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Methodology

Calculating detection limits and uncertainty
of reference-based deconvolution of
whole-blood DNA methylation data
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DNA methylation (DNAm)-based cell mixture deconvolution (CMD) has become a quintessential part of
epigenome-wide association studies where DNAm is profiled in heterogeneous tissue types. Despite being
introduced over a decade ago, detection limits, which represent the smallest fraction of a cell type in a
mixed biospecimen that can be reliably detected, have yet to be determined in the context of DNAm-
based CMD. Moreover, there has been little attention given to approaches for quantifying the uncertainty
associated with DNAm-based CMD. Here, analytical frameworks for determining both cell-specific limits
of detection and quantification of uncertainty associated with DNAm-based CMD are described. This work
may contribute to improved rigor, reproducibility and replicability of epigenome-wide association studies
involving CMD.

First draft submitted: 7 January 2023; Accepted for publication: 16 May 2023; Published online:
20 June 2023
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Epigenome-wide association studies (EWAS) involve the study of epigenetic variation, specifically DNA methylation
(DNAm), and its relationship to environmental risk factors, pathogenesis, disease progression and response to
treatment [1–3]. A well-established challenge in the analysis of data arising from EWAS where DNAm is profiled
in heterogeneous tissue types (e.g., whole blood) is the potential for confounding, which stems from the cell
specificity of DNAm [4]. Along with the potential for confounding, DNAm analyses of heterogeneous tissue types
have the additional challenge of reduced statistical power for detecting differential methylation and are often more
difficult to interpret compared with DNAm analyses conducted on purified, homogenous cell populations [5–8].
When measurements of cell composition are available, the potential for confounding due to cellular heterogeneity
can be mitigated by adjusting statistical models with terms that reflect the proportion of each cell type within
the heterogeneous sample [8]. However, measurements of cell composition are not routinely available as there are
both logistical hurdles associated with their collection (e.g., most cytological techniques require fresh samples)
and because of additional costs to the researcher. Fortunately, methods have been developed that leverage the cell
specificity of DNAm to estimate or deconvolve the fraction/proportion of specific cell types in a biospecimen that
represents a heterogenous mixture of such cell types. So-called cell mixture deconvolution (CMD) is based on the
premise that the methylation signature of a heterogeneous sample is a weighted mixture of the unique methylation
signature associated with each of the cells present in that sample [9–16]. While DNAm-based CMD can be reference-
free [11,15,16], where heterogeneous mixtures are deconvolved in the absence of reference DNAm signatures on the
specific cell types believed to be present in such mixtures, or reference-based deconvolution [9,10,12,13], where the
DNAm signature of specific cell types is leveraged, only the latter provides deconvolution estimates with known
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cell identity. Thus, if there is interest in examining the proportion of particular cell types or cell type ratios in
relation to the particular phenotype(s) or exposure(s) of interest, as is frequently the case, reference-based methods
for CMD are generally preferred as the identity of the specific cell types being deconvoluted is known [13,14].

Whether interest is centered on comparisons of the cell proportions per se, or ratios thereof [17–20], or inclusion
of cell proportions as covariates in downstream statistical models [8,12,21], there are several issues associated with
reference-based DNAm deconvolution that should be considered. First, CMD may result in estimates of zero (or
very close to zero) for one or more cell types in a mixed or heterogeneous biospecimen when they are present
in the sample [22]. While deconvolution estimates approaching zero or exactly equal to zero may, on the surface,
seem benign, they can lead to extreme values when calculating cell type ratios (e.g., neutrophil to lymphocyte
ratio, CD4/CD8), adversely impacting downstream statistical comparisons of such ratios, and can be problematic
when applying statistical models for compositional data, some of which involve modeling log-ratios of the cell
type proportions [23]. Consequently, many researchers will either remove/exclude samples with deconvolution
estimates that approach or are equal to zero, winsorize deconvolution estimates [24,25] or will impute problematic
cell types with an arbitrarily chosen, nominal value, a practice that lacks adequate justification and undermines
reproducibility. In such situations, it would be valuable to know the limit detection of DNAm-based deconvolution
as the limit of detection (LoD) is a reflection of how precise a specific instrument, technology or procedure is, and
because it often influences how values equal to or approaching zero, are handled [26,27].

A second consideration of reference-based DNAm deconvolution concerns the use of deconvolution estimates as
covariates in downstream statistical models to adjust for the potential confounding effects of cellular heterogeneity.
Regression models, which are commonly used in EWAS, assume that covariates are measured precisely, or observed
without error. Regardless of the specific statistical framework used for reference-based DNAm deconvolution,
deconvolution estimates are subject to uncertainty, uncertainty that is often ignored when such estimates are
treated as covariates in downstream regression models. For example, it is common to include the cell proportion
estimates obtained from CMD as covariates without considering the uncertainty or error associated with their
estimation. Depending on the degree of uncertainty and relationship to other variables in the model, failing to
incorporate the mistake in deconvolution estimates could contribute to bias in parameter estimation or loss of
statistical power [28,29].

While DNAm-based CMD was introduced over a decade ago, there remains very little guidance on how one
should handle DNAm-based deconvolution estimates that approach or equal zero, nor has there been sufficient
attention on how to quantify the uncertainty associated with DNAm-based CMD. Motivated by these gaps and the
challenges they present, the current authors sought to create systematic analytical frameworks for determining both
cell-specific LoDs and for the quantification of uncertainty associated with DNAm-based CMD. As described by
Arbruster and Pry in the context of clinical laboratory work, the LoD is the lowest analyte concentration at which
detection of that analyte is possible [30]. In the context of DNAm-based CMD, the LoD is the smallest percentage of
a cell type in a mixed biospecimen (e.g., whole blood) that can be reliably detected via CMD. The current approach
to estimating the LoD for DNAm-based CMD builds off this definition and involves the generation of in silico
mixtures where the proportion of select cell types are manipulated in a mixture to determine the point at which it
can be reliably detected via CMD. In addition to being useful for handling cell proportion estimates that approach
or are equal to zero, analytical frameworks for calculating cell-specific LoDs would allow one to assess the viability
of adding new cell types to existing reference libraries for the purpose of reference-based CMD. To quantify the
uncertainty associated with deconvolution estimates, utilizing nonparametric bootstrap-based (1-α)*100% CIs is
proposed.

What follows begins with an overview of CMD. Next, the steps involved in the proposed analytical framework
for calculating cell-specific LoD values for DNAm-based deconvolution of whole-blood DNAm data carried out
using the Houseman method are described [9]. The steps involved in obtaining cell-specific (1-α)*100% bootstrap
CIs for the deconvolution of whole blood DNAm data are described next, followed by a description of the datasets
and assessments that were performed to evaluate the proposed frameworks. Finally, an illustration of the proposed
framework and a discussion of the results are provided.

Methods & materials
Reference-based CMD
For this work, DNAm is assumed to have been profiled in whole blood; however, in principle, the following
descriptions apply to DNAm data collected from any heterogeneous tissue type that is believed to be a complex
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mixture of different cell types. Let Yi = [Yi1, Yi2, . . . , Yi J ∗ ] be a vector of CpG-specific methylation beta-
values such that 0 ≤ Yij ≤ 1, i ∈ 1, 2, . . . , N and j ∈ 1, 2, . . . J ∗. Here, J ∗ << J and J is the total
number of CpGs profiled on an array and J ∗ is the number of CpGs that make up the reference library.
Additionally, i is an index representing subject/sample and j is an index for a particular CpG site. Assuming that
sample i is comprised of K underlying cell types whose corresponding proportions in the mixture are denoted as
wi = [wi1, wi2, . . . , wiK], the whole-blood methylation signature Yi can be expressed as a weighted mixture
of the DNAm signature of the K cell types contained within the sample, i. In particular,

Yi = wi ST
i + ∈i , 0 ≤ wik ≤ 1 ,

K∑

k=1

wik ≤ 1

where Si is a J ∗ x K matrix of cell-specific methylation beta-values for sample i and ∈i represents a random error
term. Cell type proportions for this research were estimated using the Houseman approach [9]. Estimating wi via
the Houseman approach involves finding the set of weights that minimize the squared error loss function subject
to the previously described constraints on wi . Specifically,

argminwi
‖Yi − wi ST

i ‖2

is minimized utilizing constrained projection/quadradic programming. In practice, Si is frequently unknown so a
general matrix, M, whose elements are the mean cell-specific methylation beta-values calculated from a reference
dataset of cell-specific methylation data, is used in place of Si [5,9].

Regardless of the specific statistical framework used for DNAm-based cellular deconvolution, the accuracy of
cell proportion estimates, ŵi , strongly depends on the J ∗ specific CpGs used as the basis for deconvolution [12].
The J ∗-specific CpGs used as the basis for deconvolution are often referred to as the reference library. Reference
libraries are ideally comprised of a set of CpGs that exhibit a unique methylation signature across the K cell types
as this strongly correlates with deconvolution accuracy [5,12,21,31]. In what follows, the reference library described
in [31] was used. This library is comprised of 1200 CpGs and is hereafter referred to as the Extended Reference
Library. The Extended Reference Library was constructed using the IDOL algorithm (Koestler et al.) and facilitates
the estimation of the proportions of 12 leukocyte subtypes: neutrophils, eosinophils, basophils, B naive cells, B
memory cells, monocytes, natural killer (NK) cells, CD4 naive cells, CD4 memory cells, CD8 naive cells and
CD8 memory cells, based on whole-blood DNAm data assayed using the Illumina HumanMethylationEPIC array
(Illumina, CA, USA) [12]. The Extended Reference Library was shown to be highly accurate in deconvoluting these
12 leukocyte subtypes [31].

Limit of blank
Calculating the deconvolution-based LoD for each of the previously mentioned 12 leukocyte subtypes requires one
to first determine the limit of blank (LoB) for each cell type. The LoB is the highest apparent analyte concentration
expected to be found when replicates of a sample containing no analyte are tested [30]. In cellular deconvolution, the
LoB can be thought of as the highest apparent deconvolution estimate of a cell type in a mixture (e.g., whole blood)
that is expected to be reported when that cell type is not present in the mixture. Arbruster and Pry estimate the
LoB by first measuring the concentration of the analyte based on replicates of a blank sample, then by calculating
LoB = x blank + 1.645 ∗ s blank, where x blank is the sample mean of the analyte concentration and s blank is the
sample standard deviation. Based on this formulation and assuming a Gaussian distribution of the raw analytical
signals from blank samples, 95% of the measurements of the analyte of interest assessed in samples not containing
the analyte would be expected to be less than the LoB. Arbruster and Pry likely assumed a Gaussian distribution for
the raw analytical signals of blank samples in their calculation because calculating the mean and standard deviation
can be accomplished with a relatively modest number of replicate blank samples. Such modest sample sizes are not
uncommon for clinical laboratory testing due to the time and cost of the associated instruments used to measure
the concentration of the analyte(s) of interest and because such instruments may require specialized personnel.
However, if a large number of blank samples could be performed, an alternative strategy for determining the
LoB would involve simply calculating the 95th percentile of the measured analyte concentrations across the blank
samples. This approach is nonparametric with respect to the distribution of the analyte concentration in blank
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samples. It, therefore, does not require one to assume normality, an assumption that is unlikely to be reasonable
given the non-negativity of concentration measurements, expected zero inflation and positive skew characteristic
of concentration measurements of blank samples [32,33]. To determine the LoB in the context of DNAm-based
deconvolution of whole blood, an approach that is nonparametric concerning the distribution of deconvolution
estimates of blank samples but is parametric with respect to the generation of simulated mixtures that are used for
determining the LoB is used here. To summarize, the proposed framework first involves generating in silico mixtures
of the 12 previously mentioned cell types with the constraint that the proportion of one cell type at a time is equal
to zero. Following the nomenclature used in Arbruster and Pry [30], cell types whose proportion is exactly equal to
zero in the in silico mixtures are referred to as the blank cell type. Next, the in silico mixtures are deconvolved using
the Houseman method with the Extended Reference Library [31] and the (1 − α) ∗ 100 percentile (e.g., 95th
percentile) of the deconvolution estimates for the blank cell type is calculated. This process is repeated for each of
the 12 cell types. Next, the specific details of the procedure are presented in a general format that can be applied to
any reference set.

Step 0: Identify methylation datasets needed for the calculation:

a. Identify a cell-specific methylation reference dataset in which DNAm has been profiled in the individual cell
types that make up a heterogeneous tissue sample (e.g., whole blood).

b. Identify a mixture methylation dataset in which DNAm has been profiled in a heterogeneous tissue sample
(e.g., whole blood) and where “gold standard” measurements of the proportions (e.g., flow cytometry, complete
blood cell count with differential, etc.) of the k cell types within the mixtures are available across all samples.
While the latter is not necessary, it is helpful in terms of generating in silico mixtures that mimic real biological
data.

Step 1: Estimate necessary parameters used to create in silico mixtures:

a. Using the cell-specific reference data from Step 0a, estimate the beta-distribution shape parameters âjk and b̂jk for
each CpG j = 1, 2, . . . , J ∗ and each cell type k = 1, 2, . . . , K using the method of moments estimation.
Figure 1A(iii) illustrates this calculation for a single cell type.

b. Using the mixture data from Step 0b, fit an extended beta regression model [34–36] to each CpG independently,
treating methylation beta-values as the response and controlling for the “true” mixing proportions of K − 1
out of the k cell types as independent variables. As described elsewhere [34], letting Yi , i = 1, 2, . . . , N be
independent, beta-distributed random variables, Yi ∼ beta(μi , φi ), where μi and φi represent the mean and
precision parameters, respectively, the extended beta-regression model [36] involves simultaneous modeling of both
μi and φi . Specifically,

g 1(μi ) = x T
i ξ, g 2(φi ) = zT

i λ

where g 1(·) and g 2(·) are link functions, xi and zi are vectors of covariates for the ith sample and ξ and
λ are parameter vectors that describe the relationship between the elements of xi and zi and the mean and
precision parameters, respectively. In the current application, xi ≡ zi and represented “true,” reconstructed mixing
proportions of 11 out of the 12 cell types, g 1(·) was assumed to be logit link function and g 2(·) was assumed to be
the log-link. The purpose of fitting such models was to estimate the precision parameter, φ̂ j , j = 1, 2, . . . , J ∗.
The precision parameter is inversely proportional to the variance and is used later in the procedure for simulating
’realistic’ whole-blood DNAm data from which LoB estimates are obtained. Extended beta-regression models were
fit using the betareg R package [37]. See Figure 1A(iv) for a further explanation of this calculation.

Step 2: Create in silico mixtures in which to estimate the LoB:

a. Let cell type k ∈ 1, 2, . . . , K serve as the blank cell type. It follows from the definition of the blank cell type
that wik = 0, ∀ i = 1, 2, . . . , N, that is, the proportion of cell type k across the i = 1, 2, . . . , N in silico
mixtures is exactly equal to zero.

b. Randomly generate cell proportions for the (K - 1) remaining cell types (w−ki =
[w1, w2, . . . , wk−1, wk+1, . . . , wK ] by sampling from a Dirichlet distribution with varying con-

centration parameters. That is,
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Figure 1. Workflow for obtaining parameters needed to simulate in silico mixtures and illustration of calculation of limit of blank and
limit of detection. (A) (i) Visualization of cell-specific reference methylation matrix. Rows of this matrix are CpGs that make up the
Extended Reference Library and columns are leukocyte subtypes for different samples. Subscript denotes the CpG while the superscript
denotes the cell type as well as the specific sample within each cell type. (ii) Visualization of reconstructed mixture methylation matrix.
Rows of this matrix are CpGs that make up the Extended Reference Library and columns are the different reconstructed mixture samples.
Subscript denotes the specific CpG while superscript reflects the specific reconstructed mixture sample. (iii) How beta distribution shape
parameters are estimated using cell-specific reference data. (iv) How beta distribution precision parameters are estimated for CpGs in the
Extended Reference Library. (v) How cell-type proportions are simulated when one cell type is set as the blank cell type. (B) Visualization
of calculation of limit of blank. The y-axis shows the density of deconvolution estimates while the x-axis shows the deconvolution
estimates as percentages for the blank cell type. (C) Visualization of the calculation of the limit of detection. The y-axis of the plots shows
the density of deconvolution estimates while the x-axis shows the deconvolution estimates at percentages for the cell type that the limit
of detection is being calculated for.
LoB: Limit of blank; LoD: Limit of detection.

(w1, w2, . . . , wk−1, wk+1, . . . , wK ) ∼ Dirichlet(γ1, γ2, . . . , γk−1, γk+1, . . . , γK )

γ−k ∼ Uniform(0, 1)

where γ−k = [γ1, γ2, . . . , γk−1, γk+1, . . . , γK ] is a (K − 1) dimensional vector of Dirichlet parameter
values. The concentration parameter for a Dirichlet distribution is defined as γ0 =

∑
j 
=k γ j and is inversely

proportional to the variance. Thus, a higher concentration parameter means lower variance in the Dirichlet-
distribution simulated values. Concentration parameters equal to 18, 73 and 128 were chosen based on the
recommendation from Meier et al., which represent the range (e.g., 18 and 128) and median (e.g., 73) Dirichlet
concentration parameter estimated from DNAm-based deconvolution estimates of several publicly available whole-
blood DNAm datasets. Since γ−k is generated from a Uniform(0,1) distribution, γ−k was further scaled to sum to
the desired concentration values [38]. See Figure 1A(v) for a further explanation of this calculation.
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c. Generate cell-specific methylation data Si , i = 1, 2, . . . , N for each of the N in silico samples using the beta
distribution shape parameters estimated in Step 1a. Specifically, the cell-specific methylation data for the ith in
silico sample, jth CpG, and kth cell type are generated as follows:

Sijk ∼ Beta(âjk, b̂jk)

where âjk, b̂jk > 0, j = 1, 2, . . . , J ∗, and k = 1, 2, . . . , K .

d. Generate in silico mixture samples Yi , i = 1, 2, . . . , N by simulating from a beta distribution with mean
Sijwi and precision parameter φ̂ j estimated in Step 1b. Specifically, the beta-value for the ith in silico mixture
and jth CpG is generated as follows:

Yij ∼ Beta(Sijwi , φ̂ j )

where Sij = [Sij1, Sij2, . . . , SijK], i = 1, . . . , N, j = 1, . . . , J ∗, and k = 1, 2, . . . , K .
Note, an alternative parameterization of the beta distribution that is based on the mean and precision parameters

is used. In general, if y ∼ Beta(a , b), where a and b are the shape parameters, then y ∼ Beta(μ, φ), where
μ = a

a + b and φ = a + b.
Step 3: Deconvolute the in silico mixtures using the desired reference library:
Each in silico mixture sample generated in Step 2d, Yi , i = 1, 2, . . . , N, is subjected to deconvolution

resulting in ŵi = [ŵi1, ŵi2, . . . , ŵiK] for i = 1, 2, . . . , N.
Step 4: Calculate the LoB using the distribution of deconvolution estimates for the blank cell.

The LoB for the blank cell type (e.g., cell type k) is the value for which (1 − α) × 100% of the distribution is
less than or equal to that value. In other words, if FN is the empirical cumulative distribution function of the
deconvolution estimates for the blank cell type, then the LoB is FN (LoB) = 1 − α. Here, α can be thought of as
the probability of detecting a cell type as present in a sample given that it is truly not present (type 1 error). Figure 1B
shows a visual representation of the calculation of the LoB for the blank cell type.

Step 5: Repeat Steps 1–4 for the remaining leukocyte subtypes. This results in estimates of the LoB for each of

the K cell types,
�

LoB1,
�

LoB2, . . .
�

LoBK .

Limit of detection
As Arbruster and Pry described, the LoD is the lowest analyte concentration expected to be reliably distinguished
from the LoB and at which detection is possible [30]. In the current framework, the LoD is the smallest proportion of
a given cell type in a mixed biospecimen (e.g., whole blood) that can reliably be distinguished from the LoB. Similar
to the approach described for estimating the LoB, the LoD was estimated by generating in silico mixtures, leveraging
the previously calculated cell-specific LoB values. In silico mixtures are developed such that the proportion of a
given cell type, hereafter referred to as the low-concentration cell type, is initially set to its LoB and sequentially
increased until the distribution of deconvolution estimates for that cell type is statistically distinguishable from the
LoB value for that cell type. Next, the steps involved in calculating the LoD are described. Note that many of the
steps are identical to those described in the estimation of the LoB.

Step 1: Create in silico mixtures in which to estimate the LoD:

a. Let cell type k ∈ 1, 2, . . . , K serve as the low-concentration cell type. The low-concentration cell type was

initially set to have proportion wik =
�

LoBk, ∀ i = 1, 2, . . . , N. That is, the proportion of cell type k across
the i = 1, 2, . . . , N in silico mixtures was initially set to the LoB estimate for that cell type.

b. Randomly generate cell proportions for the (K - 1) remaining cell types (w−ki =
[w1, w2, . . . , wk−1, wk+1, . . . , wK ] by sampling from a Dirichlet distribution with varying con-

centration parameters. That is,

(w1, w2, . . . , wk−1, wk+1, . . . , wK ) ∼ Dirichlet(γ1, γ2, . . . , γk−1, γk+1, . . . , γK )

440 Epigenomics (2023) 15(7) future science group



Calculating detection limits and uncertainty of reference-based deconvolution of whole-blood DNA methylation data Methodology

γ−k ∼ Uniform(0, 1)

Where γ−k = [γ1, γ2, . . . , γk−1, γk+1, . . . , γK ] is a (K − 1) dimensional vector of Dirichlet parameter
values. As previously described, Dirichlet concentration parameters equal to 18, 73 and 128 were used and
γ−k was scaled to sum to the appropriate concentration.

c. Generate cell-specific methylation data Si , i = 1, 2, . . . , N for each of the N in silico samples. This was
accomplished using the same procedure described in Step 2c of the previous section.

d. Generate in silico mixture samples Yij, i = 1, 2, . . . , N. This was accomplished using the same procedure
described in Step 2d of the previous section.

Step 2: Deconvolute the in silico mixtures using the desired reference library:
Each in silico mixture sample generated in Step 2d, Yi , i = 1, 2, . . . , N, is subjected to deconvolution

resulting in ŵi = [ŵi1, ŵi2, . . . , ŵiK] for i = 1, 2, . . . , N.
Step 3: Calculate β′:

a. Calculate the proportion of deconvolution estimates of the low-concentration cell type that are less than the LoB
for that cell type.

β′ =

∑N
i=1 II(ŵik <

�

Lo Bk)

N

where II( · ) is the indicator function.
Step 4: Check β′:

a. If β′ > β, increment the proportion of the low-concentration cell type present in the in silico mixture by a small
amount (e.g., 0.05%) and repeat Steps 1–3.

b. If β′ ≤ β, the LoD is the current proportion of the low-concentration cell type used to generate the mixtures.

In the previous expression, β is a user-supplied parameter that reflects the probability of declaring a cell type to
be absent in a sample given that it is truly present (type 2 error). Figure 1C shows a visual representation of the
calculation of the LoD for the cell type of interest.

Step 5: Repeat Steps 1–4 for the remaining leukocyte subtypes. This results in estimates of the LoD for each of

the K cell types,
�

LoD1,
�

LoD2, . . .
�

LoDK .

Quantifying uncertainty in deconvolution estimates
Uncertainty in DNAm-based CMD stems from the way in which cell-specific reference methylation data are
used to arrive at deconvolution estimates. Recall that to minimize the squared error loss function, a matrix M,
whose elements are the mean cell-specific methylation beta-values calculated from a reference dataset of cell-specific
methylation data, is used [5,9]. Because M is a matrix of mean cell-specific methylation beta-values, whose rows
represent CpGs and whose columns represent cell types, any CpG-specific variability across samples of a shared cell
type (e.g., neutrophils) is lost when M is used as the reference matrix for DNAm-based CMD. As it is such variability
that contributes to the variability of DNAm-based deconvolution estimates and because the sampling distribution
of M is difficult to justify, a nonparametric bootstrap procedure to calculate cell-specific (1 − α) ∗ 100% CIs as
a means of quantifying the uncertainty associated with DNAm-based deconvolution is proposed. Bootstrapping is
a statistical resampling method that allows statistical inference or the calculation of CIs when one does not know
the sampling distribution of the data [39]. What follows are the steps taken to estimate CIs for the proportion of a
given cell type in a mixed, heterogeneous biospecimen.

Step 1: Select a random matrix from the cell-specific methylation reference matrix to use for deconvolution:

a. Recall the cell-specific methylation reference matrix has J ∗ CpGs, K cell types, and N samples for each cell type,
k = 1, 2, . . . , K and nk = 1, 2, . . . , N. Subset the reference matrix to only the columns for cell type k.
This subset will have J ∗ CpGs, and nk columns.

future science group www.futuremedicine.com 441



Methodology Bell-Glenn, Salas, Molinaro et al.
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1Ŵ

K
2ŴŴ
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Ŵ

( )

)

1

2

1

2 1
Ŵ
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Ŵ

1
Ŵ
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Figure 2. Workflow for estimation of bootstrap-estimated 95% CIs. (i) Selection of a random sample from cell-specific reference data.
One random column for each cell type is selected to use as the library for deconvolution. (ii) Deconvolution estimates, which correspond
to one bootstrap sample. (iii) 10,000 bootstrap samples are generated. (iv) 10,000 bootstrap samples and how the deconvolution
estimates are ordered for each cell type and sample. (v) Calculation of confidence limits using the ordered bootstrap samples. The lower
limit of the CIs corresponds to the 2.5 percentile and the upper limit to the 97.5 percentile.

b. Select a random number, r, between 1 and nk . Here, r corresponds to a randomly selected column from the
subset matrix for cell type k.

c. Repeat Steps a and b for the remaining cell types.
d. Combine randomly selected columns to form a random matrix, M(b), where superscript b indicates the bth

iteration in the bootstrap sampling procedure. Like M, M(b) is a J ∗ × K , matrix, however unlike M, each
column of M(b) is a randomly selected sample of a given cell type and represents the vector of methylation
beta-values for the randomly selected sample.

Note, for the reference data, the number of samples for each cell type need not be the same.
Step 2: Deconvolute the mixed, heterogeneous samples (e.g., whole blood) via the randomly selected matrix

from Step 1. Record the cell proportion estimates.
Step 3: Repeat Steps 1–2 for B bootstrap samples.
Step 4: Calculate the (1 − α) ∗ 100% bootstrap estimated CIs:

a. Order the cell proportion estimates from CMD for each cell type and sample.
b. Calculate the confidence limits for each as the α

2 and 1 − α
2 percentiles.

A visualization of this process can be found in Figure 2.

Datasets
See Salas et al. for further details on the datasets used in this work.
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Cell-specific reference methylation data

Cell-specific DNAm was profiled using the Illumina HumanMethylationEPIC array technology. Specifically,
DNAm was assessed in cytometric and magnetic-sorted, flow-confirmed values, spanning 12 distinct leukocyte
cell subtypes: neutrophils (n = 6), eosinophils (n = 4), basophils (n = 6), B naive cells (n = 4), B memory cells
(n = 6), monocytes (n = 5), NK cells (n = 4), CD4 naive cells (n = 5), CD4 memory cells (n = 4), CD8 naive cells
(n = 5), CD8 memory cells (n = 4) and Treg cells (n = 3) [31]. Cells were isolated from 41 males and 15 females,
all anonymous healthy donors. A description of the preprocessing and quality control procedures implemented on
cell-specific reference methylation datasets has been previously described [31].

Reconstructed mixture methylation data

Reconstructed mixtures (n = 12) were generated by mixing DNA extracted from purified isolated cell types based
on predetermined mixing proportions for each cell type. The cell types used to create the reconstructed mixture
samples included the same twelve previously mentioned leukocyte cell types. Cells used to isolate the DNA to create
the mixtures were purchased from AllCells corporation (CA, USA), StemExpress (CA, USA), and STEMCELL
Technologies (Vancouver, Canada) [31]. For each of the 12 reconstructed mixtures, DNAm was profiled using the
Illumina HumanMethylationEPIC array technology. Additionally, of these 12 reconstructed samples, some were
intentionally constructed to be absent of either basophils, CD4 memory, or Treg cells. Two of the mixtures were
absent of only basophils, four were absent of both basophils and CD4 memory cells, two were absent of both
basophils and Treg cells, and two were absent of only Treg cells [31]. Of the 144 cell proportions for this dataset
(144 = 12 samples × 12 cell types), 16 of them were truly zero. A visualization of the cell proportions for the 12
reconstructed samples can be found in Supplementary Figure 1. A description of the preprocessing and quality
control steps applied to the reconstructed mixture methylation can be found elsewhere [31].

Assessment of LoB, LoD & uncertainty in deconvolution estimates
To apply and assess the developed method, the cell-specific methylation reference matrix was first subset to only
the CpGs contained in the Extended Reference Library, described previously [31]. The methylation data profiled
in whole blood (reconstructed mixtures) was also subset to only the CpGs contained in the Extended Reference
Library. This results in matrices with J ∗ = 1200 CpGs. These datasets were subset to only those CpGs in the
Extended Reference Library as these are the CpGs that will be used for deconvoluting the in silico mixtures. Next,
N = 100 replicate in silico mixtures were generated to calculate the LoB and LoD using the datasets [31]. For the
purpose of these analyses, α = 0.05 and β = 0.2 because this a common choice when controlling for type 1 and 2
errors. As proof of principle of the LoB and LoD, CMD was also performed on the reconstructed mixtures using the
Extended Reference Library. For the reconstructed mixtures that were truly missing a cell type, the deconvolution
estimates for those samples were expected to be less than the LoB (and LoD) for that cell type. The sensitivity of the
approach for estimating the LoB and LoD when the k-1 cell types are simulated was additionally examined using
reference ranges for the 12 leukocyte subtypes in the Extended Reference Libraries [40]. Specifically, the median of
the reference ranges for each of the cell types was used to specify the concentration parameters for the Dirichlet
distribution.

To illustrate the proposed bootstrap approach for quantifying uncertainty in deconvolution estimates, the
reconstructed mixture samples described in Salas et al. were used Confidence limits were estimated for the mixtures
using α = 0.05, B = 10,000 bootstrap samples and the J ∗ = 1200 CpGs that make up the Extended Reference
Library. Since there were 12 reconstructed mixtures that were deconvoluted, this yielded 144 bootstrap-estimated
CIs. The 95% CIs were assessed by using the true cell proportions in the reconstructed mixtures to calculate
coverage. As the true mixing proportions of each cell type were known for the reconstructed mixture dataset,
coverage was calculated as the proportion of CIs that contained the true cell proportion. Since 95% bootstrap
CIs were computed, coverage was expected to be around 95%.

Results
Limit of blank
The LoB for DNAm-based deconvolution of whole blood was calculated for each of the 12 leukocyte cell types
by generating N = 100 replicate in silico mixtures for each instance where a particular cell type was treated as the
blank cell type. Results for the LoB are summarized in Table 1. Since estimates for the LoB did not appear to differ
significantly across the various assumed Dirichlet concentration parameters (Table 1), we only discuss the results
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Table 1. Limit of blank results.
Limit of blank estimates (%) Dirichlet concentration parameter

18 73 127 Average

Basophil 0.429 0.328 0.218 0.325

B memory 0.246 0.178 0.227 0.217

B naive 0.281 0.283 0.270 0.278

CD4 memory 0.625 0.601 0.704 0.643

CD4 naive 0.764 0.628 0.397 0.597

CD8 memory 0.575 0.501 0.397 0.491

CD8 naive 0.423 0.458 0.599 0.493

Eosinophil 0.318 0.222 0.312 0.284

Monocyte 0.191 0.244 0.193 0.209

Neutrophil 0.278 0.188 0.252 0.239

Natural killer 0.348 0.259 0.358 0.322

Treg 0.612 0.530 0.544 0.562

This table shows the limit of blank estimates for each cell type (rows) using each of the concentration parameters (first three columns). The last column shows the average limit of blank
across the concentration parameters for each cell type.
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Figure 3. Visualization of limit of blank and limit of detection results using a concentration parameter of 73. (A) Plots of deconvolution
estimates for samples when each cell type is considered blank. The y-axis of these plots shows the density of the deconvolution estimates
while the x-axis shows the deconvolution cell type percentages. The dashed red line represents the limit of blank for that cell type. (B)
Plots of deconvolution estimates for the iteration at which the limit of detection is calculated. The y-axis of these plots shows the density
of the deconvolution estimates while the x-axis shows the cell type percentages. The dashed red line represents the limit of blank for that
cell type while the blue dashed line represents the limit of detection for that cell type.

that were obtained using a concentration parameter of 73. Readers are referred to Supplementary Figures 2 & 3 for
visualizations of the LoB results for Dirichlet concentration parameters equal to 18 and 128. Across all cell types,
LoB estimates were less than 1% (Table 1). This means that for a given cell type, 95% of mixtures with a blank
cell type resulted in deconvolution estimates that were less than 0.01. The smallest LoB across the 12 leukocyte
cell types was 0.178% in B memory cells and the largest was 0.628% in CD4 naive cells. Figure 3A shows the LoB
estimates for each cell type as well as the distribution of deconvolution estimates across all the simulated in silico
mixtures. Not surprisingly, the distribution of deconvolution estimates for the blank cell type is inflated at zero and
heavily positively skewed (Figure 3A). Similar results for the LoB were obtained when using reference ranges for
the 12 leukocyte cell types. Readers are referred to Supplementary Table 1 for these results.

444 Epigenomics (2023) 15(7) future science group



Calculating detection limits and uncertainty of reference-based deconvolution of whole-blood DNA methylation data Methodology

Table 2. Limit of detection results.
Limit of detection estimates
(%)

Dirichlet concentration parameter

18 73 127 Average

Basophil 0.579 0.478 0.368 0.475

B memory 0.446 0.328 0.377 0.384

B naive 0.431 0.483 0.470 0.461

CD4 memory 1.025 1.051 1.104 1.060

CD4 naive 1.064 0.878 0.647 0.863

CD8 memory 0.775 0.801 0.697 0.758

CD8 naive 0.673 0.758 0.949 0.793

Eosinophil 0.518 0.422 0.462 0.467

Monocyte 0.341 0.394 0.343 0.359

Neutrophil 0.428 0.338 0.402 0.389

Natural killer 0.498 0.459 0.508 0.488

Treg 0.862 0.780 0.744 0.795

This table shows limit of detection estimates for each cell type (rows) using each of the concentration parameters (first three columns). The last column shows the average limit of detection
across the concentration parameters for each cell type.

Limit of detection
Results for the LoD are summarized in Table 2. As with the LoB, we only highlight the results that were obtained
when in silico mixtures were created assuming a Dirichlet concentration parameter of 73 as the results were not
appreciably different across the various assumed concentration parameters (Table 2). The smallest LoD across the
12 cell types was 0.328% in B memory cells and the largest was 1.051% in CD4 memory cells. Across all 12
cell types, LoD estimates were larger than the corresponding LoB estimate for that cell type, and for all but one
cell type, CD4 memory cells (LoD = 1.051%), LoD estimates were less than 1%. This means that for mixtures
comprised of these 12 leukocyte cell types, a cell type need only represent 1% or more of the mixture (1.051% in
the case of CD4 memory cells) in order to be statistically distinguishable from the LoB for that cell type, and thus
detectable through DNAm-based deconvolution. Figure 3B shows the LoB and LoD estimates for each cell type
as well as the distribution of deconvolution estimates across all the in silico mixtures for the iteration at which the
LoD was determined. A visualization of the LoD estimates and deconvolution distributions for the other Dirichlet
concentration parameters can be found in Supplementary Figures 2 & 3. Similar results for the LoD were obtained
when using reference ranges for the 12 leukocyte cell types. Readers are referred to Supplementary Table 1 for these
results.

As previously described, several of the reconstructed mixture samples were purposefully absent of one or two of
the 12 leukocyte subtypes. Specifically, 16 out of the 144 cell-type proportions were truly zero. After deconvoluting
the 12 reconstructed mixtures using the Extended Reference Library, we observed that, for all 16 such instances,
deconvolution estimates were less than both the LoB and the LoD calculated for the respective cell types (results
not shown).

Quantifying uncertainty in deconvolution estimates
To illustrate the proposed approach for quantifying the uncertainty of DNAm-based deconvolution, we calculated
95% bootstrap CIs for each sample and each cell type in the reconstructed mixture dataset and calculated coverage
as the percentage of CIs that included the ’true’ reconstructed mixing proportion for a given sample and cell type.
Of the 144 CIs constructed, 132 contained the ’true’ reconstructed mixing proportion, meaning that coverage
of 95% bootstrap CIs is approximately 92%. Coverage plots for one particular reconstructed mixture sample are
given in Figure 4A and a table with the cell-specific 95% bootstrap CIs for the same sample is shown in Figure 4B.
For this particular reconstructed mixture sample, all cell-specific 95% CIs contained the true cell type proportion.
For this sample, the smallest CI width was 0.984% for NK cells, while the CI width for CD4 memory cells was
approximately 3.52%. Across all 12 samples and 12 cell types, the average width of the 95% bootstrap CIs was
1.902%. Coverage plots and a table of the cell-specific 95% bootstrap CIs for the remaining 11 reconstructed
samples can be found in Supplementary Figures 4–14.
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Figure 4. Bootstrap-estimated 95% CIs results for deconvolution estimates for 12th reconstructed mixture. (A)
Coverage plot for bootstrap confidence intervals (CIs) estimated for representative reconstructed mixture. The y-axis
shows the cell percentages while the x-axis shows the leukocytes the CIs are estimated for. The black point shows the
true mixing proportion for each cell type for this sample and the red point shows the deconvolution estimate for each
cell type for this sample. (B) A table of the CIs estimated for the same representative reconstructed mixture.

Discussion
This work described frameworks for both the estimation of LoDs and the quantification of uncertainty in the
context of DNAm-based deconvolution. There are two primary motivations for this work. First, in the context
of CMD, establishing the cell-specific LoD helps to judge the practical value of adding new cell types of low
prevalence to existing reference libraries. If a given cell type has an LoD that is greater than the normal abundance
found in a mixed biospecimen then it may not be advantageous to add that cell type to the reference library
because deconvolution would yield nondetectable levels of that cell type. However, pathological conditions may
lead to unanticipated cell distributions in affected individuals so that, ultimately, various factors come into play
in designing expanded deconvolution repertoires. Second, as discussed previously, cell type ratios (e.g., neutrophil
to lymphocyte ratio, CD4/CD8, etc.) are susceptible to extreme values when the cell type(s) in the denominator
have deconvolution estimates that approach or are precisely equal to zero. LoD could help mitigate this issue by
removing the need to impute arbitrary small numbers or to exclude the samples altogether. This paper additionally
described how we quantified the uncertainty in CMD estimates by using nonparametric bootstrap estimated CIs.
The utility of measuring uncertainty lies in DNAm studies in which CMD estimates are used as covariates in
downstream statistical analyses. Treating these estimates as fixed and known could have potential implications for
the model results.

Recall that the LoD for this research is defined as the smallest percentage of a cell type in whole blood that we can
reliably distinguish from the LoB and at which we can detect when doing CMD. We built upon the work presented
by Arbruster and Pry and utilized whole-blood methylation data on 12 leukocyte subtypes to simulate samples in
which to calculate the deconvolution-based LoD [30]. As shown in Table 2 & Figure 3B, the LoD values for all 12
cell types were small, with the largest being just over 1%. This suggests that these cell types only need to be present
in whole-blood samples in small amounts to accurately deconvolute them. However, for some mixed biospecimens
it is possible to have the proportion for some of these cell types fall below our LoD value. This issue could represent
physiological or pathological adaptations of the immune system. Several innate immune cells (e.g., eosinophils
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and basophils) are normally present in very small proportions making transient physiological fluctuations (due to
stress, thyroid and adrenal hormonal adaptations or exogenous steroid hormones) in some cases show cell counts
that are undetectable for automated cell counts or flow cytometry [41]. In pathological conditions, changes in other
cell populations may affect the proportion of cells recovered and reduce the ability of both flow cytometry and
DNAm to capture very small proportions of cell subsets; causes here include migration of lymphocytes to the
tissues, infectious diseases and surgery observed in experimental murine and human models. An additional example
is chronic lymphopenia, which increases mortality related to cardiovascular diseases and cancer [18,42]. In these
cases, we need help to detect that some cell subtypes are present at all, resulting in an estimate of zero or some
other extremely small values. If studying the actual cell proportion estimates is of interest, imputation of values
may be necessary, or even removing the samples from our analysis. The LoD values we generated will allow samples
that give us extreme deconvolution estimates to be retained and used to calculate cell type ratios or even model
the deconvolution estimates themselves. One such method for analyzing compositional data, which was initially
developed in the context of relative abundance measurements obtained from microbiome data, is called the analysis
of the composition of microbiomes (ANCOM) [23]. This method can be used for comparing the relative abundance
of microbes across two or more conditions, similar to what we might wish to do with leukocyte deconvolution
estimates. However, ANCOM utilizes log ratios in their calculations, so samples with estimates of zero would either
need to be imputed or excluded from such analysis [23].

To quantify uncertainty for methylation-based CMD, a nonparametric bootstrap approach was employed to
obtain (1 − α) × 100% CIs for each sample and each cell type in which cell proportions are estimated. As
shown in Figure 4 for one sample, CIs ranged from 1% wide to 3% wide and all the CIs contained the true
mixing proportions. The uncertainty in the deconvolution estimates comes from the width of the CIs for each.
For this sample, the largest CIs were for CD4 naive, CD4 memory, CD8 naive and CD8 memory cells, suggesting
that these deconvolution estimates had the most uncertainty associated with them. Both naive CD4 and CD8
T cells are derived from a common lymphoid progenitor and undergo peripheral priming with antigen and the
subsequent generation of memory and effector populations [43]. Thus, CD4 and CD8 T naive and memory cells
are closely related in cell lineage and, furthermore, our studies have shown that each cell type shares epigenetic
programs that are involved in the naive-to-memory cell transition [44]. Thus, uncertainty is expected to be greatest
in discriminating closely related cells that share chromatin modifications in their terminal differentiation. When
CMD estimates are used as covariates in downstream statistical analyses, having these measures of uncertainty will
give us a better idea of how confident we can be in the results of our models.

While this research provides a framework to improve the field of reference-based DNAm deconvolution, these
methods and this study are not without limitations. The datasets used to conduct this research only consisted of
12 leukocyte components, despite there being other cell types present in whole blood. While it would be useful to
estimate the LoD for more leukocyte subtypes, this is currently infeasible since, to our knowledge, reliable reference
libraries for deconvolution have not been developed for more than the cell types in the Extended Reference Library.
Additionally, we only applied this method to methylation profiled in whole blood, however, the general approaches
discussed herein can be applied to methylation profiled in any heterogeneous tissue. Also, while this research
utilized data only from Illumina HumanMethylationEPIC array technology, our framework for estimating cell-
specific detection limits and assessing the uncertainty associated with DNAm-based deconvolution is generalizable
to other platforms (whole-genome bisulfite sequencing, Illumina HumanMethylation450 array, etc.). We also only
provided explanations and tested the scenarios whereby one of the cell types is considered to be missing or in
low proportion when we estimated the LoB and LoD. However, this method can easily be extended to scenarios
where more than one cell type is found to be missing when deconvolution is performed. Specifically, one would
simply require all cell types of interest to have proportion zero/be in low concentration while maintaining all other
operating characteristics of the method. Another limitation of this work is that we only utilized the constrained
projection/quadratic programming algorithm (i.e., the Houseman method) when performing CMD [9]. We chose
to use this approach for this research since it is one of the most widely used approaches in the field, but again note
that the approach/framework described herein can be easily applied to any other reference-based deconvolution
method [9,10,12,13]. It is also worth noting that we only applied our proposed method for calculating LoD values
using simulated in silico mixtures. While it would have been preferable to also apply this method to a real biological
dataset, this would have been cost-prohibitive and time-consuming. Notwithstanding this potential limitation,
multiple steps were taken in an attempt to simulate whole-blood methylation data to closely emulate real data.
An additional consideration is that the bootstrap estimated CIs represent a fully nonparametric approach. A
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more sophisticated method for estimating bootstrap CIs, like a semiparametric approach, could have been used.
Semiparametric bootstrap methods involve simulating data to create bootstrap samples. In our case, the coverage
of the CIs derived from a semiparametric bootstrap approach was worse using a nonparametric approach. While
the coverage of our CIs was not quite 95%, we note that we calculated coverage using more stringent criteria.
Generally, coverage of CIs is calculated by seeing if the estimated parameter of interest is contained within the
limits, not the true parameter value as we did here. We expected our CIs would be lower than 95% and noted
that the performance under this criteria was excellent. We additionally calculated the coverage of the CIs using
the deconvolution estimates and reached 100% coverage under this framework. Finally, we did not formally assess
how the uncertainty in our deconvolution estimates affects the downstream statistical analysis. There are methods
to incorporate uncertainty in covariate measurements into such models (e.g., measurement error models) [28,29],
however, using these is beyond the scope of this paper.

Conclusion
This research was motivated by the need to address extremely small or zero DNAm-based deconvolution estimates
and the uncertainty associated with them. Future work includes applying these methods to larger datasets, and
applying the methods to data obtained using different array technology and datasets with information on other cell
types. We also plan to formally assess the effect of the uncertainty associated with deconvolution estimates obtained
in this work on the analysis in EWAS by utilizing measurement error models. The proposed methods in this paper
will remove arbitrary decisions of having to impute or extract samples from analyses, providing researchers with a
mechanism for addressing the uncertainty of deconvolution estimates being used in statistical models. Furthermore,
estimates of uncertainty for individual cell types can be integrated with other quality measures for deconvolution
that focus on sample-level accuracy of derived cellular heterogeneity variables [43,45]. The goal of all these efforts is
to improve the quantitative validity of DNAm-based deconvolution and EWAS investigations.

Summary points

• DNA methylation (DNAm)-based cell mixture deconvolution (CMD) has become a quintessential part of
epigenome-wide association studies where DNAm is profiled in heterogeneous tissue types.

• There are several issues associated with reference-based DNA methylation deconvolution that should be
considered, including that CMD may result in estimates of zero (or very close to zero) for one or more cell types in
a mixed or heterogeneous biospecimen when they are present in the sample.

• Despite being introduced over a decade ago, detection limits, which represent the smallest fraction of a cell type
in a mixed biospecimen that can be reliably detected, have yet to be determined in the context of DNAm-based
CMD.

• Deconvolution estimates are also subject to uncertainty, which is often ignored when such estimates are treated
as covariates in downstream regression models that aim to control for confounding.

• This work sought to create systematic analytical frameworks for determining both cell-specific limits of detection
and for the quantification of uncertainty associated with DNAm-based CMD.

• The proposed methods in this paper will remove arbitrary decisions of having to impute or extract samples from
analyses, providing researchers with a mechanism for addressing the uncertainty of deconvolution estimates
being used in statistical models.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.futuremedicine.com/doi/
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