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Abstract

FEL Quadrupole Tuning via Bayesian Optimization using Physics-Informed

Gaussian Process Regression

by

Dylan Michael Kennedy

Free-Electron Lasers like the one at the SLAC National Accelerator Laboratory are

sources of extremely bright X-rays that are useful in a variety of scientific imaging

applications. Because there are only a handful of FEL facilities around the world,

access to these X-rays is in high demand. Every year, hundreds of hours are spent

tuning quadrupole focusing magnets to optimize the X-ray brightness. During this

tuning process, the beam typically cannot be used for experiments. In this thesis, I

show that by performing Bayesian optimization using a Gaussian process regression

model containing prior information derived from an optical model of the accelerator in

combination with historical data, we were able to significantly reduce the amount of

time spent tuning the quadrupoles in comparison to previous methods.
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Chapter 1

Introduction

Linear particle accelerators have been studied with great interest since their

proposal by Gustav Ising in 1924 [1, 2]. In nearly the century that has followed, linear

(electron) accelerators have been constructed around the world, with the current gen-

eration achieving electron energies in GeV range [1]. One of the most powerful features

of these accelerators is that they can be configured as Free-Electron Lasers (FELs). An

FEL is a device that uses a relativistic electron-beam to produce extremely intense,

coherent synchrotron radiation which can be valuable in a variety of scientific imaging

applications [3, 4, 5, 6]. While there are many devices that require fine-tuning to ensure

that an FEL is operating at maximal efficiency, a set of devices known as the quadrupole

focusing magnets (often referred to as “the quadrupoles”, or simply “the quads”), whose

magnetic fields are used to focus the electron-beam, require some of the most frequent

attention [7].

This thesis is intended to serve as a review for anyone interested in applying
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numerical optimization techniques to autonomously tune the quadrupoles of a free-

electron laser. It is written with a target audience of first-year grad students in mind.

The hope is that an incoming grad student may be able to read this thesis and have a

good idea why we did what we did, how we did it, and how one might improve upon

our results. To that end, I will begin by briefly discussing the history and uses of

free-electron lasers, what it means to “tune” them, and why we care about improving

the efficiency of this tuning process. I will then present our reasoning for adopting a

Bayesian approach to quadrupole tuning. At the end of this chapter, I will provide a

roadmap for the remainder of this thesis.

1.1 The Free-Electron Laser

A free-electron laser is a source of extremely intense radiation that uses elec-

trons traveling at nearly the speed of light as a gain-medium [8]. This is in contrast to

a typical laser, which uses atomic or molecular (and generally stationary) material to

produce stimulated emission of radiation upon being excited by some external energy

source. The first free-electron laser (FEL) was built in 1971 at Stanford University by

physicist John Madey [3, 9]. Thirty-eight years later, in 2009, with a yearly operating

budget of about $100 million, the Linac Coherent Light Source (LCLS) at the SLAC

National Accelerator Laboratory achieved its first lasing, becoming the first FEL facility

to produce radiation in the X-ray spectrum. To this day, it remains one of the most

powerful FEL X-ray sources in the world [3]. After a decade of operation, the X-rays
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produced at the Linac Coherent Light Source have proven to be profoundly illuminat-

ing, with applications in the fields of materials science, chemistry, plasma physics, life

sciences, and beyond [10, 3].

1.2 The Tuning Problem

This thesis addresses the task of tuning the FEL at LCLS using numerical

optimization. While there are many devices integral to the operation of an FEL that

require frequent adjustment, in the context of this work, “tuning” will refer to the ad-

justment of the quadrupole magnets. These quadrupoles are devices located periodically

along the beamline that act as lenses for the electron-beam, intermittently focusing and

refocusing it as it is accelerated over the course of 2 miles to the relativistic speeds

necessary to produce X-rays via synchrotron radiation [11].

On a typical day of operation, LCLS will work with numerous research groups,

with each group generally requiring an X-ray energy level different from the last [10].

As the energy level of the beam changes, so do the effects of the quadrupole magnets.

(We will see a quantitative treatment of these effects in Chapter 2.) As a result, the

process of shifting from one energy to another entails changing the settings on these

quadrupole magnets so that the beam is properly transported. Thus, tuning the FEL

can be understood as an optimization problem. The target that we seek to optimize

is the FEL power as a function of the quadrupole magnet settings - i.e. magnetic field

gradients - along the beamline. That is, we wish to solve the following, multiple times
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per day:

~x∗ = arg max
~x

P (~x) (1.1)

where the components of the input vector ~x are the magnetic field gradients correspond-

ing to the set of quadrupole magnets currently being tuned and the function P is the

FEL output power.

Tuning the quadrupoles is necessary to compensate for variables which may

change unpredictably over time and are hard to measure quickly [12, 13, 14]. The process

of tuning is therefore inevitably guess-and-check. Historically, the job of tuning the

quadrupoles was originally performed manually by human operators physically turning

knobs. The first advancement to the process of tuning the quadrupoles came when

an operator wrapped a rubber band around two of the knobs so that two could be

turned with one hand. The next advancement came when an operator put a twist

in the rubberband so that the two adjacent knobs would turn opposite to each other

if either was adjusted. This second advancement was the result of operators learning

something about the underlying function they were optimizing. That is, the operators

had observed that adjacent devices seemed to have opposite effects, which, as we will

see in Chapter 2, is supported by theory.

While the twisted rubber band was an improvement (and may in fact be little

more than LCLS folklore), the biggest advancement to the tuning process came when

the human operators were replaced with a numerical optimization algorithm [15, 13, 16].

Early comparisons between automated search and human-driven search found that the
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automated process converged faster simply by virtue of being able to adjust the settings

faster than humans. The numerical optimization algorithm did not necessarily make

better guesses toward the solution than the human operators, but being able to make

more guesses and being able to vary more devices (humans, typically possessing only

two hands, are severely limited in their ability to adjust many devices simultaneously)

in the same amount of time resulted in improved performance.

When it comes to tuning an FEL, it is critical to minimize the time required

to reach adequate FEL output power. The longer it takes the operators to tune the

beam, the less time the user group will have to perform their experiment. This beam

time comes at the cost of tens of thousands of dollars per hour to the Department of

Energy, and with the current approach, hundreds of hours a year are spent tuning the

quadrupoles. Therefore, any significant systematic improvement to the efficiency of the

tuning process will translate directly to more (precious) scientific progress.

Since the first successful demonstration of numerical optimization (using the

Nelder-Mead Simplex method) as an approach to quadrupole tuning, efforts have been

made to improve the process by incorporating more information about the target func-

tion into the search algorithm [15]. The idea was that if operators were able to learn

relevant features of the target function, it would be ideal to combine that knowledge

with the efficiency of the automated search [17]. To incorporate this information, our

group has transitioned in favor of using a Bayesian optimization algorithm, which gen-

erates a model of the target function via Gaussian process regression at each iteration

of the search [18, 7]. The Gaussian process regression model is a robust fitting tool that
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allows us to incorporate prior information about the function that is being optimized

in the form of kernel hyperparameters [19]. As we will see in chapter 4, these hyper-

parameters can be selected to account for devices whose effects are stronger than other

devices, correlations between neighboring devices, and even noisy output signals. Being

robust to noise is a quality of particular interest to us, as our target function is in-

herently noisy. Furthermore, Bayesian optimization is especially suited to optimization

problems where the target function is extremely expensive to evaluate and whose inputs

are multidimensional [20]. While automated search algorithms are able to iterate faster

than humans, they are limited by physical constraints (such as magnet settle time) to a

maximum sampling rate of about 0.5 Hz. With the cost of owning and operating an FEL

like the one at LCLS totaling about $45,000 per hour, this comes out to approximately

$25 per point sampled [citation needed]. Bayesian optimization tends to converge to a

solution in fewer function evaluations than other optimization algorithms, at the cost

of additional compute-power per iteration. That the cost of compute-power pales in

comparison to the cost of an additional function evaluation ($25) makes this use case

an ideal candidate for Bayesian optimization.

1.3 Roadmap

In the chapters that follow, I catalog our efforts to tailor our Bayesian opti-

mization algorithm to the problem of tuning the FEL quadrupoles at SLAC. In Chapter

2, I will review some essential FEL physics to provide an understanding of the under-
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lying mechanism governing our target function. Particular emphasis will be devoted

to the fundamental operating mechanism that enables a beam of electrons to act as

a free electron laser as well as the role that the quadrupole focusing magnets play in

this process. In Chapter 3, I will discuss the fundamentals of Bayesian numerical op-

timization. In Chapter 4, I will introduce the Gaussian process regression model and

illustrate some of the characteristics that make it a good regression tool for our use case.

In Chapter 5, I present an analysis into the importance of properly training Gaussian

process hyperparameters before performing Bayesian optimization. I then describe in

detail our method of training our Gaussian process hyperparameters. I also discuss

some computational pitfalls that we encountered, how we defeated them, and I show

that our resulting Bayesian optimization algorithm outperforms previous benchmarks.

Lastly, in chapter 6, I will summarize our conclusions.
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Chapter 2

Physical Background

As discussed in the preceding chapter, the objective of this paper is to improve

upon the current approach to numerical optimization for autonomous tuning of the

quadrupoles in an FEL device. With this in mind, the first step toward a solution for

any numerical optimization problem is to understand as well as possible the nature of

the function that is being optimized. In our case, we know that the target function

represents the result of a physical process. Specifically, it is governed by the combined

physics of a linear particle accelerator, an insertion device called an undulator, and

a measurement device called a gas detector. In this chapter, I will cover the basic

theoretical mechanics of these three major components.

It should be noted that the goal of this theoretical analysis will not be to

develop a perfect (or even particularly accurate) model of the target function. Were it

possible to model the function to a high degree of accuracy, a highly strategic approach

to numerical optimization would hardly be necessary in the first place. Alas, due to the
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complexity of the machine and its many unobservable errors, such a model is perhaps

unattainable using theory alone. Not to be discouraged, though, for as we will see, there

is still valuable information that can be obtained from the theoretical analysis. However,

we should keep in mind that it will only provide us with a rough understanding of how

the inputs to our function are expected to affect the output.

I will begin by reviewing some basic FEL theory, focusing mostly on the physics

of the undulator, the core component of an FEL, responsible for the generation of the

high-intensity X-rays (which make FELs such valuable imaging tools) via synchrotron

radiation. In this review, we will learn approximately how the transverse size of the

beam affects the FEL output power. I will also discuss the nature of the measurements

produced by the gas detector, as the process employed to generate these measure-

ments will add some noise to the target signal. In the latter part of the chapter, I

will discuss the physics of transporting an electron beam. There, I will illustrate the

focusing/defocusing effects of the quadrupole magnets. It is these quadrupoles that we

directly adjust to tune the beam, and as such it is imperative that we understand what

function, physically, these magnets perform, and what happens when we change their

settings.

2.1 Preliminaries

In this section, I will briefly introduce some of the relativistic quantities that

describe the electrons we will be dealing with throughout this chapter. We will use
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these results to formulate some approximations that will be used repeatedly in the

following sections. Additionally, I will address a standard coordinate system, as well as

an important change-of-variable, that is used to describe the motion of charged particles

in a linear accelerator.

2.1.1 Useful Approximations

Throughout this chapter, we will be studying electrons whose speed is nearly

that of light. Because physics at these speeds is much different than the physics we are

accustomed to in our everyday experience, it will be useful to briefly familiarize ourselves

with the approximate values of some of the fundamental quantities describing relativistic

motion for particles in the energy regime of our interest. A useful computation to

remember for the Lorentz factor, γ, which is the ratio of a particle’s total energy to its

rest energy, is, for an electron [4]:

γ =
Ue[GeV]

mc2
≈ 1957Ue[GeV]. (2.1)

For accelerators at modern FEL facilities, the electron energies are typically on the

order of one to tens of GeV. At the low end of these energies, the Lorentz factor is on

the order of 103, but for the higher energy electrons this factor may be upwards of 104.

We can use the Lorentz factor to get an estimate for the ratio of the speed of

the electrons to the speed of light. This ratio, ubiquitously referred to as β in relativistic

texts, is defined by β ≡ v/c where v is the speed of the particle and c is the speed of
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light. β is related to the Lorentz factor by:

γ =
1√

1− β2
(2.2)

We can solve for β to arrive at

β =
√

1− γ2 ≈ 1− 1

2γ2
(2.3)

where the final approximation is the result of Taylor expansion, using the fact that

γ2 � 1. Provided γ ≥ 103, the approximated value for beta is accurate to within one

part in 1012. We will find this approximation very useful going forward.

It is also interesting to know just how close to the speed of light our electron

speeds are reaching. Calculating the fractional difference, again using γ ≥ 103, we have

1

c
(c− v) = 1− β = 1/γ2 ≤ 5× 10−7. (2.4)

That is, the electron speed approaches the speed of light to within a factor on the order

of 10−7. In many cases, this means we can approximate the speed of the electrons quite

well as simply being equal to the speed of light. However, we must be careful not to

do so blindly, because, as we will see in the next section, the fundamental mechanism

through which an FEL is able to operate is based on the fact that the electron speed is

slightly less than that of light [4].

2.1.2 Longitudinal Description (Change-of-Variable)

In beam physics, there is always a single ideal trajectory for the particles to

follow, called the design trajectory. All particle motion is described with respect to this
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trajectory. Particles whose motion deviates from the design trajectory are treated as

paraxial rays [21]. While these rays are not necessarily parallel to the design trajectory,

their angular divergence from the design trajectory must be small in order to keep the

beam confined within the tubular transport structures of the accelerator.

When analyzing the particle trajectories, it is most convenient to use a local

coordinate system defined with respect to the local design trajectory. That is, we wish

to define the z-axis of a local Cartesian coordinate system such that it is aligned with

the local design trajectory. Thus, the distance traveled parallel to the design trajectory

will be given by the z-coordinate. The paraxial rays, then, may be offset by a small

amount in the x- and y-directions, and make some angle θ with respect to the z-axis.

We refer to the z-direction as the longitudinal direction, while x and y are referred to as

the transverse directions. In keeping with general tradition, the x-direction represents

the horizontal offset, while the y-direction represents the vertical offset. We specify the

divergence angle θ in 3-dimensions by θx and θy, where θx is the angle made between

the projection of the velocity in the x-z plane and the z-axis, and θy is the angle made

between the projection of the velocity in the y-z plane and the z-axis. Thus, we arrive

at the relations

tan θx = vx/vz, (2.5)

tan θy = vy/vz. (2.6)

Because the particles move unidirectionally along the positive z-direction, there is a one-

to-one correspondence between a particle’s z-coordinate and its time coordinate. Thus,
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while the fundamental physical laws governing the motion of these particles are typically

formulated as differential equations with respect to time, it is possible to perform a

change-of-variable, replacing the time coordinate with z. This will be necessary in order

to transition to a description of the beam physics that makes use of the principles of

geometric optics, as the forces in such optical systems are specified in terms of position

rather than time [21, 22]. (As we will see later in this chapter, by employing a few

highly accurate approximations, the quadrupole magnets that are the focus of this work

can be treated analogously as optical lenses, providing both a familiar interpretation

and simplified quantitative framework for computing their effects.) Thus, we will need

to replace derivatives with respect to time with derivatives with respect to z. In beam

physics texts, derivatives with respect to z are represented using primed notation, while

derivatives with respect to time are represented using dot notation [4]. For example, in

the case of the horizontal offset coordinate x, we have

ẋ ≡ dx

dt
≡ vx, (2.7)

x′ ≡ dx

dz
. (2.8)

In general, we can transition from one independent variable to another using the chain

rule. In this case,

d

dt
=
dz

dt

d

dz
= vz

d

dz
, (2.9)

d

dz
=

1

vz

d

dt
. (2.10)
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Applying this to the x coordinate, we get, as expected,

x′ =
d

dz
x =

1

vz

d

dt
x =

vx
vz

= tan θx. (2.11)

The y-direction can be treated similarly. As we have discussed, the velocity in the

longitudinal direction approaches that of light. Because the transverse velocities are

comparatively small, we can apply the small angle approximation to replace the tangents

of the transverse angles by their arguments. By doing so, we arrive at the following,

x′ ≈ θx, (2.12)

y′ ≈ θy. (2.13)

Thus, the quantities x′ and y′ are sometimes referred to as the transverse angles, as

they are effectively interchangeable under our approximation.

Now that we have established how to change our independent variable from

time to longitudinal position, we will be able to understand the forces that we encounter

in the following sections in terms of their geometric effects on the particle trajectories.

2.2 FEL Physics

In this section, we will cover the basics of how electrons can be used to produce

high-intensity radiation. I will begin with a brief history of synchrotron radiation. I

will proceed to discuss the physics of an undulator device, which is an insertion device

designed to create oscillations in the motion of charged particles that have been acceler-

ated to relativistic speeds, thereby generating synchrotron radiation [23, 4]. I will then
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examine the conditions under which an electron beam passing through an undulator

may lead to a phenomenon called self-amplification by spontaneous emission (SASE).

When this interaction occurs, the device is operating as what we call a Free-Electron

Laser (FEL). We will see that the transverse size of the electron beam is a critical

parameter in determining the strength of this interaction. Lastly, I will address the

practical consideration of measuring the intensity of the output signal of an FEL using

a device called a gas-detector.

2.2.1 Synchrotron Radiation

Synchrotron radiation is generated when a charged particle travels at relativis-

tic speeds along a curved trajectory. This type of radiation can and does occur in nature,

for example, when electrons that have been accelerated to ultra-relativistic speeds by a

solar flare spiral through a magnetic field. However, it was not until midway through

the twentieth century that it was first recognized by humans when it was observed,

unexpectedly, by scientists working on the circular accelerator at the General Electric

Research Laboratory in Schenectady, New York on April 24, 1947 [24]. Since its discov-

ery, synchrotron radiation has become an invaluable tool in the field of imaging, as it is

capable of producing wavelengths that span the entire electromagnetic spectrum [10].

Facilities designed to produce synchrotron radiation, such as the Linac Coherent Light

Source at SLAC National Accelerator Laboratory, continue to be constructed around

the globe, with each generation capable of producing radiation at higher intensities than

the last [3].
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At LCLS, the electron beam from the SLAC linear accelerator is used to pro-

duce high-powered X-rays via synchrotron radiation. As these electrons approach the

end of the accelerator, they are traveling at nearly the speed of light. By passing them

though a specially designed magnetic field generated by a device called an undulator,

the electrons are driven into rapid transverse oscillations in such a way that causes them

to radiate X-rays, and which creates a resonance between the forward-propagating E-M

waves and the leading electrons [23, 4]. This resonance leads to a laser-like amplification

of the beam of X-rays (hence the name Free-Electron Laser), which can subsequently be

used to perform imaging tasks for a wide variety of research purposes. In the sections

that follow, I will review the physics of this synchrotron radiation and the amplification

process.

2.2.2 The Undulator

An undulator is an insertion device (so-called because it is inserted in the

beamline of a particle accelerator) that consists of a series of dipole magnets arranged

in a periodic structure with alternating polarities. It is designed to produce synchrotron

radiation by forcing the charged particles of a relativistic beam to perform transverse

oscillations with respect to their longitudinal position. Depending on the type of undu-

lator, these transverse oscillations may have components in both the x- and y-directions

(as is the case in a helical undulator), but we will restrict our discussion to a planar

undulator (as this is the kind we have at LCLS), which produces oscillations only in

one transverse plane. A schematic of a planar undulator is depicted in Figure 2.1. In
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Figure 2.1: Schematic of a Planar Undulator

A schematic of a planar undulator (not to-scale). The undulator shown is composed of a series of

dipole magnets (grey) of alternating polarity (north/south depicted by red/black, respectively)

situated on each horizontal side of an electron beam (trajectory of beam centroid shown in

yellow). Magnetic quadrupoles are configured in between segments of the undulator to keep the

beam focused.

this section, we will analyze the motion of an electron passing through such a device,

and develop an expression for the fundamental wavelength of the induced synchrotron

radiation. This wavelength will be relevant in the following sections when we discuss

resonance.

First, we must construct a valid model for the magnetic field of a planar

undulator. To do this, we will make use of the magnetic scalar potential, which we

denote φ. Recall that in free space (such as the space between the magnets of the

undulator through which our electron beam will pass), this scalar potential must satisfy
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Laplace’s equation:

∇2φ = 0. (2.14)

This condition restricts our set of physically allowed potentials. By constructing a

potential that satisfies Laplace’s equation, we guarantee that the associated magnetic

field satisfies Maxwell’s equations in vacuum. Specifically, the resulting field will have

identically zero divergence and zero curl. Furthermore, we must ensure that our function

φ describes a magnetic field that displays transverse oscillations with respect to the z-

direction in order to induce transverse oscillations in the charged particles traveling

longitudinally through the field. The magnetic field can be obtained from φ using the

following relation:

~B = ∇φ. (2.15)

To satisfy the above conditions, we consider the field given by the scalar potential [4]

φ = −B0

ku
sinh (kuy) sin (kuz). (2.16)

Here, B0 is the maximum magnetic field strength (amplitude), and ku is the spatial fre-

quency (wavenumber), determined by the spacing of the dipole magnets. This potential

satisfies Laplace’s equation, and results in a magnetic field given by

~B = ∇φ (2.17)

= −B0 cosh (kuy) sin (kuz)ŷ −B0 sinh (kuy) cos (kuz)ẑ. (2.18)
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For sufficiently small transverse offsets from the z-axis, the above magnetic field can be

approximated as

~B = −B0 sin (kuz)ŷ, (2.19)

where we have discarded the component of the field along the z-direction for simplicity

(0th order approximation). In other words, the above is the resulting magnetic field

along the z-axis.

We can now compute the trajectory of an electron passing through this undu-

lator field. To do this, we will assume that the electron initially has no transverse offset

and no transverse velocity. That is, it is initially directed along the z-axis. The force

on the electron from the undulator field is given by the Lorentz force:

~F = −e( ~E − ~v × ~B). (2.20)

Assuming the Lorentz force resulting from the interaction between the undulator field

and the electron is much larger than the force resulting from the induced synchrotron

radiation, the net force on the electron will be approximately equal to the Lorentz force.

Writing the net force as the change per time of the relativistic momentum, and assuming

zero electric field, we have

~F =
d~p

dt
=

d

dt
(γm0c~v) = −e(~v × ~B) (2.21)

= −e(−vzByx̂+ vxBy ẑ), (2.22)

where m0 is the electron’s rest mass and ~p = γm0c~v is the electron’s relativistic mo-

mentum. Note that under our assumptions, the energy of the electron is conserved,
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and the velocity along y remains zero. To understand the resulting trajectory, we first

look only at the transverse component of this equation, and use eq (2.9) to replace our

derivative with respect to time with a derivative with respect to z. Cancelling out the

z-component of the velocity that subsequently appears on both sides, we get

d

dz
(γm0cvx) = −eB0 sin (kuz). (2.23)

Integrating over z yields the result

vx =
eB0

γm0ku
cos (kuz) (2.24)

=
Kc

γ
cos (kuz) (2.25)

where in the final step we have made a notational simplification by defining the undu-

lator deflection parameter as K = eB0
m0cku

. We see that the transverse velocity oscillates

sinusoidally with respect to its longitudinal position.

Recalling, now, that our assumptions have implied a conservation of energy for

our electron, we can infer from the above results how the longitudinal velocity evolves.

Squaring both sides of eq (2.3) and using the fact that vy = 0 under our assumptions,

we have

1− 1/γ2 = β2 =
1

c2
(v2x + v2z), (2.26)
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Solving for vz and substituting the above result for vx yields

vz = c
√

1− 1/γ2 − v2x/c2 (2.27)

= c

√
1− 1/γ2 − K2

γ2
cos2 (kuz) (2.28)

≈ c[1− 1

2γ2
− K2

2γ2
cos2 (kuz)]. (2.29)

From this, we can see that the longitudinal velocity has an oscillatory term that is the

result of the energy transfer to the transverse direction x. Alternatively, we can think

of this oscillatory term as being the result of the electron maintaining a constant speed

but experiencing a path length increase (with respect to a straight-line trajectory along

z) due to its transverse excursions in the horizontal plane. Note that the cos2 (kuz) term

in the above expression for the longitudinal velocity vz oscillates with exactly twice the

frequency of both the undulator field and the transverse velocity vx. We can thereby

easily observe that the average longitudinal velocity over one full period of the electron

motion is given by

vz = c(1− 1 +K2/2

2γ2
). (2.30)

We are now able to determine the fundamental wavelength of the radiation

produced by the oscillatory motion of the electron described above. For simplicity, we

will assume the observer is situated on the z-axis. The phase of the observed synchrotron

radiation will correspond directly to the phase of the transverse oscillations, which have

been analyzed in the stationary reference frame. The wavelength of the radiation,

which we will denote λ, measured by a stationary observer on the z-axis will therefore
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be compressed according to the classical Doppler effect. In other words, the observed

wavelength will be equal to the distance that light propagates ahead of the electron

after one period of oscillation (which is of course less than the distance that light would

propagate away from a stationary electron given the same amount of time). Thus, if we

denote the wavelength of the transverse oscillations as λu = 2π/ku, we have

λ = (c− vz)∆t, (2.31)

where ∆t = λu/vz is the period of one oscillation. Substituting this and our result for

vz into the above, we get

λ = (c/vz − 1)λu (2.32)

= ([1− 1 +K2/2

2γ2
]−1 − 1)λu (2.33)

≈ 1 +K2/2

2γ2
λu. (2.34)

This is the fundamental wavelength of undulator radiation.

2.2.3 Amplification by Spontaneous Emission

In the previous section, we computed the trajectory of an individual elec-

tron passing through an undulator and derived an expression for the wavelength of

the resulting radiation. In this section, we will use those results to see how a beam of

electrons passing through an undulator can produce an interaction, between the forward-

propagating radiation field and the electrons themselves, that leads to amplification of

the emitted radiation signal.
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As discussed in the previous section, the radiation field emitted by an individ-

ual electron propagates ahead of the electron because the electron travels slower than

light. However, if we consider a beam of electrons distributed longitudinally, the lead-

ing electrons will experience an interaction with the forward-propagating radiation field

from the trailing electrons. If this interaction causes the affected electrons to decelerate,

conservation of energy dictates that the kinetic energy lost will be gained as additional

radiation. Under the proper conditions, it is possible to sustain this process throughout

many undulator periods. When this occurs, the process is called self-amplification by

spontaneous emission, or SASE, and it can be employed to amplify the strength of the

undulator radiation by many orders of magnitude [4]. This interaction is the basis for

an FEL device, and the resulting amplification is referred to as FEL gain.

To understand a bit about this process, we will analyze the interaction of the

radiated EM field and the oscillating electrons by modeling the radiation as a forward-

propagating plane wave:

~E(z, t) = E0 cos(kz − ωt+ φ)x̂ (2.35)

~B(z, t) =
E0

c
cos(kz − ωt+ φ)ŷ (2.36)

Recalling that the magnetic field does no work, the power delivered to an electron

interacting with this electromagnetic wave at the position z and time t is given by:

P = ~F · ~v = −e ~E · ~v (2.37)

=
−eE0Kc

γ
cos (kz − ωt+ φ) cos (kuz) (2.38)
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where we have used the result for the x-component of the electron velocity derived in eq

(2.25) from the previous section. If the power delivered to the electron is negative, the

electron is decelerated, and the kinetic energy lost will be radiated into the EM-field,

increasing the field strength. Therefore, in order to achieve appreciable gain, there must

be a significant decrease in the electron kinetic energy, which requires that it sustains a

net deceleration over multiple undulator periods. To establish how this is possible, we

first use the trig identity cosu cos v = 1
2 [cos (u+ v) + cos (u− v)] to replace the product

of the trig functions in the above expression with a sum:

P =
−eE0Kc

2γ
[cos ((k + ku)z − ωt+ φ) + cos ((k − ku)z − ωt+ φ)]. (2.39)

Now we can see that there can only be a significant net energy exchange if at least one

of the two terms in the above sum does not average to zero. To accomplish this, we will

require that at least one of the cosine terms has an approximately constant argument.

Let us define the phases ψ+ and ψ− to be the arguments of the above cosine

terms. That is, let

ψ+ = (k + ku)z − ωt+ φ (2.40)

ψ− = (k − ku)z − ωt+ φ (2.41)

To see how these phases evolve throughout the undulator, we will take the derivative

of each with respect to longitudinal position. To do this, let us look specifically at the

phase ψ+, after which we will apply the same procedure to ψ−. We must keep in mind
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that the time t is the time at which the electron arrives at position z. Thus we have

dψ+

dz
= (k + ku)− ω dt

dz
= (k + ku)− ω/vz (2.42)

= (k + ku)− ω

c
[1− 1/γ2 − K2

γ2
cos2 kuz)]

− 1
2 (2.43)

≈ (k + ku)− k[1 +
1

2γ2
+
K2

2γ2
cos (kuz)], (2.44)

where we have used the fact that ω = ck and also substituted our result from eq for

vz and Taylor expanded. If the average rate of change of this phase throughout the

undulator is zero, it is possible to have a sustained exchange of energy. Averaging the

above expression over one undulator period, and including the similar result for ψ−, we

have

dψ+

dz
= ku − k

1 +K2

2γ2
, (2.45)

dψ−
dz

= −ku − k
1 +K2

2γ2
. (2.46)

From these results, we can see that over each undulator period, the phase ψ− decreases

by more than 2π. Such a rapid, and indeed monotonic, evolution of the phase ψ−

means that the second cosine term in equation (2.39) will oscillate rapidly throughout

the undulator, and therefore cannot result in a sustained interaction between the field

and the electron. Ignoring terms like this one that oscillate rapidly throughout the

undulator is called wiggle averaging [4].

Contrarily, there exists what we call a resonance condition for the phase ψ+.

That is, if

ku/k =
1 +K2

2γ2
, (2.47)
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then

dψ+

dz
= 0, (2.48)

indicating that the phase ψ+ will be, on average, constant throughout the undulator, and

the interaction described by the first cosine term in eq (2.39) will result in a sustained

exchange of energy. Notice that this condition is exactly satisfied by the fundamental

wavelength of the undulator radiation given by eq (2.34)! Thus, we can see that there is

a natural resonance that is created between the undulating electrons and the radiation

field produced by their very motion.

The resonance discussed here is the foundational mechanism that enables an

undulator to operate as an FEL device. Next, we will take a look at the equations that

govern the output power of the FEL radiation beam, and see how they depend on the

physical beam characteristics, in order to understand how to optimize this output.

2.2.4 Dependencies of the FEL Output

In the previous section, we studied the theoretical basics of SASE, the funda-

mental mechanism that enables an undulator to operate as a laser-like light amplification

device. Of course, our analysis thus far has provided little more than a conceptual un-

derstanding, as we have only studied the interaction of a single electron with a simplified

model of the undulator radiation. In regard to this work, we ultimately would like to

determine what physical parameters affect the strength of the amplification interaction

within a beam of electrons. In particular, we would like to establish the mechanism
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by which the quadrupole magnets affect the FEL output power. However, while it has

been important to establish a conceptual understanding of the underlying mechanism

governing our target function, the analysis that leads to the quantitative understanding

of a high-gain FEL device that we ultimately desire, even in its simplest form, becomes

considerably more complex, and therefore exceeds the boundaries of this text. Thus,

for a more complete treatment of FEL physics, we refer the reader to [8, 4]. For our

purposes, we will simply summarize and collect the relevant results of said analysis,

here.

Conveniently, most of the properties of a high-gain FEL can be characterized

by a single, dimensionless quantity called the Pierce parameter, defined as [4]

ρ = [
I

8πIA
(
K[JJ ]

1 +K2/2
)2
γλ2

2πs2
]1/3. (2.49)

Each of the terms in the above expression is defined in Table 2.1 below.

With ρ defined, we can compactly write down what are, to us, the most im-

portant results of this FEL theory. Firstly, we have that as the beam passes through

the undulator, the SASE FEL power (initially) increases exponentially as

P ∼ P0 exp (z/LG). (2.50)

Here, P0 is the starting power (for an FEL starting from shot noise, P0 ∼ kW) and LG

is the FEL gain length, which scales inversely with the Pierce parameter,

Lg ∼ ρ−1. (2.51)
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Parameter Description

I Beam current.

IA = 4πmc3/e ≈ 17kA Alfven current.

K Undulator focusing parame-

ter.

[JJ ] = J0(
K2

4+2K2 )− J1( K2

4+2K2 ) Bessel function adjustment

factor. Jn is the nth Bessel

function.

γ Electron Lorentz factor.

λ Fundamental wavelength of

undulator radiation.

s Cross-sectional width of the

beam through the undulator.

Table 2.1: Definition of Quantities in Eq (2.49)

As can be seen in the above expression for the power, P , the gain length

is effectively the longitudinal distance over which the power of emitted radiation is

amplified by a factor of the natural number, e. Unfortunately, the exponential gain is

not sustainable indefinitely. Recall that in our analysis of the undulator radiation, we

assumed that the electron energy was conserved. Of course, if the undulator resonance is

exploited to produce high-powered x-rays, the electrons will eventually lose significant

kinetic energy. While the FEL power can continue to be amplified in this case by
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using a tapered undulator, at a certain point, the marginal increase in power begins to

scale linearly with respect to longitudinal position rather than exponentially [8]. This

transition is called saturation. The power level at which the beam saturates, called the

saturation power, or Psat, is also related to the Pierce parameter [4]:

Psat ∼ ρPbeam, (2.52)

where

Pbeam =
I

e
γmc2 (2.53)

is the kinetic power of the beam. Thus, the Pierce parameter can be thought of as

approximately the efficiency at which the FEL device converts the kinetic energy of the

electron beam to radiation.

Given these relationships, we can see that by maximizing the Pierce parameter,

we maximize the saturation power while minimizing the gain length. This means that

not only will the exponential gain result in greater amplification, but the subsequent

linear gain will also be greater because there are more remaining undulator periods over

which it can be sustained. Thus, the problem of maximizing the FEL output radiation

power is essentially equivalent to maximizing the Pierce parameter.

So now the question becomes, “How do the quadrupoles affect the Pierce pa-

rameter?” As mentioned in the introduction, the quadrupole magnets are used to focus

the beam. While this focusing is necessary simply to transport the beam to the un-

dulator, we can now see by examining eq (2.49) that the Pierce parameter is inversely
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Figure 2.2: FEL Power Growth through Undulator

A basic illustration of the FEL X-ray power growth as a function of longitudinal position z in

the undulator. The power P grows exponentially before reaching the saturation power Psat,

after which the growth is approximately linear. The Pierce parameter ρ ∝ 1
s2/3

where s is the

cross-sectional width of the beam in the undulator.

related to the cross-sectional width of the beam1. Thus, it is especially important that

the beam is kept as tight as possible while it is passing through the undulator, where

it produces the amplification discussed here [25]. To accomplish this, quadrupole mag-

nets are placed periodically within the undulator to focus and refocus the beam as it

performs its oscillations. In the upcoming sections, we will examine the mechanics of

how these quadrupole magnets can be used as lenses to focus a charged particle beam,

1In the FEL theory discussed here, the beam is assumed to be symmetric in the two transverse
directions, so only a single linear parameter (the beam radius) is needed to describe the cross-sectional
width. In the more general case of an elliptical beam, s is replaced with

√
A/π where A is the cross-

sectional area of the beam.
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from which we will begin to gain an understanding of the functional dependence of the

FEL output power on the quadrupole settings.

2.2.5 Measuring the FEL Output

Figure 2.3: Measurements of the FEL X-ray Pulse Energy

Some measurements from a gas detector of the X-ray pulse energy at LCLS for different settings

of a particular matching quadrupole. 120 pulses are measured for each setting. Mean energies

are shown by the dots, with error bars representing one standard deviation.

In order to optimize the intensity of the FEL radiation, we must of course

have a way to observe the target function. The X-ray pulse energy of the FEL at

LCLS is measured by a device called a gas detector. The gas detector measures the

intensity of the radiation by correlating it to the UV response of a population of N2

molecules through which the radiation beam is passed [26]. While the the amount of

UV radiation measured by the gas detector for a given radiation beam is correlated to
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the X-ray intensity, it is also affected by the statistical properties of the gas, as well as

background noise (although measures have of course been taken to minimize the effect

of the latter). The resulting output signal from the gas detector is consequently noisy.

An example of some measurements from the gas detector is shown in Fig 2.3. Presence

of noise in the function observations is a critical factor to consider when it comes to

selection of an optimization algorithm. We will see in Chapter 3 that in the Bayesian

approach to optimization, uncertainty in the observations is explicitly factored into the

decision-making process.

2.3 Electron Beam Transport Physics

In the previous sections, we saw how electrons traveling at nearly the speed

of light can be used to generate extremely intense X-rays useful for imaging. This, of

course, requires that we have access to an accelerated beam of electrons. To accelerate

electrons up to these relativistic speeds requires longitudinal forces to be applied on

the particles over distances on the order of miles. Over sufficiently long distances such

as this, the electron beam will diverge significantly unless subjected to focusing forces.

Thus, quadrupole focusing magnets are used throughout the beamline to maintain small

transverse cross-sections of the beam, keeping the beam far away from apertures to avoid

scraping and wakefields that may cause unpredictable and undesired behavior. Further-

more, as we saw in the previous section, it is particularly critical that we minimize the

transverse size of the beam as it passes through the undulator in order to maximize
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the FEL output power. In this section, we will examine the mechanics of transporting

an electron beam and conditioning it to maximize the strength of the amplification

interaction throughout the undulator.

2.3.1 Particle Beam Evolution in Free Space

In the absence of external forces, Newton’s first law of motion tells us that the

trajectory of an electron will be a straight line. Because of the high speeds of the particles

in our beams (and vacuum chambers), we are able to ignore the weak acceleration due to

Earth’s gravitational field (the time it takes for a particle to be transported through any

given section of the linac is so small that gravity is unable to accelerate it appreciably).

Thus, if the particles are not subjected to any electromagnetic forces, their paths will be

linear. The segments of the linac that do not contain electromagnetic fields are therefore

approximated as free space and are referred to as drift spaces. We can describe the

trajectory of an electron through such space as a function of its longitudinal coordinate:

x = x0 + x′∆z (2.54)

x′ = x′0 (2.55)

Of course, in the case of a particle beam, we have a collection of particles with various

transverse positions and velocities. To understand how a beam evolves, we can take a

statistical approach of examining how the RMS of the particle coordinates evolve with
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respect to z. That is, the evolution of the mean square of the x coordinates is given by

< x2f > =< x2i + 2xix
′∆z + x′2∆z2 > (2.56)

=< x2i > +2 < xix
′ > ∆z+ < x′2 > ∆z2. (2.57)

If we assume that the initial transverse particle coordinates are uncorrelated to the

transverse velocities, then < xix
′ >= 0 and the middle term vanishes. We can compute

the final RMS of the particle x-coordinates as

xrms,f =
√
< x2f > =

√
< x2i > + < x′2 > ∆z2 (2.58)

=
√
x2rms,i + x′rms

2∆z2 (2.59)

= xrms,i

√
1 +

x′rms
x2rms,i

∆z2, (2.60)

where xrms,i and x′rms are the RMS of the initial positions and angles (in the x-direction),

respectively. From this result, we can see that over very short distances ∆z, the RMS

x-coordinate increases quadratically, while over sufficiently long distances, the evolution

of the RMS x-coordinate approaches a linearly increasing function with respect to z. In

fact, for the latter conclusion, which is the more important for our discussion anyway,

we need not make the assumption that the initial transverse positions and velocities are

uncorrelated. Additionally, we can see that the latter conclusion holds for sufficiently

large positive and negative values of ∆z. The physical interpretation of this result

is that any particle beam traveling (exclusively) through free space was at one point

converging, and will eventually diverge. These results are illustrated in Figure (2.3),

which depicts a beam consisting of many particles with various positions and velocities.
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The RMS transverse positions are illustrated as a beam envelope which converges to a

minimum size at what is referred to as the beam waist, before diverging. (While so far

we have only considered the horizontal transverse direction, an identical argument can

be made for the vertical direction.)

Figure 2.4: Particle Beam Evolution in Free-Space

A side-view of a beam of particles (yellow) with small transverse velocities (black arrows) trav-

eling through free-space. The beam envelope, represented by the solid black curves above and

below, converges to a minimum cross-sectional width at the beam waist before diverging indefi-

nitely.

The fact that any beam traveling through free space will eventually diverge

leads to the necessity of focusing devices. These devices will be responsible for main-

taining small deviations from the design trajectory throughout the linac. While there

are a number of ways to achieve focusing, the modern approach is to use quadrupole

magnetic fields, which we will study in the following section.
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2.3.2 Single Particle Motion in Quadrupole Magnetic Field

Transporting a beam containing trillions of relativistic electrons with varied

positions and momenta requires that it periodically be subjected to focusing forces.

Perhaps the most obvious way of focusing a charged particle beam would be to subject

it to an electric field gradient. However, because the magnetic component of the Lorentz

force exhibits a linear dependence on the particle speed, in the case of a beam of electrons

traveling at relativistic speeds approaching that of light, it is possible to obtain a much

stronger focusing effect by using a magnetic field. Achieving a lens-like focusing effect

using a magnetic field is not quite as straightforward as in the case of an electric field,

so in this section I will cover the physics of this so-called strong focusing.

The modern approach to focusing in accelerator physics employs quadrupole

magnets that generate transverse fields whose strength increases linearly with the dis-

tance from the z-axis [21]:

By = −gx, (2.61)

Bx = −gy. (2.62)

Here, g is the magnitude of the quadrupole’s magnetic field gradient, which can be ma-

nipulated by adjusting the currents through the electromagnets composing the quadrupole.

For an electron traveling along the z-direction with transverse positions x and y, this
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magnetic field results in a Lorentz force with components

Fx = evzBy = −evzgx, (2.63)

Fy = −evzBx = evzgy. (2.64)

By design, each component of the resultant force depends only on the electron’s position

along the respective direction. That is, the transverse forces are decoupled. Further-

more, the components scale linearly with their respective transverse coordinate. This

means that electrons whose positions are further from the design trajectory (z-axis)

will experience a greater force. Notice, however, that for positive values of g, while the

x-component of the force is directed toward the z-axis, the y-component of the force

is directed away (and the opposite is true if the sign of g is reversed). Thus, such

a quadrupole device will be focusing only in one transverse direction, and necessarily

defocusing in the other.

Substituting the x-component of the above force into the relativistic Newton’s

2nd law, and recalling that the magnetic field does no work (γ remains constant), we

have:

Fx =
dpx
dt

(2.65)

−evzgx = γm0
d2

dt2
x (2.66)

−evzgx = γm0v
2
zx
′′. (2.67)

Where in the last step above we have replaced the derivative with respect to time

on the right by a derivative with respect to longitudinal position using our change-of-
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variable rules from Section 2.1.2. Rearranging, and following a similar procedure for

the y-component, we arrive at the (familiar) differential equations:

x′′ + k2x = 0, (2.68)

y′′ − k2y = 0, (2.69)

where we have introduced the focusing strength parameter k such that k2 = eg
γm0vz

= eg
p ,

in which p is the electron momentum. The x-equation, of course, results in simple

harmonic motion, while the solutions in y are hyperbolic:

x = x0 cos [k(z − z0)] +
x′0
k

sin [k(z − z0)], (2.70)

y = y0 cosh [k(z − z0)] +
y′0
k

sinh [k(z − z0)]. (2.71)

These are the equations describing the evolution of a single electron traveling a dis-

tance (z− z0) through a magnetic quadrupole with constant gradient in the orientation

described by eqs (2.61) and (2.62) above. If the quadrupole is rotated 90° about the z-

axis, the equations of motion for x and y will be swapped, resulting in simple harmonic

motion in y and hyperbolic motion in x.

2.3.3 Linear Optics and Transport Matrix Formalism

Having just solved for the trajectory of our electron passing through the

quadrupole magnetic field, we will now rewrite the results in the formalism of linear

algebra. At a given longitudinal position z, the state of the electron trajectory is de-

fined by its position x, y and angle x′, y′ relative to the ideal trajectory (z-axis). That
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Figure 2.5: Quadrupole Focusing Magnet

An illustration of the magnetic field of a quadrupole focusing magnet as seen looking along the

optical axis (into page). Magnetic field lines are depicted by black arrows. The red and black

objects in the corners represent magnetic north and south poles, respectively, of electromagnets

with variable strengths.

is, we can describe the transverse state of our electron using two vectors:

~x =

x

x′

 , ~y =

y

y′

 . (2.72)

Including the derivatives of eqs (2.70) and (2.71) to describe the evolution of the angles

x′, y′ results in a system of linear equations that can be written in matrix notation asx

x′

 =

 cos [k(z − z0)] 1
k sin [k(z − z0)]

−k sin [k(z − z0)] cos [k(z − z0)]


x0
x′0

 , (2.73)

y

y′

 =

 cosh [k(z − z0)] 1
k sinh [k(z − z0)]

−k sinh [k(z − z0)] cosh [k(z − z0)]


y0
y′0

 . (2.74)
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More compactly, we can write the transformation as

~x = Mf · ~x0, (2.75)

~y = Md · ~y0, (2.76)

wherein we have defined the transport matrices for a quadrupole of length L = z − z0,

which focuses in x and defocuses in y, as

Mf =

 cos [k(z − z0)] 1
k sin [k(z − z0)]

−k sin [k(z − z0)] cos [k(z − z0)]

 , (2.77)

Md =

 cosh [k(z − z0)] 1
k sinh [k(z − z0)]

−k sinh [k(z − z0)] cosh [k(z − z0)]

 . (2.78)

If the quadrupole were rotated 90° about the z-axis, it would focus in y and defocus in

x, and the matrices Mf ,Md in eqs (2.75) and (2.76) would be swapped. One can verify

that in the limit that the focusing strength k goes to zero, we recover the equations for

straight line motion discussed in Section (2.3.1). That is, the transport matrix for a

drift space of length l can be written

M0 =

1 l

0 1

 . (2.79)

A useful approximation can be made by applying the so-called thin-lens limit, where we

assume the length of the quadrupole L approaches zero, but the product k2L remains

constant and finite. In this limit, the position of the electron is unaltered (as is required

by continuity), with only the angles x′, y′ being affected. In other words, this approxi-

mation describes a lens that is sufficiently short such that the beam size does not vary
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appreciably as the beam passes through it. The transport matrices for a quadrupole in

the thin-lens limit become:

Mf =

 1 0

−1/f 1

 , (2.80)

Md =

 1 0

1/f 1

 , (2.81)

wherein we have defined the focal length f = (k2L)−1. One may recognize that in

the thin-lens limit, we have recovered the exact transformation rules for thin optical

lenses. That is, the quadrupole acts as a simple converging lens in the x direction, and

a diverging lens in the y direction.

Having written the evolution of the electron state in the formalism of linear

transport, it becomes quite simple (by means of recursion) to compute the effect of a

series of optical elements. For a segment of the accelerator consisting of N elements, we

have for the state of the electron in the x-direction:

~x = MNMN−1...M2M1 ~x0, (2.82)

where Mi is the transport matrix of the ith element (whether it be focusing quad,

defocusing quad, or drift space), indexed such that i = 0 corresponds to the element

the electron passes through first and i = N corresponds to the element the electron

passes through last. Notice that the total transport matrix, Mtot, which transforms

the electron from its initial state ~x0 to its final state ~x, is equal to the product of the
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transport matrices, multiplied in reverse-chronological order. That is,

Mtot =

N−1∏
i=0

MN−i = MNMN−1...M2M1. (2.83)

2.3.4 Beam Envelope and Twiss Parameters

So far, we have seen how we can use transport matrix formalism to study the

evolution of a single electron. Of course, as we saw in Section (2.2.4), we are ultimately

concerned with the evolution of the shape, specifically the transverse cross-sectional

width, of a beam consisting of what is typically billions of electrons. Therefore, we now

turn to a statistical approach to understand how the shape of the beam evolves.

As we discussed previously, the state of a single electron is defined by its phase-

space coordinates ~x = ( xx′ ) and ~y = (
y
y′ ). In the case of a beam, at a particular longitudi-

nal position, we have many electrons with varied phase-space coordinates. Conveniently,

the distribution of phase-space coordinates can typically be well-approximated by two

separate 2-dimensional Gaussians, one for the x and x′ phase-space coordinates, and

one for the y and y′ phase-space coordinates [22]. Under such an approximation, curves

of constant phase-space density are ellipses. Thus, to define the state of the beam, we

can construct an ellipse in each of the ~x- and ~y- phase-spaces that envelopes a certain

percentage of the electrons, as shown in Figure (2.5). An important feature of ellipses

is that they remain ellipses under linear transformations. Furthermore, if the matrix

representing the linear transformation has unit determinant, it will preserve the area of

the transformed ellipse. Notice that the transport matrices for quadrupoles (both fo-

cusing and defocusing), as well as drift spaces, indeed satisfy this condition. Therefore,
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if the electrons pass through any number of such elements (e.g. quad-drift-quad-drift

etc.) the characterizing ellipse will simply be transformed into another ellipse whose

area in phase space is unchanged. Here, we will derive the transformation rule for the

parameters defining these characterizing ellipses. For simplicity, we will look only at

the x-direction, but the treatment will generalize to the y-direction, as well.

Figure 2.6: Particle Beam Representation in Phase-Space

Example of a beam of particles (yellow) Gaussianly distributed in the ~x and ~y phase-spaces.

The two characterizing ellipses (blue) are generally independent, with each described by its own

set of Twiss parameters, which are manipulated via the quadrupole focusing magnets.

Suppose that, at a longitudinal position z, the distribution of the electrons

in the x and x′ phase-space is described by the zero-mean, 2-dimensional (correlated),

normalized Gaussian probability density function:

F0(x, x
′) =

1

2πεx
exp [− 1

2εx
(γxx

2 + βxx
′2 + 2αxxx

′)] (2.84)

To interpret the quantities εx, γx, βx, αx, we compare this to the general zero-mean,
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2-dimensional normalized Gaussian probability density function given by:

f(~x) =
1

2π|Σx|
1
2

exp [−1

2
~x>Σ−1x ~x], (2.85)

where ~x = ( xx′ ), and

Σx =

 σ2x σxx′

σxx′ σ2x′

 =

< x >2 < xx′ >

< xx′ > < x′ >2

 (2.86)

is the non-singular covariance matrix of second-order moments.

Looking at the normalization factor in front of the exponential, we can imme-

diately see that

εx = |Σx|
1
2 =

√
σ2xσ

2
x′ − σ2xx′ . (2.87)

Because the matrix Σ is non-singular, we can invert it using the rule for any invertible

2x2 matrix L. That is, if we have some 2x2 matrix L such that L =

a b

c d

 and

|L|6= 0, then

L−1 =

a b

c d


−1

=
1

|L|

 d −b

−c a

 . (2.88)

Applying this to the above, we get

Σ−1x =
1

|Σx|

 σ2x′ −σxx′

−σxx′ σ2x

 =
1

ε2x

 σ2x′ −σxx′

−σxx′ σ2x

 . (2.89)

Substituting this expression for Σ−1x into eq (2.85) and comparing the result with eq

(2.84), we can see that the parameters βx, γx, αx, are related to the second-order mo-
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ments by:

σ2x =< x2 >= εxβx, (2.90)

σ2x′ =< x′2 >= εxγx, (2.91)

σxx′ =< xx′ >= −εxαx. (2.92)

Notice that if we use the above expressions to rewrite eq (2.87) in terms of βx, γx, αx, we

can square both sides and cancel out the factors ε2x, leaving us with the useful identity:

1 = βxγx − α2
x. (2.93)

Now suppose this distribution of electrons is linearly transported to the longitudinal

position zf (some distance downstream of z), such that an electron initially found at

the coordinates ~x = ( xx′ ) ends up at the final coordinates ~xf = (
xf
x′f

) according to:xf
x′f

 = M ·

x

x′

 (2.94)

where M =

C S

C ′ S′

 and |M |= 1. More formally, suppose the probability mass

initially contained within a square infinitesimal area element at the coordinates ( xx′ )

is mapped to an infinitesimal parallelogram at (
xf
x′f

) according to the above transfor-

mation. Because the transport matrix has unit determinant, this transformation is

area-preserving. Therefore, to conserve probability mass, the transformed probability

density at (
xf
x′f

) must be equal to the initial probability density at ( xx′ ). That is, if we
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call the final probability density F , then we have

F (xf , x
′
f ) = F0(x, x

′). (2.95)

To understand how the shape of the final probability density function F has changed

from F0, we can compute the inverse of the transport matrix (by once again using the

rule from eq (2.88) for 2x2 invertible matrices) and use it to rewrite the coordinates

( xx′ ) in terms of (
xf
x′f

):

M−1 =

C S

C ′ S′


−1

=
1

|M |

 S′ −S

−C ′ C

 =

 S′ −S

−C ′ C

 (2.96)

x

x′

 = M−1 ·

xf
x′f

 =

 S′ −S

−C ′ C

 ·
xf
x′f

 . (2.97)

Substituting for ( xx′ ) in equation (2.84), we have

F (xf , x
′
f ) = F0(S

′xf − Sx′f ,−C ′xf + Cx′f ) (2.98)

=
1

2πεx
exp [− 1

2εx
(γx(S′xf − Sx′F )2 + βx(−C ′xf + Cx′f )2 (2.99)

+2αx(S′xf − Sx′f )(−C ′xf + Cx′f ))] (2.100)

=
1

2πεxf
exp [− 1

2εxf
(γxfx

2
f + βxfx

′
f
2 + 2αxfxfx

′
f )], (2.101)
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where

εxf = εx, (2.102)

βxf = C2βx − 2SCαx + S2γx, (2.103)

αxf = −CC ′βx + (SC ′ + S′C)αx − SS′γx, (2.104)

γxf = C ′2βx − 2S′C ′αx + S′2γx. (2.105)

Now, the final probability density is written in the same form as the initial, except that

the parameters βxf , αxf , γxf have been linearly transformed from the initial parameters

βx, αx, γx according to
βxf

αxf

γxf

 =


C2 −2SC S2

−CC ′ (SC ′ + S′C) −SS′

C ′2 −2S′C ′ S′2

 ·

βx

αx

γx

 . (2.106)

Thus, we arrive at the transformation rule for the parameters of a Gaussian-distributed

beam (or any elliptically distributed beam, for that matter). The parameters βx, αx, γx

are called the Twiss parameters, and are the primary descriptors of the transverse state

of the beam in accelerator optics. Note that the normalization factor, εx, which we call

the geometric emittance, remains unchanged as a consequence of the area-preserving

linear transformation [27]. The geometric emittance is so-called because it has the

geometric interpretation that it is 1/π times the area of the ellipse defined by the set of

points that are unit Mahalanobis distance away from the center of the distribution [28]:

d2M ≡ ~x>Σ−1~x = 1. (2.107)
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(To convince ourselves of this, we could show that the linear transformation given by

~x =
1√
ε

σx′
σxx′
σx′

0

√
σ2x −

σ2
xx′
σ2
x′

~v (2.108)

is an area-preserving transformation that maps the circle ~v>~v = ε onto the ellipse

above.) In this regard, the geometric emittance is an invariant (under our assumptions)

measure of the phase-space area of the beam, with larger emittances describing wider,

flatter distributions.

2.3.5 Alternating-gradient Focusing Lattice

We have seen in eqs (2.68) and (2.69) that a transverse quadrupole magnetic

field acting on a charged particle beam produces forces that scale linearly with the

transverse displacements. In one transverse dimension, the force produces a focusing

effect (pushing electrons toward the optical axis), while in the other it produces a

defocusing effect (pushing electrons away from the optical axis). From these results, it

is clear that if we are to achieve a net focusing effect in both transverse directions, we

will require more than one quadrupole. The obvious solution is to use one quadrupole

to focus the beam in the x-direction, and another (rotated 90° about the z-axis with

respect to the first) to focus the beam in the y-direction. This arrangement is referred

to as an alternating-gradient focusing lattice [11]. Still, it is not immediately obvious

that such a configuration is capable of achieving net focusing in both directions.

To convince ourselves that it is, indeed, possible to achieve net focusing, let us

consider an alternating-gradient focusing lattice consisting of two identical quadrupoles
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Figure 2.7: Alternating-Gradient Focusing Lattice

A periodic series of converging and diverging lenses (quadrupoles) in alternating order. (Note:

This optical schematic can only describe the behavior of the quadrupoles in one transverse direc-

tion. The schematic for the other transverse direction will have the positions of the converging

and diverging lenses swapped.)

separated by some distance L and rotated 90° about the z-axis with respect to one an-

other. It is clear from the thin-lens approximation that in order to realize any net effect,

it is necessary to include a drift space between (and after) the two quads. (Without a

drift space between the quads, their effects would cancel: Mf ·Md = Md ·Mf = I.) For

simplicity, let us examine the effect that such a configuration will have on an individual

electron. Let ~x0 = (
x0
x′0

), ~y0 = (
y0
y′0

) be the initial phase-space coordinates of the electron

just before entering the first quad, ~x1, ~y1 be the coordinates just before the second quad,

and ~x2, ~y2 be the coordinates just after the second quad. Without loss of generality, we

assume that the quadrupole the electron passes through first has a focusing effect in

the x-direction, and a defocusing effect in the y-direction (and thus vice-versa for the
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second quadrupole). Using the transport rules from Section 2.3.3, and working in the

thin-lens approximation, the transformation of the electron phase-space coordinates is

given by:

~x1 =

x1
x′1

 = M0 ·Mf · ~x0 =

1 L

0 1

 ·
 1 0

−1/f 1

 ·
x0
x′0

 , (2.109)

~x2 =

x2
x′2

 = Md · ~x1 =

 1 0

1/f 1

 ·
x1
x′1

 . (2.110)

By writing the transformation in terms of the intermediate phase-space coordinates ~x1,

we are more readily able to see how the quadrupoles’ effects depend on the electron

positions. Specifically, we are interested in seeing the net effect on the angle(s) after the

electron has passed through both quadrupoles:

∆x′ = x′2 − x′0 =
1

f
x1 + x′1 − x′0 =

1

f
x1 + (− 1

f
x0 + x′0)− x′0 (2.111)

=
1

f
(x1 − x0). (2.112)

A similar result can be obtained for the net deflection in the y-direction:

∆y′ = y′2 − y′0 = − 1

f
(y1 − y0). (2.113)

From the above equations, we can see that the electron will be subjected to a net

restoring impulse (i.e. be deflected toward the optical axis) in both the x- and y-

directions, provided x1 < x0 and y1 > y0. Recall that the first quadrupole provides a

deflection toward the optical axis in x, and away from the axis in y. Therefore, if the

electron is initially diverging in both x and y, these conditions can be met with the

appropriate choice of focal length.
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That net focusing is achievable by an alternating-gradient focusing lattice is

indeed the result of the fact that the impulse delivered by each quadrupole lens scales

linearly with the respective displacement from the optical axis. In the arrangement

discussed above, the first quadrupole provides an impulse that tends to reduce the

displacement in the x-direction and tends to increase the displacement in the y-direction.

The second quadrupole will then deliver an impulse that is opposite to the first in both

directions, but its defocusing effect in the x-direction will be smaller in magnitude than

the focusing effect of the first quad, and its focusing effect in the y-direction will be

larger in magnitude than the defocusing effect of the first quad, yielding a net impulse

whose x- and y- components are both directed toward the optical axis. In other words,

the focusing effect of each quad will be stronger than the defocusing effect of the other.

Focusing the electron beam into a small transverse cross section before it passes

through the undulator is a critical step in the operation of a high-energy X-ray FEL, and

is made possible by the strong focusing afforded by these alternating-gradient focusing

lattices [25]. Next, we will see how a series of identical, symmetric alternating-gradient

focusing cells like the one we have examined here can be used to maintain minimal

deviations about some target beam size.

2.3.6 The Matched Beam: Beam Size

As we saw in Section (2.2.4), the FEL gain-length is inversely related to the

cross-sectional size of the beam. Therefore, not only must we focus the beam down be-

fore it reaches the undulator, we must also ensure the beam remains as tight as possible
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as it passes through the undulator in order to maximize the final intensity of the gener-

ated radiation. To accomplish this, a series of symmetric alternating-gradient focusing

cells (just like the one we examined in the previous section) are situated throughout the

undulator. Here, we will show that if the beam enters such a lattice with the proper

Twiss parameters, the ensuing motion will be periodic. This allows for the construction

of a focusing lattice that is able to maintain minimal deviations from some specified tar-

get beam size (determined by the strength of and distance between the quadrupoles).

The set of Twiss parameters that results in this periodic motion is referred to as the

match and the process of manipulating the Twiss parameters at the beginning of the

undulator via upstream quadrupoles to achieve the match is called matching the beam.

With this knowledge, finally, we are beginning to form a quantifiable under-

standing of the process of quadrupole tuning. In fact, in the context of this paper,

“matching the beam” is essentially equivalent to “quadrupole tuning.” However, it

should be noted that in general, this is not the case. Due to the length of the linac,

there are close to 100 quadrupole focusing magnets, many of which are simply used to

prevent beam-loss while transporting the beam to the undulator hall. Typically, how-

ever, only 24 of these quadrupoles are used for fine-tuning of the Twiss parameters, with

4 quadrupoles in particular being the most commonly used in the process of matching

the beam. In this work, we have chosen to focus on this smaller subset of quadrupoles

known as the matching quads. These are the quadrupoles immediately upstream of the

undulator, and the ones responsible for the final and finest adjustments to the Twiss

parameters before the beam enters the focusing channel of the undulator.
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Now, let us calculate the matched Twiss parameters for a given alternating-

gradient focusing cell. The easiest way to do this is to imagine that there are two

identical alternating-gradient focusing cells placed one after the other (with congruent

drift spaces between each quadrupole), and to then calculate the Twiss parameters at a

position halfway through the first quadrupole that result in the same Twiss parameters

after it has been transported through exactly one full period of the system. That is, we

wish to impose the periodic conditions:
βx

αx

γx

 = Λx ·


βx

αx

γx

 ,


βy

αy

γy

 = Λy ·


βy

αy

γy

 , (2.114)

where Λx,Λy are the transformation matrices for the Twiss parameters, which we

compute using eq (2.106), representing transport through one full period of the system.

Note that we are not imposing a periodic condition on any individual particle, but

for the beam envelope. It is therefore important not to confuse the transport rules

for the particle coordinates given in eq (2.82) with the transport rules for the Twiss

parameters. That said, to compute the matrices Λx,Λy, we will first compute the

matrices representing transport through one period for the individual particles (using

our results from Section 2.3.3), and then use eq (2.106) to express the elements of

Λx,Λy in terms of those results. The single-particle transport matrices for our complete
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focusing cell are given by:

Mtot,x = Mf,1
2
·M0 ·Md ·M0 ·Mf,1

2
(2.115)

=

 1 0

− 1
2f 0

 ·
1 L

0 1

 ·
1 0

1
f 0

 ·
1 L

0 1

 ·
 1 0

− 1
2f 0

 (2.116)

=

 1− l2

2f2
2l(1 + l

2f )

− l
2f2

(1− l
2f ) 1− l2

2f2

 (2.117)

Mtot,y = Md,1
2
·M0 ·Mf ·M0 ·Md,1

2
(2.118)

=

 1 0

1
2f 0

 ·
1 L

0 1

 ·
 1 0

− 1
f 0

 ·
1 L

0 1

 ·
 1 0

1
2f 0

 (2.119)

=

 1− l2

2f2
2l(1− l

2f )

− l
2f2

(1 + l
2f ) 1− l2

2f2

 (2.120)

Substituting these results into eq (2.106), we have for our matrices Λx,Λy:

Λx =


(1− l2

2f2
)2 −4l(1 + l

2f )(1− l2

2f2
) 4l2(1 + l

2f )2

l
2f2

(1− l2

2f2
)(1− l

2f ) − l2

f2
(1− l2

4f2
) + (1− l2

2f2
)2 −2l(1 + l

2f )(1− l2

2f2
)

l2

4f4
(1− l

2f )2 1
f2

(1− l2

2f2
)(1− l

2f ) (1− l2

2f2
)2


(2.121)

Λy =


(1− l2

2f2
)2 −4l(1− l

2f )(1− l2

2f2
) 4l2(1− l

2f )2

l
2f2

(1− l2

2f2
)(1 + l

2f ) − l2

f2
(1− l2

4f2
) + (1− l2

2f2
)2 −2l(1− l

2f )(1− l2

2f2
)

l2

4f4
(1 + l

2f )2 1
f2

(1− l2

2f2
)(1 + l

2f ) (1− l2

2f2
)2


(2.122)
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While an argument of symmetry can be made as to why the parameters αx, αy must be

zero to satisfy the conditions in eqs (2.114), I will simply show that by setting them to

zero, we can easily solve for the remaining parameters. First, let us recall the identity

from eq (2.93). With αx = αy = 0, this gives us

γx = 1/βx, (2.123)

γy = 1/βy. (2.124)

The conditions for periodicity therefore become

βx = (1− l2

2f2
)2βx + 4l2(1 +

l

2f
)2(1/βx), (2.125)

βy = (1− l2

2f2
)2βy + 4l2(1− l

2f
)2(1/βy). (2.126)

Above, I have only kept the results from the first row of each matrix product, as the

other equations would be redundant. Solving for βx, βy, we get, provided f > l/2,

βx = 2f

√
f + l

2

f − l
2

, (2.127)

βy = 2f

√
f − l

2

f + l
2

. (2.128)

Thus, we arrive at the matched Twiss parameters for the alternating-gradient focusing

cell discussed here. As we can see from our results for the matched parameters, βx > βy,

which makes sense because the first quadrupole in our focusing cell will focus the beam

in the x-direction and defocus the beam in the y-direction, causing βy to grow and βx

to shrink. When the beam reaches the second quadrupole, the initial values of βx and

βy will have been swapped. The second quadrupole will then have the opposite effect
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of the first, returning βx and βy to their original values as the beam completes its pass

through one full period of the focusing channel. The propagation of a matched beam

through such a focusing channel is shown in Figure 2.8.

Collecting our results, we have for an alternating-gradient focusing cell com-

posed of quadrupoles of focal length f = (k2L)−1 separated by drift spaces of length l,

whose first quadrupole focuses in x and defocuses in y, that the matched Twiss param-

eters (at a longitudinal position halfway through the first quad) are given by:
βx

αx

γx

 =


2fδ

0

1
2fδ

 ,


βy

αy

γy

 =


2f
δ

0

δ
2f

 , (2.129)

where I have defined δ =
√

f+l/2
f−l/2 .

Recalling from eq (2.90) that the values βx, βy describe the widths of Gaussian

distributions of the transverse positions of the particles in the beam, we calculate the

approximate cross-sectional beam size as

s =
√
σxσy = [εxεyβxβy]

1/4. (2.130)

We can see in Figure 2.8 that when the beam is matched, the beam size is held constant

at a value determined by the matched Twiss parameters βx, βy. As we discussed in

Section (2.2.4), the output power of an FEL device is inversely related to the cross-

sectional size of the beam as it passes through the undulator. By designing this focusing

channel with small values of βx, βy, it is possible to squeeze the beam very tight, leading

to the extremely intense amplification for which FELs are so valued.
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2.3.7 The Mismatched Beam: Device Correlations

When the Twiss parameters of the beam are matched into the focusing channel

of the undulator, the beam will experience minimal deviations from the target beam

size. However, in reality, the Twiss parameters are never perfectly matched, and it is

important to understand what effect this mismatch has on the FEL. Using the optical

transport physics we have developed thus far, we can easily see what happens to the

beam as it propagates through the periodic focusing channel of the undulator in the case

where the Twiss parameters are mismatched. To understand these effects in quad-space,

first, we construct an optical model of the matching quads and the undulator quads using

some reasonable values from real operation. Assuming the beam was matched at these

Figure 2.8: Schematic of our Optical Model

A schematic of our optical model of the matching quadrupoles and undulator quadrupoles in one

transverse direction. The undulator quadrupoles form a periodic alternating-gradient focusing

lattice.

57



settings, we then propagate the matched Twiss parameters at the undulator backwards

upstream to the beginning of the optical lattice. (Note that since we calculated the

matched Twiss parameters at a longitudinal position halfway through the first undulator

quad, we must remember to include the first half of the this undulator quad in the back

propagation.) Then, if we vary any of the matching quadrupoles and propagate the

beam forward, the beam will no longer be matched when it reaches the undulator.

The results of detuning (that is, perturbing from their matched settings) two adjacent

quadrupoles as just described are included in figure 2.8. Whereas when the Twiss

parameters are matched, the β parameters, which describe the transverse coss-sectional

beam widths, oscillate uniformly, when the Twiss parameters are mismatched, the β

parameters oscillate much more wildly. A consequence of these larger and less uniform

oscillations is a larger beam size averaged throughout the undulator. According to our

FEL model, this will lead to a smaller Pierce parameter, and decreased FEL output

power.

Using the aforementioned average beam size as a measure of match quality,

we can perform scans in quad-space to visualize the effects of simultaneously adjusting

multiple devices. A 2-dimensional raster scan performed about the matched settings

for 2 adjacent matching quadrupoles is shown on the left in Figure 2.9. There are two

important results in this figure. The first, which could have been guessed, is that the

further either quadrupole is perturbed from its matched setting, the more the average

beam size increases. Second, the the results shown are not isotropic in quadrupole space.

Indeed, there is a striking correlation between the two devices. That is, the beam size
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Figure 2.9: Optical Model: Beam Propagation

(Left) Evolution of the β (Twiss) parameters as a function of longitudinal position z in the

undulator in a case that the Twiss parameters are matched (blue) and one in that they are mis-

matched (red) into the periodic focusing channel of undulator quadrupoles. (Right) Evolution

of the beam size, s, as a function of longitudinal position z in the undulator for the same cases

(blue and red) shown to the left. The dotted red line shows the average beam size in the case

that the beam is mismatched.

grows much more rapidly when the quadrupoles are both detuned in the same direction

than it does when they are detuned oppositely to each other. Note that this is exactly

the behavior that the operators had observed on the machine when they were in charge

of tuning it manually (recall the twisted rubber band). In fact, raster scans in quad

space like the one above have been performed on the real machine to investigate the

effect of adjusting the quadrupoles on the FEL output power, and the results confirm the

presence of these anti-correlations between neighboring matching quads. An example

of such a scan is presented on the right in Figure 2.9, below.

From an optimization standpoint, these results provide valuable insights. The
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(a) Predicted Average Beam Size (b) Measured FEL Pulse Energy

Figure 2.10: Device Correlations

(a) The average beam size through the undulator predicted by our optical model as a function of

the field strengths of two adjacent matching quadrupoles for a given assumption of the matched

settings. (b) Real observations of the measured FEL Pulse Energy at LCLS as a function of the

same two quadrupoles and over the same range of values for which we examined the results of

our optical beam size model in (a). The field strengths that produced the highest FEL output

power in this scan were used as the assumed match in the aforementioned model. Figure appears

in [7].

first is that the principal directions of the target function are not aligned with the device

axes, which is information that we will want incorporated into our model. The second

is that these principal directions appear to be well-predicted by the optical model of

the beam size. As we will see in chapter 5, the ability to predict these correlations

will be very useful when it comes to learning a model from data which is otherwise too

sparse to illuminate the full structure of the underlying function. Lastly, cross-sections

of the target function appear convex. While our Bayesian approach to optimization is

60



theoretically a global optimization strategy, it is convenient that our target function

does not appear to contain local minima.

2.4 Summary

A Free-Electron Laser is a device that converts the kinetic energy of a beam of

relativistic electrons to high-powered X-rays via synchrotron radiation. The synchrotron

radiation is induced by an arrangement of magnets called an undulator. 1-d FEL theory

predicts that the output power of the FEL X-rays will scale as ∼ 1
s2/3

where s is the

transverse cross-sectional beam size through the undulator. The beam size in the un-

dulator is kept small with periodic quadrupole focusing magnets. The evolution of the

beam envelope through the undulator depends on the Twiss parameters of the beam

as it enters the periodic focusing lattice. Matching quadrupoles, immediately upstream

of the periodic focusing lattice, are used to manipulate the Twiss parameters at the

entrance of the undulator, thereby affecting the beam size through the undulator and

subsequently the FEL output power. Beam conditions can change unpredictably and

in ways that are hard to measure, making frequent tuning of the quadrupoles necessary

to maintain a beam that is close to the match.

Tuning the matching quadrupoles (adjusting the strengths of their magnetic

field gradients in order to improve the X-ray brightness) is essentially an optimization

problem. In an effort to understand the target function in this optimization, measure-

ments of the response of the FEL output power with respect to changes in the matching
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quadrupole strengths have been performed. These measurements have repeatedly con-

firmed the presence of strong correlations between neighboring focusing elements, which

are predicted by an optical beam size model. While a complete and reliable model of

the FEL response to the quadrupoles has not been demonstrated, the ability to predict

correlations between devices with a simple optical model will be valuable when it comes

to numerical optimization. We must also keep in mind that the FEL output signal mon-

itor (our target function for optimization) is noisy as an inevitable consequence of the

non-intrusive mechanism employed by the gas detector to measure the X-ray intensity.
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Chapter 3

Bayesian Optimization

When discussing numerical optimization, one of the first algorithms that comes

to mind is likely gradient descent. Invented by Cauchy in 1847, it is an algorithm so

fundamental that it predates the computer by nearly 100 years [29]. Its descendants

are among the most commonly used algorithms in numerical optimization today. The

principle of using the gradient, or an approximation thereof, and higher derivatives to

model the local curvature of the target function has been demonstrated to be extremely

powerful by modern optimization algorithms such as Momentum, AdaGrad, Adam,

BFGS, etc. Of course, gradient-based algorithms perform best when they have access

to the exact derivatives of the target function, which is a luxury we are not afforded when

it comes to quadrupole tuning. In cases where the exact derivatives are not available,

some optimization algorithms will calculate approximations using a finite difference

approach. However, this adds numerous function evaluations per iteration, and with a

target function like ours, becomes prohibitively time-consuming.
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With gradients and higher derivatives unknown to us, we are left with a far

shorter list of optimization algorithms from which to choose. Then, of course, there is

the additional fact that our target function is noisy, which constrains our list of suitors

further, still. One algorithm in particular that has proven to be fairly robust to noise

and that does not require derivative information is the Nelder-Mead Simplex Method

[30, 15]. Indeed, this algorithm has been used effectively to optimize the FEL at SLAC.

In fact, the performance of this algorithm on our tuning problem is rather remarkable

considering the ease of its implementation. The Nelder-Mead Simplex Method requires

little training, and, as shown by previous studies, outperforms most human operators.

With the promising results from the Nelder-Mead Simplex Method serving as proof that

numerical optimization is a viable approach to quadrupole tuning, our group at LCLS

was inspired to achieve further improvement by adopting a Bayesian approach to the

numerical optimization.

Bayesian optimization is a computationally intensive (per iteration, in compar-

ison to the other common optimization algorithms discussed previously) global search

strategy that is useful in cases where the target function is extremely expensive to

evaluate and where derivatives of the function are not readily available [31, 32]. Ad-

ditionally, the ability to incorporate Bayesian treatment of uncertainty in the function

outputs makes Bayesian optimization robust to signal noise. While Bayesian optimiza-

tion is especially suited for functions with multidimensional inputs, its computationally

intensive nature typically prohibits it scaling to functions of excessively high dimensions.

Bayesian optimization is typically used in situations where the evaluation of
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the target function requires the execution of some time-intensive simulation or, as in our

case, a physical process. For example, it has been used in search and rescue to find miss-

ing persons, where each “function evaluation” might amount to real-time observation of

a specified location via satellite or drone [33]. Similarly, it has been used in the search

for natural resources as a tool to help engineers decide where would be most profitable

to more closely prospect [34, 35]. In such cases, the penalty for trying a bad guess for

the solution is extremely high (potentially life or death, in the case of search and res-

cue), and so it is very important under such circumstances that every guess made by the

search algorithm be as effective as possible. To accomplish this, Bayesian optimization

algorithms attempt to utilize all the available information regarding the target function

at every step of the optimization. In this regard, it is unique from local optimization

algorithms, which only consider the curvature in the vicinity of the previously tested

point to advance to a position that is marginally better than the last. Bayesian op-

timization algorithms will require more computation per iteration than other common

algorithms, but the result is that the optimizer tends to converge to a solution with

fewer evaluations of the target function, and one which is capable of circumnavigating

local optima. Essentially, when performing Bayesian optimization, at each iteration, we

think very hard about what point to sample next because thinking (computing) is much

cheaper than evaluating the target function.

Here, I will describe the general approach to optimizing a function using

Bayesian optimization. While the implementation of such algorithms can vary, the

fundamental components are always present. First, a Bayesian regression tool is re-

65



quired to model the target function. Second, something called an acquisition function

must be defined to quantify the value associated with each prospective point in the

sample space. The acquisition function serves as the metric by which we are able to

compare prospective points, allowing us to select the point that will provide us with

the greatest return. The general form of a Bayesian optimization algorithm is outlined

below.

Algorithm 1 Bayesian Optimization.

i← 1

while i ≤ maxiter do

if i 6= 1 then

Numerically solve: ~x∗ = argmin(A(~x))

else

~x∗ ← ~xstart

end if

Evaluate y∗ = y( ~x∗)

Update Bayesian regression model with new data point ( ~x∗, y∗).

i← i+ 1

end while

At each iteration, a Bayesian regression model yields an uncertain prediction

for every possible point in the space. The acquisition function uses these predictions

to assign a scalar value to each input. An optimization is performed on the acquisition

function to find the input with greatest acquisition value. Indeed, at every iteration
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of the Bayesian optimization algorithm, another optimization is performed to choose

which point to sample from the target function next. Once the point has been sampled,

the Bayesian regression model is updated and the cycle is repeated, in our case until the

process is manually terminated. A few iterations from a simple 1-d example of Bayesian

optimization are shown in figure 3.1.

It is important to note that during the optimization of the acquisition function,

the target function need not be sampled, only the Bayesian regression model. The

acquisition function is therefore cheap to evaluate, but derivative information may not

be available, and, perhaps more troublingly, the function often possesses multiple local

maxima, so care must be taken to ensure that the acquisition function is properly

optimized (see Ch. 5.3 for more details on optimizing the acquisition function) [36].

In the following sections, I will provide an illustrative example of Bayesian

regression and further discuss the role of the acquisition function.

3.1 Bayesian Regression vs Ordinary Least Squares (OLS)

At every iteration of the Bayesian optimization algorithm outlined above, a

Bayesian regression model must be fit to the available data. Bayesian regression differs

from Ordinary Least-Squares (OLS) regression, which is the approach with which the

reader is probably most familiar, in that rather than simply providing point estimates

as predictions, it also provides the associated uncertainty in those predictions. Addi-

tionally, Bayesian modeling requires definitions of certain prior beliefs about the target
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function from which the data is presumed to have been drawn. As an illustrative exam-

ple, let us compare 1-dimensional Bayesian linear regression to Ordinary Least-Squares

linear regression.

Suppose we would like to fit a line to a collection of n data points {xi, yi}ni=1

drawn from a 1-d linear function with uniform Gaussian-distributed noise, ε, such that

the ith output yi is related to the ith input xi by:

yi = f(xi) + εi, (3.1)

f(xi) = mxi + b, (3.2)

εi ∼ N(0, σ20). (3.3)

In the Ordinary Least-Squares approach to linear regression, we attempt to find the

parameters m∗, b∗ that minimize the sum of the squared residuals (SSR), where the

residuals are the differences between the observed values {yi}ni=1 and the values predicted

by the regression model {y∗i }ni=1:

y∗i = m∗xi + b∗, (3.4)

SSR =

n∑
i=1

[yi − y∗i ]2 (3.5)

=

n∑
i=1

[yi − (m∗xi + b∗)]2. (3.6)

In the case of the linear regression model, we can see that the SSR is quadratic with re-

spect to the parameters m∗, b∗, and as such the values of these parameters that minimize
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the SSR can be calculated analytically:

m∗ =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
, (3.7)

b∗ =

∑n
i=1 yi −m∗

∑n
i=1 xi

n
= y −m∗x. (3.8)

An example of such a linear regression performed on some sample data is shown on the

left in Figure 3.2. Notice that the prediction y∗(x) = m∗x+ b∗ for a given input value x

is a point estimate, and we have made no assumptions on the possible values of m∗, b∗.

Now suppose we would like to fit the same data using a Bayesian approach

to linear regression. In this case, the objective is to solve for the parameters of the

linear model that produce the greatest model likelihood. Indeed, the most fundamental

difference between the Bayesian approach to regression and OLS is that in Bayesian

regression, uncertainty is assumed in the model. For our example, we will assume a

linear model with additive, zero-mean, Gaussian-distributed noise of variance σ2:

y∗(x) = m∗x+ b∗ + ε, (3.9)

ε ∼ N(0, σ2). (3.10)

The definition of our model in combination with the data gives rise to the likelihood of

the data given the model. If we denote the sets X = {xi}ni=1,Y = {yi}ni=1, we have:

p(Y|X ,m∗, b∗) =
n∏
i=1

p(yi|xi,m∗, b∗) (3.11)

=
n∏
i=1

1√
2πσ2

exp {− [yi − (m∗xi + b∗)]2

2σ2
} (3.12)

=
1

[2πσ2]
n
2

exp {−
∑n

i=1[yi − (m∗xi + b∗)]2

2σ2
}. (3.13)
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We now want to use Baye’s theorem to write the probability of the model parameters

m∗, b∗ in terms of the likelihood of the data given the model. The resulting probability

distribution for the model parameters is called the posterior distribution. To do this,

we first need to define prior probability distributions for the parameters m∗, b∗. The

inclusion of prior probability distributions for the model parameters in Bayesian regres-

sion is another key difference from OLS. These prior distributions contain information

about our prior, or a priori, knowledge regarding the possible values of the model pa-

rameters. The prior probability distributions may be inspired by domain knowledge,

but often they are chosen simply for calculational convenience. In our case, we will

assume that the parameters m∗, b∗ are independently normally distributed with zero

mean and respective variances σ2m, σ
2
b :

m∗ ∼ N(0, σ2m), (3.14)

b∗ ∼ N(0, σ2b ). (3.15)

Recalling Baye’s theorem p(A|B)p(B) = p(B|A)p(A), we have

p(m∗, b∗|Y,X )p(Y|X )p(X ) = p(Y|X ,m∗, b∗)p(m∗)p(b∗). (3.16)

Dropping the normalization constants that do not depend on the parameters m∗, b∗, we

get

p(m∗, b∗|Y,X ) ∝ p(Y|X ,m∗, b∗)p(m∗)p(b∗) (3.17)

∝ exp {−
∑n

i=1[yi − (m∗xi + b∗)]2

2σ2
} exp {−m

∗2

2σ2m
} exp {− b

∗2

2σ2b
} (3.18)
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where we have replaced the equality with a proportionality. We can combine the ex-

ponentials and complete the square to arrive at a posterior distribution that is also

normally distributed, allowing us to recover the constants of proportionality. (I haven’t

included the detailed results here because this example is intended to be illustrative

only of the general process of Bayesian reasoning for the purpose of regression. We do

not use Bayesian linear regression at all for tuning the quadrupoles. However, a nice

feature of Bayesian linear regression with Gaussian priors and Gaussian noise is that

these expressions can indeed be evaluated analytically.)

Finally, with the posterior distribution for the parameters m∗, b∗, we can form

our Bayesian prediction. To do this, we take the weighted average of the results of all

possible models by integrating over all possible values of the parameters m∗, b∗. That

is, for some new input x, we have for the predicted output y∗

p(y∗|x,X ,Y) =

∫ ∞
−∞

∫ ∞
−∞

p(y∗|x,m∗, b∗)p(m∗, b∗|X ,Y)dm∗db∗. (3.19)

The above integral can be approximated using Markov-Chain Monte-Carlo sampling to

produce an approximate predictive distribution for possible values of the output y∗. The

prediction from the Bayesian linear regression model, evaluated using the same data as

in the OLS regression example earlier, is included on the right in Figure 3.2.

3.2 Acquisition Functions

At each iteration, a Bayesian optimization algorithm, like all numerical opti-

mization algorithms, must somehow decide where to take the next step in its search for
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the optimum. Using the predictive posterior of an updated Bayesian regression model,

we can construct what is called an acquisition function, which assigns a scalar value to

each prospective point in the search space, typically by evaluating a weighted average

over all possible values of the predicted output. (In the case of a maximization problem,

we want the acquisition function to be greater in locations where the modeled function

outputs are likely to be greater than the previously observed values.) With a single

scalar value assigned to each prospective input, we can perform a well-defined compar-

ison. To that end, a numerical optimizer is used to solve for the input vector ~x∗ which

maximizes the acquisition function A(~x):

~x∗ = arg max
~x

A(~x). (3.20)

The solution ~x∗ is then used as the next input for our target function. That is, we acquire

the new point { ~x∗, y∗}, update our Bayesian regression model to incorporate this new

data, and then reiterate this process. (In practice, we construct our Bayesian predic-

tion using a Gaussian process regression model that maps points in multi-dimensional

quadrupole-space to a scalar measure of the FEL output power. We seek the location

in the input space that produces the largest possible FEL output power.)

Our flexibility when it comes to defining the acquisition function allows us

to tailor the behavior of our optimization algorithm. For example, depending on the

selection of the acquisition function, the optimizer may either be compelled to take ex-

ploratory steps, to places where the model predicts the possibility of vast improvements

in the target signal (at the risk of moving away from the optimum), or to take very
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conservative steps, to places where the model predicts that the target signal is almost

certain to improve (but at the cost of convergence rate) [37]. This spectrum of behavior

is commonly referred to as exploration vs exploitation. In the remainder of this chapter,

I will introduce some of the most common acquisition functions, including the ones used

in our studies.

3.2.1 Probability of Improvement

Given a predictive Bayesian posterior distribution, p(y|~x), for our target func-

tion, f(~x), the most introductory example of an acquisition function that we can define

is the probability of improvement. As the name suggests, this function uses the predictive

posterior distribution to calculate, as a function of the input vector ~x, the probability

(according to our current model) that the value returned by the target function is better

than the best value previously seen by the optimization algorithm. That is, in the case

of a maximization problem, we define the probability of improvement, PI(~x), as

PI(~x) =

∫ ∞
ybest

p(y|~x)dy. (3.21)

Note the lower bound on the integral. Only predicted values that are above the best

seen value contribute to the result. The integral in eq (3.21) is the complementary

cumulative distribution, sometimes called the Q-function, of the posterior distribution

p(y|~x) evaluated at ybest. That is, for the probability of improvement A(~x), we have

PI(~x) = 1− Φ(ybest|~x), (3.22)
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where Φ is the cumulative distribution function of p(y|~x):

Φ(ybest|~x) =

∫ ybest

−∞
p(y|~x)dy. (3.23)

If p(y|~x) is normally distributed, as was the case in our Bayesian linear regression

example, and as is the case with the Gaussian process regression model we will eventually

use, these integrals unfortunately cannot be evaluated analytically. However, cumulative

density functions for common distributions like this have been extensively studied, and

numerical approximations for the function Φ in the case of the normal distribution can

easily be looked up. A 1-d example of the probability of improvement, given a Bayesian

regression model (GP) and some data, is plotted in Figure 3.3.

3.2.2 Expected Improvement

While the probability of improvement provides a nice introductory example

to defining a Bayesian metric by which to choose the next point to acquire in our

Bayesian optimization algorithm, it may lead to optimizer behavior that is undesirably

conservative in its exploration. For example, consider the case where the model predicts

a 95% probability of improvement at position ~x1 and a 90% improvement at ~x2, but

where the uncertainty in the prediction at ~x2 is much higher than at ~x1. In this case,

while the model predicts that the probability of improving by moving to position ~x2

is slightly lower, it also predicts that there is a possibility of seeing a much larger

improvement as compared to ~x1. If the goal of our Bayesian optimization algorithm is

to converge to a global maximum in the fewest possible steps, it may be advantageous to
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assign weights to the magnitudes of these possible improvements that our model predicts

for each input. To do this, we define the expected improvement, EI(~x), as [20, 38]

EI(~x) =

∫ ∞
ybest

(y − ybest)p(y|~x)dy, (3.24)

where once again p(y|~x) is the predictive posterior distribution from our Bayesian re-

gression model at the given iteration, and ybest is the highest value of the target function

observed by the optimizer thus far.

When the posterior p(y|~x) is normally distributed, while we cannot evaluate

the exact result of this entire integral analytically, we can evaluate half of it, and we

can write the result of the other half in terms of the cumulative density function of the

standard normal distribution, Φ. That is, if

p(y|~x) ∼ N(µ(~x), σ2(~x)), (3.25)

then

EI(~x) = (µ(~x)− ybest)Φ(Z) + σ(~x)φ(Z), (3.26)

where φ is the standard normal distribution, and Z = µ(~x)−ybest
σ(~x) is the Z-score, or

standard score, of the difference between the predictive mean, µ(~x), and the best ob-

served target function value, ybest, defined in terms of the standard deviation σ(~x) of

the predictive distribution. We can see from the expression above for the expected im-

provement that the first term in the sum will assign greater value to positions ~x where

the predictive mean µ(~x) is much higher than the previously best seen value ybest, and

where the uncertainty σ(~x) is low. In contrast, the second term in the sum will assign
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greater value to positions ~x where the model is more uncertain. Combined, these two

terms simultaneously weigh the value of exploitation and exploration. A 1-dimensional

example of the expected improvement, given the same Bayesian regression model and

data as in the earlier example for probability of improvement, is included in Figure

3.3. The expected improvement acquisition function, made attractive by its analytical

transparency and reasonable balance between exploration and exploitation, was used in

many of the optimization studies we performed, which we will discuss more in chapter

5.

3.2.3 Other Acquisition Functions

As we have seen in the previous two examples, the definition of the acquisition

function will affect the behavior of our optimization algorithm. Further modifications

to the exploration/exploitation behavior could be made by either adding tune-able pa-

rameters to the acquisition functions already discussed, or by defining entirely unique

acquisition functions. For example, another common acquisition function, called Upper

Confidence Bound, is designed such that the optimizer attempts to minimize a quantity

called the regret [39]. Tuning the parameters of such acquisition functions poses an

additional problem to the task of tailoring an optimization algorithm to a particular

application. Because Bayesian optimization is generally reserved for cases where the

target function is extremely expensive to evaluate, tuning these parameters will likely

need to be achieved through Monte-Carlo testing on some surrogate model of the target

function. In our studies, we defaulted to using the expected improvement for its effec-
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tiveness, interpretability, and ease of implementation. Extensive experimentation with

different acquisition functions is beyond the scope of this work.
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Figure 3.1: Iterations of an Example Bayesian Optimization Algorithm

(Top) The Expected Improvement acquisition function evaluated at the three consecutive states

of our Gaussian process regression model shown below. The green star represents the acqui-

sition function maximum. (Bottom) Three consecutive iterations of a Bayesian optimization

algorithm performed on a target function shown by the solid black curve. Gaussian process

regression (zero-mean) was used to form our Bayesian prediction whose maximum-likelihood es-

timator is shown by the dashed blue curve and 95% confidence interval shown by the blue shaded

region. The set of (noisy) observations at each iteration is shown in orange. The x-position of

the next point to acquire is shown by the green x-mark.
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Figure 3.2: OLS vs Bayesian Linear Regression

(Left) Ordinary Least-Squares (OLS) linear regression (shown in red) on some noisy observa-

tions shown in blue. (Right) Samples from a Bayesian posterior distribution over linear models

(magenta) on the same set of data (blue) as used in the regression to the left.
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Figure 3.3: Common Acquisition Functions

(Top) The Expected Improvement (EI) and Probability of Improvement (PI) acquisition func-

tions evaluated using the Bayesian regression model shown below. (Bottom) Gaussian process

regression (blue) performed on noisy observations (orange) sampled from an underlying target

function (black).
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Chapter 4

Gaussian Processes

A Gaussian process is a stochastic process, or collection of random variables,

that has the property that any finite subset of its variables is described by a joint Gaus-

sian distribution [19]. Gaussian processes are commonly used as regression models in

Bayesian optimization. Recall how in the case of Bayesian linear regression discussed

in the preceding chapter, our predictions arose from some assumptions about the func-

tional dependence of the observed outputs on the inputs, and the prior probability

distributions for the parameters of that dependence. That is, the prior distribution of

possible functions was defined in parameter space. In Gaussian process regression, we

arrive at our predictions by assuming a prior probability distribution directly over the

set of all possible function observations in what we call function space. (In this paper,

we use an implementation of the GP using Python’s Scikit-learn package [40].)
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4.1 Gaussian Process Regression

To elaborate, suppose we have n observations of some function f(~x) evaluated

at the positions {xi}ni=1 and we want to make a prediction for the function output

evaluated at some point x∗, where x∗ could be anywhere in the input space. In order

to model the function f(~x) using a Gaussian process, we define the vector ~f such that

~f = (f( ~x1), f( ~x2), ..., f( ~xn), f( ~x∗))
>, (4.1)

and assume that this vector represents the result of a single sample from a multivariate

Gaussian distribution (or joint normal distribution) of dimension n+ 1:

~f ∼ N(~µ,Σ). (4.2)

Here ~µ = (µ( ~x1), µ( ~x2), ..., µ( ~xn), µ( ~x∗))
> is the center, or mean, of the distribution,

determined by the function µ(~x), and Σ is the distribution’s covariance matrix, which

defines the distribution’s shape. – In this context, the shape of the distribution will

describe how similar our model believes the function outputs to be to each other, with

the element Σij measuring the similarity between the function outputs fi and fj . –

To complete our assumptions, we need only to specify the function µ(~x) as well as

the elements of the covariance matrix Σ. (Prescriptions for these specifications will be

provided shortly.) We then simply condition the probability of the output vector ~f on

its observed components {fi}ni=1 to obtain the conditional probability of the unobserved

component fn+1 = f( ~x∗). The result of conditioning a multivariate Gaussian in this
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fashion can readily be looked up, yielding our prediction [19]:

f( ~x∗)|{f(~xi)}ni=1 = fn+1|{fi}ni=1 (4.3)

∼ N(µ, σ2). (4.4)

Here, µ and σ2 are the scalar values which describe the mean and variance, respectively,

of the predictive 1-dimensional Gaussian distribution, given by

µ = µ( ~x∗) + Σ1×nΣ
−1
n×n( ~fn − ~µn), (4.5)

σ2 = Σ1×1 −Σ1×nΣ
−1
n×nΣn×1, (4.6)

where the vectors ~fn and ~µn are the n-dimensional sub-vectors of the (n+1)-dimensional

vectors ~f and ~µ, respectively, containing their first n elements, and Σn×n, Σ1×n, Σn×1,

and Σ1×1 are the n × n, 1 × n, n × 1, and 1 × 1, resepctively, sub-matrices of the

(n+ 1)× (n+ 1) covariance matrix Σ defined as

Σ =

Σn×n Σ1×n

Σn×1 Σ1×1

 . (4.7)

To fully define our prediction, as briefly mentioned above, we need only to

specify the function µ(~x), which we call the prior mean, and our matrix Σ, which we

call the model covariance. The prior mean function can simply be a prior regression for

our function f(x), if one is available, but often a zero-mean prior, µ(~x) ≡ 0, is assumed.

To express the model covariance, we select a valid (positive semi-definite) covariance

function, or kernel, K(~x, ~x′) that we will use to populate the elements of Σ as

Σij = K(~xi, ~xj). (4.8)
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Notice that in doing so, we are defining the similarity Σij between the function outputs

fi and fj in terms of the corresponding inputs ~xi, ~xj . The selection of our kernel, which

we will discuss momentarily, is instrumental in determining the fitting behavior of our

Gaussian process regression model. First, however, let us make one modification to the

treatment we have just described.

Recall that one of our foundational assumptions in our above model was that

we were given a set of some observed function values {f(~xi)}ni=1. If, instead, we assume

that we are given some noisy observations of the function, {yi}ni=1, such that yi =

f(~xi)+ε, where the noise ε is independent of the inputs and distributed as ε ∼ N(0, σ2),

then we have for our expressions above,

Σn×n → Σ′n×n, (4.9)

~fn → ~yn, (4.10)

where

Σ′n×n = Σn×n + σ2nI, (4.11)

~yn = ( y1 y2 ... yn )>, (4.12)

in which I is the n-dimensional identity matrix. That is, under our modified assump-

tions, our predictive equations given some set of noisy observations become [19]:

f( ~x∗)|{yi}ni=1 ∼ N(µ′, σ′2), (4.13)

µ′ = µ( ~x∗) + Σ1×nΣ
′−1
n×n( ~yn − ~µn), (4.14)

σ′2 = Σ1×1 −Σ1×nΣ
′−1
n×nΣn×1. (4.15)
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(Note in both the noise-free and the noisy case, our predictive equations involve the

inversion of an n× n matrix, where n is the number of function observations on which

we are conditioning our model. Because the computational complexity of such matrix

inversion goes as ∼ O(n3), the Gaussian process regression model will not typically scale

well to “big data” applications. Fortunately, in Bayesian optimization, this tends not to

be a problem, because the number of function observations is intentionally minimized.)

4.2 The Covariance Function and Model

Hyperparameters

The Gaussian process regression model is a type of function approximator that

generates a prediction for a novel test point by taking a weighted average of the train-

ing observations, where the weights in that average are determined by the respective

distance of each training example to the test point as measured by what we call a co-

variance function, or kernel. More concretely, examining eq (4.14), we can see that our

predictive mean is a linear combination of the training data, with weights determined

by the submatrices of Σ. We therefore select our kernel function K(~x, ~x′) to populate

the elements of the matrix Σ in a way that describes our prior beliefs about the cor-

relation between the possible function outputs in terms of their inputs. Selection of

the kernel function therefore has a major effect on the fitting behavior of our Gaussian

process, determining qualities such as the smoothness and characteristic length scales

(a term which we will define momentarily) of the functions that compose our model. To
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understand the role of the kernel function more concretely, we introduce the Squared-

Exponential kernel, which is the kernel function we used in our studies, and discuss its

properties.

4.2.1 The Squared-Exponential Kernel

The Squared-Exponential (or SE) kernel is one of the most popular choices of

covariance functions in kernel-based learning [19]. While it has a number of properties

that make it an attractive choice, our primary reasons for its adoption were its empirical

efficacy in modeling smooth functions and its analytical interpretability.

For a function of 1-dimensional input, the SE kernel defines the similarity

between two function values f(x), f(x′) in terms of the euclidean distance between

their inputs according to

K(x, x′) = σ2 exp {−1

2

|x− x′|2

l2
}, (4.16)

where σ2 and l are positively-valued scalars, called hyperparameters, that must be

learned in some way. Selection of these hyperparameters will affect the fitting behavior

of our Gaussian process. The hyperparameter σ2 is effectively the prior variance, while

the hyperparameter l can be thought of as the characteristic length scale – the distance

in the input space over which we may begin to see a significant variation in our modeled

output. We can clearly see by this definition that the assigned similarity between two

function values will be maximized when their inputs are very close together, meaning

that observations nearer to the point at which we would like to make a prediction will
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receive a greater weight.

The Squared-Exponential kernel can be generalized to functions of multi-

dimensional inputs. In this case, we have

K(~x, ~x′) = σ2 exp {−1

2
(~x− ~x′)>ΣSE(~x− ~x′)}, (4.17)

where σ2 is once again a scalar value describing the prior variance, and instead of a scalar

length scale hyperparameter, we have the covariance matrix ΣSE , which we will call

the matrix of covariance hyperparameters, or simply the covariance hyperparameters.

(Note that we must be careful not to confuse this matrix of hyperparameters with the

covariance matrix discussed in section (4.1).) While the matrix ΣSE is not quite as

easily digested as the scalar length scale hyperparameter from the 1-dimensional case,

rest assured that it still contains information about the characteristic length scales (now

plural) of our Gaussian process regression model.

In addition to the hyperparameters σ2, and ΣSE , we will also consider as

a hyperparameter the assumed noise variance σ2n that we introduced at the end of

section (4.1). We will denote the set of hyperparameters for a Gaussian process as Θ.

Together with our choices of the prior mean function µ(~x), and the functional

form of our Squared-Exponential kernel given by eq (4.17), the choices for

the values of these hyperparameters Θ = {σ2,ΣSE , σ
2
n} fully define our prior

model, allowing us to evaluate the predictive equations (4.14) and (4.15),

given some data. When sufficient training data is available, the hyperparameter values

are typically optimized to produce a model with the highest likelihood via numerical
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optimization (in Scikit-learn, this is done with a built-in function) [19, 40]. We will

talk more about how we selected the hyperparameter values for our problem in the

next chapter. In the remainder of this chapter, I will attempt to illustrate the general

behavior of our Gaussian process regression model, as well as present some useful ways

of formulating the matrix ΣSE .

Figure 4.1: Variance Hyperparameter

(Left) Gaussian process regression (blue) performed on a single noisy sample (orange) from

an underlying target function (black). (Right) The same Gaussian process regression model

(blue) conditioned on the same sample (orange) as shown on the left, but with kernel variance

hyperparameter increased by a factor of ∼ 2.
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4.2.2 Prior Mean and Variance

The prior mean µ(~x), and variance σ2, both of which are scalars, simply des-

ignate the mean and the variance, respectively, of the predictive distribution for our

function output f(~x) prior to any observations. After conditioning the model on some

observations, the resulting predictive distributions will approach the prior distributions

for the function outputs f(~x) at positions where the input ~x is very far (many mul-

tiples of the length scale, measured in the input space) away from the inputs of the

observations. See illustration in Figure 4.1.

4.2.3 Noise

While the variance hyperparameter defines the uncertainty in our predictions

very far from our observations, the noise hyperparameter σ2n will describe the persistent

uncertainty in our model in places very near to our observations. This effect is illustrated

in Figure 4.2. We used two different values for the noise hyperparameter to construct two

otherwise identical Gaussian process regression models that were then given identical

sets of noisy observations. When the models are given an observation at a particular

point, they remains uncertain in their predictions at that position. If the noise parameter

is overestimated, the GP will be overly reluctant to infer structure from the data,

whereas when the noise parameter is more appropriately selected, the GP does a better

job of fitting the curvature.
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Figure 4.2: Noise Hyperparameter

(Left) Gaussian process regression (blue) performed on some noisy samples (orange) from an

underlying target function (black). (Right) The same Gaussian process regression model (blue)

conditioned on the same samples (orange) as shown on the left, but with a much smaller and

more appropriate noise hyperparameter (reduced by a factor > 50).

4.2.4 Length scales in 1-Dimension

The effect of the length scale hyperparameter in 1-dimension is illustrated in

Figure 4.3. We used two different values for the length scale hyperparameter to con-

struct two otherwise identical Gaussian process regression models that were then given

identical sets of observations drawn from a smooth underlying function with additive

Gaussian noise. The smaller length scale used in the GP whose results are plotted on
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Figure 4.3: Length scale Hyperparameter: 1-d

(Left) Gaussian process regression (blue) performed on some noisy samples (orange) from an

underlying target function (black). (Right) The same Gaussian process regression model (blue)

conditioned on the same samples (orange) as shown on the left, but with a shorter and more

appropriate length scale hyperparameter (reduced by a factor of ∼ 6).

the right in Figure 4.3 causes the model to (accurately, in this case) predict greater

curvature in the space between the samples.
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4.2.5 Length scales in Higher Dimensions: Principal Directions (Cor-

relations)

In the case where we are attempting to model a function of multi-dimensional

inputs, it is possible that the target function may exhibit output values that vary more

rapidly with respect to changes in the inputs along certain directions in the input space

than along others. That is, different cross sections of the function may be best described

by multiple different characteristic length scales. Conveniently, if we are aware of such

behavior, we can incorporate this knowledge into our covariance matrix ΣSE of our

squared-exponential kernel. For example, if it is simply the case that we know that

certain components of our input vectors affect our function output more than others,

this can easily be treated by constructing the covariance matrix ΣSE as the diagonal

matrix

ΣSE =


1/l21

. . .

1/l2n

 , (4.18)

where n is the dimension of the input vectors to our function, and li is the character-

istic length scale of the target function along the direction given by the ith Cartesian

unit vector. However, generally speaking, the directions of maximum curvature for a

target function may not be aligned with the Cartesian coordinate axes. To handle the

more general case, where the input components are correlated, we must include off-

diagonal components in our covariance matrix. Specifically, if we are aware that our

n-dimensional function decomposes well into a set of some principal directions given
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by the n-dimensional unit vectors {v̂i}ni=1, along which the function varies with the re-

spective (positive) characteristic length scales {li}ni=1, we can construct the matrix ΣSE

according to the matrix product [19]

ΣSE = ΛΛ>, (4.19)

where the ith column of the matrix Λ is given by the vector ~vi = 1
li
v̂i. (Note that this is

equivalent to performing a change-of-basis on our inputs that diagonalizes the matrix

ΣSE .)

As we will discuss in the next chapter, a case that is of particular interest to

us is one in which we are aware of the principal directions but not the associated length

scales. Under such circumstances, to select our hyperparameter values, we simply fix

the vectors {v̂i}ni=1 in the above formulation of the matrix ΣSE , and only optimize over

the possible length scale hyperparameter values {li}ni=1 to produce maximum likelihood

estimates of the length scales. By taking this approach we are effectively adding prior

information to our model. In cases where training data is sparse, this may lead to a

model with superior predictive accuracy. Alternatively, we can think of this procedure

as reducing the number of hyperparameters that must be learned, which is desirable

when data is sparse, because having too many model parameters can lead to over-fitting.
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Figure 4.4: Length scale Hyperparameters: 2-d (Correlations)

(Top) A heatmap showing a 2-d, correlated Gaussian target function as a function of the

inputs x1 and x2. (Left) A heatmap showing the maximum likelihood estimator of a Gaussian

process regression model with diagonal (uncorrelated) matrix of length scale hyperparameters

conditioned on a set of noisy observations of the target function shown above. The coordinates

of the observations are highlighted by white boxes. (Right) A heatmap showing the maximum

likelihood estimator of a Gaussian process regression model with properly optimized general

(correlated) matrix of length scale hyperparameters conditioned on the same set of observations

(white boxes) as used in the regression to the left. Figure appears in [7].
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Chapter 5

Optimizing the Optimizer

In this chapter I will discuss the steps we took to tailor our Bayesian opti-

mization algorithm to the problem of tuning the quadrupoles at LCLS. Before I jump

into the details of training our regression model for use on the FEL, I will present an

investigation into the effects of a suboptimal regression model on the performance of our

Bayesian optimization algorithm in a toy environment. As we will see, the algorithm

is fairly robust, but as the dimensionality of the search space increases, the inclusion

of accurate correlation hyperparameters (in the Squared Exponential kernel) becomes

increasingly beneficial.

After we have established expectations regarding the performance of our al-

gorithm using our results from the toy environment, I will discuss our approach to

estimating the optimal hyperparameters, in particular the length scale hyperparameter

matrix ΣSE , for our real target function as accurately as possible. I will then address

the steps we took to effectively maximize the acquisition function, which can be rid-
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dled with troublesome local maxima, at every iteration of our algorithm. Finally, I will

present the results of deploying our Bayesian optimization algorithm to the problem of

tuning the matching quadrupoles at LCLS.

5.1 Effects of Correlation Hyperparameters on Optimizer

Performance

In the previous chapter, we saw how selection of model hyperparameters such

as length scales and noise made drastic differences in the GP’s ability to accurately fit

observed data. While in cases with low-dimensional input space it is easy to visually

assess the quality of the fit, and quality of fit can always be measured by the model

likelihood, ultimately, the quantity we truly care about is the amount of time it takes our

Bayesian Optimization algorithm to find a sufficiently high signal so that researchers are

able to use the FEL for their experiments. It stands to reason that a model with higher

likelihood, which produces a better fit to observed data, will require fewer function

evaluations (and therefore less time) to converge on a solution. Nevertheless, we should

still like to observe these effects empirically in order to quantify these benefits.

We are particularly interested to see how the inclusion of appropriate correla-

tion hyperparameters, or off-diagonal terms in the matrix ΣSE , affects the performance

of our algorithm. To fully explicate why we expect this to be so important, let us once

again consider the measured FEL response shown in Figure 2.9. To cast these results

in GP terminology, the target function exhibits vastly different characteristic length
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scales. Indeed, the optimizer mostly needs to closely search along the direction with the

largest rate of change, because its position along the other principal direction affects the

output much less. As we saw in Figure 4.4, when the GP model has appropriate length

scale correlation hyperparameters, the prediction for points along the principal direction

with the largest length scale varies, as designed, less rapidly from the nearby observed

function values. Additionally, the uncertainty in our predictions near some data will

increase less rapidly along this principal direction. Recalling the definitions and behav-

iors of the acquisition functions discussed in Chapter 3, we can convince ourselves that

this will result in the optimizer being compelled to take larger steps along this direction

in search of improvement. While this conclusion may seem obvious, its implications are

not to be underappreciated. That is, in the case of a strongly correlated and convex

target function with finite widths (as we appear to have), far fewer observations will

be required to effectively map the function along the directions with the largest length

scales than will be required to map the function along the directions with the shortest

length scales, but only if our GP model is informed with appropriate length scale and

correlation hyperparameters.

Alternatively, we can think of the correlation hyperparameters as effectively

decoupling the optimization problem. Recall from Section 4.2.5 that using a GP with

correlation hyperparameters is equivalent to first performing a change of basis on our

input vectors and then using a GP with a diagonal matrix of length scales. When

properly chosen, the change-of-basis rotates the target function into a coordinate-space

where it no longer exhibits correlations between inputs. In the case of a correlated,
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convex target function like ours, this means that the optimizer should effectively be able

to replace an n-dimensional optimization problem with n 1-dimensional optimization

problems. Indeed, the optimizer only needs to find the maximum of the function along

each, now independent, input component. This translates to a significant amount of

space, which should increase with the dimensionality of the inputs, that can effectively

be disregarded by the optimizer without loss of performance.

To see the effects of the correlation hyperparameters on our Bayesian optimiza-

tion algorithm, we used as a simple synthetic target function a correlated n-dimensional

Gaussian function with additive Gaussian noise. We then selected 100 random start-

ing positions, each one Mahalanobis distance away from the target function maximum

(meaning every optimizer started at the same underlying function value). From each

of these starting positions, we deployed two versions of our Bayesian optimization al-

gorithm: one using a GP with diagonal matrix of length scale hyperparameters, and

one using a GP with properly optimized matrix of length scale hyperparameters. All

other GP hyperparameters were identical between the two versions, and Expected Im-

provement was used as the acquisition function. The optimizers were declared to have

converged when they reached a point in the input space corresponding to an underly-

ing target function value of at least 95% of the maximum. The results are plotted in

Figure 5.1. The number of steps to converge grows apparently exponentially with the

dimensionality of the input space in the case that the target function is correlated and

the GP length scale hyperparameter matrix is not. In contrast, when the correlation

hyperparameters are optimized, the number of steps to converge increases only linearly
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with the dimensionality of the inputs. In other words, the higher the dimensionality

of the optimization problem, the more important it is to include accurate correlation

information in our GP model (provided the target function is strongly correlated).

5.2 Learning the Optimal GP Hyperparameters

In this section I will describe our approach to learning the optimal hyperpa-

rameters for our Gaussian process regression model. In chapter 4, we saw that given

sufficient data, we were able to adjust the model hyperparameters to maximize the like-

lihood of the model given the data. By doing so, the Gaussian process regression model

was able to achieve an excellent fit in our toy examples. However, in those examples, the

number of input dimensions was at most two. While LCLS does a good job of archiving

historical data from routine quadrupole tuning sessions, it is uncommon that fewer than

4 quadrupoles are adjusted simultaneously during these optimization scans. This means

that the data we have available to us on which to train our Gaussian process regression

model belongs to a higher dimensional and therefore much larger space than the previ-

ous examples. While our ability to learn the noise and variance hyperparameters does

not suffer greatly from this higher dimensionality, the number of hyperparameters in our

matrix ΣSE grows quadratically with increasing dimension. We found that attempting

to learn a complete matrix of length scale hyperparameters on a scan containing ∼ 100

noisy observations in 4+ dimensional space results in over-fitting. Of course, in trying

to learn some length scale hyperparameters for our model, we are making the assump-
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tion that there is some underlying structure to our target function that is stable from

one scan to the next. This assumption is well-supported, as 2-dimensional raster scans

in quad-space performed months apart on the same 2 quadrupoles consistently produce

results displaying the same correlated structure discussed in section 2.3.7. While these

raster scans are prohibitively time-consuming to be performed repeatedly in a way that

would fully characterize the underlying function, the knowledge that there is some sta-

bility to its structure suggests that data from the routine optimization scans should be

able to be combined in some way.

Regrettably, combining scan data to learn a complete matrix of length scale

hyperparameters is not as easy as it sounds. Unobservable errors in the real machine may

change unpredictably from day to day, which, along with variation in beam energy and

upstream lattice conditions, makes aggregating data into larger sets tricky, because the

data do not necessarily represent the same underlying function. First, if we want to learn

some stable underlying structure, we need to allow for different length scales for different

beam energies, because electrons of different energies are affected differently by the

quadrupoles. Thus, the training data must somehow be split according to beam energy.

This is straightforward, and still results in plenty of data for each division. The changing

upstream lattice conditions and unobservables, on the other hand, effectively displace

our function in quad-space, which means we cannot simply stack data sets from different

days on top of each other. Because the Twiss parameters are not routinely measured,

we do not know exactly in what way the upstream optical conditions have changed,

so the nature of the displacement is uknown. To attempt to combine the data in an
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intelligent way, we took the best values from each of our various optimization scans and

assumed that, for each scan, these quadrupole settings corresponded to the maximum of

the underlying function. We then zeroed all the input data in each scan relative to each

scan’s optimal point before combining. Extracting length scale information from the

combined set of data did not produce reliable results, presumably because of combined

errors from our inevitably inaccurate estimation of the true optimum for each scan and

from the noise in the observations.

Of course, it is possible to forego a GP model with complete length scale in-

formation in favor of one with a only diagonal matrix of kernel hyperparameters. The

number of length scale hyperparameters then scales linearly with dimensionality instead

of quadratically. Estimates for these hyperparameters can therefore be produced much

more confidently from the available scan data, without needing to worry about combi-

nation. However, as we have seen, our Bayesian optimization algorithm should perform

significantly better if we are able to include accurate off-diagonal information in our hy-

perparameter matrix to describe the correlations between neighboring quadrupoles that

our optical model predicts and observations (for select cases) have confirmed. Indeed,

as has been hinted at in the previous chapters, it is our ability to predict the principal

directions of curvature of our target function using our optical model that comes to our

rescue.

The optical model described in Chapter 2 is simply composed of a series of ma-

trix products. As such, it is very fast to evaluate. The principal directions of curvature

of the resulting beam size function, in quad-space (see Figure 2.9), can be computed
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numerically by calculating the eigenvectors of the Hessian matrix of second order deriva-

tives evaluated at the function minimum. These principal direction vectors can then

be used to formulate our matrix of length scale hyperparameters ΣSE as described in

eq (4.19). The number of hyperparameters in our resulting GP model scales linearly

with dimensionality, and can therefore be trained using much less data. Results from

an experimental FEL quadrupole tuning session at LCLS using Bayesian optimization

via GP regression with principal direction information supplied by our optical model

and corresponding length scale magnitudes (and other hyperparameters) learned from

data are shown in Figure 5.3.

5.3 Optimizing the Acquisition Function

The results in Figures 5.1 and 5.3 emphasize the importance of proper model

selection in maximizing the efficiency of our experimental optimization algorithm, and

accordingly we have spent the vast majority of this thesis discussing how to most effec-

tively model our target function. However, modeling the target function well is not the

only important step in a Bayesian optimization algorithm. There is another step that

is just as integral to all Bayesian optimization algorithms that must be addressed, as

the specifics of its implementation can make the difference between an optimizer that

converges with excellent efficiency and one that does not converge at all. This step, of

course, is the optimization of the acquisition function.

As we saw in chapter 3, the acquisition function is the metric by which we
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compare candidate points in the prospective search space. At each iteration of the

Bayesian optimization algorithm, the acquisition function must be searched to find the

input vector which maximizes its value. It is through this optimization that we ensure

that the next point the optimizer acquires is truly the best (according to our model) of

all possible candidates. Despite its critical role, proper optimization of the acquisition

function is a topic that can easily be glossed over in discussion of Bayesian optimization.

Nevertheless, it is a somewhat non-trivial problem, as the acquisition function can in fact

have even more complex structure than the target function, making it a tricky function

to optimize. Even when the target function is convex, the acquisition function at a

given iteration may suffer from multiple local maxima. And of course, the acquisition

function will have as many dimensions as the target function, meaning it, too, may

suffer from the curse of dimensionality.

Originally, we had designed to optimize the acquisition function using a stock

Nelder-Mead simplex method optimizer, but found in our Monte-Carlo investigations

discussed in section 5.1 that as we increased the dimensionality of our toy target func-

tion, the optimizer would sometimes get lost – that is, completely fail to converge. Be-

cause our target function in these Monte-Carlo tests was convex, and the starting point

for the optimizer was always reasonably close to the optimum, and because Bayesian

optimization is renowned as a global optimization strategy, we concluded that perhaps

there was an error in our implementation. Sure enough, close examination (via raster-

scans in 2-d examples) of our results for the optimization of the acquisition function

confirmed that we were not successfully selecting the input vector that produced the
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function’s global maximum.

Fortunately, our acquisition function is cheap enough to evaluate that these

issues with its optimization are able to be solved using brute-force. Specifically, our so-

lution was to deploy many Nelder-Mead simplex method optimizers in parallel starting

from different positions scattered randomly about hyper-spheres centered on the best 3

points our optimizer had observed thus far. (The radii of the hyper-spheres determined

the spacing of the starting positions, and therefore had to be reflective of the widths of

possible local maxima in which our optimizers could get trapped. In our case, we used

a fraction of one of the length scale magnitudes.) By selecting the best result of the

parallelized optimizations as our next-acquired point, our aforementioned convergence

problems in higher dimensions were apparently solved. While this method of optimizing

the acquisition function is somewhat computationally expensive, it is quick enough to

be evaluated using parallel processing without becoming a limiting factor in our overall

Bayesian optimization algorithm, since the target function can only be evaluated at a

rate of 0.5 Hz, regardless. This swarm-like approach to optimizing the acquisition func-

tion was used in the Monte-Carlo study shown in Figure 5.3 as well as the experimental

tuning session whose results are shown in Figure 5.3.

5.4 Results

To test our completed optimization algorithm on the FEL at LCLS, we began

with a beam that had been previously matched as well as possible. The beam was then
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detuned by selecting a random 4-vector (in the quad-space corresponding to the devices

we would eventually seek to retune) and stepping along that direction until the target

signal was reduced by about 90%. This position was saved as the starting point for the

optimization algorithms that we compared. With our Bayesian optimization algorithm

having already been demonstrated as an effective approach to quadrupole tuning using

a GP with diagonal matrix of length scale hyperparameters, we sought to evaluate the

benefit of adding correlation information from the optical model. The results of the

comparison are shown on the left in Figure 5.3. The Bayesian optimization algorithm

whose GP includes the correlation information from the optical model significantly

outperformed the less-informed Bayesian optimization algorithm in 4-dimensions. These

results are consistent with results produced from applying our Bayesian optimization

algorithms to a synthetic (correlated Gaussian) target function with correlations equal

to those predicted by the beam size response of our optical model in a configuration

representing the FEL at time of our experiment, shown on the right in Figure 5.3.

As briefly mentioned in Chapter 2, we have restricted our focus to the quadru-

poles at the very end of the linac, just before the undulator. The simple optical model

presented in Chapter 2 fails to accurately model the FEL response to quadrupoles much

further upstream, due to more complicated optical effects of other devices in between.

(By looking only at the matching quadrupoles located just before the undulator, we

are able to ignore these more complicated effects, while maintaining sufficiently many

degrees of freedom to match the Twiss parameters into the undulator focusing lattice.)

Relevantly, Bayesian optimization without supplemental information from the optical

105



model should still be considered a viable approach to quadrupole tuning.
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Figure 5.1: Effects of Correlation Hyperparameters in Increasing Dimensions

Comparison of Bayesian optimization convergence time on a correlated target function. The

results plotted in yellow represent a GP with optimized length scale correlation hyperparame-

ters, while the results plotted in red represent a GP with diagonal (uncorrelated) length scale

hyperparameter matrix. Each bar shows the standard error about the mean for 100 trials. The

correlated GP kernel (yellow linear fit) performs as well as optimization of an isotropic target

function with an isotropic GP kernel, growing linearly with the number of dimensions. Steps

to converge with mismatched kernel grows approximately exponentially (red exponential fit).

Figure appears in [7].
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Figure 5.2: Acquisition Function: Local Maxima

(Top) Expected Improvement (E.I.) acquisition function evaluated using GP model shown be-

low. The function contains two local maxima. (Bottom) A GP model (blue) conditioned on

data (orange) sampled from a convex target function (black).
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Figure 5.3: Bayesian Optimization Results at LCLS

(Left) Optimization results at LCLS for 4 matching quadrupoles: GP without correlation hy-

perparameters (red) vs GP with correlations (yellow). Each scan was performed twice with

identical starting conditions, shown with different linestyles. Each step takes approximately 3

to 4 seconds. (Right) Simulations using an optical model with quadrupoles configured as they

were during the live tests shown on the left. 100 individual scans for each method, with means

shown by thick lines, are consistent with measurements. Figure appears in [7].

109



Chapter 6

Conclusion

At FEL X-Ray sources like LCLS, frequent tuning of the quadrupole magnets,

especially the matching quadrupoles, is necessary to achieve optimal X-ray intensi-

ties under ever-changing electron-beam conditions. Numerical approaches to tuning

the quadrupoles have been demonstrated as viable in previous studies. In this work

we showed that by informing a GP with prior information about correlations between

quadrupoles derived from an optical model, our Bayesian optimization algorithm was

able to beat previous benchmarks. Marginal improvements to the tuning process like

this could, over the course of years, help make available tens or hundreds of hours of

additional beam time to research groups – time that would have otherwise been lost to

the tuning process. Further improvements may be possible in the Bayesian optimization

approach by incorporation of an appropriately constructed prior mean function, as well

as through further experimentation with acquisition functions.

Additionally, it should be noted that more could have been done to model the
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FEL response to the quadrupoles than was presented here. In Chapter 2, we did not

go further than establishing an approximate relationship between the beam size and

the FEL output power via the Pierce parameter. While attempts were made to predict

the FEL output power using a combination of the optical model and simple 1-d FEL

physics, the results did not exhibit the same scaling as the measured response. Thus,

the results were no more useful in training our GP than the results presented in Chapter

2 derived from the optical model alone. That is, although the correlations between the

quadrupoles were well-predicted, the length scales were not. It may be possible to ac-

curately model our target function length scales via FEL simulators like GENESIS, but

this approach is computationally expensive and cannot be executed sufficiently quickly

to be useful in practice [41]. The attraction of the simple optical beam size model is that

it can be evaluated quickly enough to be used to compute predicted correlations for a

given quadrupole lattice configuration on-demand. With these practical concsiderations

in mind, further attempts could be made at constructing a complete FEL model (which

combines the effects of the quadrupoles and the undulator) that is fast to evaluate.
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