
i=1 ai =

∫
Q φ(q)dq and let p1, . . . , pn ∈Q. Let

there exist some initial weights, ω0, such that Mi(ω
0) > 0 for each i ∈ {1, . . . ,n}. Let

{ā1, . . . , ān} be as defined in (6.1). Then there exists a set of weights ω = {ω1, . . . ,ωn}

such that

∫
V LR

i (P,ω,c)
φ(q)dq = āi, i ∈ {1, . . . ,n}.

Proof. Consider the function G : U0→ R defined as

G(ω) =
1

2
‖M 0(ω)− (ā1, . . . , ān)‖2. (6.2)

Let ω∗ be the minimizer of Eq. 6.2, then show that the value of the minimum is zero.

Evaluate the derivative of Eq. 6.2 with respect to ω at ω∗,

0 =
∂

∂ωi

∣∣∣∣
ω=ω∗

(
1

2
‖M 0(ω)− (ā1, . . . , ān)‖2

)

=
n

∑
k=1

(M 0
k (ω

∗)− āk)
∂M 0

k

∂ωi

∣∣∣∣
ω=ω∗

, ∀ i ∈ {1, . . . ,n},

81

which can then be expressed as (M 0(ω∗)− (ā1, . . . , ān))J(M
0)(ω∗) = 0n. The weights-

to-area map, M 0(ω), is differentiable in the same way that F(ω) from Lemma 11 is

differentiable. Recall there are eigenvectors such that v⊤l J(M 0)(ω∗) = 0n for all l ∈

{1, . . . ,η} and that the rank(J(M 0)(ω∗)) = n−η. From here, deduce that M 0(ω∗)−

(ā1, . . . , ān) = ∑n
l=1 βlvl for some βl ∈ R. Next, notice that

0 = v⊤l (M
0(ω∗)− (ā1, . . . , ān)) = βlnl,

and therefore βl = 0 for all l ∈ {1, . . . ,η}, or M 0(ω∗) = (ā1, . . . , ān).

6.1.3 Continuous Space Algorithm

This section describes the algorithm used to solve Problem 2. The algorithm

alternately updates the agents’ weights and Voronoi cells until the area of the cells has

converged to the desired areas. Then, the agents update their positions. Concisely, the

algorithm dynamics can be expressed as,




ω+

P+


= ψ




ω

P


 ,

where ψ is a function combining (6.3) and (6.4). The details of the dynamic weight and

position update are presented next.

Weights Update

From Theorem 8 and Lemma 12, there exists weights for which V LR(ω) sat-

isfies the area constraints while maintaining constant area in each connected compo-

nent of GLR. Instead of maintaining constant areas by numerically solving for the

nth weight, the next procedure is followed in our algorithm. All the weights are it-

82

eratively updated so they eventually converge to ω∗, such that, V LR
i (P,ω∗) = āi, thus

preserving,
n

∑
i=1

Mi(P,ω
0) =

n

∑
i=1

Mi(P,ω
∗). First, define F (ω) = −F(ω)−

n

∑
i=1

ωiāi, and

set ∇F (ω) = g(ω) = 0n, where g(ω) = M (ω1, . . . ,ωn)− (ā1, . . . , ān) = 0n. The Jacobi

algorithm, [3],

ω+ = ω− γ diag
(∂g1

∂ω1
, . . . ,

∂gn

∂ωn

)−1
g(ω), (6.3)

is then used to find the ω values that optimize F . The step size can be characterized as

in [14] Prop. IV.5 to guarantee convergence in the weights. More precisely, let L be a

level set of F (ω), and then, γ ∈ (0, Y/B), where,

Y = min
i∈{1,...,n}

min
ω∈L

∂gi(ω)

∂ωi
> 0, B = max

i∈{1,...,n}
max
ω∈L

∂gi(ω)

∂ωi
> 0.

To implement this algorithm, the agents each need to compute their gi(ω) =

Mi(ω)− āi and
∂gi

∂ωi
, where,

∂gi(ω)

∂ωi
=

∂Mi(ω)

∂ωi
−
✓
✓
✓✓✼

0
∂āi

∂ωi

∫
Λi

n̂⊤
∂q

∂ωi
φ(q)dq+

∫
△i j

n̂⊤
∂q

∂ωi
φ(q)dq.

Gradient Function Computation

The agents update their positions according to the derivative of

H (P,V LR(P,ω,c)) with respect to position to solve Problem 2. The gradient compu-

tation details can be found in [15]. For a general H , the dynamics for agent i are

p+i = pi−h
∂H (P,V LR(P,ω,c))

∂pi
, (6.4)

83

where h is an appropriate step size, found via a line search. Eq. 6.4 only works for

convex Q and when the agents are not subject to differential constraints, ṗi = f (pi,ui).

The graph-based algorithm is introduced specifically to handle these issues, see Sec-

tion 6.2.2.

For the area only cost function, the gradient is

∂H area(P,V LR(P,ω,c))

∂pi
=−

∫
Λi

φ(q)n̂⊤
∂q

∂pi
dq. (6.5)

Here, q are at the unshared boundary configurations, q∈Λi = ∂V LR
i ∩Di, and n̂ is the vec-

tor normal to the boundary at q. In other words, the agents move toward the (weighted)

center of the unshared boundary of V LR
i , and stay put when Λi = /0.

When using H mixed(P,V LR), the right selection of ki reduces the gradient com-

putation to moving to a generalized centroid of V LR
i ,

∂H mixed(P,V LR(P,ω,c))

∂pi
=

∫
V LR

i

∂J(pi,q)

∂pi
φ(q)dq

−
∫

Λi

J(pi,q)φ(q)n̂
⊤ ∂q

∂pi

dq+ ki

∫
Λi

φ(q)n̂⊤
∂q

∂pi

dq.

For J(pi,q) = ‖pi−q‖2 or J(pi,q) = ‖pi−q‖, choose ki = Ri , c+ωi− 1
n ∑n

k=1 ωk.

6.2 Graph-based Limited Range Spatial Load Balanc-

ing

This section details the graph-based version of Problem 2. As a preprocessing

step, a PRM*, G, is constructed in the non-convex environment Q, see Chapter 2.2. The

cost to travel between two configurations (q1,q2), J(q1,q2), is approximated by the sum

of edge costs of the best path in G from q1 to q2. Define a sub-partition of a subset of

84

NG as W̃ = {W̃i}n
i=1, such that ∪n

i=1W̃i ⊆NG and W̃i∩W̃j = /0.

Let ã1, . . . , ãn ∈ R>0, such that ∑n
i=1 ãi = ∑q∈NG

φ(q)β(q), then define the ap-

proximate variable area constraint as

ã′i =
ãi ∑

q∈W̃
φ(q)β(q)

∑q∈NG
φ(q)β(q)

, i ∈ {1, . . . ,n}.

The approximated area covered by q ∈NG, β(q), is pre-computed as described in Chap-

ter 2.2. The ∑
q∈W̃

φ(q)β(q) requires knowledge from all agents and varies with each

algorithm iteration.

The n agents solve graph-based Problem 3, which approximates the integral as a

summation over a set of nodes.

Problem 3 (Graph-Based Multicenter Optimization Problem with Area Constraints).

min H̃ (P,W̃)

s.t. pi ∈NG,

ã′i = ∑
q∈W̃i

φ(q)β(q), i ∈ {1, . . . ,n}.

Note that the differential constraint on pi is removed because it is incorporated

into G.

The cost function that the agents minimize is an approximation to either H centroid,

H area, or H mixed, given as

H̃ centroid(P,W̃) =
n

∑
i=1

∑
q∈W̃i

J(pi,q)φ(q)β(q),

H̃ area(P,W̃) =−
n

∑
i=1

∑
q∈W̃i

φ(q)β(q),

85

and

H̃ mixed(P,W̃) =
n

∑
i=1

(
∑

q∈W̃i

J(pi,q)φ(q)β(q)− ki ∑
q∈W̃i

φ(q)β(q)
)
.

To solve Problem 3 algorithmically, each agent has a copy of G and it is assumed

that the agents know the positions P and the weights ω of the other agents by communi-

cating with each other to interchange this information. The assumption on P and ω can

be relaxed in some cases so that it is only necessary to know the positions and weights

of a subset of the other agents; this will be discussed further in Section 6.3.

6.2.1 Approximate General Voronoi Tessellations

Different options are considered for an approximate generalized Voronoi parti-

tion. For conciseness, V̂ is used to represent all approximated Voronoi partitions. In

other words, if a results pertains to all the approximate Voronoi partitions, we use V̂

(e.g. V̂ = Ṽ weighted or V̂ = Ṽ LR in the following). When the agents have unlimited

range, such that ∪n
i=1Wi = NG, they find the weighted approximate Voronoi partition,

Ṽ weighted = {Ṽ weighted
i }n

i=1,

Ṽ
weighted
i = {q ∈NG | J(pi,q)−ωi ≤ J(p j,q)−ω j, ∀ j 6= i}.

Here, J(pi,q) is the minimum sum of the edge costs of the optimal path in G defined

from pi to q. Due to the random selection of q when building G, the probability that, in

V̂ , one node belongs to two different cells is zero.

The limited range agents find a sub-partition, ∪n
i=1Wi ⊂NG, defined as a limited

range Voronoi sub-partition Ṽ LR = {Ṽ LR
i }n

i=1, Ṽ LR
i = Ṽ

weighted
i ∩ D̃i, where

D̃i = {q ∈NG | J(pi,q)−ωi +
1

n

n

∑
k=1

ωk ≤ c}.

86

In order to calculate the approximation of its own cell, V̂i, agent i does a Dijkstra

graph search, [16], starting from its current configuration, pi, and keeps a queue of

the vertices it needs to check. To start with, pi is added to V̂i, and all the outgoing

neighboring nodes of pi are added to the queue. The agent then takes one of the nodes,

qcheck, from the queue and checks to see if it is part of V̂i. If qcheck is a part of V̂i then

its outgoing neighboring nodes are added to the queue. If qcheck is not added to V̂i, then

its neighbors are not added to the queue, see Proposition 4 for the result on why this is

correct. Agent i constructs V̂i until the queue is empty.

Properties of V̂

For Ṽ weighted the weights need to belong to

U = {ω ∈ Rn | |ωi−ω j| ≤ J(pi, p j) i, j ∈ {1, . . . ,n}}.

If ω 6∈ U then at least one cell is empty. Since Ṽ LR is a subset of Ṽ weighted then the

weights must also belong to the set U .

Lemma 13 gives a lower bound on the constant c for a general J(pi,q) so that

∂Ṽ
weighted
i ∩∂D̃i 6= /0 for each i. If the initial agent conditions lead to ∂Ṽ

weighted
i ∩∂D̃i = /0

for all i, then, assuming that Ṽ LR satisfies the area constraint, Problem 3 is trivially

satisfied.

Lemma 13. Assume the triangle inequality holds for J(pi,q). If ∂Ṽ
weighted
i ∩ ∂D̃i 6= /0,

then c≥ J(pi,p j)+
2
n ∑n

k=1 ωk+ωi−ω j

2
.

Proof. Because q∈ ∂D̃i, J(pi,q) = c+ωi− 1
n ∑n

k=1 ωk. This same q is also in ∂Ṽ
weighted
i ,

J(pi,q)−ωi +ω j = J(p j,q), for some j.

87

Substituting the above into the triangle inequality, J(pi,q)+ J(p j,q)≥ J(pi, p j), gives

2c− 2

n

n

∑
k=1

ωk +ωi +ω j ≥ J(pi,q).

Therefore, the c must be larger than

c≥ J(pi, p j)+
2
n ∑n

k=1 ωk−ωi−ω j

2
.

A tighter bound can be found for particular J(pi,q). Lemmas 14 and 15 compute

such bounds.

Lemma 14. Let J(pi,q)= ‖pi−q‖2. If ∂Ṽ
weighted
i ∩∂D̃i 6= /0, then c≥ (‖pi−p j‖2+ωi−ω j)

2

4‖pi−p j‖2 −

ωi +
1
n ∑n

k=1 ωk.

Proof. Because q ∈ Ṽ
weighted
i then

‖pi−q‖2−ωi = ‖p j−q‖2−ω j for some j. (6.6)

Now, squaring the triangle inequality of the Euclidean norm,

‖p j−q‖2 ≥ ‖pi− p j‖2 +‖pi−q‖2−2‖pi− p j‖‖pi−q‖.

Substitute this into Eq. 6.6, and rearranging, gives

‖pi−q‖ ≥‖pi− p j‖2 +ωi−ω j

2‖pi− p j‖
.

Using q ∈ ∂D̃i, leads to ‖pi−q‖= (c+ωi− 1
n ∑n

k=1 ωk)
1/2, which is substituted into the

88

above giving the bound on c,

c≥(‖pi− p j‖2 +ωi−ω j)
2

4‖pi− p j‖2
−ωi +

1

n

n

∑
k=1

ωk for all j.

Lemma 15. Let J(pi,q) = ‖pi−q‖. If ∂Ṽ
weighted
i ∩∂D̃i 6= /0 then c≥ (‖pi−p j‖+ωi−ω j)

2
−

ωi +
1
n ∑n

k=1 ωk.

The proof of Lemma 15 is similar to that of Lemma 14, and therefore omitted

for brevity.

The additive property of J allows the agents to only check a connected subset of

nodes, q ∈NG, to find the approximated regions Ṽ
weighted
i .

Proposition 4. Assume that J is an additive cost and let there exist an optimal path

from pi to q passing through q′. Then, if q′ is not part of Ṽ
weighted
i then q is not part of

Ṽ
weighted
i .

Proof. The existence of an optimal path from pi to q passing through q′ leads to

J(pi,q
′)+J(q′,q)= J(pi,q). From q′ /∈ Ṽ

weighted
i , we have J(pi,q

′)−ωi≥ J(p j,q
′)−ω j

for some j 6= i. Putting these two equations together, along with the triangle inequality

J(p j,q)≤ J(p j,q
′)+ J(q′,q) gives

J(pi,q
′)−ωi ≥ J(p j,q

′)−ω j

J(pi,q)− J(q′,q)−ωi ≥ J(p j,q)− J(q′,q)−ω j

J(pi,q)−ωi ≥ J(p j,q)−ω j.

Which implies that q /∈ Ṽ
weighted
i .

89

Note that Ṽ LR may not be connected but still only needs to check the same q as

Ṽ weighted.

Another useful property of Ṽ weighted and Ṽ LR is that they are invariant under

translation in the weights, V̂ (ω+ t1) = V̂ (ω), which follows from the invariance prop-

erty of their continuous space counterparts.

6.2.2 Discrete Space Algorithm

Algorithm 9 briefly outlines the general algorithm procedure for Problem 3 with

limited ranges that leads to an approximate solution. Note that V̂ refers to a generic

approximation of a Voronoi sub-partition in terms of graph nodes; we refer to these

as approximate generalized Voronoi partitions. First, the agents each determine such

partition, see Section 6.2.1 for definition and details. Then the weights are updated to

reflect the error in the area-constraint, the details of which are in Section 6.2.2. These

two steps are alternated until the area-constraints are satisfied to within a specified error,

which can be reduced by increasing the number of nodes in G. Next, the agents move to

a neighboring node that will decrease H̃ , see Section 6.2.2. The steps are repeated until

none of the agents are able to update their positions, P = P+.

Updating the Agent Weights

Recall, for Problem 3, each agent’s cell should satisfy an approximate area con-

straint, ã′i. When the agents have unlimited ranges ã′i = ãi. Agents with limited range

follow the procedure outlined in Section 6.1.2 to find a weight assignment for Ṽ LR. Let

ω0 be the set of weights, then define Ã = ∑
q∈Ṽ LR(ω0)

φ(q)β(q). The new variable area

constraint is āi =
ãiÃ

∑q∈NG
φ(q)β(q) . Let âi indicate either ãi or āi.

90

Algorithm 9 (P∗, V̂ (P∗,ω∗;J))← GSLB(P0,ω0, V̂ ,Q)

1: G← PRM∗(Q);
2: (P,ω)← Initialize(P0,ω0);
3: for all {Agent i}n

i=1 do

4: while P 6= P+ do

5: P = P+

6: V̂i(P,ω;J)← VoronoiPartition(P,ω,c,G);

7: Ã← getArea(V̂ (P,ω));
8: while ‖ω−ω+‖> error do

9: ω = ω+;

10: ω+
i ← UpdateWeights(P,ω,V̂i, Ã,G);

11: ω+← TransmitAndReceive(ω+
i);

12: V̂i(P,ω;J)← VoronoiPartition(P,ω,c,G);
13: end while

14: p+i ← UpdateAgentPosition(pi,V̂i,G);
15: P+← TransmitAndReceive(p+i);
16: end while

17: end for

18: return (P, V̂ (P,ω;J));

Define the error between the current and specified area as

g̃(ω) =

(
∑

q∈V̂1(ω)

φ(q)β(q)− â1, . . . , ∑
q∈V̂n(ω)

φ(q)β(q)− ân

)
.

Next, each agent updates ω to reduce the area error.

From [3], the Jacobian update used to minimize g̃(ω) is approximated as

ω+
i = ωi− γ

(
∂g̃(ω)

∂ωi

)−1

g̃i(ω),

which converges for a small enough γ > 0. The partial derivatives of g̃ approximated as,

∂g̃

∂ωi

(ω)≈
∑q∈V̂ i

i
φ(q)β(q)−∑q∈V̂i

φ(q)β(q)

∆ωi

, (6.7)

where V̂ i
i is the Voronoi cell for agent i with ω = {ω1, . . . ,ωi +∆ωi, . . . ,ωn}, note that

91

∆ωi > 0 needs to be small enough to guarantee convergence but also large enough that

V̂ i
i 6= V̂i. The V̂ i

i can be computed with a single Dijkstra graph search so agent i can

easily compute (6.7).

The algorithm loops through determining V̂ and updating ω until the area con-

straint is satisfied to within a specified error.

Updating the Agent Positions

After V̂i and ω have been determined, agent i decides where to move. Ideally,

each agent minimizing H̃ centroid or H̃ mixed would move to a position in the generalized

centroid set on V̂i, which is computationally intensive. Instead, agent i moves in the

direction of one of the generalized centroids by moving to a neighboring node of pi

such that

p+i ∈ argmin
p∈N out

G (pi)
∑

q∈V̂i

J(p,q)φ(q)β(q).

If the agents have limited range, and are solving Problem 3 with H̃ area, they

update their position by approximating (6.5),

∂H̃ area(P, Ṽ LR)

∂pi
=

n

∑
i=1

∑
q∈λi

φ(q)n̂⊤(q)
∂q

∂pi
.

The agent then moves to a neighboring node in the graph that is in a direction as close

as possible to
∂H̃ area(P,Ṽ LR)

∂pi
.

Note that because the agent is moving to another node in the graph, the new agent

position will automatically be in Q. The new agent position is shared among the Voronoi

neighbors of agent i, who need it to calculate their Voronoi cell. The algorithm loops

through these steps until the agents’ positions become fixed; indicating that convergence

has been reached. Note that doing this in the continuum-space version, Problem 2,

92

agents are locally minimizing the functional with respect to their positions.

6.3 Distributed Algorithm Properties

This section looks at the distributed nature of the GRAPH-BASED SPATIAL LOAD

BALANCING algorithm using Ṽ weighted and Ṽ LR. The following discussion focuses on

the discrete space case, but analogous considerations hold for the continuous space coun-

terpart.

The information that agent i needs for the implementation of the GRAPH-BASED

SPATIAL LOAD BALANCING using V weighted is limited to those other agents j whose

approximated regions are connected to the approximated region of i via boundary nodes

(or V
weighted
i (P,ω;J)∩V

weighted
j (P,ω;J) 6= /0 in the continuous-space counterpart). In

the case where no obstacles are present, and depending on the metric, this property

generally involves a limited number of agents. This is the case of the Euclidean metric,

where, for equal weights, the generic number of neighbors is six [46]. When obstacles

are present, this characterization is more difficult. The distributed properties of the

GRAPH-BASED SPATIAL LOAD BALANCING using Ṽ LR are discussed below, but first

an alternate definition of D̃ using a maximum radius is introduced.

6.3.1 Alternate Definition of D̃

Under certain costs, J(pi,q), Di can be defined as a ball with radius Ri. This

definition is intuitive in a way that the c definition is not. Assume J(pi,q) = ‖pi−q‖2

or J(pi,q) = ‖pi− q‖, then the radius of the ball defined by D̃i is denoted as Ri for

all i ∈ {1, . . . ,n}. Recall Ri , c+ωi− 1
n ∑n

k=1 ωk, then, using the definition of Di at

the boundary, J(pi,q) = ‖pi− q‖2 implies Ri = R
1/2

i and J(pi,q) = ‖pi− q‖ implies

Ri = Ri.

93

Depending upon the physical system, an upper bound may be imposed on Ri,

denoted as Rmax. We want to remove c from the definition of Di and replace it with

the fixed Rmax. To do this, let c be a function of Rmax and ω, instead of a constant.

Then, define cmax = Rmax−max
k

(ω)+
1

n

n

∑
k=1

ωk. Substituting cmax into the equation for

Ri gives,

Ri = Rmax−max
k

(ω)+
1

n

n

∑
k=1

ωk +ωi−
1

n

n

∑
k=1

ωk,

= Rmax−max
k

(ω)+ωi.

Notice that now Ri, and hence Ri, are no longer dependent on c or the mean of ω but

on Rmax and the maximum value of ω. Algorithm 9 needs some minor modifications

to account for the maximum radius constraint. First, in Lines 6 and 12, the primitive

VoronoiPartition now takes inputs Rmax and Ri instead of c. Then, after Line 11, Ri is

determined.

Let Di denote the continuous space counterpart of D̃i, then defining Di using

Rmax causes problems in Lemma 11 because maxk ω is not differentiable. However,

given the max operator properties, one can conjecture that an analogous result exists

using generalized gradients. As a consequence, assuming the analogous result leads to

M (ω) being gradient (i.e. that the weights-to-area map is in the generalized gradient of

F ,) then all other results follow. In particular, in Lemma 12, the new Di still satisfies the

conditions on the partial derivatives. With the assumption that Lemma 11 holds, then a

weight assignment exists that satisfies the area constraint. Then, the convergence result

in Lemma 9 still holds for the Di definition for Rmax.

94

6.3.2 Distributed Properties using Ṽ LR

While the algorithm in [14] for solving the spatial load balancing problem is

distributed in the sense that only information is needed for neighboring agents, these

neighboring agents may be significantly far away from one another. Especially when

Euclidean norms are used, the limited range constraint forces the agents to only consider

neighbors within a certain distance of each other.

More precisely, the computation of Ṽ LR
i (P,ω) requires knowledge of the posi-

tions and weights of agent i’s neighbors and knowledge of the mean of the weights

for D̃i. The latter can be computed using a distributed consensus algorithm performed

over a connected communication graph, not necessarily GLR. If D̃i is defined as in Sec-

tion 6.3.1, the agents need the maximum ω value instead of the mean. The maximum

value is found using a max operation over a connected system, requiring fewer commu-

nications between the agents.

Before each weight update, the area covered by Ṽ LR needs to be determined.

Again, a distributed consensus algorithm over a connected communication graph is

needed. Once inside the weights update loop, agents only need the information from

their cell, Ṽ LR
i , to determine ω+

i . Likewise, the position update using the gradient of

H̃ area(P, Ṽ LR) or the centroid of Ṽ LR
i for H̃ mixed(P, Ṽ LR), only requires knowledge

from the agent’s own cell. In all, the algorithm is distributed over the smallest connected

graph containing GLR.

The Rmax constraint can be used to define a disk graph G2Rmax that is sufficient for

agents to determine neighbors in GLR. When using a general J, the balls are defined as

a reachable set. If J is radially unbounded, the balls are compact sets. In the Euclidean

metric case, the balls are circles whose radii are related to Rmax and correspond to the

standard r-disk graph. Define G2Rmax over the set of agents, where a (communication)

edge exists between agents i and j if and only if the balls centered at the agents’ position

95

with radius Rmax intersect, B(pi,Rmax)∩B(p j,Rmax) 6= /0. The G2Rmax can be used to

determine an over approximation of the sets of neighboring agents in GLR. To see this,

note that Ṽ LR
i ⊆ D̃i ⊆ B(pi,Rmax), for all i ∈ {1, . . . ,n}. Therefore, Ṽ LR

i ∩Ṽ LR
j 6= /0 only

if D̃i∩ D̃ j 6= /0, which happens only if B(pi,Rmax)∩B(p j,Rmax) 6= /0. This implies that

agent i can compute its cell, Ṽ LR
i , communicating only with neighbors j in G2Rmax . In

other words, an agent only needs to communicate with other agents within a distance of

2Rmax of itself, ‖pi− p j‖ ≤ 2Rmax.

6.4 Algorithm Analysis

The spatial load balancing algorithm in [14] is shown to converge to a solu-

tion (P∗,V weighted(P∗,ω∗;J)) of Problem 2 for convex environments. A similar result

holds for non-convex Q since there exists ω that allows a generalized Voronoi partition

V weighted(P,ω;J) to satisfy the constraints. Lemma 16 is used to extend Prop. IV.4 from

[14] to non-convex Q; Prop. IV.4 sates there exists a set of weights that make V weighted

satisfy the area constraints in a convex continuous space.

Lemma 16. Let V weighted, J(pi,q), φ(q), and ω be defined as above. Define the weights-

to-area map as

M (P,ω) =

(∫
V

weighted
i (ω)

φ(q)dq, . . . ,

∫
V

weighted
n (ω)

φ(q)dq

)
.

Then, M is gradient, ∇F =−M , where F : Rn→ R,

F(ω) =
n

∑
j=1

∫
V

weighted
j (ω)

(J(p j,q)−ω j)φ(q)dq.

The proof of Lemma 16 is similar to that of Lemma 11 and therefore omitted.

96

Proof. Take the derivative of F(ω) with respect to ωi, using the Leibniz rule [20],

∂F(ω)

∂ωi
=

∂

∂ωi

n

∑
j=1

∫
V

weighted
j (ω)

(J(p j,q)−ω j)φ(q)dq

=
n

∑
j=1

∫
V

weighted
j (ω)

−[∂q

∂ωi
× (

∂

∂q
(J(p j,q)−ω j)φ(q))] ·dq

+
n

∑
j=1

∫
∂V

weighted
j (ω)

∂q

∂ωi
· ((J(p j,q)−ω j)φ(q))dq

+
n

∑
j=1

∫
V

weighted
j (ω)

∂

∂ωi

(
(J(p j,q)−ω j)φ(q)

)
dq

The first term,

n

∑
j=1

∫
V

weighted
j (ω)

−[∂q

∂ωi
× (

∂

∂q
(J(p j,q)−ω j)φ(q))] ·dq = 0,

There are two vectors in the (q1,q2) plane being crossed, resulting in a vector perpendic-

ular to the (q1,q2) plane, in dot product with a vector in the (q1,q2) plane, thus resulting

in a zero value. The second term becomes

n

∑
j=1

∫
∂V

weighted
j (ω)

∂q

∂ωi
· ((J(p j,q)−ω j)φ(q))dq

=
n

∑
j=1

∫
∂V

weighted
j (ω)

∂q

∂ωi
n̂⊤j ((J(p j,q)−ω j)φ(q))dq.

This term then vanishes because the shared boundaries have opposing normal vectors.

97

Finally, the third term reduces to,

n

∑
j=1

∫
V

weighted
j (ω)

∂

∂ωi

(
(J(p j,q)−ω j)φ(q)

)
dq

=
n

∑
j=1

∫
V

weighted
j (ω)

(
∂(J(p j,q)−ω j)

∂ωi
φ(q)+(J(p j,q)−ω j)

∂φ(q)

∂ωi

)
dq

=
n

∑
j=1

∫
V

weighted
j (ω)

(

✚
✚
✚
✚
✚❃

0∀ j

∂J(p j,q)

∂ωi

φ(q)−
✓
✓
✓✓✼

1, i = j

∂ω j

∂ωi

φ(q)+(J(p j,q)−ω j)
�
�
��✒

0∀ j

∂φ(q)

∂ωi

)
dq

=−
∫

V
weighted
i (ω)

φ(q)dq.

Putting everything together results in

∂F

∂ωi

=−
∫

V
weighted
i (ω)

φ(q)dq =−Mi

For the discrete case note that for any W̃ = {W̃i}n
i=1 partition of NG, one can

find (many) continuous-space partitions W = {Wi}n
i=1 such that W̃i = Wi∩NG and W

satisfies the constraints. As the number of nodes in NG goes to infinity, W̃ will converge

to a W . Due to integration properties, and because H centroid(P,W) is continuous,

|H centroid(P,W)− H̃ centroid(P,W̃)| ≤ε, (6.8)

is true for a sufficiently small sample dispersion.

The GRAPH-BASED SPATIAL LOAD BALANCING algorithm with V weighted can-

not converge to the exact partition and centroids of the continuous problem, but an ap-

proximate solution can be guaranteed, see Theorem 9.

Theorem 9. The unlimited range GRAPH-BASED SPATIAL LOAD BALANCING algo-

98

rithm is guaranteed to converge to an approximate solution (P∗, Ṽ weighted(P∗,ω∗)) which

is in a continuous space set defined by

‖H centroid(P∗,V weighted(P,ω))−H centroid(P∗,V weighted(P∗,ω∗))‖ ≤ 2ε.

Proof. Convergence can be proved by showing that H̃ centroid decreases monotonically

at every step. Recall that the agent positions are updated specifically so that H̃ centroid

decreases, H̃ centroid(P, Ṽ weighted(P))≥ H̃ centroid(P+, Ṽ weighted(P)). Next, using (6.8),

H̃ centroid(P+, Ṽ weighted(P))

≥H centroid(P+,V weighted(P))− ε

≥H centroid(P+,V weighted(P+))− ε

≥H̃ centroid(P+, Ṽ weighted(P+))−2ε.

Thus, H̃ centroid decreases as long as H centroid(P+,V weighted(P)) is 2ε larger than

H centroid(P+,V weighted(P+)).

Proving convergence of the GRAPH-BASED SPATIAL LOAD BALANCING with

limited ranges relies on the continuous space convergence Theorem 10 which is only

shown to converge for H area(P,V LR).

Theorem 10. The continuous space version of Algorithm 9, used to solve the limited

range spatial load balancing problem, converges to a solution (P∗,V LR(P∗,ω∗)) when

H = H area(P,V LR).

Proof. Let Q be compact and invariant for dynamics T , and define Hv(P)

= H area(P,V LR(P,A(P)). Because Algorithm 9 alternately updates the agents’ posi-

99

tions and weight assignment, the evolution of H area(P,V LR) is,

Hv(P) = H area(P,V LR(P,A(P)))

=H area(T (P),V LR(P,A(P)))≥H area(T (P),V LR(T (P),A(P)))

=H area(T (P),V LR(T (P),A(T (P)))) = Hv(T (P)),

where V LR(P,ω) and V LR(T (P),A(T (P))) both satisfy the variable a′ constraint. When

the partition V LR is kept constant and the position is updated, the area covered by V LR is

constant. Because T (P) is found to specifically increase the area, the new sub-partition,

V LR(T (P),A(P)), has a greater area than V LR(P,A(P)). Finally, the A(P) values are

updated in such a way that the area is kept constant during the update. Theorem 8

says that A(T (P)) exists. Note that if T (P) 6= P then H area(P,V LR) decreases implying

Hv(P)≥Hv(T (P)). Therefore, Hv(P) = Hv(T (P)) if and only if T (P) = P. From here,

apply the La Salle invariance principle to guarantee the trajectories of T converge to the

largest invariant set in Z = {P ∈ Q |Hv(P) = Hv(T (P))}. It can be concluded from the

above discussion that Z is the set of limited range generalized Voronoi configurations

where the gradient of H area(P,V LR) is zero.

Then, convergence to an approximate solution can be guaranteed, Lemma 17.

Lemma 17. The limited range GRAPH-BASED SPATIAL LOAD BALANCING using

H̃ area is guaranteed to converge to an approximate solution (P∗, Ṽ LR(P∗,ω∗)) which

is in a continuous space set defined by

‖H area(P∗,V LR(P),ω)−H area(P∗,V LR(P∗,ω∗))‖ ≤ 2ε.

The proof of Lemma 17 is similar to that of Theorem 9 and therefore omitted.

100

6.5 Simulations

The simulations in this section are for 15 agents minimizing H area(P,V LR) and

H mixed(P,V LR) with J(pi,q) = ‖pi− q‖2, a convex Q, and a uniform φ(q). The sim-

ulations also compare defining Di with a constant maximum range c and a maximum

radius Rmax. In general the maximum range is not intuitive to determine. But, when the

cost J(pi,q) = ‖pi−q‖2, c becomes the radius of a ball squared minus some error that

is a function of ω, c = ‖pi−q‖2−ωi +
1

n

n

∑
k=1

ωk

= R2
i + ε(ω). In other words, the radius of Di, when c is a constant, is Ri =

√
c− εω.

All simulations have the same initial conditions where the agents start together in

the lower left corner and the weights are initially all one. Note that the initial positions

of the agents do not allow for the existence of a feasible set of weights, ω ∈ U , and

therefore the area constraint, a′, is not satisfied. The algorithm moves the agents away

from one another and eventually the area constraint is satisfied. The convergence of the

simulations are unaffected by these initial conditions.

6.5.1 Area-Only Cost Function

This section compares the limited range algorithm results with H area(P,V LR).

The final V LR partition for a constant c = 50 is in Fig. 6.2a and for Rmax = 15 is in

Fig. 6.2b.

The following figure shows how H area(P,V LR) evolves as the algorithm pro-

gresses. As discussed in Chapter 6.4, the cost monotonically decreases at each partition

update and stays constant during the agent position update. The constant c= 50 partition

case is in Fig. 6.3a and the Rmax = 15 case is in Fig. 6.3b.

Next, the limited range radius of Di is compared. Fig. 6.4a shows evolution of

the radii when c = 50 and Fig. 6.4b is the radii for Rmax = 15. Notice that the c = 50

101

100

100

50

50
0
0

(a) c = 50

100

100

50

50
0
0

(b) Rmax = 15

Figure 6.2: The final V LR partition that minimizes H area(P,V LR) with agent trajecto-

ries.

Iterations

H area(P,V LR)

0 100 200
-2400

-1600

-2000

(a) c = 50
Iterations

H area(P,V LR)

0 150 300

-6000

-2000

-10000

(b) Rmax = 15

Figure 6.3: The evolution of H area(P,V LR).

radii eventually converge to a radius of R≈ 7, while the Rmax radii converge to different

values close to the maximum allowable radius.

6.5.2 Mixed Cost Function

Below are the results for the limited range algorithm with H mixed(P,V LR).

Fig. 6.5a and Fig. 6.5b contain the final V LR partition for a constant c = 50 and Rmax =

15, respectively.

The evolution of H mixed(P,V LR) as the algorithm progresses for a constant c =

102

Iterations

Ri

0 100 200

6

7

5

8

9

10

(a) c = 50
Iterations

Ri

0 150 300
7

9

11

13

15

(b) Rmax = 15

Figure 6.4: The evolution of the limited range radii for H area(P,V LR).

100

100

50

50
0
0

(a) c = 50

100

100

50

50
0
0

(b) Rmax = 15

Figure 6.5: The final V LR partition that minimizes H mixed(P,V LR) with agent trajec-

tories.

50 partition and Rmax = 15 partition are in Fig. 6.6a and Fig. 6.6b, respectively. While

Di ⊂ Q for all i ∈ {1, . . . ,n}, H mixed(P,V LR) decreases but, as seen in Fig. 6.6b, the

cost can increase when Di (Q.

The limited range radii of the agents are compared in Fig. 6.7a when c = 50

and Fig. 6.7b when Rmax = 15. The radii when c = 50 initially are spread out and then

converge to a common R ≈ 7. Due to the definition of Ri when the maximum radius

is used there is always at least one agent whose radius is the maximum value. As the

algorithm progresses the agents radii converge to different values close, but not equal,

103

Iterations

H mixed(P,V LR)

-5900

-5400

250 5000

(a) c = 50
Iterations

H mixed(P,V LR)

250 5000
-11E5

-9E5

-7E5

-5E5

(b) Rmax = 15

Figure 6.6: The evolution of H mixed(P,V LR).

to the maximum radius.

Iterations

Ri

0 250 500
6

7

8

(a) c = 50

Iterations

Ri

0 250 500
9

10

11

12

13

14

15

(b) Rmax = 15

Figure 6.7: The evolution of the limited range radii for H mixed(P,V LR).

The simulations below examine agents without differential constraints whose

edge cost, Je, is Euclidean distance and for Dubins vehicle agents whose edge cost is the

distance traveled. There are simulations for six agents each of them solving graph-based

Problem 3 with an equal area constraint and a uniform probability density function,

φ(q) = 1, ∀q ∈NG. Each agent is initialized with ωi = 5. The simulations compare the

limited range defined by a constant c = 3 and Rmax = 3.5.

All simulations have the same initial agent positions; clustered together in the

top right corner. The simulations were run for a graph constructed with 2,000 samples

104

0
0

5

5

10

10

(a)

0
0

5

5

10

10

(b)

Figure 6.8: The initial (left) and final (right) 5,000 node graph Ṽ weighted for six agents

obtained by solving Problem 3 with H̃ centroid

and a more dense graph constructed using 5,000 samples. The graph should be con-

structed such that the edge lengths are less than ∂D̃i. This will ensure that there exists

neighboring nodes of pi within Ṽ LR
i for the agent to move to.

6.5.3 Voronoi Graph Partitions

This section compares the weighted Voronoi graph partition, Ṽ weighted for six

agents solving Problem 3. Figure 6.8a and Fig. 6.8b are the initial and final Ṽ weighted

partitions, respectively, in the non-convex environment using the graph with 5,000 sam-

ples.

The initial and final limited range Voronoi graph partitions for agents solving

Problem 3 with H̃ = H̃ area in the non-convex environment using the 5,000 sample graph

are in Fig. 6.9a -6.9c. Figure 6.9b is the final Ṽ LR partition when c = 3. When Rmax =

3.5, the agents’ final Ṽ LR partition is in Figure 6.9c. The final Ṽ LR partitions for the

5,000 sample graph in the non-convex environment under H̃ = H̃ Mixed are Fig. 6.10a

when c = 3, and Fig. 6.10b when Rmax = 3.5.

105

0
0

5

5

10

10

(a)

0
0

5

5

10

10

(b)

0
0

5

5

10

10

(c)

Figure 6.9: The Initial (left), final with c = 3 (center) and final with Rmax = 3.5 (right)

5,000 node graph Ṽ LR for six agents obtained by solving Problem 3 with H̃ area

0
0

5

5

10

10

(a)

0
0

5

5

10

10

(b)

Figure 6.10: The final 5,000 node graph Ṽ LR with c = 3 (left) and with Rmax = 3.5

(right) for six agents solving Problem 3 with H̃ mixed

106

Algorithm Iterations

H̃
ce

n
tr

o
id

500

400

300

200

1000 10 20 30 40 50 60

Figure 6.11: The evolution of H̃ centroid obtained by solving Problem 3 using Ṽ weighted,

where the solid line is the 5,000 node graph and the dashed is the 2,000 node graph

6.5.4 Evolution of H̃

The following are a comparison of the evolution of the different cost functions

for the various problems. The plots show the algorithm converges to a solution.

The evolution of H̃ centroid for agents solving Problem 3 in the non-convex envi-

ronment using partition Ṽ weighted is in Fig. 6.11. The cost function decreases monotoni-

cally as expected.

Figure 6.12a is the evolution of H̃ area for the agents solving Problem 3 with

limited ranges in the non-convex environment. The evolution of H̃ mixed for the limited

range agents in the convex environment solving Problem 3 is in Fig 6.12b. Both the

2,000 and 5,000 sample graphs produce costs that decrease smoothly until the algorithm

gets close to convergence then chatters slightly. It is important to note that when the

algorithm uses H̃ area or H̃ mixed, the position update is approximate. The agents do not

follow the gradient exactly, but rather a close approximation based on the neighboring

nodes. The more nodes there are in the graph the less error there will be in following

the gradient. This can be seen by comparing the 2,000 and 5,000 node graphs. The

5,000 node graph produces a cost function plot with less pronounced increases and less

chattering.

The following is another simulation with seven agents in a hallway type envi-

107

Algorithm Iterations

H̃
ar

ea

0 10 20 30 40

-15

-20

-25

-30

-35

-40

(a)
Algorithm Iterations

H̃
m

ix
ed

-30

-50

-70

-90

-110
0 50 100 150 200

(b)

Figure 6.12: The evolution of H̃ area (left) and H̃ mixed (right) by solving Problem 3

using Ṽ LR from the 2,000 node graph with c = 3 (blue dash-dot line), Rmax = 3.5
(red solid line), from the 5,000 node graph with c = 3 (cyan dashed line), Rmax = 3.5
(magenta dotted line)

ronment. The initial and final agent partitions are shown in Figs. 6.13a and 6.13b. The

area-only cost function is plotted in Fig. 6.14a for both the c and Rmax definitions of

the limited range sub-partition. The cost function decreases and then chatters due to the

error in the gradient. Fig. 6.14b is the mixed cost function. The c definition decreases

monotonically while the Rmax definition increases first then decreases monotonically.

Dubins’ vehicle Results

Simulations for Dubins’ vehicle agents, subject to limited ranges, solving Prob-

lem 3 using Ṽ LR were run for a 2,000 node graph. Fig. 6.15a is the evolution of H̃ area

and Fig. 6.15b is the evolution of H̃ mixed in the non-convex environment. The blue

dashed lines are for Ṽ LR with a constant c = 7 and the red solid lines are for Rmax = 8.

The H̃ area and H̃ mixed decrease initially and then chatters until convergence is reached.

The H̃ mixed decreases smoothly for Ṽ LR with a constant c = 7. The chattering produced

by the Dubins’ vehicle is due to the resolution in the graph. If the graph were to have

more nodes, the position update would have less error and therefore less chattering. Be-

cause an increasing in the number of nodes in the graph causes the algorithm to increase

108

0
0

5

5

10

10

(a)

0
0

5

5

10

10

(b)

Figure 6.13: A 5,000 node graph initial (left) and final (right) Ṽ LR for seven agents

obtained by solving Problem 3 with H̃ area

Algorithm Iterations

H̃
ar

ea

-35

-40

-50

-60

-700 10 20 30 40 50 60

(a)

Algorithm Iterations

-35

-40

-50

-60

0 50 100 150 200

H̃
m

ix
ed

(b)

Figure 6.14: The evolution of H̃ area (left) and H̃ mixed (right) obtained by solving

Problem 3 using Ṽ LR from a 5,000 node graph with c = 3 (blue dash-dot line), Rmax =
3.5 (red solid line)

109

Algorithm Iterations

H̃
ar

ea

0 50 100 150

-10

-30

-50

-70

-90

(a)
Algorithm Iterations

H̃
m

ix
ed

-60

-100

-140

-180

-220

0 20 40 60 80

(b)

Figure 6.15: The evolution of H̃ area (left) and H̃ mixed (right) obtained by solving

Problems 3 for Dubins’ vehicle using Ṽ LR, where the blue dashed line is with c = 7

and solid red line is with Rmax = 8

in run time, a balance between the run time and the smoothness of the cost function

decrease is needed.

6.6 Summary

We introduce a novel algorithm to solve the spatial load balancing problem in

non-convex configuration spaces and for agents with limited ranges, subject to differen-

tial constraints. First, the problem without limited ranges is introduced and solved. Then,

the limited range spatial load balancing problem in convex environments is solved. Fi-

nally, the two problems are combined to solve the non-convex, limited range, spatial

load balancing problem with agents subject to differential constraints. The convergence

of the algorithms is proven and confirmed in simulation.

Publications associated with this chapter

Chapter 6, in part, contains material as it appears in American Control Confer-

ence 2016. “Spatial load balancing in non-convex environments using sampling-based

110

motion planners” Boardman, Beth; Harden, Troy; Martı́nez, Sonia. The dissertation

author was the primary investigator and author of this paper.

Chapter 6, in part, contains material as it appears in American Control Confer-

ence 2017. “Limited range spatial load balancing for multiple robots” Boardman, Beth;

Harden, Troy; Martı́nez, Sonia. The dissertation author was the primary investigator

and author of this paper.

Chapter 6, in part, contains material that has been submitted to Autonomous

Robots 2017. “Limited Range Spatial Load Balancing in Non-Convex Environments

using Sampling-Based Motion Planners”, Boardman, Beth; Harden, Troy; Martı́nez,

Sonia. The dissertation author was the primary investigator and author of this paper.

Chapter 7

Conclusion

The research within this dissertation pertains to robotic motion planning and

falls into one of three categories. The first, Chapter 3, is improving the performance of

the RRT* so that better cost paths are found quicker. The second category is replanning

using sampling-based motion planners. The two replanning algorithms developed in this

research are the Goal Tree algorithm in Chapter 4 and the Sampling-Based Collision

Avoidance algorithm in Chapter 5. The final piece of this dissertation is the application

of sampling-based motion planners to multi-agent spatial load balancing.

The Focused-Refinement (FR) and Grandparent-Connection (GP) are the two

algorithms created to improve the performance of the asymptotically optimal Rapidly-

exploring Random Tree (RRT*). Both algorithms maintain the asymptotic optimality

and probabilistic completeness of the RRT*. Simulations compare the FR and GP to the

RRT* and other similar planners.

The first replanning algorithm, the Goal Tree (GT) algorithm, is used when there

are unknown static obstacles. Replanning regions are introduced that make the GT algo-

rithm asymptoticly optimal. The GT algorithm is simulated on three different types of

robots: Euclidean metric, Dubins’ vehicle, and a seven degree-of-free manipulator.

111

112

From replanning due to static obstacles we moved to multiple agents in the same

space. Where, the agents only account for the static obstacles when building their RRT*.

The other agents are avoided by using collision cones and deconfliction maneuvers. In

this way, the agents are replanning every time they detect a conflict with another agent.

The Sampling-Based Collision Avoidance (SBCA) algorithm is shown to handle uncer-

tainty in an agent’s knowledge of the position and velocity of the other agents. After the

RRT* and collision cones are introduced the algorithm details are given. The algorithm

is analyzed to prove that the algorithm with perfect and uncertain information will never

cause the agents to collide. Simulations show that a collision free solution is found

under uncertainty knowledge.

Lastly, a limited range spatial load balancing problem for agents subject to differ-

ential constraints in a non-convex environment is defined and discussed. To handle dif-

ferential constraints, the problem is redefined using a probabilistic roadmap star (PRM*)

and the GRAPH-BASED SPATIAL LOAD BALANCING algorithm is given that finds an

approximate solution to the original problem. We discuss how introducing the limited

range sub-partition, and determining a subset of agents containing the Voronoi neigh-

bors of a specific agent, limits the amount of communication between agents. A con-

vergence proof is given for the GRAPH-BASED SPATIAL LOAD BALANCING algorithm

with limited ranges. All other defined approximated problems are shown to converge in

simulation.

7.0.1 Future Work

This section briefly discusses some area of future work that could be pursued.

First, in the area of improved performance of the RRT*, future work includes imple-

menting the two algorithm modifications on robots in more complex environments. It

would be beneficial to see how the improvements scale for higher dimensional systems

113

such as a seven degree-of-freedom manipulator. In the area of static replanning, a future

research direction is extending the Goal Tree algorithm to handle the removal of obsta-

cle. One option is to run the existing path through a path smoothing algorithm every

time an obstacle is removed. For dynamic replanning, it would be interesting to incorpo-

rate the GT algorithm into the SBCA algorithm for handling unknown static obstacles.

It is also of interest to expand the definition of collision cone for agents with differential

constraints. In example, if the agents were Dubins’ vehicles or unicycle model, could

an object be defined that checks the trajectories for future collision. Finally, in the area

of spatial load balancing, future work includes making more extensive differential con-

straint simulations as well as implementation of the algorithm on a set of mobile robots.

Bibliography

[1] B. Akgun and M. Stilman. Sampling heuristics for optimal motion planning in

high dimensions. In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pages

2640–2645, 2011.

[2] O. Arslan and P. Tsiotras. Use of relaxation methods in sampling-based algorithms

for optimal motion planning. In IEEE Int. Conf. on Robotics and Automation,

pages 2421–2428, 2013.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numer-

ical Methods. Athena Scientific, 1997.

[4] S. Bhattacharya, R. Ghrist, and V. Kumar. Multi-robot coverage and exploration on

riemannian manifolds wth boundaries. International Journal of Robotics Research,

33:113–137, 2014.

[5] S. Bhattacharya, N. Michael, and V. Kumar. Distributed coverage and exploration

in unknown non-convex environments. In International Symposium on Distributed

Autonomous Robotic Systems, pages 61–75. Springer, 2013.

[6] S. Biswas, S. G. Anavatti, and M. A. Garratt. Obstacle avoidance for multi-agent

path planning based on vectorized particle swarm optimization. In Intelligent and

Evolutionary Systems: The 20th Asia Pacific Symposium, IES 2016, Canberra,

Australia, November 2016, Proceedings, pages 61–74. Springer, 2017.

[7] A. Breitenmoser, M. Schwager, J.-C. Metzger, R. Siegwart, and D. Rus. Voronoi

coverage of non-convex environments with a group of networked robots. In IEEE

Int. Conf. on Robotics and Automation, pages 4982–4989, 2010.

[8] J. Bruce and M. Veloso. Real-time randomized path planning for robot navigation.

In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, volume 3, pages 2383–

2388, 2002.

[9] J. W. Bruce and P. J. Giblin. An elementary approach to generic properties of plane

curves. Proceedings of the American Mathematical Society, pages 455–458, 1984.

114

115

[10] C. H. Caicedo-Nunez and M. Zefran. Performing coverage on nonconvex domains.

In IEEE Conf. on Control Applications, pages 1019–1024, 2008.

[11] S. Carpin and G. Pillonetto. Motion planning using adaptive random walks. IEEE

Transactions on Robotics, 21(1):129–136, 2005.

[12] Y. Chen, M. Cutler, and J. P. How. Decoupled multiagent path planning via incre-

mental sequential convex programming. In icra, pages 5954–5961. IEEE, 2015.

[13] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, L. E. Kavraki, and S. Thrun.

Principles of Robot Motion: Theory, Algorithms and Implementations. The MIT

Press, 2005.

[14] J. Cortés. Coverage optimization and spatial load balancing by robotic sensor

networks. IEEE Transactions on Automatic Control, 55(3):749–754, 2010.

[15] J. Cortés, S. Martı́nez, and F. Bullo. Spatially-distributed coverage optimization

and control with limited-range interactions. ESAIM. Control, Optimisation & Cal-

culus of Variations, 11(4):691–719, 2005.

[16] E. W. Dijkstra. A note on two problems on connexion with graphs. Numerische

Mathematik, 1(1):269–271, 1959.

[17] L. E. Dubins. On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents. American Journal

of Mathematics, pages 497–516, 1957.

[18] J. Enright, K. Salva, and E. Frazzoli. Coverage control for nonholonomic agents.

In IEEE Int. Conf. on Decision and Control, pages 4250–4256, 2008.

[19] D. Ferguson, N. Kalra, and A. Stentz. Replanning with RRTs. In IEEE Int. Conf.

on Robotics and Automation, pages 1243–1248, 2006.

[20] H. Flanders. Differentiation under the integral sign. The American Mathematical

Monthly, 80(6):615–627, June 1973.

[21] R. Gayle, K. R. Klingler, and P. G. Xavier. Lazy Reconfiguration Forest (LRF) -

An approach for motion planning with multiple tasks in dynamic environments. In

IEEE Int. Conf. on Robotics and Automation, pages 1316–1323, 2007.

[22] F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan. RRT-smart: Rapid conver-

gence implementation of RRT towards optimal solution. In IEEE Int. Conf. on

Mechatronics and Automation, pages 1651–1656, 2012.

[23] K. J. J, J and S. M. LaValle. RRT-connect: An efficient approach to single-query

path planning. In IEEE Int. Conf. on Robotics and Automation, volume 2, pages

995–1001, 2000.

116

[24] L. Janson and M. Pavone. Fast marching trees: a fast marching sampling-based

method for optimal motion planning in many dimensions. In International Sympo-

sium on Robotic Research, 2013.

[25] W. Jiang and M. Zefran. Coverage control with information aggregation. In IEEE

Int. Conf. on Decision and Control, pages 5421–5426. IEEE, 2013.

[26] Y. Kantaros, M. Thanou, and A. Tzes. Visibility-oriented coverage control of

mobile robotic networks on non-convex regions. In IEEE Int. Conf. on Robotics

and Automation, pages 1126–1131. IEEE, 2014.

[27] Y. Kantaros, M. Thanou, and A. Tzes. Distributed coverage control for concave

areas by a heterogeneous robot–swarm with visibility sensing constraints. Auto-

matica, 53:195–207, 2015.

[28] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incre-

mental sampling-based methods. In IEEE Int. Conf. on Decision and Control,

pages 7681–7687, 2010.

[29] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion plan-

ning. International Journal of Robotics Research, 30(7):846–894, 2011.

[30] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion

planning using the RRT*. In IEEE Int. Conf. on Robotics and Automation, pages

1478–1483, 2011.

[31] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans-

actions on Robotics and Automation, 12(4):566–580, 1996.

[32] S. Koenig and M. Likhachev. d⋆ lite. In American Association for Artificial Intel-

ligence, 2002.

[33] M. Kothari and I. Postlethwaite. A probabilistically robust path planning algorithm

for uavs using rapidly-exploring random trees. jirs, pages 1–23, 2013.

[34] A. Kwok and S. Martı́nez. Deployment algorithms for a power-constrained mo-

bile sensor network. International Journal on Robust and Nonlinear Control,

20(7):725–842, 2010.

[35] A. Kwok and S. Martı́nez. Unicycle coverage control via hybrid modeling. IEEE

Transactions on Automatic Control, 55(2):528–532, 2010.

[36] E. Lalish. Distributed reactive collision avoidance for multivehicle systems. PhD

thesis, PhD thesis, University of Washington, 2009.

[37] S. M. LaValle. Planning algorithms. Cambridge University Press, 2006.

117

[38] K. Laventall and J. Cortés. Coverage control by robotic networks with limited-

range anisotropic sensory. In American Control Conference, pages 2666–2671,

Seattle, WA, 2008.

[39] T.-Y. Li and Y.-C. Shie. An incremental learning approach to motion planning with

roadmap management. In IEEE Int. Conf. on Robotics and Automation, volume 4,

pages 3411–3416, 2002.

[40] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2):129–137, 1982.

[41] W. Luo, N. Chakraborty, and K. Sycara. Distributed dynamic priority assignment

and motion planning for multiple mobile robots with kinodynamic constraints. In

acc, pages 148–154. IEEE, 2016.

[42] H. Mahboubi, K. Moezzi, A. G. Aghdam, K. Sayrafian-Pour, and V. Marbukh.

Distributed deployment algorithms for improved coverage in a network of wire-

less mobile sensors. IEEE Transactions on Industrial Informatics, 10(1):163–174,

2014.

[43] S. Martı́nez. Yo, robot (I, Robot). MatePoster (a math poster for high-

school students). Published through the Spanish digital magazine website at

http://www.matematicalia.net as an invited contribution.

[44] A. Murano, G. Perelli, and S. Rubin. Multi-agent path planning in known dynamic

environments. In International Conference on Principles and Practice of Multi-

Agent Systems, pages 218–231. Springer, 2015.

[45] A. A. Neto, D. Macharet, L. Chaimowicz, and M. Campos. Path planning with

multiple rapidly-exploring random trees for teams of robots. In icar, pages 1–6.

IEEE, 2013.

[46] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics.

John Wiley, 2 edition, 2000.

[47] M. Otte and S. Frazzoli. rrtx: Asymptotically optimal single-query sampling-

based motion planning with quick replanning. International Journal of Robotics

Research, 2015.

[48] R. Patel, P. Frasca, and F. Bullo. Centroidal area-constrained partitioning for

robot networks. ASME Journal on Dynamic Systems, Measurement, and Control,

136(3):031024–1–031024–8, 2014.

[49] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo. Distributed algorithms for envi-

ronment partitioning in mobile robotic networks. IEEE Transactions on Automatic

Control, 56(8):1834–1848, 2011.

118

[50] A. Perez, S. Karaman, A. Shkolnik, E. Frazzoli, S. Teller, and M. R. Wal-

ter. Asymptotically-optimal path planning for manipulation using incremental

sampling-based algorithms. In IEEE/RSJ Int. Conf. on Intelligent Robots & Sys-

tems, pages 4307–4313, 2011.

[51] L. Pimenta, V. Kumar, R. C. Mesquita, and G. Pereira. Sensing and coverate for

a network of heterogeneous robots. In IEEE Int. Conf. on Decision and Control,

pages 3947–3952, Cancun, Mexico, December 2008.

[52] M. Ragaglia, M. Prandini, and L. Bascetta. Multi-agent poli-rrt. In International

Workshop on Modelling and Simulation for Autonomous Systems, pages 261–270.

Springer, 2016.

[53] A. Renzaglia and A. Martinelli. Distributed coverage control for a multi-robot

team in a non-convex environment. In IEEE/RSJ Int. Conf. on Intelligent Robots

& Systems, 2009.

[54] G. Sánchez and J.-C. Latombe. A single-query bi-directional probabilistic

roadmap planner with lazy collision checking. In International Symposium on

Robotic Research, pages 403–417. Springer, 2003.

[55] K. Savla, F. Bullo, and E. Frazzoli. The coverage problem for loitering Dubins

vehicles. In IEEE Int. Conf. on Decision and Control, pages 1398–1403, New

Orleans, LA, Dec. 2007.

[56] G. Sharon, R. Stern, M. Goldenberg, and A. Felner. The increasing cost tree search

for optimal multi-agent pathfinding. Artificial Intelligence, 195:470–495, 2013.

[57] A. Shkolnik and R. Tedrake. Sample-based planning with volumes in configuration

space. Computing Research Repository, arXiv:1109.3145, 2011.

[58] A. Stentz. The focussed D* algorithm for real-time replanning. In International

Joint Conference on Artificial Intelligence, volume 95, pages 1652–1659, 1995.

[59] Y. Stergiopoulos and A. Tzes. Coverage-oriented coordination of mobile hetero-

geneous networks. In Mediterranean Conf. on Control and Automation, pages

175–180, 2011.

[60] N. Virani and M. Zhu. Robust adaptive motion planning in the presence of dynamic

obstacles. In acc, pages 2104–2109. IEEE, 2016.

[61] M. Waringo and D. Henrich. Efficient smoothing of piecewise linear paths with

minimal deviation. In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pages

3867–3872, 2006.

119

[62] Z. Zhen, C. Gao, Q. Zhao, and R. Ding. Cooperative path planning for multi-

ple uavs formation. In Cyber Technology in Automation, Control, and Intelligent

Systems (CYBER), 2014 IEEE 4th Annual International Conference on, pages 469–

473. IEEE, 2014.

[63] M. Zhong and C. G. Cassandras. Distributed coverage control and data collec-

tion with mobile sensor networks. IEEE Transactions on Automatic Control,

56(10):2445–2455, 2011.

[64] M. Zucker, J. Kuffner, and M. Branicky. Multipartite RRTs for rapid replanning

in dynamic environments. In IEEE Int. Conf. on Robotics and Automation, pages

1603–1609, 2007.

