UC Berkeley
SEMM Reports Series

Title
A Computer Program for the Dynamic Stress Analysis of Underground Structures

Permalink
bttgs:ééescholarshiQ.orgéucéiteméleGmng
Author

Wilson, Edward

Publication Date
1968

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/15f6m3p6
https://escholarship.org
http://www.cdlib.org/

REPORT NO.
68-1

JANUARY 1968

I
o
|
L
ol
i
L
o
B
.
Ll
|
L
—z
|

STRUCTURES AND MATERIALS RESEARCH

DEPARTMENT OF CIVIL ENGINEERING

A COMPUTER PROGRAM FOR THE
DYNAMIC STRESS ANALYSIS OF
UNDERGROUND STRUCTURES

3Y

EDWARD L. WILSON

REPORT TO
WATERWAYS EXPERIMENT STATION
U.5. ARMY CORPS OF ENGINEERS

STRUCTURAL ENGIMNEERING LABORATORY
COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY CALIFORNIA



i
|
|
i

S

A COMPUTER PROGRAM FOR THE DYNAMIC STRESS ANALYSIS OF

UNDERGROUND STRUCTURES

by

Edward 1.. Wilson

January 1968



-
e

ABSTRACT

The finite element method coupled with a stable step-by-step inte-
gration procedure is used to evaluate the dynamic response of Linearly
elastic two-dimensional sitress structures. Linear strain guadrilateral
elements and one-dimensional elements are combined to represent complex
structural systems of arbitrary geometry. The computer program included
in this report is suitable for the earthquake or blast analysis of
underground structures, Arbitrary time-dependent displacements or loads
may be specified at any point in the system. The method is applied to
the blast analysis of a cylinder buried underground and the results are
compared to an experimental study. The use of the program and a listing

of the FORTRAN IV program for the CDC 6400 are given in the Appendices,
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I,  INTRODUCTION
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Dynamic response analyses of underground structures by formal

analytical techniques have been resitricted to lineariy elastic bodies

of idealized geometry and subjected o a restricted form of loading,
Therefore, Tor the analysis of practical structures including realistic
material properties and loading, approximate numerical methods musgt be
emploved,

The finite element method is a recently developed technigue that
has been extremely successful in the static and dynamic analvsis of con-

[1,2,3,4]

tinuous structures, The advantages of the finite element method,

as compared to other numerical approache are many. The method is com-

pletely genexal with respect to geometry and material properties. Since
each element in the system may have different properties, complex bodies

composed of many different layered, anisotropic materials are easily

represented, Displacement or stress boundary conditions may he specified
at any point in the finite element system, Mathewmatically, it can be

shown that the method converges to the exact solution as the number of

elements is wsed; therefore, any desived degree of accuracy may be
obtained., 1In addition, for both static and dynamic analyses, the finite
element approach generates eguilibrium equations which produce a symmetric
positive~definite matrix that way be placed in a band form and solved
with a minimum of computer storage and time,

Recently, several research programs involving the development of
finite element methods have been conducted at the University of

(5,6 ]

California at Berkeley, As a result of these previous studies,



congiderable experience has been gained in problems associated with
the dynamic analysis of finite element gystegs. The mode superposition
approach and the step-by-step integration prccedure[7] have been
applied to the dynamic response analysis of two~dimensional systems.
Both of these techniques yield the same results and involve equiva-
lent amounts of computer effort for linearly elastic materials; however,
for the proposed study, the step-hy-step method will be used since the
mode~-superposition approach is appropriate only for elastic structures
subjected to small displacements,

Another investigatorig] has used a step-by-~step technique in the evalua-
tion of the dynamic response of elastic finite element systems, How-
ever, the element used was the constant strain triangle which is
extremely inaccurate compared to the linear strain quadrilateral pre-
gsented in this report, Also, the step-by-step integration method which
wag used does not appear to be a stable procedure, The resulting
computer program was difficult to use for the blast analysis of under-
ground structures and required large amounts of computer time,

This proposed investigation will be restricted to two-dimensional
plane structures, However, an important advantage of the finite element
method and the step~by-step procedure is that they may be readily
extended to other classes of structures, For example, the resulting
computer program for the dynamic analysis of two~dimensional structures
may be easily modified to perform axisymmetric analyses,

The present report will be concerned with the development of a

general computer program for the dynamic analysis of two-dimensional



plane strain structures, The structures which mayv be analyzed are of
arbitrary geometry and the material properties are assumed to be

linearly elastic. Automatic load generation procedures make the pPro-

gram well suited for the consideration of traveling blast pressure

and earthquake loads, One-dimensional truss elements are included
in the program; therefore, a certain class of foundation structure

interaction behavior may be studied,

(9N



IT. WMETHOD OF ANALYSIS

In the finite element idealization of solids the continuous structure
is replaced by a finite number of elements, or regions, which have common
joints, or nodal points. For the purpose of describing the behavior of
the finite element system an approximate displacement field is assumed
within each element, 1In the case of two-dimensional solids, expressions
for both the = and y displacement fields are reguired. These fields
within each element are expressed in terms of a discrete number of un-
known displacements associated with the connect ing nodal points. There~
fore, for the dypamic response a lumped parameter idealization of the
actual structure is possible, in which the mass properties of the system
are separated from the elastic properties of the system. The advantage
of this discrete mathematical formulation is that the force equilibrium
of the system may be expressed by a set of ordinary differential equations
rather than the partial differential equation reguired to describe the
actual continuous structure, )

These simultaneous differential eguations representing the equili-
brium of the system may be expressed most conveniently as a matrix equa-
tion. Then either of the two different approaches to the solution of
this equation may be adopted, The mode-superposition method involves
the golution of the chavacteristic value problem represented by the free

vibration response of the system, followed by the transformation to the

principal coordinates determined as the characteristic shapes of the
system. This procedure uncouples the response of the system, so that
the response of each coordinate may be evaiuated independently of the

others, The second method of dypamic analysgis is called the step-by-step



method, and involves the direct numerical integration of the equilibrium
eguations in their original form, without transformation to the principal

coordinates
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b+ ICu 1+ [EJU ] = [P ] (1)
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In the following section the development of these matrices for a finite
element system will be discussed. Also, the step-by-step solution pro-

cedure will be given,

B. Finite Element Stiffness Matrix

The stiffness matrix [K] used in the dynamic equilibrium relation-
ship, Eg. (1}, is independent of time and is identical to the stiffness
matrix wused in static analysis. The particular tyvpe of element used
in this report is a quadrilateral element composed of two triangular
elements and is shown in Fig. 1.

Within each triangular element the displacements in the x and v

coordinate system may be expressed in the local skewed coordinate system

by the following equations:

u o= o - ¥ o+ oY, o+ o XY
! p b Xy b Ogry o XYy
Vo + RY., + B XY
’ Bl * 82 x ﬁS i E4 i1

This disgplacement fi assumption forces a linear (and compatible) vari-
ation of the displacements along sides 1-2, 2~3 3-4 gud 4~1. The dis-
placements along line 1-5-3 vary parabolically; however. full compatibility
i3 maintained since the three points zlong the straight line are forced
to have common displacements. The details of the stiffness matriz develop-
ment for this type of element is given in Appendixz B.

After the 8 x 8 stiffness matrices for the two trisngular elements
are developed they are combined to form the 10 x 10 guadrilateral ele-

ment stiffness matrix, The unknowns associated with point 5 are then
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expregsed in terms of the uskonowns of points 1 through 4 and eliminated
from the system; this results in the development of the 8 x B quadri-
lateral element stiffness matrix. The guadrilateral element stiffness
matrices are combined by direct stiffness procedures to form the com-

plete stiffness matrix for the finite element system.

C. Lumped Mass Approximation

A formal mathematical developmeni of the mass matrix is possible.
Such an approach would result in a mass matrix with the same coupling
properties ag the stiffness matrix. However, 1f the physical lumped
mass approximation is made the mass matrix will be diagonal. The
lumped mass approximation results in a small reduction in accuracy and
a considerable saving in computer storage and time. in this investi-
gation one~fourth the mass of each guadrilateral is assumed to be con-~

centrated at each of the four nodal points,

D. Damping Matrix

For most structures the exact form of the damping is unknown., Since
its effect on the transient response of a structure is generally small,
a simplifying assumptiop as to its form is justifiable, In the step-hy-
step solution procedure the damping matrix may be completely arbitrary;
however, there ig little experimental justification for selecting
gpecific damping coefficients. A form of viscousg damping, which is
sufficiently general for most structures, is given by the following
matrix equation:

[C = a[M] + BIE] (2)
By making the damping matrix proportional to the mass and stiffness

matrices no additional storage is reguirved within the computer program,



A significant portion of our experience with damping has been
related to the frequencies and mode shapes of the system: therefore,
it isg important that o and § be interpreted in terms of equiva-
lent modal damping. Since the determination of mode shapes and fre-
quencies is not an essential part of the step-by=-step method, modal
damping cannct be used directly.

. X . th .

It can be shown that the modal damping ratio for the 1 mode is

given in terms of o and B by

W,
C}: ‘I ra
M P T (2a)
i

. .th , .
where wi ig the frequency of the i mode, For given values of

o and B the frequency w which yields a minimum value of damping

ratio A is given by

Wi

If the minimum damping ratio, A, and the frequency, w, are given,
the damping coefficients o and § are calculated from the following
equations:

o o= A (2b)

B = A (2¢)

Eqguation (2a) can now be rewritten as

>
i
I
1=
= i—i
a1
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A graphical representation of this eguation is shown in Fig. 2. There-
fore, if the significant frequency range is established for a structure
and the eguivalent modal damping is selected, the constants o and 6 can

be calculated dirvectly from Egs, {2y and {(2¢)

E. Step-by-Step Integration of Hguilibrium Equations

The dynamic equilibrium of the finite element system is given by
Eg. (1). The solution of this set of second order differential equations
is accomplished by a step-byv-step procedure. The only approximation
which is made is that the accelevation of each point in the system varies
linearly within a small time interval, At

This assumption, which is illustrated in Fig. (3), leads to a
parabolic variation of velocity and a cubic variation of displacement
within the time interval.

A direct integration over the interval gives the following equations

for acceleration and velocity at the end of the time interval:

u = el ' N (3)
t /};tz t i
P B (4)
Yo 7oAt Yo T B e
where
A = S 1 + wi‘u 2u (5)
t 2 Tt-pt At TE-AL e At

At
3 P At .. -
By = 3t Ye-at Yieat P YA (6

The substitution of the matrix form of Egs., (3) and (4) into the

equation of equilibrium, Eq. (1)
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(Kl + [c1fal, + (Ml = (e}, )

vields the following equation for the displacement at the end of the

time interval:

[Kiiu}, = {P}, (8)
where
- 3 .. 6 .
[K] = [K] + 57 [C] + 2 [M] (9)
tph, = {pd, + [eafBl, + [mifal, (10)

The solution technique for Kq. (8) is discussed in Appendix A.
The acceleration and velocity at the end of the time interval is

obtained from the matrix form of Egs. (3) and (4):

{uf, = A‘;B fuf, - {a}, (11)
ta}, = 57 {u}t - {8}, (12)

In order to simplify computations and to minimize computer storage
requirements the damping matrix is assumed to be a linear combination of
the mass matrix and stiffness matrix, as indicated by Eg. (2). The
substitution of Egs. (2), (1D and (12 into the dynamic equilibrium
relation, Eq. (7), yields the foliowing set of 1inear equations in terms

of some unknown "effective' displacement

[K][ul, = [P], (13)

where
[K] = [K] + C, [M] (14)
P, = P1, = 1[ia, - oyie,) (15)

[y = o (], - Ele], (16)



Cy = g% " ;% (17

c, = ?w:i!wm (18)
At 7

C, = Coly (19)

CB = ¥ - CZB (20)

The complete step-by-step method is summarized in Table I.

F. Stability of the Step-by-Step Method

The previously described step-by-step integration technique is
accurate if the time step is small compared to the shortest period of
the finite element system. If the time step is long compared to the
shortest period, the method will become unstable and fail to produce
realistic results. Newmafifgj hag studied this instability and has
suggested a constant acceleration method. Newmark’'s procedure was found
to be stable when applied to finite element systems; however, spurious
finite oscillations associated with the high frequencies of the system
were still present in the results, Several other stable step-by-step

methods were investigated with respect to finite element systems; the

method found to be completely stable without the addition of damping

14

was a modification of the previously described linear acceleration method,

The instability in the linear acceleration method is first initiated
by an oscillation of the displacements about the true solution. This
oscillation can be eliminated by a simple modification of the methods.
In the early stages of the instability it is apparent that the displace-

ments at the center of the time interval are a good approximation of the



TABLE I. SUMMARY OF STEP-BY-STEP METHOD

Initialization
a. Form stiffness matriz [K] and mass matrix
b. Form "effective' stiffness wmatrix

(K] = [K] + CyfM]

c. Triangularize [K |
For FKach Time Iincrement

a. Form [A]f and (B]t

(Al = ';”g i,,u,]twm v [th,_M + 2 [thwm

30 At

(B = ZT% lodepe #2100 6 + 5 [“;”;]t»«&t

b, TForm "effective’ load

[P1, = [P1+ [M] ['Mt ¥ C:é[fBi‘t]

c. Solve for "effective' displacements

[u], = (k1 [P,

d. Caleulate Displacements, Velocities and Accelera-

tions at time ¢

KT T S R
[u], =¢ [uj + € BIB],

2, Repeat for next time increment

[M]




true solution, Therefore, if this wid-point solution is utilized,
the tendency for oscillationg Lo develop is eliminated. In order to
modify the previous step-by-step eguations to reflect this approach
a time increment of 24t is introduced and the acceleration, at+At ,

at the end of the time interval is calculated. The mid-point accelera-—

tion is calculated as

.o 1 s oo .
I ‘ o
R (“twﬁk * ut*&t) (21)

The velocity and displacements at time "t" ave calculated from

. . At . At ..
Y T Meene T Yeene Y T Y (22)
2 2
u o= u + At 0 3 et u + At i (233
t t-At t-At 3 Tt-Lt G t

Thisg approach has eliminated all stability problems from the step-
by-step method and is the technigue which has been incorporated into

the computer program included with this report,

G. Blast Load Forces

In the case of blast analvsis of underground structures the loads
may take one or both of the following forms: First, the loading may be
due to time dependent blast pressurves applied at the free surface
immediately above the underground structure, Second, the loading may
be in the form of a ground shock which was initiated at some remote
location in reference to the structure, The method of analysis and
the resulting computer program which is presented in this report will

consider both of these types of loading,

i6



Pressure Surface Loading - The method of analysis, in general, is

-

capable of considering arbitrary time-dependent forces at the nodal

points of the finite element system, To allow for this generality in

a computer program would reguire a o

chibitive amount of input data.
In order to minimize data input and to provide sufficient flexibility
for the solution of most problems the loading i3 restricted to the Torm

shown in Fig, 4. Only two different load forms f (1) and fv(T) are
X ol

defined and supplied to the computer program as input, In addition, at
each nodal point in the system the constants F F} and € are
x ; {

specified, The time dependent nodal forces in the x and y directions

are calculated within the program by evaluating the following equations:

R (t) = F £ {t-t ) (24)
R0 = (25)
y

where t ig the absolute time and to is the arrival time of the load

function, The constant F i

1

5 related to the loasded surface area which
contributes to the total load at the nodal point,

Displacement Boundary Conditions - The problem of specifying displace-

ments at nodal points as a function of tTime can also be accomplished in
the same computer program., As an example, consider the structure shown
in Fig. 5 which is subjected to a hovizontal displacement at the left

vertical boundary of UX(t)M A typical nodal point on this boundary may
be idealized by 2z one-~dimensiocnal spring element connected to the finite

element system as shown below,
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111, EXANPLE

Several examples with known exact solutions were solved to verify
the method of analysis and to establish the validity of the computer pro-
gram., In all cases, as the time interval and the space mesh size were
reduced, the results approached the known values,

In order to illustrate the application of the program to a practical
problem, the blast load analysis of an underground cylinder buried in a
sand material was selected, This particular structure was tested at
W.E.S. The experimental layout for the system is shown in Fig, 8. The
measured surface pressure as a function of time is plotted in Fig. 9,

In this case the analysis of the actual structure is a complex three-
dimensional problem. The two-dimensional plane strain, finite element
analysis represents only an approximate golution, The material pro-

perties used in the analysis were

. 6
Modulus of Elasticity of Cylinder 29 x 107 psi
Modulus of Elasticity of Soil 25000 psi
Poisson's Ratio of Soil 0.3
Mass Density of Soil L000164 #sec /in

The structure was analyzed with two different finite slement
idealizations -~ a fine mesh which ig shown in Fig, 10 and a coavse
mesh which is not shown, The fine mesh contained 176 elements and 187
nodal points, The course mesh contained 108 elements and 117 nodal
points, The cylinder was idealized by one-dimensional slemests with
axial stiffness only -~ the bending stiffness of the cylinder has been
neglected,

Fig. 11 illustrates the axial stress in the cvlinder at point A

as a function of time, Results of the two analvses with different
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mesh size are in reasonable agreement, The fine mesh analysis yields
a maximum stress of 4520 psi which compares with an experimental value
of 5450 psi obtained by W.E.S. Considering the many approximations
involved, these results are realistic.

The stresses in the soil as a function of time for points at
different distances below the surface are plotted in Fig. 12. Point 1,
which is very near the surface, correctly reflects the applied surface
pressure, Points 2, 3 and 4 illustrate a time lag in their response to
the surface loading as one would expect.

A description of the specific computer program used for this analysis
is given in Appendix C. Appendix D contains a FORTRAN IV listing of the
program, The program can be used directly on a CDC 6400 with 32k storage.
It can be converted to other computers with a minimum of effort., Of
course, the capacity and speed of the program will depend on the com-
puter used, For the fine mesh analysis used in this example, approxi-

mately five minutes of CDC 6400 computer time was required,
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v, FINAL REMARKS

In this report the theory and computer program for dynamic, elastic
analysis of two-dimensional structures of arbitrary shape and material
properties are presented, The program is especially suitable for the
analysis of underground structures subject to surface blast loading,

The finite element method is used to reduce the continuous s=tructure
into a discrete system. A stable step-by~step integration procedure
is uged to evaluate the response of the finite element system, The
step-by-step method was selected, in preference to the mode supei-
position approach, because it may be directly extended to include the
effects of non-linear material properties and large displacements,

The next phase of this investigation will involve the incorporation
of nonlinear materials, Thig will require the caleulation of an
incremental stiffness matrix at each step in the solution procedure,
The incremental stiffness will be based on the state of stress in the
element at the beginning of the time step. It is apparent that this
approach will require a tremendous increase in computation effort for
each time step. However, it is hoped that large time steps can be used;
since a stable step-by-step will be employved., An important part of
this phase will be the selection of a realistic nonlinear model for
the soil material,

After the incorporation of nonlineasr material behavior, the effects
of large deformations can be included without a significant increase in
computational time, This will involve the formylation of the incre-

mental stiffness in the deformed coordinate system and the evaluation
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of the unbalanced forces due to the viclation of the equilibrium in the
deformed position, These unbalanced forces may be reduced by the
application of equal and opposgite loads in the next time increment. In
this way it should be possible to satisfy total equilibrium of the
system regardless of the magnitudes of the displacements,

The extension of the Method of Analysis and the computer program

to the dynamic response of Axisymmetric Solids is a very simple procedure,

This would require a slight modification in the calculation of the eie~-
ment stiffness matrix to reflect the addition of the hoop stiffness in
a triangular ring element. The step-by-step method, the incorporation
of nonlinear material and large deformation would be identical to the

plane strain problem,
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APPENDIX A, SOLUTION OF LINEAR EQUATIONS

The equilibrium equations for a structural system can be written

in the following form:

A £ { i Dy e e e e s + A X = B J2 Sl =
11K1 + Algkg Algkq + ALK B, (A-1a)
X A_X : + A K = -
Ay X noXo T ALK L S+ ALK T By (4-1b)
Ang1 + A32X2 + A33X3 ...... + ASNXN = B3 (a-1¢)
A / X+ A X ...... = B -
vt P Aeta t Ays®s AN T By -
or, symbolically,
[AJIX] = [B] (A-1)
where
[A] = the stiffness matrix
[¥] = the unknown displacementsg

IB] = the applied loads

Al Gaussian Elimination
The first step in the solution of the above set of equations is

to solve Eg, (A-la) for X]

X, - (A /A 7x3Ve" (AIN/All)XN (A~2)

X o= By/A - (A /A DX, 13711

1

If Bg. (A-2) is substituted into Egs. (A-1b, c,..., N), a modified

set of N~1 equations is obtained:

1 1 1
X £ Koo A b4 e A~3r=
AZQ g * %ZSXB AN B2 (A~32)
1 1. 1 1 .
'ABRXE + A33X3 uuuuuu + ASNXN = 33 (A-3Db)



1 1 1 1
AnoXo * Ayago o AN T By (=)
where
At A ACAL /AL i, o= 2 N (A-da)
zij - 1] N 13 11 Ly, o= 4,00, A-4a
By =B, - AB /A 1= 2 N (A-4D)
[ A & A B

A similar procedure is used to eliminate XQ from Bg, (A-3}), etc., A

4

general algorithm for the elimination of Xn can be written as

-1 n=1. n=i , n=-1,
X = (87N - E (A /ATy X j=na+1,... N (A-5)
n nn nj nn j

-1 - S T T "

A% =A™ R O a7 St W T TSI A (A-6)
ij i in nj nn
n~-1 =] -1 n=-1

BY =8 - AT ETT A" i 21, N (A=7)
1 1 110 T nn

Equations A-5, A-6, and A-7 can be rewritten in compact forin:

X =D -9 H X j=na+1,..., N (A-8)
n n ny Jj
n n-1 -1 . . :
L S e SN D R B | (A-9)
ij ij in nj
S B N SR S (A-10)
1 i in i1}
where
D - nwl/ ne~1
n n nn
n-1 , n-1i
= AT
nj nj nn

After the above procedure is applied N-1 times, the original set of

equations is reduced to the single eguation

N-1 N-1
Ay = By

which is solved directly for X



In terms of the previous notation, this is

X = D_ (A-11)

The remaining unknowns are determined in reverse order by the repeated

application of Eq. (A-8).

A,2 Simplification for Band Matrices

For many structural systems, the stiffness matrix occurs in a
"pband" form which results in the concentration of the elements of the
stiffness matrix along the main diagonal. Therefore, the following
simplifications in the general algorithm (Egs, [A~8], [A-9], and [A-10]

are possible:

X =D -§ H X J=n+1,...,n04+M-1 (A-12)
n n nj"j
AT oAt vy a1, n M1 (A-13)
1] lJ in nj
e S i=n4+1,...,n+M-1 (A-14)
1 1 in I

where M is the band width of the matrix.
The number of numerical operations can further be reduced by
recognizing that the reduced matrix at any stage of the procedure is

symmetric, Accordingly, since

Eq. (A-13) can be replaced by

- . H . (A-15)
ij ij in nj



The number of numerical operations required for the solution
, o . , . 3 )
of a band matrix is propovtional to NM as compared to N which
is required for the solution of a full matrix. Also, the computer
gtorage required by the band matrix procedure is NM as compared to
2 . . . . . .
N required by a set of N arbitrary equations., This is the

technique used within the computer program presented in this report.



APPENDIX B. STIFFMNESS OF LINEAR STRAIN QUADRILATERAL

The Quadrilateral Element

The linear strain guadrilateral is composed of two four nodal

point triangles as shown below,

The Area Coordinate System

Within a triangular element the displacements may be expressed as
a function of space and the values of the displacements at the four
nodes, A convenient form in which these displacements may be expressed

directly is in the area coordinate system shown below,




The dimensionless area coordinate is the ratio of the subarea to the

total area of the element. Or,
M, = - (B-1)

where

Therefore, a point within the triangle may be defined in terms
of the global system x and y or in terms of the local area

coordinates A, , A and A, or in terms of the dimensionless coordi-
<3

1772

nates ﬂl, M, and ﬂg

The Displacement Field Approximation

The advantage of the area coordingte system is that the compatible
displacement functions can be written directly in a simple form. Hence,

the x and vy components of the displacement field are

u = ﬂlul + ﬂgflmzﬂg) u, + ﬂ3(1w2ﬂ2) u, + 4H2ﬂ3 ", (B-2a)
= Tvy + N, (=21 v, + T,(0-2 Lo+ ATTL Y -
v ”1‘1 + 1,0 lg) vy + n, ¢ 2 v, 4ﬂ2ﬂ3 4 (B~2b}

Relationship Between Coordinate Systems

A typical subarvea region of the triangular element is shown

below,

ngﬁi




The area of the vegion is given hy

Fur 1% Jer 3wy A y . AN
y+y . V+Y . V.4,
S Y 1 B (WM&. ok R s -
Ak = ( 5 > ( j %} 4 \ 5 ) {x xj) ( 5 ) (xj xi) {(B~3)

Or in dimensionless form

1 \
”ﬂk = [(ywj}(xij) + (y+yi) (x«xi) - (y;j-e—yi)(xjmxi)] (B-4)

The derivatives with respect to the global coordinates are in

general
k o e i ,
gl ngmi and 5 - ;A”W (B-5)

These evaluated for the three coordinates are

hoh hoy

3% 2A 3y T 2A

&ﬂz b, Bﬂg a, 56
3% 2A Jy  2A ~6)
3 f

ox | 24 ay 24

where

3 2 1

(B~7)
Py =¥y ~ ¥y
by = ¥3 7 ¥,



Expressions for Element Strains

The element strainsg may be der

by the use of the chain rule, O

of

Therefore,

[

(O

<

Lo

IVe
¥

- . 31 N 2 . 3
= Q4 gu oMy . ou ol . ou oy
"3 T3 % T T < TR o

A% wﬂl % ,ﬂz A% OHS I
Caw o Oy ol , oy
oy AN ay ol ay 2. 3y

1 2 3

ou oy
il -

Ay %

o O m5+ o 9T
o - = N .

Bﬂl oy Qﬂg 514 uﬂg oy
- o, LoV ly 5y 9T

o, x oM,  ox T of,  ox

the three global components of

the local dimensionless coordinate system as

2A

[%1“1

+ (b2

+ (b,

fe

+ (ag

+ (a3

+ (a,
2

+ (33

+ (b,

2b

]
(o3
W
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3
H

Z2h
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Za

2113
31y
2Tl
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3Ty

0 from the displacement field

(B-8)

strain are given in terms

e

4b,1,)

22,75

4a,y)

gbzﬂq)

<

|

=

<«

|

(B-9)



Expression for Strain Energy

The total strain energy stored in the element of constant thickness

. f (e1" [elfe] - aa (B-10)

In this case, f[c] 1is a 3 x 3 matrix of material properties and [e]
ig a 3 x 1 matrix of the three components of strain which are linear
functions of space. A closed form exprassion for the evaluation of a

roduct of two linear functiouns has heen developed and is given as
D T

A B -
C - » ] oy N;"ww [\/ ; ‘ ’ f \) 2 3
)fQ g - dA = g5 (Ef 1 Lohe

2 (B~11)
L1 2 g,

where the subscripts 1, 2 and 3 indicate the values of the functions
evaluated at the corners of the triangular element.

The application of this integration formula to Eg. 10 results in
the following expression for the stvain energy in terms of the strains

at the corner nodal points:

-
AL =T =T =T| [ R, -
- At - c.oo C C €

© T [?x 3 ] 119 G G5 x

§
i

; C oo ¢ 312
Con@ Co0® Cyu0 v (B-12)
, Lo e w
&fSIQ Fan? G549 ¥

where the corner strain submatrices are defined as

ﬁxl gs}& Y1
Qx = {5 ; @y = ayz Sy =AY, (B-13a,b,c)
€43 “y3 Y3

(B-14)

=
T



The evaluation of Eq,

9 results in the {following expression for corner

straing in terms of global displacements at the four element nodsal
points:
€ U
X
B 1
e = v (B-15)
8% v U
where the submatrices are defined as
u, ) )
Yo Vo
11 o= ;oo Zome /,~§ )
1 o v v (B-16a,b)
] 3
u v
4 . 4
& h2 bf?
U = 1 b b,.- 2b -1 Ah {(B-16¢c)
24 1 2 3 3 e
e - _v) - &
b1 Ui bL‘FJ)w 1h2
a, a, a,
1 i "
V=on | 2Ry A tig (B-16d)
al —a, a3«2a2 432
The substitution of Eg, 15 into Egq. 12 yields the following
equation for the strain energy of the slement:
‘ 1 7T T o
=g Ju v ] [k} [u] (B-17)
v
With the strain energy written in this form it is apparent that [k] is

the element stiffness matrix and

Le given by



7 T w
At v v ] f’uQ €09 (mﬂ U
-y et s "5 & b ( - 3 —
e =73 T rfJ lf“m‘"é Cpol Czﬁj VJ (B-18)
Sy c . '
viow 2@ €0 ool v oo

within the computer program given in this report, the submatrices U
and V are formed and then the element stiffness matrix is formed

directly in a series of operations which minimize programming effort

and optimizes compuier execution time.
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APPENDIX €., COMPUTER PROGRAM USAGE

Purpose

The purpose of this computer program is to determine the time~
dependent displacements and stresses within two-dimensional plane strain
structures of arbitrary shape, The effects of displacement or stress
boundary conditions are included,
Input Data

The first step in the dynamic analysis of a two-dimensional plane
strain structure is to select a finite element representation of the
cross-section of the body. Elements and nodal points are then numbered
in two numerical sequences, each starting with one. The following
group of punched cards numerically define the two-dimensional structure
to be analyzed,.

A, IDENTIFICATION CARD - (72H)

Columns 1 to 72 of this card contain information to be
printed with results.

B. CONTROL CARD (615, 3F10.0)

Columns -5 Number of nodal points (200 maximum)
6-10 Number of elements (180 maximum)
11~186 Number of different materials (12)
16-20 Number of time steps (no limit)
21-25 Number of intervals for which we want to
have the results printed
26-30 HNumber of load cards (100 maximum)
31-40 Damping coefficient
41~50 Damping coefficient
51-60 Time increment

C. MATERIAL PROPERTY INFORMATION

The following card must be supplied for sach different
material (15, 3F10.0)

Columns 1-5 Material identification -~ any number from
1 to 12
6~15 Modulus of elasticity
16~25 Poisson's ratio or the area of a bar element
26-35 Mass density of material



D,

NODAL POINT CARDS (15, Bt

One rd for e:

jau]

pa

Columnns 15
6-10
13 =20
21 =30
31~-40
431 ~50
518G
6170

Nodal po
Boundary
w-ordina
y-ording
Coeffici
Coeffici
Avrrival

Initial

int npumbe
conditior
te

te

ent which alfects horizontal loads
ent which affects vertical lcoads
time of loads

condition coefficient (I}

IfT I =0 the program generates zero initial conditions for

this nodal peoin

If 1 #£0 it i
following infor

Columns 1=-20
2140
41 -840
61-80
Specifications

If

k = 00

k = 10

£

s necessa
mation {

Initial
Initial
Initial
Initial

for code

Load
load

sera
load

locad
Zero

Zero

Zero

Nodal point cards wmust b

are omitted, th
intervals along

points, The initial disy

arrival time of

boundary condition code and tl

and vertical lo
card,

o
g

e omitt
a strs

lLoads ar

ads are s

ry to add another card with the
4EZ0.10)

x-displacement
y-digplacement
x=velocity
y=velocity

”1&”

in the x~-direction
in the y-direction
displacement in the x-direction
in the y~direction
in the x~direction
displacement in the y-direction

digplacement in the x-~direction
; acement in the y-direction

e in numerical sequence., It cards

nodal points are generated at eqgual

ht 1ine between the defined nodal
acements and velocities and the
e get egual to zevo, whilse the

et equal to the values on the last

coefficients for hovizontal
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E. LOAD IDENTIFICATION

ﬁ

-~
o
N
S’

Columns 1-5 Load code, @

If Q= 0, loads will be specified

If § # 0, load cards represent ground accelerations and
the values of ¥ and ¥ at the nodes are
set egual to &thnQda} ma% s within the program,

F, LOAD CARDS (3F10.0)
One card for each time with the following information
Colunns 1-10 Time
11-20 Horizontal load or accelerastion
l,

21-30 Vertical load or acceleration

G. ELEMENT CARDS

One card for each slement (615)

Columns 1-5 Element nunber
6-10 Nodal point I
11-15 ©Nodal point J The maximum difference
16~-20 Nodal point K j in nodal point numbers is 12
21-25 Nodal point L

26-30 Material identification

For a right-hand coordinate system, order nodal points
counter~clockwise arvound,

Element cards must be in element number sequence, If
element cards are omitted, the program automatically
generates the omitted information by incrementing by one
the preceding , 4, K and 1., The material identifica-
tion for the g rated cards is set equal to the correspond-
ing value on i 28t card, The last element card must
alwavs be supplied. One- wnsional bar elements are
identified by a nodal point numbering sequence of the form
r, J, J, 1.

H, OUTPUT INFORMATION

The following information is developed and printed by the
program:

. Reprint of input data

Nodal point displacements asg a function of time
Stresses at the ceuter of each element as a function
of time

[ENIE T



APPENDIX - D

COMPUTER PROGRAM LISTING



PROGRAM MATN{INPUT sOUTPUT s TAPF 5=

FEAL MASS
COMMON NUMNP s NUMFL s RUMMAT s NaVOL 5

IMMMsLLsC0C1C2sC3 4R
Z2EXOCLGONY X1 1400y 5 X2
COMMON/MATARG/YMOD( 172

COMMON/ELEARG/ T

Yo ENUC L2y o HE

COMMON/ SYMARG/MBAN )§NFQ@R640”

(% F 3 309 S 3 58 3 A St ok 3 R S ¥ 3 o

C READ AND PRINT OF CON

f’"*%%‘*‘%‘/{ e RS Ea R A )

50 READ  (5.1000) HED, Nl
WRITE (652000) HEDNUMNP s NUME L 4 NU

56 DO 50 M=1NUMMAT
READ (5,1001) MTYPEsYMOD(MTYPF)
WRITE (652011) MTYPE,YMOD(MTYPE

59 CONTINUF

PR T R R R R R T R R e R A N Y A S T T I R T T
C READ AND PRINT OF NODAL POINT HAT”
R R R R R R R N R R O I A

(6,200%4)

WRTTE
L=0
60 READ (551002 NeCODFINY sRINY s Z Ny o CH{(
IF (O 65475565
75 XOLZ2#N~11=0,0
XO (23N =0
X1C(Z2%N~1)1=0,0
X1I(Z2HENY =0, "
GO TO 85
65 READ (551006) XO(2#N~1)sX0U0Z#N) X 1(2%N~
85 NL=L+1
7K =N-i
DR=(R{NYy~R{Lj /72X
DZ=(Z{Ny=7Z(Lyy /7%
7O L=L+1
FFIN-L) ]“”%QO@QO
80 CODEA(LY=CODF(L~1)
RELYy=R{L~11+DR
ZtLy=700L~-1)+D7
XO{2%L~131=0,0
XO(2%L)Y=MNe0
KAI(2#L~11=0,0
XLEZHL 1 =00
TiLy=na0
CHILY=CH{L~-1)
CVIiLy=CV(iL-1)
GO TO 70
90 WRITF (6320027 (KsCODFIKYRIKYZIKyaXN{
IXDU2¥K) s THK Y o CHIK ) s CVIK Y s K=NL s N)
TFINUMNP=NY 100,110,600
100 WRITF (6:2009) N

CALL EXIT

110 CONTIHUE

MIYPESDELT o NT o NP
(2001,70200)T(200) sCH200)
@ﬂ“)@ﬁﬁﬁf(?“ﬂagp 3

X180 sH) s EPS( j%m)
CQMMON!L&QARFJTQJ@KaﬁfLmﬁlO)Q({g&%)ém(i

'\/”‘f gN!”v” [ gl\“] IMMT @{\‘

2 LN
}«iﬁJ(WT“PJ

INPUT s TAPEE=0UTPUT)

RINT NP

1f~m)&f‘f~(/+ﬁr’\)@p
(La )y'<(l' 129

{40y
s ALFABETA

PP 1INy
(Qnmsffb)

o LM 4y

I VS VRV
(R R R

BT IES

NP R
s DELT

s ALFA

NT, ALFA@sFTﬂ

PNT NP
AMBT

(MTYPF) s RO(MTYPE )

) s ROEMTY P )

N

sCVINY T (NY oG

)@Xl Q%N)

ZEE T g X (2¥K) 5 X1 2¥%K=1)

VRV
o3k 3

Wy BETALDELT

e T T o NNNs Gy
SOVEZN0Y MASS{Z200)

33 3

BTN
R

9



D~-2

S
e
.
S
S
S
Ee
i
¥
pxd
e
s
b3
b3
b3
£
i
%
ES
s
ke

GRS TR TR Y S 2 s i s I
C READ AND PRINT OF LOAD DATA
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
READ (510051 O
WRITF (6@?“07)
DO B8Bn M=1 NP
550 READ(Bs1004) (P

( Vs
WRITF (620051 | Kot
C%*%%%%%%%%%%%%%K¢yﬂwwwx%%‘y”

K=1

K
P

M )
{ =1y 31 eM=1 NP
3 %f%&xy;wa%%%%%%wx%x%%%%%%%%*x%%%%%%%%u%&%%
C READ AND PRINT OF FLEMENT PRUPERTIES
(CF KKK K I I W I H R K H KR K K R SR K R K B % B KRR
WRITE (652001
: N=0
130 READ (5:1002) MelTX(MsT7)sl1=155)
140 N=N+1
TF (M=NY 1704170,150
150 TX{Ng1)=TX(N-1s1)+1
TA(Ne ZY=1XIN~1s2)+]
TAX(Ng3)y=TX{N=1,3)+]
TXINs &Y =IX(N~154)+]
TEXANgS)Y=TX(N~165)
170 WRITE (6520N03) Ne(TX(NysIYs1=145)
TF (MeN) 18051805140
TF (NUMEL-N) 190s100,13n
CONTINUF

#

-]

M b pomd
ESNS I o]
~)< )

s FRE R N W R b R b R 3E 0 3 M W M X e M 33 3 3 ESR G SIS ER R W R R H B R R R
™ f H z T I [y

C CALCULATE DAMPING CONSTANTS

(“3‘-(")-. % 9 R S R i D I I DR I (O IE - S D R RN G £ " Hoor MR Wk 3 Je G 3 S 30 0 R 9E S0 5t

% 3
CO=1aB%ALFA/DTLT+1.5 /DL T*%)
1= 1 A+1.5%BFTA/DELT

(Z:CO%CI
Ca3=ALFA-C2#BFETA
("%%f‘%%‘}«'%\*%%%/”wn‘wv‘xi‘&%‘m%an WM R RN R ¥R N PEEE R IR S R G A G IR R T A T I
C DETERMINE DBAND W
PR S N N RN R R RN
J=0
PO 340 N=1sNUMFL
DO 240 1=144
NO 325 L=1eb
KK=TARS{IXINGTY=TX(NsL})
TF (KK-=JYy 32543254320
2200 J=KK
325 CONTINYF
240 CONTINUE
MBAND=2% J+2
NED=Z2#NUMNP
MA=NFO¥MBAND
TF{MA=-1O4NN Y350 ,250 4 4010
4n0 WRITE(62017INA
CALL FXTIT
(ﬁ%%%*%%%%%%%k%%kéx%,\%” PR e R B A I N
C FORM EFFECTIVE STIFFNFoe MATRIX
R E R R E R R R R B R FE U K K I 2 % S W e 0 I S 3 S M N R M A H A R A R N %W R R W ¥

350 CALL STIFF

TR O A CUNTINP Y S P! © s ae s M e a3 a2 GE we SN ai e B s N Moz b M 3
o e AR % S % 3 R A S ok b 0 g PEEEE N I A O AR B B A R




SRR R LR R R R R e R E R R R R E R R X T T T ARy
C TRIANGULARIZE STIFFNFSS MATRIX
SR E TR R LR R R R R LR R R R R R R R R L R R A E A T

Cabl sYMSOL

At
~< H *umy

A LR T TR LR R R R R R R R L T T
C FORM EFFECTIVE LOAD VFECTOR
(R I 3 RS R K R K K I N KWW N K K R KKK

LL=1

DO 500 NNN=1sNT

TT=TT+DFLT

DO 900 T=14NEQ

AALTY=10%¥B 1) /DFELTH*¥243  0%X 1 (1) /DELT+2.0%X2(1)
F00 BB(I1=1e5%¥8( 1) /DELT+2.0%X1(IV+DFLT*X2¢( 1)

MMM=NNN-LL*NPRINT

CALL LOAD

ISR TR E TR E R L S SE A O 3 SE S 96 3 B I S 30K I S R S £ %
C CODLCULATE DI%PL C
R R H KRR R R H R H R H R E RN XA W BRI R T I K KSR RN H %

CALL SYMSOL (2)
DO 8O0 T=14NEQ
B{I1=Cl#B(I)+CI*¥BETA*BR (1)
ACC=1,5%BLT1 1 /DELTH*2-AA(T)
XOCT)=XO0UI ) +DELTH*XI (1140, 0%DELTHA2EXZ( [V /12 N+ACCHEDILTH*%2 /12,0
(IV=X1 0T +025%DELTH{ACCH30%X2(1))
XD y=0a0%{ ACCH+XZ( 7))
800 BLI)=XN (1)
[F (MMM) 50N, 20,500
20 tl=LL+1
WRITFE (642006
WRITF (
L R LR R
C COMPUTE

e
B
—
P
&
=z
i
—

S MUTND

R R R L R R R

v : 9 VAR VIR VIR VI VIV VA : s PR )
C"é"}l{"?é"}\'r{%%\fﬁ'ﬁl;\#t‘ N RN HEEY P R B R I o Bl
o
CALL a7
CON
500 CONTINU
YY AL AL 4N M e A A2 S4a0 £ TS YR TR V) e 2 LT b, 34 ETAYS 3 3 I T M 3E N 2 - B a2
Vel 0 I IR R S R Al i I Il I ST S i O P S R o 3 e 33 P O I I S e T S W
e
GO TO 50
_ P YV VR VI VRV . e VYR, . B YV VPR VY s oar
£ R SRR SR R SR 3 R 3 58 AR M 50 S R 96 30 50 30 S0 31 SR SE S0 R 3 30 90 30 3E 36 38 30 K96 3 3 ¥ P I e g C e e 30 e 3E - H N



1000 FORMAT (12A6/6153F 1040
1007 FORMAT (15%.3F1Nn,.0)
1002 FORMAT (I153F5.06F10en)
10073 FORMAT (515)
1004 FORMAT (3F10.01%
10ns FORMAT (15)
1006 FORMAT (4F20,10)
2000 FORMAT (1HW1 12p6/
1 30H0 NUMBER OF NONDAL POTNTS———me— T4 7
7 30HND NUMRER OF FLFMINT G e T4
3 30H0 NUMBER OF DIFFe MATERTIAL Sew— 14 /
G 3OHA TIME JTNORFMINT = = oo i e e (71 6
5O2AHA NUMREFR OF Y OLEFSC—mmm e e T 44/
& 230H0 DAMPING COEFFICIFNT ALFA«——— F10.5 /
7 30HN DAMPING COFFFICTIENT BETA—w~~ F1n,5% )
2001 FORMAT (49HIELEMENT NO. 1 J K. I MATERT AL y
2002 FORMAT (16s F1l1a2s2F10.234F15.653F 1044
2007 FORMAT (111%:476:17712)
2004 FORMAT (K941 TNTTTAL nT apPL
1ACFMENT® TNTTTAL VELOCTTIE S/
21722H0OMODAL POINT TvPF X—0R0, V=00, Y0 v
3 xin Y10 TUHAF Loan H AV
2005 FORMAT (RF15,7)8
2006 FORMAT (8HITIME T=FR,4/52HONODAL POINT K= 1oPLACEMENT Y -
IDTSPLACEMENT)
2007 FORMAT {4nH1 TIME K= CAD YL OAD
2008 FORMAT (11542F2N.6)
20009 FORMAT (Z26HONONAL POTINT CARD TR2OP Nz T15)

2011 FORMAT
Fl6ah

21012 FORMAT
FND

(1ITHOAMATERT AL NUONMAER=z T3,3H,F= Flh.6, 4H. NIz FlAa.6,44.RO=

{2BHOMATRIX A EXCEEDS ALLOWADLLY ~TORACFE A= [5H)



SUPRPOUTINE STIFF

\ Ni”ﬁ?gNUM?W,NU”“AT NeWOL o MTYPE sDEL T NT o NPRINT NP TT NNNLT,
4 3C05C15C25C3,RO2001 57 (200 sT(200) sCHI200) CVI200) sMASS (200 »
>/is’am”‘»ﬂ‘lHH"H“\)H(E(QF’“%”\)&("OWF“(?”V‘\)»p( FoI0N ) s AACLNNY ZRB 4NN,
SIGLTOY XY 55T (3,10)
COMMON/MATARG/YMOD(12) o FNUCL2) sHED(12) sRO(12) s ALFAL,BETA
COMMON/FLEARG/IX{18055) sFPS(180)
COMMON/ LS4 “R(mx/?gJ@K*pg(1(’!@10)%‘?(3§3)9“(3937@pp(lm)9LM(@J
COMMON/ SYMARG /MBAND s NEQ, B (40N ) s A{400,26)
DO 40 1214200
GO HASS{T1=0,0

DO 20 T=1 4400

DO H0 U=1426
50 AT J01=0,0

NO 20 1=143

e ;fu\JAAFf[

MR E R U RN R HH RN KRB E X R AR E R E AN ENR ONF-D
s3V=TX{Ng2Zy) 02,071,070

HRFE L H R G R RRERR LR R RN FE R AR LE R ONE =D

TF (VOLY 16441645165
164 WRITFE (&.7002) N

CALL FXTT

I e Y 3 B3 MR W R WM w2

HEHUSHF L N E R R E RS RRA RS

BB R H R R R N R H R R R

s
165 ﬁLMﬁ¢m~VQL“Q
no 166 1=]
K=1X{MaT)
MASS (K ) =MASE (K Y+ELMASS
166 LML Ty y=2%TxiNg V-2
NGO 200 =144
NG 2nr K=1,47
TI=0M])+K
YK=2%T~24+K
DO 200 =144
DYoo =1 ,2
Jd=LMdy+L~T11+]
LL=2% j=2+1
TFE{JdYy 2002004175
Y75 AT T ddy=210TT,J0y4+5 (KK, LLY
200 CONTINUF
210 ?fw(.)ﬁ\liii\.\-f?
TF (M ’5”»; 50,230
290 DO 270 N=1 g NUMNP
CHENY =MASS (N}
270 CVINYy=MASS N

ag,%



Ty Y Ty

Ut
W
>

570

575

580
600

T

S H % %

100

aen
30N

320

1L N

Ly

/a.%()

430
L 00

ff\,‘f“)("}

I R TR T N S N A Bt St M M 3R UE %W 3 B S
MODTFY %TIF*NV% DISPLACEFMENTS
WOEFH N E R KRR R RS RN R R W R H H

NOANM Mal g NUMND
KK=CONF (N

KD=1n

NGO EGH Mz .2

TE (KK=KD} 580,550,550
W w23 Bl 2 4 M
NO 578 J=7 (MBAND

AN Jy=0,0

MN=NX -~ J+1

TF OINNY 5755754570
AUTNNG Y =0.0

CONT T NUF

AINKgTy=1,0
KK =KK~KD

VPWV”/lﬁ

f“NTTW

Loa s 80N a3t
LR R T

Lo 2030 SOON a ag e N s an L a4 G4 A 3L
I O O A L SPLU i1l  i- ol S N i

CAICU!AT! INIT
DO10N T=1 ¢ NFO
*A<")(T)~~*m 0
PLTYy=XN(Ty+BFTAXX1 (1)
ﬁﬁ G400 T=1 e MEO
K=NEOD~T 41
TF {(K=MBAMND) 200,300 250
Koo MPARD
NG 320 J=1 5K
T =1+ j=1
PUTY=XP 0Ty +A (T e Jy#*R (T
TEF (T=-MPAND) 240,360 4360
L oe AR AN~ 1
r’:(‘ ‘"“v 55[\(}
P Tt
TEOLY 400,4004450
Ti=
DO 430 J=1.0
T=11-1
X200 Y=X2 0TV +A (T T 41y %R (V1)
CONT T NUF
TT=-0FLT
CALL LOAD
DO ASN M=1 , NUMNP
KepPyy
XKZUK=1y= (3¢ w])m"(KwE Y/ MASE (MY —ALFAXX T(K-1)
X2 (Y= (3 ( Ky~ (K))/MA?((M)WAI“AYX_(&)
B{K=1y=Xn (K~ l
= D AN

%
*RE R

TRy
3K 3

R R

¢ x
% ¥

3

3
R

ES

D-6



A EE SRR R R D Y R T R
C FORM FFFFCT MAT® T X
Y W B S 3F 3 3 36 6 % 3 R R R

700

20073

[
NO 70 M=1 3 NUMNP
AL2¥M=1 g1y =A(2%M=1 1)+ 2#MASE (M)
AL2¥Ma 1) =A{2¥Ms 1)+ 02 %MAC G (M)
RETURN
FORMAT
SIS

(ZEHANFGATIVE ARFA FLFMENT NO,

T4y

iz
B
H
22
¥
#
B
3
5
b
B
o
e
ES
b
A
=
3¢
B g



SURRODUTINF ONFD
REAL MASS
COMMON NUMNP s NUMEL s MUMMAT s N VOL s MTYPE G DELT s NT o NPRINT 3 NP o TT 5 NNN s O
IMMM S LLsCO5CTsC2,C35RI200)57(200) TL200) 3CHIZ200) CVIZOA) sMASS( 200 4
ZXOCADN0Y s XTLA00) s X2(600) sCONE(200) 4P {25170 s AA(4AN) JRR (4O ,
COMMON/MATARG /YMOD (121 oFNU(L12) sHFD(12)sRO(12) sALFALBETA
COMMON/ELEARG/ZIX(180D5) FP5(1680)
CQMMON/LSQARG/I@J?K?Sf1“@103§C(3§3)%0(?@3)?Pp(lﬁ)9im(47
DO I0N T=748
DO 100 J=1,.8

100 S(T5Jy=0,0

MIYPF=TXINs5)

T=IX(Ns1Y

JEIX (N2

DYX=R(J1=R{1}

DY =7 () =707
XL=8SNRT{NX##2 40y %% D)

COSA=DX /XL

CSINA=DY /XL
COMM=yYMOD(MTYPE Y #ENIIMTYPFE Y /XL
VOL=FN(MTYPRFE Y %X

S{1eTy=COSARCDSARCOMM
Y G235 =COOAR ST NA¥COMM
S{ls3)==5(1s1)

Sl VTghymas(]47)
SU241y=5(1 92
SU2s7)Y=STNAXSTNAXCOMM
{27 3==5¢014)
SU2shy=~5(247)
SE3,11=5014573)
R{Rs2)=8(747)
ClR4Ry=%{ 141}
S{e4)=%{12)
S04s1y=5(1s4)
SlH:2y5502 94
SlA43)Y28(%44)
Elhaby=S(242)

—

RPETURN

END



SUBROIJTINE LOAD
REAL MASS
COMMON MUMNP;NUMEL@NuMMATsN,VOL,MTVSE,DELT9NT§NDRINTgNQ@TT9NNN@Q§
1MMMsLL960561@C29C39Q(?Oﬂ)a?iEOﬁ)@T(200)aCH(2ﬁﬂ)aCV(2ﬂﬁ)»MaSS(zﬁﬁ)@
?xﬂlaﬂ“)sx1(&ﬁﬂ)gx25amﬁ)gﬁﬂﬁﬁgzﬁnjaP(%§1wna«ﬁA(4mﬁ)@mﬁfgﬂﬂ)
COMMON/SYMﬂRﬂJM%ﬂND9NFQ§Rz@ﬁﬁi@ﬁ(aﬁﬁszéi
N=1
100 TAU=TT-T{(NI+DFLT
IF (7)Y 5051505150
150 k=1
650 TFUTAUSGEaPILsK) e ANDSTAULLTPt1,K+1Y) 60 TO 200
K=K+
GO TO &0
200 D=P 1 ,K+1 =P (1,K)
DH=P (2 sK+1)1=P (2K}
NV=P(3,K+11-P(3,K)
DT=TAU=P (1 ,K)
FH=P {2, K)y+DT#DH/D
FV=PRP {3, )+DT#DV /D
160 TF(CHINYeFQeDeNe ANDCVI(N) eFQa0e0) GO TO &n
TFOCHINYY 300,250,370
250 RE2#N~Ty=n,n
350 BU2¥Ny=CVIN)%#FV
G0 TO 500
30N RIZ2%N=-1y=CHIN)#FK
TF{CVINTY 350,400,350
50 R{Z2#N-1)=0,0
400 R{ZA*Ny=0,.N
500 N=N+1
TEOONUMNP ~NY 130,120.172n
120 TFLTINY=TIN=-1))Y 100,740,100
T4n 1F (TAU)Y 5051605160
120 TF(TTHDFLTY 23027042530
230 DO 65N M=1 gNUMNP
W(z%Mml)xn(Z*Mwl)%MﬁgﬁlM)*(Aﬂ(z%Mml>+F?%RW(2%MW?)3
650 BEZ2¥My= R(2#¥M) 4 MASSIMY*¥(AA{ 2¥M)+C3%RR(2%M Y )
270 pFETURN
END
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SUBROUTINFE STRFEAS
REAL MASS
COMMON EUMQ@;NUMELymuMMATgNngL@MTyfg*ﬁELT@NT@NPRIMT9N$§TT§NNN$@§
IMMM@LL@Cﬂgflﬁcz@i%ﬁﬁizom)aZ(Pﬁﬁ)@T(Eﬁﬁ)@CH(?ﬁﬂ>aCV(2ﬁﬁ3@Mﬁﬂﬂ(2ﬁﬂ3§
ZXﬁ(QOﬁ)@Xliﬁﬂﬁ}gxz(QOﬁyef@D?(?ﬁO?apiﬁglﬁﬁ)@ﬂﬁfﬁﬂﬁﬁ@%%(%ﬁﬁ?@
ASTGUINY s XC YO 5T (3,109
COMMDNKMATARGZYMOD{12}9ENU(123yHEDilzigﬁoiizﬁgﬁLﬁﬂggﬁT&
COMMON/FELEARG/IX(180,5),FPS{180)
fQMMQNfL%QARG/I§J§K§S(lnglO)eC(393?§D(3@3)ﬁPp(I“)9LM(@)
CQMM@N/SYMARG/MBAND@NEQsB(Q@O)@A(&Oﬂﬁ?é)
(‘%&%%%%’r%%%&%%ﬂ%%kvé%%%%%}vé%%%w%%%%s‘%%%%v‘%%ﬁ%%%%%%%%}i‘;friéi%%x%k%&%%%%%é%ﬁ%%%%%ﬁ%%%%
c COMPUTE FLEMENT STRFSSES
r‘“)%;fw%%%ﬁf?&%és‘%%k%%ﬂi%%&%%%k%‘%‘%%*r%%%%%%%%%%%%%%%%%w%%%%%%%%%%%%%%%%%%%%%%%%&%%
MPRINT=0
ﬁ
DO 300 M=1 s NUMFL
C
N =M
TAXIN: S =TARS{IX{Ns5)
MTYPF=TX({Ns5)
DO B0 [=1:6
B0 OSTIG{TY=0eN
("-i&-%%-}%%%&%%«'—%%%ﬁ»%%‘r%%%é—%%%%é%%%%&»%%«39%%%%%&%%%%—%%%'Xv%%%%%%%%«%%H(-% (f)NEmf}
TF (T XINs3 ) =TXINs2) ) 90,80,9N
80 T=1X{Ns1)
J=TX{ N2}
DX=R{JY-R{TY
NY=2¢Jy=-72111
AL=R0RT(DXF¥24DY #%7 )
DU=B{ 2% J=1)=B{2%1~1)
NDV=B(o2% J1~B{2%1)
DL=NV2DY /XL +DU*DX /XL
STGE1y=DLEYMOD(MTYPF Y 7XL
}(C::;lw\@r’\
K(Cm('jﬁf\
GO TO 255
(‘f‘%’%%%%%%%%%%ﬁ%%%-?&%%%é%ﬁ%%%%%%%%%%%%&%%v%%%%%%%%%%%%f»%%%%%«% (”)NE««[‘)
90 PO 100 1=1,3
DO 10N J=1410

100 STUisU01=0.0

CALL NUAD

{”
DO 121 (=144
Ti=2%]
JI=2# 15 (Ns 1)
PELTT=Ty=R{JJ=1}

120 PPUTTy=R(JJ)
C
s

DO 17n T=1,3
ﬁ(f@l)‘ﬁ@sﬁ
NG 17N K=1,48
P70 DT 1y=D0Ts11+ST(T 4K}y #PP (K)



-
NOOI1BA T=143
CO 18n K=1,3

TREN SIGUTY=STO(TI Y400 T o) %N (K1)

-~

(’%“}é‘%'ﬁ'%‘%‘%%%”}é‘%%%%%%%'?«f‘%%‘?f"ﬁ%‘%w%A’r%,«i?{%i’r?’r%3’(%('%7%“3« e A O T T P R H R R S AR 33 % 3

~ OUTPUT STRE=SSFS

R AN TR KA HIA KRR FF AKX KRR FH KKK K% R 35T %KX %R XN 45K 2

e

“ CALCULATE PRINCIPAL STRESSFES

-

CO=(STGLII+STG(2)) /2.0
RB=(ST1G(1)=S1G(2)) /7.

CR=SORT(BA*2+S1G (3 %%2)

TG4 =CCH0R

S1G(5)=CC~CR

[F (IRB.FN.0.0) e AN, (STC (3,70, . 0y) f0 T 268
FPENY=ATAND (STA (31,00 /2,
SIG(6)=57.396%F0S (1)

PES TF (MPRINT) 110,105,110
1NE WRTITE (6£,2000)

PR INT =50
110 “MPRINT=MPPRINT-1

-
05 WRITF (6.2001) NoX oV (STRT Y, T=146)
300 CONTINUE

~
2o RETHRN

200N FORMAT {7THIFL (NO, TXOTHX TXOTHY 4X RUX=CTRO S 4% RUVoqTREC 3%
T OHXY-STRESS 2X I0HMAY~CTRFSS 2% 1TAHMIN=-"T21 c o 7H ANGLE
001 FORMAT (1762FB8a25100012,L,0P1F 7,7

~

FND



SUBROUTINE EDLSTINTL sMZsN3)

REAL MA&S

COMMON NUMNP s NUMEL s NUMMAT s N VOL s MTYPE G DELT o NT oNPRINT 4NP o TT s NNN 5 Qs
ITMMM LL s COsC15C25C34X (2001 Y 1200)TI2001 3CH{ZN01.CVI200) sMASS(Z2007 »
ZAOCANNY s XTI AN s X2 (400 s CODF L2031 P {3,100) s AA(4ANY BBI4ONY
BETGLIN) e XCs YT S8T (35,100
COMMON/LSAARG/TsJsK SN 101CE33335D0343)PPLIN) sLM{4)
DIMENSTON BAGZs21s00344) sV (354 sUV{354,42)

EQUIVALENCE (VU o (1IV 13 5V

TH=1,0

BACTs 1) =Y {J)-Y (K}

BATZs 1)Y= (Ki=Y{T)

BAG2s1y=Y(I)=-Y{D)

BATL s 2y =X (K y~X{.J)

BACZs 71 =X {1 y-X{K}

RA(S s 2)=X{J1=X{T1

AREA= (X (I ABA(Zs 1)+ X (TIHRALT S 1)+ X (K)#RAL34 1) /2,

TE (AREAY 400,400,100

100 VOL=VOL+AREA

COMM=TH/ (48, *ARFA)

Cll=C(1l,s1)y%COMM

Cla=Ct1s2)%COMM

C13=C1153)*%COMM

C22=C(2,2)#*C0OMM

C23=C1253)#COMM

C33=C {353 #C0OMM

DO 150 NN=1,7
DI=RA{lsNN)
MZ=RA(Z4NNY
M3=RA(3¢NN)

BV ET 37 o MNy =D

UV 257 sMMY=D1
V{31 NNy =D1

UV {Te?s NNy =DZ
VL7623 NNY2D2=2,.%D73
VI 2 o NNy ==D2
VL1133, NNy=D3

UVIZ2s 2NNy =~D3
UVIRe 2, NN =D2=2 %072
VT sa NNy =N,

UVIZ e s NNYy=4,%D3
VAR 34 s NNYy=4,%#D2
LMETy =NT

LMEZy =N2

LME3y=R23

My =o

o
1
2

COMM=8,4 %AREA
DO 310 T=1+4
Ti=LMOT)

U=t 2 14103513 /COMM



30N
210

[{NaNal

VV=(VI2e 1)+ {351 ) ) /7 (MM
ST T TIY=ST (1T Y+
STUPsTT+1 =80T (27141 )4VY
STU3TTY=STL3411)+VV
STUO3 T 1 +11=ST 370141 Ya101)

EUM=U{T s TI4U025 T 140103, 1)
SUMI=SUMEUTT 4T

SUMZ=SUMEIIL 2 5 T )

SUM3=glUMEt (347

SUM=V (1T Y4V 2T )+ 2,719

SVMT =My (] 47

SYMZ=SlIM+V (251

SVM3=gUMEV (351}

DO 300 J=1.4

JJ=LMJy

HOQU=U(T s Y #SUMT (2 s J)%SHIM2 411 (3, Jy #5173
VQUnV(laJ)%QUMl@V€?9J3%%UM?+V€3§J3%?UMQ
VAV=V (1 e JY#*EVMIAV (2, JyecyMoay {3, J) oy
UOV=ULT o JYRSYMTI4102 3 JY 2 SYMI U0 3, J) %Syma

SlITe )M =S0T 15004+ ”11%UQU¢f]?%(VQU+HQV¥%(?*%VQV
SOTT41 I+ Iy =S (T T4 Lo Jdal e C22¥VGVA0 23% (VO 0y 403351101 |
VOS2 403 3% 10V

SUIT e+ 1) =501 1o dde 1y CP238VOVEr 1 R0
ClII+T T Ty =80T s el

CONTINUF

PETURHN

N
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SUBROUTINE QUAD
RFAL MASS
COMMON KNUMNP s NUMEL o NU 3%ﬁT%N@VQLgMTYPgﬁﬁﬁLT@NTgNPRTNTnggTTgNNN§Q%
1 MMM o Liafﬁg”lﬁ\?§”3§R(/ﬂﬁ)§7(2ﬁﬁ)@T{?ﬂﬁ)%fo?ﬁﬁ)ng(Zﬁﬁi%Mﬂﬁﬁf2ﬂﬂ)§
?AW(Qﬁﬂ1¢KT(%ﬁﬁ}@x?{éﬁﬁjgfﬁﬁﬁ(?ﬂm)@p(?§fmm)@Aﬂ(@mm)gﬁgfﬁmﬁ)Q
3STGUINT X0 Y, 8T(5,10)
’NO%MUN/M’A\fﬁ\{pf\YMQr)( 12 H @FN'} 1’})%HI“)( 15‘ s RO( 12 &f‘L?ﬁ§r%{;TA
TUMM@Nf*LLAQFZIK(]8ﬁ@5)§EPS(1Hh
COMMON/ LS BARG/ T4 JsK s ‘(1ﬁ@1,0}@C(3@3)@Df%ﬁ?%)%pf"flﬁ)?LM(/&)
fff\fiff\@])
JEIH (N 7?7
K=TH gy
L= X (Ns4)
MTYPFE=TX (Ns5)
R N R N W W "'%“&‘%«%”%%%%%%%%%-% R R R A % o 8 ?{"%%‘}é%’“)4’*%%'}%99%%‘%%"}@%‘%ﬂ“%%%%%%%%%‘;"f%’}’:'3?
- FORM STRF Cﬂ””vaATf\ WFTLETTWNQHTP
% 3 LR R R AR R R R U AP R I L A R RV VA R
Aﬂ“,“TYpﬂ)X(Teﬁ%FNU(MTYWF))f(I@MEg%”NU(MTVppﬁi
g LY=F# (L o =FND{MTYPRE Y
@73”FerH(MTVpW)
5315060

R N R ¥

b

af)””(1@13

PO RS A e
S

T2, ’S)Mﬁ N

T2 1 y=0,1

« Q%f":ﬁsm

CERe By SFF R (] =2, % FNU (MT Y”r))
B R T R R L L E R W KN M R BN RN R RRHE SN U N BN R
o FOBM OUADRILATERAL ?T“F&NFCW MATETX
R R SE W N Wk SR S Y kdr%%‘)’c% N R M N W R LR R R R R R TR g T

\/(“)L = ° A
T=7X{Nsyl)
J=IX{MNa 7)Y
K=Y {Ngiy
CALL FDLET(1s347)
T=1X (N
d=TX N
Fi=Ty (Ma?)
YO0 Y +R K Y £2,
YO (7047 (K /7.
CAOLL FRLST(B5:763)
O e R R R RN R G T S R S R A EE R R A s T
C FLIMINATE KVNTWP pOTMT
U R R KN N R E R HHRRAA R E RN E R R R HRF A R E BN R F D AR R LT RS R RN R E R ¥ u
G BAM K=l 42
TH=10=K
F0=1H41
DO 500 T2t , 1k
CUTDs Iy =S0IDs Ty /501D, 10

WU R E KRR RN R



DO 490 J=1,.3

ST{Je 1) =8T (dsl)

, STJs1)=5] Dy %~
ol M““i J=ST U TN *5 (TN T}

StJsTy=510J e
PETURN s 1) =50), D ¥t 1)

FND
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SUBROUTINE SYMSOL (KKK
?JMMON%SVM&RGZMMsNN§R€éﬁﬁ)eA(Qﬁﬁg?ﬁi

Y

GO TO (10NN, 2000 s KKK

REDUCK MATRITX

avara)

1000 DO 280 N=1 4NN
DO 260 1L=2 3 MM
C=AINSLYZ7A(Ns 1)
o= Mat-1
TEANN~TY 26042405240
240 J=0
DO 250 K=l sMM
J=Jd+1
250 AT sdy=AlTs3)=C*A(N,K)
260 A(N,Ly=C
7R CONTINUFE
sOOTO sA0

C REDUCE VECTOR

2000 DO 2orn N=1 NN

DO 285 L =2 ,MM

IT=MN+L -1

TFINN=T) 290,285,285
285 BOTYy=RITy~A(NsL)*¥RB (N}
290 RINY=RIN)/A(Ns1)

o~

HaCk SUBSTITUTION

N= NN
A0 N = N1
TEINY 350,500,950
AN DO 4rn K=2 MM
L= N+K~1
TFAINN=LY 400270270
TN O’R(NY = RINY = A(N@Kj * OR{LY
400 CONTINUE
GO TO 300

Y

500 PETURN

FIND





