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ABSTRACT Soil ecosystems harbor diverse microorganisms and yet remain only
partially characterized as neither single-cell sequencing nor whole-community se-
quencing offers a complete picture of these complex communities. Thus, the ge-
netic and metabolic potential of this “uncultivated majority” remains underex-
plored. To address these challenges, we applied a pooled-cell-sorting-based
mini-metagenomics approach and compared the results to bulk metagenomics.
Informatic binning of these data produced 200 mini-metagenome assembled ge-
nomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The
sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by
7.2% with respect to the Joint Genome Institute IMG/M database and showed
clade-specific sequence recruitment patterns across diverse terrestrial soil metag-
enomes. Additionally, sorted-MAGs expanded the rare biosphere not captured
through MAGs from bulk sequences, exemplified through phylogenetic and func-
tional analyses of members of the phylum Bacteroidetes. Analysis of 67 Bacte-
roidetes sorted-MAGs showed conserved patterns of carbon metabolism across
four clades. These results indicate that mini-metagenomics enables genome-
resolved investigation of predicted metabolism and demonstrates the utility of
combining metagenomics methods to tap into the diversity of heterogeneous
microbial assemblages.

IMPORTANCE Microbial ecologists have historically used cultivation-based ap-
proaches as well as amplicon sequencing and shotgun metagenomics to character-
ize microbial diversity in soil. However, challenges persist in the study of microbial
diversity, including the recalcitrance of the majority of microorganisms to laboratory
cultivation and limited sequence assembly from highly complex samples. The uncul-
tivated majority thus remains a reservoir of untapped genetic diversity. To address
some of the challenges associated with bulk metagenomics as well as low through-
put of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics
to capture expanded microbial diversity from forest soil and compare it to soil bulk
metagenomics. Our resulting data from this pooled-cell sorting approach combined
with bulk metagenomics revealed increased phylogenetic diversity through novel
soil taxa and rare biosphere members. In-depth analysis of genomes within the
highly represented Bacteroidetes phylum provided insights into conserved and clade-
specific patterns of carbon metabolism.
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oil is considered to be among the most biologically diverse ecosystem types, and

yet much of its microbial diversity remains poorly characterized (see, e.g., references
1 and 2). Each gram of soil is estimated to harbor 1,000 to 1,000,000 different bacterial
species (see, e.g. references 3 to 7). Investigating soil microorganisms in situ is
challenging due to the heterogeneous nature of the soil environment (see, e.g.,
references 8 to 10). As a result, terrestrial habitats remain immense reservoirs of
untapped genetic and metabolic diversity (7, 11) encoded within microbial communi-
ties that drive important ecosystem-level processes, including nitrogen cycling and
carbon dioxide flux (12-14). Soils are regarded as critical for global health, as they
contain 3,000 Pg of carbon and have the potential to act as either a carbon source or
a carbon sink, which is important to consider under conditions of climatic shift (15, 16).
It is therefore essential to characterize soil microbial diversity to better understand
ecosystem function and resilience in the face of rapid environmental change.

Historically, microbial diversity has been studied using laboratory cultivation tech-
niques (17, 18) with only a minute fraction of estimated bacterial diversity being
successfully cultivated. Substantial efforts are being made to develop innovative cul-
tivation techniques, including the ichip and droplet-based sorting coupled with labo-
ratory cultivation (17, 19). These approaches have contributed to expansion of diversity
within novel families. However, cultivation-independent investigations may further our
understanding of microbial diversity by facilitating description of novel higher taxo-
nomic ranks. Thus, challenges associated with direct study of soil microorganisms have
yielded a large knowledge gap regarding terrestrial microbial diversity. Due to limita-
tions associated with cultivation, relatively few isolate genomes are available as refer-
ences for soil microbes (20). From the publicly available Integrated Microbial Genomics
(IMG/M) database (21), we were able to curate a collection of 3,024 isolate genomes,
single amplified genomes (SAGs), and metagenome assembled genomes (MAGs) from
previous soil studies. However, with soil estimated to contain 1,000 to 1,000,000 species
per gram (9), these references represent only a small percentage of soil microbes.

In addition to culture-based approaches, amplicon studies have greatly contributed
to our knowledge of microbial community structure (1, 22). However, amplicon se-
quencing primers that target the small-subunit (SSU) rRNA gene may not adequately
amplify some organisms due to primer biases through mismatches (22). Additionally,
estimates of organismal abundance may be conflated by variation in gene copy
number (23). Phylogenetically divergent taxa may be overlooked using PCR-based
approaches, thereby hampering our ability to describe an expanded diversity of
organisms (22). High-throughput sequencing technologies combined with novel met-
agenome binning algorithms (24, 25) enable genome-resolved metagenomics studies
and have greatly expanded the availability of reference genomes from uncultured taxa
by circumventing challenges associated with cultivation- and amplicon-based studies
(11, 26, 27). The more recent applications of directly sequencing DNA from soil
microbial communities allow one to obtain a broader perspective on the taxonomic
and functional potential of soil microorganisms. However, metagenomics in highly
diverse environments may capture only the most abundant and therefore best-
assembling representatives from the total community (28-30), and population heter-
ogeneity can hamper the efficiency of assembly, even of abundant microorganisms
(31).

Population microheterogeneity of closely related strains within microbial commu-
nities makes the separation of individual strains challenging (32). Soils are typically
dominated by a small set of highly abundant taxa (12), and the rare biosphere may
therefore be overlooked in metagenomic studies despite playing an important role in
soil biogeochemical processes (33). Lastly, bulk metagenomics can also include extra-
cellular DNA from dead microorganisms, which may be abundant in the environment.
the presence of this exogenous DNA has the potential to inflate estimates of diversity
and genomic potential (34-36) and to further reduce our ability to assemble sequences
from rare taxa. Decoupling intracellular and exogenous DNA during sequencing may
provide a more accurate estimate of microbial diversity (36).
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Challenges associated with bulk metagenomics may be mitigated by reducing
community complexity. The most extreme example involves the application of
fluorescence-activated cell sorting (FACS) for separating communities into single cells
for single-cell genomics, which provides genomic information with strain-level resolu-
tion (37-39). However, the resulting SAG assemblies are often highly fragmented and
incomplete, and the overall process is prone to biases and contamination. In order to
circumvent some of the challenges associated with bulk metagenomics and single-cell
genomics, we applied a pooled-cell sorting approach coupled to shotgun sequencing,
termed mini-metagenomics, to forest soils collected from the Barre Woods soil warm-
ing experiment at the Harvard Forest Long-Term Ecological Research (LTER) site. This
mini-metagenomic approach separates a researcher-defined number of cells from the
larger community, which then undergo lysis and whole-genome multiple-displacement
amplification (MDA), followed by sequencing.

Prior to the application of cell sorting to Harvard Forest soil in this study and in that
by Schulz et al. (40), mini-metagenomics analysis of microorganisms had been used
only in aqueous environments, including hot springs, hospital sink biofilms, and
activated sludge (40-44). Mini-metagenomics has higher throughput than single-cell
genomics, providing the opportunity to capture more diversity than is possible with
single-cell sequencing. Mini-metagenomics may enable investigation of different com-
ponents of the soil community in comparison to bulk metagenomics, including cells
that can be dissociated from particles, and cells with susceptibility to the single-cell lysis
step. The use of two overlapping metagenomic methods may allow us to capture a
broader taxonomic diversity than the use of only one approach on its own. Additionally,
cell sorting using FACS requires cells to be intact in order to be sorted, thereby
minimizing challenges introduced by extracellular DNA in bulk soil samples. Using
mini-metagenomics to reduce the number of cells relative to bulk metagenomics may
decrease the number of genomes collapsed into a single MAG (41). Hence, we evalu-
ated this method as a tool to complement bulk metagenomics in uncovering the
“microbial dark matter” in soil.

Here, we combined mini-metagenomics and bulk metagenomics as complementary
approaches for capturing a more holistic perspective of microbial community diversity.
We discovered additional diversity of uncultivated microorganisms in a forest soil
microbial community and thus contribute to the known diversity of both major soil
clades and understudied taxonomic groups, which can be used as reference sequences
in future studies. Additionally, we provide an example of how the mini-metagenomics
and bulk metagenomic approaches can be used in complement to investigate potential
metabolism and ecological roles of microorganisms. Separation of intact cells from soil
via FACS enabled mini-metagenomic sequencing, while bulk metagenomics provided
total community context for benchmarking. Our approach generated 200 sorted-MAGs
and 29 bulk metagenome MAGs of medium quality, expanding the known phyloge-
netic diversity (PD) of soil clades. Our data suggest that the sorted-MAGs represent
some of the diversity of previously unsequenced organisms that are challenging to
access using bulk approaches, offering insights into the functional potential of soil dark
matter.

RESULTS AND DISCUSSION

Improved assembly and binning from mini-metagenomes. Our application of
mini-metagenomics combines microbial cell sorting and metagenome sequencing in
order to divide a complex soil community into many smaller, less complex subsets. We
performed FACS on pools of cells from four soil samples collected from the Barre
Woods experimental warming plots at the Harvard Forest Long-Term Ecological Re-
search (LTER) site. From each of the four samples we sequenced 90 replicate pools of
100 cells for a total of 359 mini-metagenomes (one mini-metagenome failed quality
control standards). In conjunction with mini-metagenomic sequencing, we performed
bulk metagenomics on these four soils, generating totals of 1.2 Gbp and 1.3 Gbp,
respectively (Fig. 1; see also Table S1 in the supplemental material).
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FIG 1 Overview of mini-metagenome and bulk metagenome approaches used in this study. (A)
Mini-metagenomics performed on four soil samples, including one heated sample from the top organic
soil, one heated sample from the lower mineral soil, one control organic sample, and one control mineral
sample (n = 4). Cells were separated from soil particles using a mild detergent, followed by vortex
mixing, centrifugation, and filtration through a 5-pum-pore-size syringe filter. Suspended cells were
stained with SYBR green and sorted into 90 pools of 100 cells each, generating 359 mini-metagenomes.
(B) Bulk metagenomic sequencing conducted on the four soils that were used in mini-metagenomics. (C)
Following nucleic acid extraction, libraries were prepared, and shotgun sequencing was performed.
Sequence data underwent assembly and quality control. Data were binned and assessed for bin quality.
Only medium-quality genome bins with estimates of 50% completeness, 10% contamination, and 10%
strain heterogeneity were used in downstream phylogenomic and functional analyses. Further details are
provided in Materials and Methods.

Binning of assembled contigs produced 1,793 mini-metagenome assembled ge-
nomes (sorted-MAGs) and 275 bulk metagenome MAGs (Fig. 2; see also Fig. S1 in the
supplemental material). Following CheckM quality assessment (45), 200 sorted-MAGs
and 29 bulk MAGs surpassed completeness thresholds of =50% complete, =<10%
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FIG 2 Assessment of sorted-MAG and MAG quality. Sorted-MAGs (orange, n = 1,793) and bulk MAGs
from the four samples corresponding to those sorted with FACS (blue, n = 275) are represented.
Medium-quality sorted-MAGs (dark orange, n = 200) and MAGs (dark blue, n = 29) are those with =50%
completeness, =10% contamination, and =10% strain heterogeneity based on analysis of CheckM
marker genes (43). The size of each circle represents the number of 165 rRNA gene copies within
each MAG.
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contamination, and =10% strain heterogeneity. We considered MAGs with less than
50% completeness to represent “low quality” based on MIMAG standards (46) and
excluded them from additional analyses (Fig. 2; see also Fig. S1). Overall, quality filtering
removed lower-quality sorted-MAGs on the basis of completeness, whereas bulk MAGs
were removed due to higher degrees of contamination and strain-level heterogeneity.
Assessment of MAG quality using CheckM showed average percent completeness of
81.5% in medium-quality bulk metagenome MAGs (n = 29), which was higher than the
61.9% seen with the medium-quality sorted-MAGs (n = 200; P = 3.29 X 10~ 7) (Fig. 2;
see also Fig. S1). Assessed for marker gene contamination, bulk metagenome MAGs
revealed an average estimated level of contamination of 1.92%, indicating an estimated
level of contamination higher than the average of 0.98% contamination in the sorted-
MAGs (P = 0.01117) (Fig. 2; see also Fig. S1). Analysis of strain-level heterogeneity across
medium-quality MAGs and sorted-MAGs revealed a lower degree of multiple strain
contamination in sorted-MAGs than in bulk MAGs as assessed by CheckM (45). The
average level of strain heterogeneity for the bulk MAGs was 1.16%, compared to 0.04%
in the sorted-MAGs (P = 3.89 X 10~5; Table S2). This decrease in strain heterogeneity
seen using mini-metagenomics indicates that sorted-MAGs collapse fewer strains into
a single MAG.

As one measure to compare mini-metagenomics and bulk metagenomics methods,
we assessed GC content and found averages of 49.2% GC and 60.5% GC in sorted-MAGs
and MAGs, respectively (Fig. S1; see also Table S2). Variation in GC content can be
attributed to known biases in the single-cell workflow such as susceptibility of cells to
sorting and lysis (37, 47), as well as amplification bias introduced during MDA (48). The
cell isolation method used in mini-metagenomics reduces inflation of community
diversity as a result of exogenous DNA. Additionally, the difference in DNA extraction
procedures between mini-metagenomics and bulk metagenomics represents an op-
portunity to capture an expanded diversity of microorganisms, as each approach may
access a different component of the community. Taking the data together, mini-
metagenomics and bulk metagenomics generated a large number of quality MAGs that
can be used as complementary data sets in genome-resolved studies to investigate
broad microbial diversity.

Expansion of phylogenetic diversity. As one aim of our study was to provide
reference genomes that represent soil microbiome diversity, we evaluated the contri-
bution of both sorted-MAGs and bulk MAGs to phylogenetic diversity in the context of
previously published genomes of soil bacteria and archaea. We inferred the phyloge-
netic relationships using concatenated marker genes from the 200 sorted-MAGs, the 29
bulk MAGs, and 3,024 soil microbe reference genomes from the IMG/M (Fig. 3A) (21).
For this analysis, we clustered sequences at 95% average nucleotide identity (ANI) to
estimate distinct species-level lineages, resulting in 170 sorted-MAGs, 25 bulk MAGs,
and 2,341 reference MAGs and isolate genomes from IMG/M (Fig. 3A; see also Fig. S2).
This small decrease in the number of MAGs as a result of clustering indicates very little
redundancy between previous MAGs and available reference sequences. Sorted and
bulk MAGs from this study contributed genome diversity across numerous soil clades,
including Alphaproteobacteria (16 sorted-MAGs, 2 bulk MAGs), Acidobacteria (11 sorted-
MAGs, 14 bulk MAGs), and Planctomycetes (2 sorted-MAGs, 1 bulk MAG). Sorted and
bulk MAGs also contributed diversity to less-abundant soil taxa, including TM6 (6
sorted-MAGs, 1 bulk MAG) and Betaproteobacteria (3 sorted-MAGs, 1 bulk MAG).

Comparison of MAGs recovered through mini-metagenome and bulk metagenomics
revealed a broad diversity of soil bacteria, as well as a few archaeal taxa, and demon-
strated the complementarity of these approaches for biological discovery. The sorted-
MAGs expanded the known diversity of the taxa which were previously found to be
abundant and ubiquitous across soil types (49), as well as of the taxa considered part
of the rare biosphere that may still be widespread but remain at relatively low
abundances in microbial communities (33). The more abundant taxa represented by
the sorted-MAGs include Bacteroidetes (n = 48) and Verrucomicrobia (n = 8), while the
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FIG 3 Phylogenetic diversity of soil taxa identified in this study. (A) Maximum likelihood tree of the phylogenetic distribution of medium-quality sorted-MAGs
and bulk MAGs in the context of previously sequenced soil taxa. Colored branches represent clades that include sorted-MAGs and/or bulk MAGs. Orange
branches include only sorted-MAGs, blue branches include only bulk MAGs, and green branches include both mini-metagenome and bulk MAGs. Numbers in
orange represent numbers of contributed sorted-MAGs, blue numbers represent bulk MAGs, and gray numbers represent the number of reference sequences
in each clade. (B) Phylogenetic diversity expansion through sorted-MAGs and bulk MAGs. Gray represents the total branch length contributed by soil reference
sequences from the IMG database. Orange bars represent total branch length from sorted-MAGs, and blue represents branch length from bulk MAGs. The
percentage of increase in phylogenetic diversity from this study is shown next to each bar.

March/April 2020 Volume 5 Issue 2 e00768-19

msystems.asm.org 6


https://msystems.asm.org

Forest Soil Microbial Diversity

taxa with typically lower abundances in soils included Thaumarchaeota (n = 4), Omni-
trophica (n = 3), Ignavibacteria (n = 2), Melainabacteria (n = 1), and Firestonebacteria
(n=1) (1, 49). Interestingly, numerous sorted-MAGs belonged to phyla typically com-
prised of pathogens and endosymbionts such as the Chlamydiae (n = 31) and Gam-
maproteobacteria, specifically within the order Legionellales (n = 30), as well as TM6
(n = 7) (50-53) (Fig. 3A; see also Fig. S3). Genomes in the phylum Chlamydiae and in the
order Legionellales within the phylum Gammaproteobacteria are considered entirely
intracellular (54, 55). The phyla identified by sorted-MAGs represented abundant taxa
found in previous soil community studies (1, 49, 56) in addition to the rare biosphere,
demonstrating the utility of mini-metagenomics for expanding diversity beyond abun-
dant soil taxa (Fig. 3; see also Fig. S3).

As for the bulk MAGs, some of these belonged to rare taxa not recovered through
mini-metagenomics, including WPS-2 (n = 3), Euryarchaeota (n = 1), and Saccharibac-
teria (n = 1). We assessed phylogenetic diversity (PD), the total amount of branch
length contributed by sequences of interest within a phylogenetic tree, in the sorted-
MAGs to determine the contribution of this single study to the known range of
microbial diversity. Calculation of phylogenetic diversity revealed a 7.2% increase in
total branch length contributed by the sorted-MAGs in relation to the soil reference
sequences from IMG/M (Fig. 3B). Mini-metagenomes expanded the range of available
evidence not only of phylogenetic diversity within clades of known soil bacteria and
archaea but also of candidate phyla and low-abundance taxa typically found in forest
soils. More specifically, the sorted-MAGs increased the branch lengths of well-studied
bacterial groups, including Bacteroidetes (33.6%) and Alphaproteobacteria (19.4%),
along with those of groups notoriously recalcitrant to laboratory cultivation, such as
TM6 (62.1%), Verrucomicrobia (41.3%), and Acidobacteria (28.0%) (42, 57). Most notable
was the PD increase in the Chlamydiae (72.5%), a taxonomic group which is typically
overlooked in soil metagenomic studies due to their low abundance and likely depen-
dence on eukaryotic host cells (58). We hypothesize that the application of mild
detergent and syringe filtration during sample processing may have lysed the microbial
eukaryotes that serve as hosts for bacterial endosymbionts, making these bacteria more
accessible for FACS. A similar phenomenon was suggested for the detection of 16 novel
giant viruses from these same samples (40), as these viruses are most often associated
with eukaryotic host cells (59). The hypothesized liberation of these intracellular
bacteria makes mini-metagenomic sequencing a useful tool for investigating the
diversity and evolution of the intracellular life strategy (55, 60).

The sorted-MAGs demonstrated the potential for mini-metagenomics to increase
our knowledge of diversity beyond what can be achieved using MAGs from bulk
metagenome studies alone. The bulk MAGs contributed to the phylogenetic diversity
of many of the same clades of soil bacteria as the sorted-MAGs, including Acidobacteria
(10.5%), TM6 (6.8%), and Alphaproteobacteria (2.6%). Even in clades where more bulk-
derived genomes were added than sorted-MAGs, such as in Acidobacteria, the sorted-
MAGs were phylogenetically more diverse. These calculated increases in phylogenetic
diversity with the addition of MAGs from this study are limited with regard to scope, as
not all available reference sequences are publicly accessible in the IMG/M database.
However, this database is updated monthly with newly uploaded sequences from
GenBank (21).

Complementarity of mini-metagenomics and bulk metagenome sequencing.
Mini-metagenomics has not been widely applied in soils to date and will serve as a
valuable tool for expanding our knowledge of soil biodiversity. In this study, we applied
both bulk metagenomics and mini-metagenomics to compare analyses of complex
community samples as well as to identify the advantages and disadvantages of each.
This approach is capable of generating higher-quality MAGs than bulk metagenomics
due to the reduction of strain-level microheterogeneity when selected pools of cells are
sequenced (32). Although they are lower in estimated genome completeness than bulk
MAGs, sorted-MAGs from soil also demonstrate a lower degree of strain heterogeneity,
indicating that fewer genomic fragments from multiple organisms have been collapsed
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into a single genome bin (45) (Table S2). The sorted-MAG reduced genome complete-
ness is, at least in part, a likely result of uneven whole-genome amplification (WGA), as
has been extensively reported in single-cell genomic studies (47). The larger number of
sorted-MAGs presents opportunities for improved resolution for taxonomic classifica-
tion and for genome-informed investigations of microbial metabolism and linking the
potential metabolism to processes at the ecosystem level. Taxonomic classification of
organisms using high-quality MAGs has become a critical approach for expanding
knowledge of microbial diversity, given that we currently lack information for the
majority of uncultivated organisms (61). Finally, although not applied in this study,
FACS-based sample processing may be modified to achieve cell and/or population
separation that is more highly targeted (62), thereby further expanding the utility of
mini-metagenomics to detect microbial dark matter.

Although the mini-metagenomics approach produced a greater number of
medium-quality genome bins than bulk metagenomics, this approach is not without
challenges. In comparison to bulk metagenomics, the requirements associated with
mini-metagenomics may be prohibitive, as it involves equipment and expertise that
may not be easily accessible. In addition to logistical obstacles, methodological chal-
lenges, including cell isolation and GC-based genome amplification skew, likely intro-
duce bias during sample processing. The formation of extracellular polysaccharides is
a strategy widely used by microorganisms to protect against changes in the environ-
ment, as well as for exchange of nutrients and materials (63). These matrices may
support the maintenance of stable microbial consortia and cellular adhesion to soil
particles (63). These larger aggregate structures are subject to exclusion in sample
preparation steps, including filtration, prior to FACS. Methodological challenges such as
these may be reflected in our data, where organisms which are typically abundant in
forest soils, such as Actinobacteria, Chloroflexi, and Firmicutes (49), were present in low
numbers using mini-metagenomics compared to traditional bulk metagenomics (Fig. 3;
see also Fig. S3). Though these taxa might have been missed due to the aforemen-
tioned biases, it is also possible that sequences from these organisms were not binned
or were placed in a lower-quality bin based on our filtering threshold. For example,
bacteria in the phylum Spirochaetes were represented by 47 distinct sorted-MAGs;
however, none of these passed quality filtering standards and all were therefore
excluded (Fig. 3; see also Fig. S3). An alternative DNA amplification method, termed
WGA-X, has been developed which improves cell lysis and amplification of high-GC-
content organisms over MDA (48). With this improved method of DNA amplification,
more extensively representative mini-metagenomic sampling might be possible.

Bulk metagenomics presents fewer opportunities to introduce bias and may more
accurately capture the total soil community than the mini-metagenomic approach.
Using bulk metagenomics, DNA from the total soil sample is extracted and sequenced,
which circumvents cell and particle size selection introduced via FACS. Thus, bulk
metagenomics remains an invaluable tool for understanding the diversity of microbial
communities, particularly that of the dominant soil microorganisms. Sorted-MAGs,
however, provided additional genomic data covering broader phylogenetic diversity
compared to the bulk MAGs, further enhancing biological discovery. The scientific
question of interest should guide the selection of one approach over the other. We
support the use of both approaches in complement to one another in order to capture
the broadest scope of soil microbial diversity.

Representation of sorted-MAGs and MAGs across terrestrial soil metagenomes.
To assess the representation of our newly generated soil reference genomes across
other terrestrial ecosystems, we searched for protein coding sequences from our
collection of sorted-MAGs and MAGs across publicly available soil metagenomes from
80 terrestrial metagenome studies. For this analysis, we dereplicated the 200 sorted-
MAGs and 29 bulk MAGs from this study by clustering at 95% average nucleotide
identity without reference sequences, resulting in 173 sorted-MAGs and 28 bulk MAGs
as cluster representatives (Fig. 4; see also Fig. S2). We assessed these sorted-MAGs and
bulk MAGs in the context of broader terrestrial community studies by comparing them
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FIG 4 Comparison of MAGs from this study with published data from terrestrial metagenomes. Innermost is a maximum likelihood tree
based on a concatenated alignment of 56 conserved marker proteins from medium-quality sorted-MAGs and bulk MAGs recovered in this
study. Mini-metagenomes and bulk MAGs were dereplicated by clustering at 95% average nucleotide identity, resulting in 173
sorted-MAGs and 28 bulk MAGs. The clade names are color-coded according to phylum. Individual tracks around the tree depict hits of
individual sorted-MAGs and bulk MAGs by metagenome samples arising from each terrestrial habitat type as specified in the legend. The
height of the bar chart indicates the total number of sorted-MAGs and bulk MAG coding sequences that matched metagenome samples.
The MAGs were considered matches if they had a minimum of 200 coding sequences with hits at =95% amino acid identity over 70%
alignment lengths to CDS of an individual metagenome. Further details are provided in Materials and Methods, and data corresponding
to this figure are provided in Table S3. The figure was rendered using iTOL (96).

against 2,210 metagenomes from the 80 terrestrial studies using LAST (64) (Fig. 4; see
also Table S3). We defined highly represented sorted-MAGs and MAGs as those with at
least 200 protein coding sequences with hits to metagenome samples at =95% amino
acid identity (AAIl) over a 70% alignment length (65, 66).

Some of our sorted-MAGs and MAGs detected in previous metagenomic soil inves-
tigations were members of the phylum Acidobacteria (10 sorted-MAGs and 15 MAGs)
(Fig. 4; see also Table S3). Five bulk MAGs in the phylum Proteobacteria were detected
in metagenomes from forest, agricultural, arctic, grassland, and vadose zone soils,
whereas two bulk MAGs in candidate division WPS-2 were detected in metagenomes
from Harvard Forest and other forest soil metagenomes, as well as arctic and surface
soils. Interestingly, one MAG in the Planctomycetes was detected only in metagenome
sequences from the Harvard Forest, indicating that this may represent a unique MAG
which had not been found in previous terrestrial metagenome studies.

The phylum Acidobacteria was the most abundant phylum represented in the bulk
MAGs (77%) and unbinned metagenome data (32%), compared to the sorted-MAGs
(8.5%) (Fig. S3). In contrast, the phylum Bacteroidetes was highly represented by the
sorted-MAGs (55.5%), compared to the bulk metagenome MAGs (0.1%) and unbinned
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metagenome data (3.8%) (Fig. S3). The sorted-MAGs in the phylum Bacteroidetes
increased the phylogenetic diversity of this group by 33.6% (Fig. 3) and appeared to be
novel as they had a relatively low number of matches to protein coding sequences from
publicly available soil metagenomes, with only 6 of 67 Bacteroidetes MAGs having
similarity of at least 200 coding sequences with published soil metagenomes (Fig. 4).
This presumed novelty could also contribute to computation challenges associated
with sequence assembly, as only the most abundant taxa are overrepresented in public
databases (29). And yet many of these sorted and bulk MAGs were not represented in
previous Harvard Forest metagenomes (Fig. 3). Taking the data together, the low level
of representation of our Bacteroidetes sorted-MAGs across previously published met-
agenome samples illustrates the expanded biodiversity gained through the use of
mini-metagenomes, demonstrating the utility of this approach for accessing the rare
taxa within phylogenetically diverse samples.

Biological insights into carbon metabolism in soil Bacteroidetes. Bacteroidetes
spp. make up ~10% to the total microbial community in soils (1), and yet most of our
knowledge about members of this phylum stems from sequenced isolates from verte-
brate guts and aquatic habitats (67-69). Bacteria in the phylum Bacteroidetes are known
to be important degraders of polysaccharides; however, little is known about the role
of this abundant group in soils. Given the relatively small body of work on sail
Bacteroidetes and the substantial contribution of 67 putatively novel sorted-MAGs from
this study to phylogenetic diversity estimates (Fig. 3; see also Fig. 5), we further
explored these sorted-MAGs from Bacteroidetes to gain insight into their physiological
potential and assess functional similarities to previously known Bacteroidetes.

The genome sizes of the sorted-MAGs ranged from 1.6 to 5 Mb (Table S4), which is
within the range of previously reported Bacteroidetes genome sizes of from 0.9 Mb
(Cardinium endosymbiont) (70) to 9.1 Mb (Chitinophaga pinensis) (71). The finding of
smaller genome sizes of the sorted-MAGs was likely due to genome completeness
estimates, which ranged from 50% to 80.5% based on analysis of CheckM marker genes
(Fig. 5; see also Fig. S4) (45). These sorted-MAGs were distributed across three distinct
families, including Cytophagaceae, Chitinophagaceae, and Sphingobacteriaceae, as well
as a clade of unclassified sorted-MAGs (Fig. 5). Bacteroidetes are known to have a large
set of genes that encode enzymes for carbohydrate degradation (69), including a broad
array of glycoside hydrolases that are phylogenetically conserved (72). The distribution
of CAZy gene families across these Bacteroidetes taxa exhibited clade-specific abun-
dance patterns of glycoside hydrolases, glycosyl transferases, and carbohydrate binding
modules (Fig. 5; see also Table S4) (73).

Sorted-MAGs within the Cytophagaceae family appeared to be specialized for poly-
meric carbon degradation, namely, degradation of cellulose, as they encode proteins in
glycoside hydrolase family 5 which exhibit endocellulase activity (74, 75). In contrast,
members of the Chitinophagaceae and Sphingobacteriaceae families appeared to be
generalists in carbon utilization. More specifically, the Chitinophagaceae sorted-MAGs
harbored the potential to use cellulose, hemicellulose, and chitin. Seventeen of the 27
sorted-MAGs in the Chitinophagaceae family contained at least one chitinase in glyco-
side hydrolase family 18 or 19 (76) along with cellulases in glycoside hydrolase families
5, 8, and 9 and glycoside hydrolases in family 43 that may degrade hemicellulose and
pectin (77) (Fig. 5; see also Fig. S5). In support of this conjecture, the sequenced
genome of Chitinophaga pinensis (a member of the Chitinophagaceae family) contains
genes to degrade leaf matter and fungal structures, suggesting its ability to degrade
both cellulose and chitin (78). Twenty sorted-MAGs belonged to the family Sphingo-
bacteriaceae and typically harbored the potential to degrade cellulose, xylan, and chitin,
with GH families 2, 3, 5, 13, 18, and 20 being the most abundant across sorted-MAGs
in this group. Interestingly, one sorted-MAG (Q3300020668_2) had the highest number
of glycoside hydrolase genes within the Sphingobacteriaceae (125 annotated glycoside
hydrolases), representing a diverse array of carbohydrate degradation capabilities and
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potential metabolic flexibility. This is consistent with previous investigations describing
the family Sphingobacteriaceae as capable of degrading diverse polysaccharides (79).

Putatively novel Bacteroidetes sorted-MAGs stemming from experimental warming
plots at the Harvard Forest Long-Term Ecological Research site spanned three different
taxonomic families and harbored an extensive diversity of enzyme families, including
those involved in hydrolysis of polymeric chitin, cellulose, and hemicellulose substrates.
The genomic potential to utilize these labile carbon compounds is consistent with
previous metagenomic investigations in soils of warmed plots (16, 80). Interestingly, the
number of identified carbohydrate active enzyme genes increased with genome size
for each of the six CAZy categories (Fig. 5; see also Fig. S4), illustrating that these
organisms accumulated the capacity to degrade various carbohydrates, thereby ex-
panding their niche for carbohydrate utilization in soil. And yet 17 sorted-MAGs
belonged to an unclassified clade of Bacteroidetes spp. which were depleted in glyco-
side hydrolases and carbohydrate binding modules but retained a high number of
glycosyl transferases (Fig. 5; see also Fig. S5), suggesting a limited role for these
organisms in substrate decomposition. Rather, the relatively higher abundance of
glycosyl transferase genes involved in the formation of glycosidic bonds may indicate
that these organisms are responsible for synthesis of higher-molecular-weight com-
pounds and may depend on living in close association with other organisms.

To further support the role of the Bacteroidetes in polymeric carbon degradation in
soils, we investigated specific carbohydrate degradation using the KEGG database (81,
82) and predicted the completeness of metabolic pathways using KEGG-Decoder (83).
The majority of sorted-MAGs in Sphingobacteriaceae and Chitinophagaceae have nearly
complete pathways coding for alpha-amylase, beta-glucosidase, chitinase, and diace-
tylchitobiose deacetylase activity, further supporting the idea of a role of these organ-
isms as generalists in polysaccharide degradation (Fig. S6). Additionally, seven of the
sorted-MAGs within Sphingobacteriaceae contain nearly complete pathways for pullu-
lanase. Consistent with analysis of carbohydrate degradation potential using the CAZy
database (Fig. S5), 22 of the sorted-MAGs were found to contain only one complete
pathway or no complete pathways for polymeric carbohydrate degradation (Fig. S6).
This limited potential for carbohydrate utilization does not correlate with decreased
genome completeness (Fig. S4). Rather, we hypothesize that these sorted-MAGs have
an alternative survival strategy in the soil environment similar to those exhibited by
other Bacteroidetes, including “Candidatus Amoebophilus asiaticus” (84), Cardinium sp.
(85), “Candidatus Sulcia muelleri” (86), and Blattabacterium sp. (87), which are known
symbionts (Fig. 5).

Similarly to known symbionts, the estimated GC contents of unclassified sorted-
MAGs in this study were low relative to those of other Bacteroidetes sequences, with an
average of 39.97% GC (88). These unclassified Bacteroidetes demonstrate limited ability
for carbon utilization and reduced central carbon metabolism and chemotaxis (Fig. S6)
while retaining genome sizes of 2.4 Mb on average, which are comparable to those of
Bacteroidetes previously identified as host-associated species (Fig. 5; see also Fig. S5 and
S6). Symbionts may undergo the process of reduction in genome size when in contact
with the host organism, resulting in a linear relationship between the number of
protein coding genes contained and the size of the genome (87-89). The abundance of
unclassified Bacteroidetes within this study may represent further evidence of the
liberation of symbionts from host cells and vacuoles prior to FACS. Alternatively, the

FIG 5 Legend (Continued)

Chitinophagaceae, and Sphingobacteriaceae, and a clade of unclassified sorted-MAGs. Column B shows genome sizes, with the darkest color representing the
largest genome of 9.1 megabases and the lightest representing a genome size of 0.6 megabases. Column C shows genome completeness based on CheckM
marker genes, ranging from 50% to 80.5%, as a color gradient. Reference sequences represent isolates with complete genomes. Column D presents genome
GC content as a color gradient that ranges from 21.13% to 61.24%. In columns E to G, percentages of genes annotated as glycoside hydrolases (column E),
glycosyl transferases (column F), and carbohydrate binding modules (column G) are illustrated as bar charts with vertical lines denoting 0% and 50% of
annotated genes. Bacteroidetes with known symbiotic relationships are indicated with an asterisk. The collapsed clade contains Sulcia muelleri, a known
symbiont of sap-feeding insects, and Blatellabacterium sp., a known symbiont of the cockroach Blatella germanica.

March/April 2020 Volume 5 Issue 2 e00768-19 msystems.asm.org 12


https://msystems.asm.org

Forest Soil Microbial Diversity

relatively low carbohydrate degradation potential of sorted-MAGs within the unclassi-
fied clade may be indicative of an opportunistic life strategy (74).

Conclusions. This application of mini-metagenomics and bulk metagenomics has
demonstrated the utility of these complementary techniques for biological discovery
within the complex soil ecosystem. Using mini-metagenomics to reduce the number of
cells prior to sequencing, we uncovered bacterial and archaeal soil diversity that could
not be accessed using bulk metagenomics alone. Mini-metagenomics is a powerful tool
for the discovery of rare biosphere organisms and potential endosymbionts, revealing
biodiversity in dominant soil groups as well as in low-abundance taxa. Taken together,
the mini-metagenomics and bulk metagenomics approaches allow us to probe deeper
into microbial diversity and function within heterogeneous environments beyond soil.

MATERIALS AND METHODS

Sample collection and incubation. Soils were collected on the 24th of May 2017 from the Barre
Woods long-term experimental warming plots located at the Harvard Forest Long Term Ecological
Research (LTER) site in Petersham, MA, USA. This site consists of two 30-by-30-m plots: one which has
remained at ambient soil temperature and one that has been artificially warmed since 2002 using
heating cables buried at 10-cm depth (90). Soil respiration, nitrogen mineralization, and vegetation cover
and growth as well as soil and litter chemistry have been measured over the course of the long-term
experiment. The canopy overstory is dominated by paper birch and black birch (Betula papyrifera and B.
lenta, respectively), red maple (Acer rubrum), black oak and red oak (Quercus velutina and Q. rubra,
respectively), and American beech (Fagus grandifolia) (56).

Two intact soil cores were taken from subplots within the larger 30-by-30-m experimental plots,
including a subplot within heated plot 2 and a subplot within control plot 12. The subplots included in
this study were chosen at random. The collected soil cores were separated into organic (approximately
top 5 cm of soil core) and mineral (lower 5 cm of soil core) horizons by visual inspection and were sieved
with a 2-mm-pore-size mesh, resulting in a total of 4 individual soil samples.

Both treatments (heated and control) and soil horizons (organic and mineral) were represented by
these four soil samples. Approximately 5 g of soil was immediately frozen in a dry ice/ethanol bath for
DNA extraction and was then transported to the University of Massachusetts Amherst for storage at
-80°C. Approximately 15 g of soil was transferred to a 50-ml Falcon tube for transportation on ice to the
Joint Genome Institute (JGI) in Walnut Creek, CA, USA. Samples were further processed as described
previously Schulz et al. (40). The study was limited to four soil samples in order to maintain the
cost-effectiveness and overall efficiency of the techniques applied.

Sample preparation and cell sorting. Cells were separated from four incubated soils (heated
organic, heated mineral, control organic, and control mineral samples) for FACS through the addition of
0.02% Tween 20 followed by vortex mixing performed for 5 min. Samples were centrifuged for 5 min at
500 X g to pellet large soil particles. Following centrifugation, the supernatant was filtered through a
5-wm-pore-size syringe filter to remove the remaining soil particulates. Samples were diluted 1:100 in
phosphate-buffered saline (PBS) and stained with SYBR green (Thermo Fisher Scientific, Waltham, MA,
USA). For each of the four soil samples, 90 pools of 100 SYBR-positive (SYBR*) cells were sorted into
microwell plates using a BD Influx cell sorter (BD Biosciences, San Jose, CA, USA) to perform FACS. Sorted
pools underwent cell lysis and whole-genome amplification using a Qiagen RepliG single-cell kit for
multiple-displacement amplification (MDA) (Qiagen, Hilden, Germany). A total of 360 libraries were
generated for sequencing with a Nextera XT v2 kit (Illumina, San Diego, CA, USA) with 9 rounds of PCR
amplification.

Mini-metagenomes. Following library preparation, the 360 mini-metagenome libraries were se-
quenced on an lllumina NextSeq platform (lllumina, San Diego, CA, USA) at the DOE Joint Genome
Institute (JGI; Walnut Creek, CA, USA). Pools of 90 libraries were processed in four sequencing runs with
2 X 150-bp read lengths. Raw lllumina reads were quality filtered to remove contamination and low-
quality reads using BBTools (v37.38) (91), resulting in 359 mini-metagenomes for downstream analysis,
as one mini-metagenome did not pass quality filtering standards. Read normalization was performed
using BBNorm (91), and error correction was conducted using Tadpole (91). Assembly of filtered,
normalized Illumina reads was completed using SPAdes (v3.10.1) (92) with the following options:
—phred-offset 33 -t 16 -m 115 —sc -k 25,55,95. All contig ends were trimmed of 200 bp, and contigs were
discarded if the length was <2 kb or the level of read coverage was less than 2 using BBMap (91) with
the following options: nodisk ambig, filterbycoverage.sh: mincov.

Bulk metagenomes. Total DNA was extracted from ~0.25 g of soil using a DNeasy PowerSoil DNA
extraction kit (Qiagen, Hilden, Germany). Extracted DNA was assessed using a Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) and Qubit (Thermo Fisher Scientific, Waltham, MA, USA). Unamplified
TruSeq libraries were prepared for 4 DNA samples prior to sequencing on an lllumina HiSeq-2000
platform (lllumina, San Diego, CA, USA) at the DOE JGI. Raw Illumina reads were trimmed, quality filtered,
and corrected using bfc (version r181) with the following options: -1 -s 10g -k 21 -t 10. Following quality
filtering, reads were assembled using SPAdes (v3.11.1) (92) with the following options: -m 2000
—only-assembler -k 33,55,77,99,127 -meta -t 32. The entire filtered read set was mapped to the final
assembly, and coverage information was generated using BBMap (v37.62) (91) with default parameters
except ambiguous=random. The version of the processing pipeline used was jgi_mga_meta_rqc.py,
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2.1.0. Of the 28 metagenome samples sequenced, only 4 were selected for inclusion in analysis for this
study because they corresponded to those samples sorted using FACS.

Genome binning and quality assessment. Assembled contigs from the bulk and mini-
metagenomes were binned into MAGs and sorted-MAGs based on tetranucleotide frequency using
MetaBat2 (93). Sorted-MAGs were generated for mini-metagenomes without contig coverage patterns
due to MDA bias. Genome bins were assessed for estimated completeness and estimated contamination
marker genes included in the CheckM (45). Bulk metagenome MAGs and sorted-MAGs were filtered to
=50% completeness, =10% contamination, and =10% strain heterogeneity to retain medium-quality
sorted-MAGs and bulk metagenome MAGs for downstream analysis (46). Following quality filtering, 200
medium-quality sorted-MAGs and 29 medium-quality bulk metagenome MAGs were used for phylog-
enomic analysis, metagenomic recruitment, and investigation of metabolic potential.

Phylogenetic tree construction and phylogenetic diversity. A concatenated marker gene phylo-
genetic tree was constructed for 200 medium-quality sorted-MAGs, 29 bulk MAGs, and 3,024 reference
genomes from soil bacteria and archaea available in the IMG/M database. A set of 56 universal
single-copy marker proteins (41, 92) was identified with hmmsearch (v3.1b2) (94) and specific hidden
Markov models (HMM:s) for each of the markers. For every marker protein, alignments were built with
MAFFT (v7.294b) (95) and subsequently trimmed with BMGE using BLOSUM30 (96). MAGs and reference
sequences were clustered at 95% average nucleotide identity with FastANI v1.0 (97), resulting in 170
sorted-MAGs, 25 bulk MAGs, and 2,341 reference sequences with distinct taxonomic classifications.
Single-protein alignments were then concatenated, and a phylogenetic tree was inferred with FastTree2
using the options -spr 4 -mlacc 2 -slownni -lIg (98) and was visualized using iTol (99).

The contribution of sorted-MAGs and bulk MAGs to phylogenetic diversity was determined by
calculating the sum of the total branch lengths of the contributed genomes relative to the reference
genomes (100). Total branch length was calculated for a phylogenetic tree containing only 2,341
bacterial and archaeal reference sequences from IMG/M (21). We then calculated the additional total
branch lengths contributed by sorted-MAGs and bulk MAGs. The percentage of increase in total branch
length was determined for the complete phylogenetic tree, as well as for clades that included sorted-
MAGs.

Taxonomy was assigned to sorted-MAGs, bulk MAGs, and metagenome reads by searching se-
quences against the NCBI-NR database using DIAMOND (101). BLAST results were imported into MEGAN6
(102) for taxonomic assignment. The relative abundance of each phylum was computed and visualized
in R using ggplot2 (103).

Protein recruitment. Sorted-MAGs (n = 200) and bulk MAGs (n = 29) were dereplicated by
clustering based on 95% average nucleotide identity. Protein coding sequences from the resulting 199
representative sorted-MAGs and MAGs were compared against coding sequences predicted from 2,210
soil metagenome samples from 80 terrestrial metagenome studies stored in the IMG/M database using
LAST (64) (Fig. 4; see also Table S3 in the supplemental material). Individual sorted-MAGs and MAGs were
designated a match to metagenome samples if the following criteria were met: a minimum of 200 coding
DNA sequences (CDS) with hits at = 95% amino acid identity over 70% alignment lengths to CDS of an
individual metagenome. The rationale for choosing the minimum 200 hit count was to ensure that the
evidence included more than merely housekeeping genes, which may be more highly conserved. The
95% amino acid identity cutoff was chosen based on a study reported previously by Luo et al. (65), who
asserted that organisms grouped at the “species” level typically show >85% AAlI among themselves.
Since our data set included divergent sublineages, the more conservative threshold of 95% amino acid
identity was adopted. The average percentage of CDS with a metagenome hit was calculated for each
mini-metagenome (Fig. 4; see also Table S4), and the results were plotted as a multibar chart in iTol (99).

Bacteroidetes phylogeny and metabolic predictions. A maximum likelihood tree for Bacteroidetes
was constructed using IQTree (104) for the 67 sorted-MAGs and soil Bacteroidetes references from IMG/M.
The tree was rooted with Pedosphaera parvula in the phylum Verrucomicrobia. Family-level taxonomic
classification and genome size and genome size based on CheckM marker gene assessment (45) were
visualized using iTol (99). Functional annotation for sorted-MAGs was assigned using the Carbohydrate
Active Enzyme (CAZy) database (73) implemented in dbCAN2 (105). The percentage of total annotated
genes assigned to each gene family was calculated and is displayed in a multibar chart in iTol (99).

Additional metabolic annotations were assigned to the 67 Bacteroidetes sorted-MAGs using the
GhostKoala server (82). Following annotation of protein coding genes, assigned knockouts (KOs) were
used to estimate the completeness of selected pathways using KEGG-Decoder and a heat map was
generated using “static” visualization mode to depict the completeness of each pathway (83).

Data availability. The bacterial and archaeal MAG data sets generated and analyzed in this study
were deposited at NCBI GenBank under BioProject accession number PRINA608716 and at https://
bitbucket.org/Ivalteio/forest_soil_mags_and_sortedmags/src, together with sequence alignments and
phylogenetic trees generated in this study. Metagenomes and their corresponding metadata are
available at IMG/M (https://img.jgi.doe.gov/m) under the taxon OIDs (identification numbers) indicated
in Table S1.
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