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Real-world brain imaging by EEG requires accurate annotation of complex

subject-environment interactions in event-rich tasks and paradigms. This paper

describes the evolution of the Hierarchical Event Descriptor (HED) system for

systematically describing both laboratory and real-world events. HED version 2,

first described here, provides the semantic capability of describing a variety of subject

and environmental states. HED descriptions can include stimulus presentation events

on screen or in virtual worlds, experimental or spontaneous events occurring in the

real world environment, and events experienced via one or multiple sensory modalities.

Furthermore, HED 2 can distinguish between the mere presence of an object and its

actual (or putative) perception by a subject. Although the HED framework has implicit

ontological and linked data representations, the user-interface for HED annotation

is more intuitive than traditional ontological annotation. We believe that hiding the

formal representations allows for a more user-friendly interface, making consistent,

detailed tagging of experimental, and real-world events possible for research users.

HED is extensible while retaining the advantages of having an enforced common

core vocabulary. We have developed a collection of tools to support HED tag

assignment and validation; these are available at hedtags.org. A plug-in for EEGLAB

(sccn.ucsd.edu/eeglab), CTAGGER, is also available to speed the process of tagging

existing studies.

Keywords: EEG, tags, real-world imaging, event-rich, event ontology

INTRODUCTION

In traditional EEG experiments, participants in controlled environments react to tachistoscopic
presentation of stimuli in at most a few categories. Both the stimulus events and the designed
reactions of the participants are stereotyped, and researchers usually record the times and types
of these planned events using integer event codes (or “triggers”). Researchers then typically assign
laboratory-specific event labels to these event types for in-lab discussion and publication. This
strategy presents two obvious difficulties for data sharing. First, event labels are not standard across
experiments. Secondly, these labels are not sufficient to document relevant details of the stimulus
events, the experiment environment, and the assigned participant task(s) within the data. Most
EEG analysis occurs within the context of a single experiment or a small set of parallel experimental
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conditions, allowing for, at best, isolation of a few effects by
statistical techniques. Analysis of a single experiment usually
assumes that many experimental details equally affect all cells of
each statistical contrast and thus experimenters rarely document
these details in an accessible form.

Similar experiments conducted by different researchers, even
in controlled laboratory environments, typically have different
contextual details, and each experimental session unfolds
uniquely. A typical session may have many unique real-world
events, for example: the researcher pauses the experiment; the
participant repositions in a chair or takes a stretch break; the
experimenter renews the gel for a detector. The researcher usually
identifies and manually excludes such sections of data from
analysis based on verbal or written notes that later analysts
may not have access to, since they are not typically stored with
the data or properly identified for later retrieval. Data around
such events are usually considered to contribute only “noise”
to the data, but considered together, may indeed contain useful
latent information about neurocognition not explored in the
original data analysis but potentially amenable to large-scale
analysis/meta-analysis.

When science moves from the laboratory to the event-rich
environment of the “real world,” annotation of both planned
and unplanned events is even more important and complex.
We live in a world in which hundreds of stimulus streams vie
for our attention. Just as our perceptual system filters out the
“irrelevant” while focusing on the “relevant,” the experimenter
cannot annotate every possible event detail and must apply
an “annotation filter” for relevance. In analyzing a driving
perturbation experiment, for example (Chuang et al., 2012, 2014),
the experimenters marked as events only the onsets of the
perturbations and the onsets of the driver responses. However,
their methods for defining these events varied considerably
across experiments.

Cross-experiment studies and meta-analysis often requires
documentation that is more detailed. Not only planned stimulus
presentations and requested participant responses affect driver
experience and brain dynamics, but participant anticipation and
response to myriad environmental events may likely affect the
recorded EEG and other behavioral and psychophysiological
data streams. For example vehicle movements toward and away
from street signs, pedestrians, speed limit signs, expected and
unexpected environment features, as well as changes in driving
course and lane topography might be relevant in evaluating
neural responses.

Driving experiments are one of the more controlled current
real or virtual world experimental paradigms. Experiments in
which participants walk through the real world (Debener et al.,
2012; Aspinall et al., 2015) may include a variety of planned
and unplanned encounters with other people and objects, all
of which undoubtedly affect the recorded EEG and other data.
These events may thus affect data analysis and may inform
unforeseen analyses exploiting the richness of the data—but only
if experimental events have been annotated in sufficient detail.

Another difficulty in experiment event annotation is
specification of the level of detail at which to annotate the
events. Should the researcher always record stimulus size,

location, shape, color, texture, and lighting? If this information
is available for one experiment and not for another, how can
one compare their results? The variety and complexity of events
in nature make it impossible to pre-specify a complete event
description vocabulary. Yet, without specification of some
uniform vocabulary, slight differences in specification may
destroy the ability of automated procedures to identify event
similarities across experiments or to recognize unforeseen
linkages that may exist between event attributes and EEG or
other data features.

In 2013, we introduced the Hierarchical Event Descriptor
(HED) system (Bigdely-Shamlo et al., 2013a) for recording
detailed descriptions of experimental events and storing them
with the data. We annotated a number of EEG data collections
using HED 1.0 and made them publicly available at headit.org.
However, as we began to analyze more “real-world” experimental
scenarios and to perform meta-analysis across data collections,
we found the HED 1.0 semantics insufficient to express the
complicated interactions we encountered. Here, we introduce
HED 2.0, a considerable extension of the HED 1.0 system
to allow descriptions of the much larger range of events of
interest contained in real and virtual world EEG experiments.
HED 2.0, combined with our proposed EEG Study Schema
(ESS) and containerization tools (Bigdely-Shamlo et al., 2016),
create a tool and standards ecosystem that make it possible
to store and interrogate data in a large or small collection
of similar or diverse EEG studies. The goal of the HED/ESS
system is to allow researchers to obtain new information about
brain dynamics supporting human experience and behavior
not easily obtainable from any one experiment by exploiting
information still buried in the accumulating stores of carefully
collected EEG and related data. While HED/ESS in combination
is specific to EEG and related brain imaging technologies
such as fMRI and MEG, HED itself is independent of ESS
and is applicable for general annotation in any event rich
environment.

This paper describes the evolution of the HED system through
Versions 1.0 and 2.0, our development of associated tools, and
our experiences in annotating large collections of EEG data.
Section The HED 2.0 Structure for Event Annotation gives
an overview of the HED 2.0 framework and its differences
from HED 1.0. Section Annotation Use Cases and Supporting
tools describes our founding use cases and the tools we have
developed to support them, reporting experiences in annotating
a large multi-collection repository of EEG data. Section HED
2.0 as an Ontology or as Linked Data describes HED in the
larger context of potentially more general ontologies and linked
data representations. Section Discussion offers some concluding
remarks about the future development of HED, its potential for
sharing of functional imaging data, and the relationship of HED
to other efforts in this area. All of the tools described in this
paper are available via Github repositories linked to hedtags.org.
Researchers interested in annotating their data using HED and
associated tools, should begin by readingA strategy guide for HED
Annotation guide provided as Supplementary Material with this
paper as well as the extensive tool documentation provided at the
HED website.
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THE HED 2.0 STRUCTURE FOR EVENT
ANNOTATION

The goal of HED 1.0 was to provide a flexible vocabulary
for annotating events in EEG laboratory experiments. HED
1.0 was based loosely on CogPO (Turner and Laird, 2011),
which is organized along three orthogonal descriptors: stimulus,
instruction, and participant response. CogPO has a large number
of predefined experimental paradigms allowing users to place an
experiment within the contextual taxonomy of large databases
such as BrainMap. The purpose of HED, on the other hand,
is much more fine-grained. The goal is to annotate individual
events for performing large-scale automated analysis and meta-
analysis across collections of EEG studies. The requirements
in such applications are quite different from the use cases
envisioned for CogPO. HED is based on the assumption that
a single dataset may contain thousands of events, and that the
experimental nuances of each data set and even of each event may
vary. These use cases drive the need for a structured, yet flexible
vocabulary.

HED 1.0 Structure and Limitations
HED 1.0 was a tree-structured vocabulary that allowed users to
extend the leaves in certain directions. The top-level annotations
for HED 1.0 were /Paradigm, /Time-locked event/Stimulus,
/Time-locked event/Response, /State, /Participant, /Context, and
/Custom. The first three items correspond to the orthogonal
elements of the CogPO ontology, while the remaining items
document the context of the experiment.

We were able to annotate a number of EEG collections
using HED 1.0, These were made public through the UCSD
HeadIT project (headit-beta.ucsd.edu). However, when we began
to annotate complex experiments conducted outside a controlled
laboratory environment, we found that HED 1.0 did not
have the semantics needed to describe the experimental and
environmental events and event contexts for experimental
protocols not based on simple stimulus-response paradigms.
Since HED 1.0 maintained a hierarchical strategy, descriptive
attributes such as stimulus color proliferated in various portions
of the hierarchy. The difficulties we encountered in applyingHED
1.0 included:

• Many events may not be directly associated with particular
stimulus presentations or participant responses (e.g., the
participant in a driving experiment might see pedestrians,
buildings, and other vehicles during driving, all peripheral to
the driving task).

• Participant states may occur independently of those
explicitly manipulated in the experiment (e.g., changes
in the participant’s attention, fatigue, or stress).

• Participants may fail to perceive some presented items (e.g.,
the subject may not actually see a speed limit sign displayed
in a driving experiment, as evidenced by their subsequent
behavior, or by later self-report).

• Items may have multimodal sensory representations (e.g., in a
real world driving experiment, the subject might hear as well
as see other vehicles).

• Different presentations associated with the same stimulus
category may not be associated with equivalent EEG dynamics
(e.g., EEG dynamics induced by seeing a 2-D picture of an
apple, a 3-D representation of an apple in virtual reality, or
an actual apple).

• A typical event associated with a complex scenariomay require
descriptions of multiple objects (e.g., during driving, the
experience of being in a traffic jam).

Some of these difficulties in using HED 1.0 stemmed from the
lack of orthogonality in the definitions of item attributes. For
example, attributes such as color, size, and location can apply to
virtually any item and hence repeat in many of the leaf nodes.
We concluded that attributes should instead be orthogonal to the
items they describe and therefore should appear as separate nodes
under a top-level Attribute node in the hierarchy.

Another difficulty was that events sometimes required
descriptions of multiple items with multimodal representations.
Thus, Sensory presentation should be a top-level
item. Other complexities arise for experiments involving
multiple participants and experiments that encompass multiple
experimental contexts. In one set of experiments, we helped tag,
participants began by walking on a laboratory treadmill viewing
a virtual reality scenario. They then performed the same tasks
outdoors in a park environment. The lack of embedded unit
specifications was also a barrier to mining similar events across
data collections. Finally, real-world experiments may require
annotation of many events peripheral to the central participant
task. To describe such events, the tag vocabulary must be capable
of describing all relevant aspects of these events.

HED 2.0—Overall Structure
To address the concerns articulated in the previous section, we
revised HED 1.0, giving it a more complete and orthogonal
hierarchical structure. We refer to this scheme as HED 2.0 and
maintain the current HED 2.0 specification in Wiki format at
hedtags.org/schema. Methods are available to export the HED
2.0 schema from wiki to XML and JSON formats for use in HED
tools.

The HED 2.0 schema has the following top-level elements
(Figure 1):

/Event /Participant

/Item /Experiment

context

/Sensory presentation /Paradigm

/Attribute /HED

/Action /Custom

HED tags may appear in the overall description of an experiment
or as annotations associated with individual events. Experiment-
related tags mainly come from the /Experiment context

and the /Paradigm sub-trees. Descriptive elements appear
under the /Attribute sub-tree and can modify any aspect
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FIGURE 1 | Top levels tags in HED 2 hierarchy.

of the hierarchy. The /Attribute sub-tree contains many
more attributes than were present (across multiple branches)
in the defined HED 1.0 hierarchy. HED 2.0 also contains unit
classes including time, physicalLength, angle, and
frequency, each with associated allowed and default values.
The unit classes as well as attributes such as the data types are
part of the HED 2.0 specification, allowing HED tools to perform
automated consistency checking of tagged events. Events can also
have onset, offset, and duration attributes. These allow
HED 2.0 to describe events that are instantaneous or that persist
for some duration. There are 949 predefined tags in HED 2.0: 10
top-level tags, 314 tags at level two (2), 213 at level three (3), and
417 tags in levels four (4) to seven (7).

In HED 2.0, every event is required to have
/Event/Category and /Event/Label tags (plus
their children). A child of the Label tag is a short (less
than 20 character) identifier (e.g., “Button press”) meant to

help researchers refer to events of the same type within a
study in a convenient manner. Often the label corresponds to
the label that researchers used to identify events of this type
within their laboratories. Automated processing usually ignores
/Event/Label, since by definition its content scope is limited
to the current study only, meaning that events labeled similarly
across multiple studies may be different in nature. The child
of /Event/Description node, which is a human-readable
description of what this event represents, is also meant to be
ignored in automated processing.

Children of the top-level element /Event/Category

include Initial context, Participant response,

Technical error, Participant failure,

Environmental, Experimental stimulus,

Experimental procedure, Incidental,

Miscellaneous, and Experimental control. The
event subcategory /Event/Category/Environmental
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can document a variety of environmental conditions, relevant or
not relevant to the experiment (e.g., in an outdoor experiment,
hearing noisy airplanes flying overhead). In experiments
taking place in outdoor environments, researchers may use
this subcategory to encode unplanned interactions with
other people using /Event/Category/Incidental

or /Event/Category/Miscellaneous. The key for
successful annotation is to provide a description sufficient to
resolve ambiguities. Machine learning algorithms may either
attend to or ignore these details; researchers may use the detailed
descriptions to explain variability in the data or to exclude
portions of the signal from analysis.

The Role of Participants in HED 2.0
In addition to making attributes orthogonal to the rest of
the hierarchy, HED 2.0 separates specification of participant
attributes from the specification of presented stimuli and their
perception (or otherwise) by the participant. This organization
was motivated by experiments that may include multiple
participants and/or (e.g., in real-world experiments) other
people who may perform actions relevant to the subject. In
addition, laboratory experiments typically present stimuli in
a way that strongly constrains actual participant perception
of the stimuli (e.g., participant focuses on a visual display
in a darkened room). Real-world experiments often have
much weaker guarantees about whether a participant actually
perceived a given stimulus. The top-level HED 2.0 items
under /Participant are ID (default: 1), Role, Effect

(to document how the stimulus does or should affect the
participant), and State (to document participant level of
consciousness, attention, fatigue, etc.). As determining the
true effect of a stimulus event on a participant is difficult,
researchers may typically use these tags to document an event’s
intended effect. For example, a researcher might document
an event designed to feel rewarding as /Participant/

Effect/Cognitive/Reward or (adding a pertinent detail)
as /Participant/Effect/Cognitive/Reward/$10.

HED 2.0 also generalizes the specification of actions,
decoupling them from the specifications of participants and
stimulus presentations. This decoupling allows researchers to
document task-irrelevant or involuntary participant actions such
as yawning, hiccupping, scratching, etc., that may affect data
recording or to describe actions of other agents in the paradigm
(such as actions of autonomous cars).

HED 2.0 Example Combinations and
Semantics
HED 2.0 allows detailed documentation of multiple items within
an event. The following example describes a situation in which
the stimulus consists of two items presented simultaneously to
the participant. However, the participant only visually attends to
one of the stimulus items, as seen later in the eye tracking data:

/Event/Category/Experimental stimulus,

/Event/Label/RedFixationCircle,

/Event/Description/Displayed to user a

red circle for fixation in center of the

screen and a blue square on the left.

User sees the red circle,

(/Item/2D shape/Ellipse/Circle,

/Attribute/Visual/Color/Red,

/Attribute/Fixation point,

/Attribute/Location/Screen/Center,

/Sensory presentation/Visual/Rendering

type/Screen/2D,

/Participant/Effect/Visual),

(/Item/2D shape/Rectangle/Square,

/Attribute/Visual/Color/Blue,

/Attribute/Location/Screen/Left,

/Sensory presentation/Visual/Rendering

type/Screen/2D)

Parentheses group tags and enable specification of multiple
items and their attributes in a single HED string. Here,
both the red circle and the blue rectangle have /Sensory

presentation/Visual tags, indicating the items appeared
on a screen the participant was viewing. Only the red circle tag
contains /Participant/Effect/Visual, indicating the
subject saw the circle (e.g., based on eye-tracker information).
Currently most of our tagging efforts assume subjects actually see
all visible items. As eye tracking becomes more common in EEG
experiments, we expect annotators to distinguish more carefully
between visibility and perception (either peri- or extrafoveal).

HED 2.0 also allows description of more complicated events
using a sentence-like tag grouping syntax. Describing the
sentence, “Man ate Fish” requires specifying the order of “Man”
and “Fish” in the sentence (to differentiate “Man ate fish” from
“Fish Ate Man”). HED 2.0 expresses these semantics using an
RDF-like (Subject, Predicate, Object) construct with tilde (∼) as
separator:

(/Item/Object/Person ~ /Action/Type/Eat ~

/Item/Object/Animal/Fish)

The third clause (the object) is not required. For example, the
following conveys “Car [is] perturbed”:

(/Item/Object/Vehicle/Car ~

/Attribute/Vehicle Control/Perturb)

Another common situation requiring thoughtful annotation is
the notion of a “target” stimulus presentation (i.e., a type of
stimulus presentation event the participant is set to respond to)
vs. a “non-target” stimulus presentation (an event not prompting
a participant response) vs. presentation of an “oddball” stimulus
(presentation of a stimulus not within any expected stimulus
stream and appearing relatively rarely). For example, in a visual
oddball experiment, a subject is instructed to press a button only
when a chair appears.

/Event/Category/Experimental stimulus,
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/Event/Description/A picture chair is

displayed on the screen,

/Sensory presentation/Visual,

/Participant/Effect/Visual,

/Participant/Effect/Cognitive/Target,

/Item/Object/Furniture/Chair

The “target event,” seeing the chair, may or may not be rare,
and thus may or may not elicit a typical “oddball” response. The
event annotation may contain the following tags to designate an
oddball stimulus presentation:

/Participant/Effect/Cognitive/Oddball,

/Attribute/Presentation fraction/0.1

Targets may also elicit a threat level or other cognitive effect,
which researchers can annotate based on the meaning of the
experiment. In a classical N-back problem meant to test working
memory, the “target” is a letter that matches a letter a fixed
number of items back in a sequence of letters in a presentation
stream (cognitiveatlas.org/task/n-back_task).

Annotators of laboratory experiments generally assume that
visual items are presented on a computer screen, which can be
designated as:

/Sensory presentation/Visual/Rendering

type/Screen

Once annotated collections are available, researchers can extract
different data subsets for within- and cross-session analysis as
described in the next section.

ANNOTATION USE CASES AND
SUPPORTING TOOLS

The simplest use case for annotated data is simply to gather data
from multiple studies that share a common characteristic (such
as including visual “oddball” stimulus presentations). Providing
a summary of the unique tags for each dataset and for each study
makes such an operation easy. Once researchers have identified
a group of datasets of interest, analysis may proceed in several
different directions.

The most important mode of EEG analysis is to extract
sets of EEG epochs time-locked to selected classes of events
to observe and model differences in EEG patterns induced
by event types of interest. Epoch-based analyses may involve
computing trial-averaged event-related potentials (ERPs), event-
related spectral perturbations (ERSPs) (Makeig, 1993), or other
measures averaging across trials in the time or time-frequency
domains. Researchers may easily group HED-tagged event-
locked epochs or compare epochs based on similarities in
several attribute dimensions coded in the event HED tags. Tools
such as LIMO (Pernet et al., 2011) facilitate the introduction
into a General Linear Model of potentially relevant event
dimensions as independent factors (for example the color, size,
or intensity of presented target or non-target visual stimuli).
Functional connectivity analysis, trial classification, and BCI
(brain-computer interface) design also involve extracting and

modeling epochs that are time-locked to particular classes of
events.

Another application for event tagging is enrichment analysis.
Given a large corpus of data with tagged events, one
can ask whether particular tags are more likely to be
associated with a given data pattern than a random relationship
would suggest. Researchers can use statistical approaches
such as independent component analysis (ICA) to discover
unanticipated relationships between data features and event
tag combinations. Such methods allow fruitful experiment
designs to expand beyond repeated presentation of a few
stimulus stereotypes, instead presenting to participants a wealth
of individual stimuli that may vary randomly across some
parameter space of interest. A rich space of individually varying
events is also characteristic of real-world and complex virtual-
world experiments. HED tagging can allow information-based
methods to define factors associated with cognitive and brain
processes that are not perfectly modeled by any single event tag.

Types of HED Annotations
Three event-tagging processes (preset, real-time, and post hoc
annotation) use different strategies for tagging and require
different supporting tools. In traditional EEG experiments
(preset), researchers define stimulus presentation and participant
response events in advance when designing the experimental
paradigm and typically encode these events in the EEG data
files using experimenter-defined numerical codes. The number
of such event codes can range from a handful to a few hundred,
and events with the same event code usually appear multiple
times during the experiment. In the future, experiment control
programs running such experiments could easily place in the data
file full HED tag descriptions of each such preplanned event,
eliminating the need to translate cryptic data event codes into
fully descriptive HED tags after the experiment finishes.

More flexible experiment control programs (e.g., virtual-
world simulators) typically generate rich event streams that can
also be labeled in real time using an appropriate combination
of predefined tags to describe each event (real-time). In our
experience, a virtual-world experiment application may produce
and place in the recorded data hundreds of thousands of uniquely
annotated events. The subset of relevant details may differ in each
analysis, depending on its goals. Ideally, this automated HED
tagging should attempt to document all possible event details
for later filtering to support specific analyses. The bandwidth of
the generated HED tag data stream will usually occupy only a
fraction of the bandwidth of the recorded data.

In a third type of event annotation, researchers may designate
and annotate events post hoc from preliminary inspection or
analysis of the data. In videotaped experiments, for example,
researchers may search visually for and then hand-annotate
complex video events (e.g., particular participant gestures)
that cannot be recognized objectively and tagged during
the experiment by the experiment control application. In
experiments using eye-trackers, post hoc processing of gaze paths
and fixation locations may be needed to determine and annotate
whether or not a subject viewed presented objects (whose
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positions have ideally been detailed in the application-generated
HED tag stream).

CTAGGER Annotation Tool
We have developed several toolsets to facilitate the processes of
event annotation, validation, extraction, and search using HED
2.0. In the discussion below, we assume that the EEG researcher
has created a small list of event codes from an experiment in
an Excel spreadsheet, now a common strategy in EEG research.
The HED annotation process in this case would usually consist
of mapping these event codes to appropriate HED tags. The
actual events that occur in the experiment are often stored in a
spreadsheet (say a tab-separated text file), or for users of EEGLAB
in the EEG.event structure.

A researcher starting the annotation process with a
spreadsheet of event codes would benefit from using CTAGGER
(for “community tagger”), an open source Java HED-based
annotation tool, created by us, that runs as a standalone program
or as a function called from MATLAB (either standalone or as a
plug-in tool for EEGLAB). We first released CTAGGER for HED
1.0 several years ago (Rognon et al., 2013) and have substantially
modified the tool to support HED 2.0.

Figure 2 shows a screen shot of the primary CTAGGER
annotation tool window. This window has two main panels: the
left panel displays the events or event codes to be tagged, while
the right panel displays the hierarchical vocabulary (HED or
other conforming vocabulary) from which tags may be selected.
Each event or event code has its own section whose header has
a checkbox. Users can simultaneously tag multiple event codes
by checking their respective boxes in the left panel. CTAGGER
adds (associates) the selected tag with each selected event or
event code. CTAGGER also supports undo operations as well as
removal of a tag from a group of selected codes that all contain
the selected tag.

Tags for attributes such as object sizes and presentation
durations require a child tag specifying a value. The HED 2.0
schema represents specific values using the # wildcard, usually
associating this wildcard with an appropriate unit class (such
as length, area, or angle). CTAGGER automatically
verifies valid and default units as well as positions where a user
must supply a value.

The collapse/expand/level option addresses the
difficulties that arise because the HED hierarchy is large and
has a somewhat irregular depth structure. Certain levels of the
hierarchy are deep (up to seven levels), while other portions of
the hierarchy are relatively flat. Users can easily lose context after
navigating to a level deep in the hierarchy. Users can thus set
a level in the level box, causing CTAGGER to collapse all
branches of the hierarchy to the specified level.

The context-search feature helps users quickly navigate to
the desired part of the hierarchy based on any part of a word
or phrase. As the user types in the box at the top of the right
panel, a pull-down menu displays possible matches within the
hierarchy and continues to prune the list as the user types more
of the desired search term. When the user clicks on a value in
the search pull-down or hits enter in the search box, CTAGGER

immediately centers the right panel hierarchy on the selected
term.

The CTAGGER annotation tool can read a tab-separated file
in which each line has a column containing an event identifier
and additional columns containing lists of tags. The event
identifier can be either an event code or an event latency in the
data.

Validation Tools
The HED 2.0 hierarchy is represented in XML and
follows a simple schema in which each node consists
of a name, a description, and any child nodes. The
allowed attributes of a node are required, child

required, unique, recommended, takes value,

is numeric, position, type, unit class, and

predicateType. HED 2.0 specifically requires
/Event/Category and /Event/Label and
recommends /Event/Description. Examples of unit
classes include time, length, area, volume, currency, velocity and
jerk. The HEDTools collection is available for MATLAB. Some
validation tools are also available in Python. Validation options
include:

• Verify a HED hierarchy specified in XML against an XML
schema

• Convert a MediaWiki formatted text representation of HED
into XML

• Verify a list of tags against a valid HED specification in XML
• Map HED 1.0 tags into HED 2.0 tags

The MATLAB HEDtools are available via a GUI or as functions
that can be called as MATLAB commands. For example, the
following call to the function validateTSVTags validates the
tags in columns 2 and 3 of a specified tab-separated text file.

[errors, warnings, extensions, remap] = ...

validateTSVTags('CIT_events.tsv', ...

[2, 3], 'hasHeader', false);

The returned items are cell arrays containing lists of errors,
warnings, and tags that are not in the HED specification because
they are extensions provided by the user in allowed places. The
remap array is a list of unique invalid tags. A researcher can use
the remap array to create a correspondence between incorrect
tags and corrected tags. Calling remapTSVTagswith the remap
array then allows users to remap all occurrences to corrected tags
in a single step.

Integration with MATLAB and EEGLAB
Many neuroscientists analyze EEG data using MATLAB. These
users can either call the CTAGGER annotation tool from
MATLAB directly or can install it as an EEGLAB plug-in.
Generally, the MATLAB interface assumes that the EEG data and
events are stored in an EEGLAB EEG structure. CTAGGER uses
the EEG.event.usertags field to store the tags associated
with a particular event code and the EEG.event.hedtags
field to store tags specific to an event occurring at a designated
latency (for example, HED tags streamed from an experiment
control application). CTAGGER also stores the association of
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FIGURE 2 | The CTAGGER graphic user interface for tagging events. Stimulus presentation events described in the original data only as rt and square are now

tagged with more detail that could prove informative to initial analysis or later meta-analysis.

tag mappings to event codes in the EEG.etc.tags field.
The CTAGGER tools use these mappings internally to allow
users to edit previously tagged EEG. The HEDTools toolbox
allows tagging of a directory/folder containing several datasets
or an entire EEGLAB study as well as individual files. Users
can create a mapping between event codes and tags and reuse
that mapping for an entire study. CTAGGER also has an
EEGLAB plug-in function that allows EEGLAB users to tag
events using a GUI through the EEGLAB interface. Extraction
of data epochs based on HED tags follows the EEGLAB
format and can be done either from a tool GUI or from the
command line.

Tagging Workflow and the Learning Curve
The amount of effort required to HED tag a data collection
depends on the number of unique event types in the collection. A
traditional EEG experiment might have thousands of individual
events, but only 10 or so unique event types. An experienced
tagger might tag a complete collection of this type in an hour or
so. In guiding several novice taggers through the process, we have
found that most of the learning curve is in understanding how
the vocabulary is organized and what tagging elements should
be present to express each event properly. After tagging a few

event types, the process usually goes quickly unless something
non-standard must be tagged.

The two most common tagging workflows use the toolset in
different ways:

CTAGGER Workflow

1. Read the codes representing unique event types into
CTAGGER or create the codes using the CTAGGER GUI.

2. Tag each code using the GUI. (CTAGGER validates selections
continuously.)

3. Save the tagged codes in a map file using CTAGGER.
4. Use the saved map file to tag the entire collection with one call

to the tagdir function.

Spreadsheet Workflow

1. Start with your unique event codes in a single column of a
tab-separated spreadsheet.

2. Manually enter the tags for each code in one or more
other columns (usually using a lot of cut and paste
operations). Use https://github.com/BigEEGConsortium/
HED/wiki/HED-Schema as a guide for the allowable
vocabulary.

3. Call validateTSVTags with the spreadsheet file as input.
Using the output of this function to find and correct
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errors. Continue correcting and revalidating to eliminate all
errors.

4. Save the validated spreadsheet and then use the spreadsheet
with tagdir to tag an entire collection of EEG files.

5. If your actual events, identified by codes and latencies, are in a
tab-separated spreadsheet you can call a function to produce a
tagged spreadsheet of events using the spreadsheet from Step
4 as a second input.

Thorough event annotation definitely requires (and deserves)
iterative processing and thoughtful consideration of what events
actually represent. TheHEDTools tagging infrastructure supports
multiple passes through the tagging procedure and allows
analysis tools to filter at different levels of detail. In addition
to tagging, HEDTools also supports creating epochs from tag

combinations using tools compatible with the EEGLAB epoching
tools.

Experience with Annotation of a Large
Collection
So far, we have tagged millions of events across 1860 datasets

from 22 EEG studies. We are also in the process of converting

the publicly available HED 1.0 annotated datasets from headit.org

to HED 2.0 and ESS 2.0 (Bigdely-Shamlo et al., 2016). Figure 3

shows a visual representation of the relative numbers of

occurrences of events in several major categories.

The annotation process has prompted our more careful
thinking about themeaning of different events and their potential
cognitive effects: Should spotting a particular target in a given

FIGURE 3 | Major event HED tags and the numbers of event instances matching each tag across 3,836,429 individual events from 18 studies in a data

repository project whose construction required and prompted the development of HED 2.0.
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experiment design elicit a “threat” or “oddball” response (or
both)? How should we identify different types of “cues” (events
that cue the occurrence of other events in near future)? What
should the event tag descriptions be for stimuli not presented
suddenly as a whole (as in most previous EEG laboratory
experiments)?

We also asked for comments from researchers outside our
laboratories who were using HED tags to annotate their events.
We have included some of their comments in the Supplementary
Material. The overall sense was that the HED tagging process
was fairly straightforward, once they read some examples, and
that the tagging process helped them understand their events
in a larger context. They suggested the need for a user forum
to facilitate community discussion to control how new tags are
added and used.

HED 2.0 AS AN ONTOLOGY OR AS LINKED
DATA

So far, we have described HED 2.0 as a framework rather than
as an ontology. Even if we could create a formal ontology
for annotating EEG events, the resulting complex network of
relationships between all possible items (in either the real world
or some virtual world), would make such an ontology very
difficult for users to comprehend and work with. HED 2.0 is,
in some sense, an attempt to provide a more palatable interface
for large-scale community tagging. Rather than trying to create
and visualize a complex ontology, we have taken the approach
of hiding the detailed ontology structure from the annotator.
The ontology underlying HED 2.0 is quite simple. HED 2.0 has
seven top-level classes: item, participant, action,

attribute, sensory presentation, paradigm,

and event. Table 1 shows the top-level relationships. We
assume that subclasses of a class have the same relationships
as the parent class without enforcing that such a relationship
“makes sense.” For example, a visual stimulus object described as
/Item/2D shape/Star is unlikely to perform an action best
described as /Action/Type/Walk, though our approach
allows for such a tag combination. We assume that the pair will
not appear together in practice unless somehow the relationship
does make sense.

A second aspect of our approach, with respect to mapping
to formal ontologies, is that our hierarchy mixes subclasses and
properties. For example, in the following piece of the HED 2.0
hierarchy, ID and Group ID are properties, while Object and
2D shape are subclasses:

/Item

/ID

/Group ID

/Object

/2D shape ...

We argue that during the annotation process users do
not care about the formal distinction between is-a and
has-a relationships. Keeping the property and subclass
information together here makes the user’s annotation

TABLE 1 | Top-level HED 2.0 classes and implied relationships.

Classes Relation (→) Classes

Item, Participant,

Event

isDescribedBy Attribute

Attribute describes Item, Participant, Event

Action isPerformedBy Item, Participant

Item, Participant performs Action

Event isDescribedBy Paradigm

Paradigm describes Event

Sensory

presentation

presents Item

Item isPresentedBy Sensory presentation

experience less complicated. The HED 2.0 XML specification
internally distinguishes these two types of relationship using
a predicateType attribute (either rdfs:subClassOf for
subclasses or a HED-defined isPropertyOf relationship (a
subproperty of the rdfs:domain property). By design, this
distinction is not visible to the user. The few properties encoded
into the hierarchy are identifying in nature (e.g., ID). A strong
argument for using a semi-structured tagging approach is that
most of the anticipated analysis applications can then use prefix
matching to extract relevant events, an operation that is easy to
implement and simple to understand.

Another fundamental difference between using HED and
working directly with an ontology is that users can extendHED at
any leaf node and at any node with an Extension allowed attribute
without changing the relationships or inheritance properties of
nodes higher in the hierarchy. Thus, users can fill in greater levels
of detail and extend to new areas. Extension tags that appear
commonly can then be added to the hierarchy as permanent
nodes if they prove to be of more general use and/or value.

In spite of differences between HED and formal
ontologies, RDF statements can be produced for event
types or instances using the abovementioned relationships.
For example, for event instance E identified with the URI
hedtags.org/schema/v2/EventInstance/123 and
associated with HED string HS identified with URI H =

hedtags.org/schema/v2/HEDString/HS’ where HS’
is a normalized version of HS (with tags arranged in a standard
order to create a unique string representation) we have (in
subject predicate object format):

E rdfs:type H

[If E is an event type, the relationship

will be instead rdfs:subClassOf]

... followed by a number of statements that describe H. These
statements could be dynamically produced based on HED
tags and their co-occurrences in tag groups (see Table 1): if
H has tags identified by URIs T1 and T2, these statements
will include the relationship between H and these tags, along
with relationships that may exist between T1 and T2. In
case of /Event/Label and /Event/Description, these
relationships are rdfs:label and rdfs:comment:
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H rdfs:label [label string extracted

from Event/Label tag]

H rdfs:comment [description string

extracted from Event/Description tag]

Converting between HED and formal ontology and RDF
representations should allow formal ontology tools to operate on
HED annotated data and for HED annotated data to be included
in larger databases using these formal structures.

DISCUSSION

HED is unique in its focus on events. Many of the current
efforts in sharing neuroimaging data (fMRI, EEG, and MEG),
such as COINS Neuroimaging Suite (Scott et al., 2011) and Open
fMRI (Poldrack et al., 2013; openfmri.org) focus on experiment-
level annotation. COINS has powerful tools for tracking
patients through clinical studies and supports sophisticated
querying. COINS does not explicitly deal with experiment event
annotation. Open fMRI documents events, which in this context
are mainly participant responses, as behavioral data stored
in tab-separated text files. Open fMRI specifies that events
should be documented, but does not provide or require the
use of a standardized vocabulary. Open fMRI also provides a
standardized processing pipeline and group statistical analyses.
Recently, the Open fMRI data structures have been formalized
as the Brain Imaging Data Structure (BIDS) specification
(Gorgolewski et al., 2015). This specification describes a directory
structure and the naming scheme for files within the directories.
Events are specified in tab-separated files with the first columns
(onset and duration in seconds) being mandatory. Researchers
may use other columns to specify other event properties, but
BIDS imposes no other requirements for specifying or detailing
the nature of experimental events. Thus, HED annotation is
compatible with BIDS and could be easily used to standardize
the annotation of events in the fMRI community. Tags to
annotate experimental conditions specific to fMRI could easily
be added to HED, but many of the tags related to relevant
experimental paradigms and events are already present in HED
2.0.

Neural ElectroMagnetic Ontologies (NEMO) is an ontology
and collection of associated tools for annotating trial-averaged
ERP time series extracted from EEG data (Frishkoff et al.,
2007, 2011; LePendu and Dou, 2011). ERPs are obtained by
averaging a group of data epochs of a fixed length all time-
locked to the presentation of a given stimulus type. The NEMO
project focuses on modeling ERP patterns at particular scalp
regions, but also allows annotation of stimuli and other events
as well as the experimental design using a controlled but
limited vocabulary. The NEMO event ontology, based on the
Neuroscience Information Framework (NIF) Standard Ontology
(Bug et al., 2008) is based on the concepts of continuant
and occurrent entities. Occurrent entities unfold in time, while
continuant entities persist and maintain their identity through
time (Arp et al., 2015).

The Cognitive Paradigm Ontology (CogPO) (Turner and
Laird, 2011) was initially created to annotate experiments

and associated publications for BrainMap (Laird et al.,
2005; brainmap.org), a database of results from functional
and structural neuroimaging experiments. CogPO consists
of a vocabulary for describing stereotypical stimuli,
instructions, and subject responses in human behavioral
experiments. NeuroLex (Larson and Martone, 2013) is
an online community effort to organize neuroscience
nomenclature ranging in scale from neuron features to brain
regions, including behavioral paradigms, using the Semantic
MediaWiki (Krötzsch et al., 2006). The Semantic MediaWiki
framework supports export to RDF (Resource Description
Framework), making the results query-able for semantic
relationships.

Another important neuroscience knowledge-building effort
is the Cognitive Atlas (Poldrack et al., 2011), which seeks to
define concepts, tasks, and disorders as well as the relationships
between them. Concepts refer to mental representations
or processes such as visual color discrimination or spatial
selective attention. The Cognitive Atlas identifies tasks using
stereotyped experimental categories such as attention switching
task. Tasks have conditions, contrasts (condition comparisons,
etc.), and indicators (measures of performance or results). The
tasks link to relevant mental process concepts that specify
how particular experimental contrasts index the associated
processes. Tasks also link to collections that contain data
using these tasks. Again, the Cognitive Atlas annotates at the
experiment level and does not explicitly deal with experimental
events.

The value of efforts to standardize data descriptions and
event annotations to allow sharing and meaningful re-analysis
and meta-analysis of neuroscience data has been demonstrated
in a number of applications (Bigdely-Shamlo et al., 2013b;
Ferguson et al., 2014). However, our experience has shown
that while the existing ontology-based frameworks permit some
documentation of experiment data at the cross-participant
(study) level, they do not allow straightforward annotation of
events in modern, complex laboratory, or real-world scenarios
because of their complexity and the need for fine-grained detail
in annotation. After identifying a collection of datasets that have
been HED tagged and are in EEGLAB format, researchers can
use theHEDTools to epoch the data across collection, irrespective
of the studies contained in the collection. Researchers can use
the epoched data for traditional ERP, ERSP, or time-locked
classification and regression.

Many types of data analysis including transfer learning and
other forms of meta-analysis can directly benefit from event
annotation, the common starting point being finding similar
events across some set of studies. This activity can be easily
achieved using HED-annotated data with minimal programming
effort in a wide range of programming languages, since it
only involves simple string manipulation and matching. In
particular, an “EEG Search Engine” powered by HED has
been proposed (Bigdely-Shamlo et al., 2013a). Since HED
describes multiple aspects of each event, it facilitates more
thorough analysis of experimental factors relating experience
to behavior and supporting brain dynamics via general linear
modeling for statistical parametric mapping (SPM) (Friston
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et al., 1990, 1994), and regression (LIMO) (Pernet et al.,
2011).

The HED 2.0 specification contains enough details to generate
a formal ontology, e.g., in OWL format. Connecting HED with
Linked Data is a worthwhile effort, which has already begun.
However, most neuroscience researchers are more interested
in finding similar events and studies than having a Linked
Data representation, especially since Linked Data concepts are
generally complex, tools to work with these technologies have
a steep learning curve, and there are not yet extensive EEG
open archives available on line. This is why we believe that
the simplified interface provided by the HED syntax and its
minimally-restrictive semi-sturctured tagging scheme is well
positioned to foster the rapid adoption of neuroinformatics
technologies in the fields of EEG analysis and BCI design.
HED tagging is currently supported by the ESS, which focuses
on the creation of containerized EEG collections that are self-
contained and have standardized metadata (Bigdely-Shamlo
et al., 2016). However, HED is not specific to ESS and can easily be
incorporated as metadata to document events for data formatted
following other standards.

We have built the HED 2.0 vocabulary through several
iterations tomake sure it is consistent and contains enough nodes
to provide detailed information for events we encountered in
tagging 9 real-world and 13 controlled-setting EEG studies. We
observed that given a few hours of training most researchers are
able to correctly and consistently tag many types of experiment
events. There are, however, unique cases that require more
deliberation and expertise. User comments from researchers
outside our laboratories indicate that HED tagging is relatively
straightforward, especially once an example of a particular
paradigm has been developed.

HED tags are associated with events regardless of how
the events were generated or the type of signal being tagged
(EEG/MEG/fMRI time series, source, or time-frequency feature).
In addition, HED tags can provide searchable overview
annotations for an experiment as a whole and the ability to
readily assess the frequencies of different types of events in an
experiment. Researchers can also create events based on results
of analyses (such as classifier outputs or to mark intervals within
which some threshold is exceeded). We anticipate adding some
basic tags to capture this type of annotation. Users can also add
custom tags of specific interest.

In future work, we will be focusing on three areas for
software development: handling of deeper parenthesis levels,
better parsing of HED syntax for matching, and more integrated
tools for performing analysis. The decision to limit HED syntax
to one level of parentheses forces expression in terms of simple
sentences, which we view as an advantage. However, there are
situations where compound clauses, as expressed by more deeply
nested tag sentences, would be advantageous. Our tools for
matching and time-locked epoching based on tags work well
with a single-level of parentheses, but will need enhancement
for uses that are more complex. Another area of future work
is the development of post-processing infrastructure to assign a
state to each time point in an experiment based on event onsets,
offsets, and durations. This infrastructure will enable a much

more sophisticated assessment of user state and the interaction
of events.

We are currently performing several large-scale, across-
studies statistical, and machine learning analyses using HED
tagged data. As more members of the dynamic brain imaging
community adopt HED tag annotation of events, researchers
will be able to determine whether similarly tagged data from
other experiments share common brain dynamics. This question
is fundamental to whether a given result is generalizable,
an essential component of research reproducibility. We are
currently working on a number of “case studies” that should
make entry into the HED user community more attractive
and straightforward. The increased pressure to share data by
funding agencies, as well as the credit and extended data legacy
provided by standardized annotation, are additional incentives
for researchers to join in this effort.

The HED tools rely only on the specification of a vocabulary
specified by an XML file. The HED 2.0 vocabulary file is
available at https://github.com/BigEEGConsortium/HED/wiki/
HED-Schema. All the tools developed in support of HED are also
freely available at hedtags.org. Extensive user manuals for all of
the tools are available via links from this site. HED Tagging: A
strategy guide for HED Annotation, included as Supplementary
Material to this paper, is also available at hedtags.org where
updated versions of this guide will appear. An updated EEGLAB
plug-in, CTAGGER, for tagging has been released and will soon
be introduced to the larger EEGLAB community.
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