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ABSTRACT OF THE DISSERTATION 
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Professor Roger Detels, Co-Chair 

Professor Frank J. Sorvillo, Co-Chair 

 

 

Tuberculosis is a global public health issue with more than 2 billion people infected worldwide.  

It is also a serious public health concern within the United States with 9,557 cases of active 

disease diagnosed in 2015 alone [1].  In the U.S., specific sub-groups, such as foreign-born 

persons, persons with diabetes or persons living with HIV or other immunocompromising 

conditions are known to be at higher risk of TB disease.  Among foreign-born residents in the 

U.S., persons born in high-morbidity countries are known to be at even higher risk of 

developing the disease.  Yet, TB disease incidence rates by country of birth are not reported at 

the local, state or national level despite these large, known differences in risk by country of 



iii 
 

birth.  This is part due to the complications of using country-of-birth-specific population 

estimates and technical challenges of using standard regression analysis with a communicable 

disease.  This thesis aims to call attention to this notable gap and, in part, to fill it. 

 

Data on 5,447 diagnosed TB cases from the Los Angeles County Department of Public Health TB 

Control Program were combined with stratified population estimates available from the Public 

Use Microdata Survey to calculate the incidence rate of TB disease for the years 2005 through 

2011, stratifying by country of birth and other demographic factors.  Bayesian models were 

used to account for the uncertainty in the number of diagnoses and the population estimates.  

Extending these models into spatial analysis required the use of a hierarchical Bayesian model.  

Prediction models were constructed using bootstrap backward elimination and stochastic 

variable selection. 

We estimated that the unadjusted incidence rate among persons born in the Philippines was 

44.3 per 100,000 person-years and among persons born in Vietnam 38.7 per 100,000 person-

years in comparison to 2.3 per 100,000 for U.S.-born persons.  In spatial analysis, TB disease 

incidence was found to be spatially heterogeneous within Los Angeles County and remained so 

within high-risk countries of birth and when accounting for age, sex and years in residence.  In 

prediction modeling, we found the addition of PUMA-level ecological variables did not improve 

the prediction of TB disease incidence beyond models using age, sex, country of birth and years 

in residence.  With these three analytical approaches–non-spatial, spatial and prediction–we 

confirmed that TB disease incidence rates varied markedly by country of birth and showed that 
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issues arising from the technical challenges of dependent outcomes, sparse data and 

uncertainty in population estimates can be ameliorated. 
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Introduction 

Tuberculosis is a global public health issue with more than 2 billion people infected, 10.4 million 

new diagnoses of the disease and 1.4 million deaths in 2015 [2].  It has surpassed HIV as the 

number one infectious disease killer [3].  In the first half of the 20th century, the U.S. made 

substantial progress towards control of the tuberculosis epidemic domestically capitalizing on 

advances in bacteriology and improved living conditions together with using an aggressive 

public health campaign to humble the dreaded “white plague” that contributed to an estimated 

“40% of working-class deaths in cities” in the 19th century [4] . But TB eradication in the U.S. has 

been elusive [5]:  

…[F]unding for TB research and treatment dropped from US$ 40 million a year in 
the late 1960s to only US$ 283 000 in 1980, while in 1989 the US Department of 
Health and Human Services was so confident TB was finally on the run that it 
predicted TB would be more or less eradicated from the country by 2010.  

While TB disease incidence is low among U.S.-born persons in general, TB is a significant and 

seemingly intractable issue among foreign-born residents of the U.S.  TB burden remains a 

concern in states like New York, California, Texas and Florida because of reactivation of latent 

TB among long-term foreign-born residents and continued immigration from medium and high 

TB prevalence countries.  Tuberculosis in Los Angeles County is of special concern because 

more than a one-third of County residents - over three and half million people - are foreign-

born [6].  

Background 

Background on Mycobacterium tuberculosis 



 

2 
 

Tuberculosis (TB) is caused by Mycobacterium tuberculosis, a slow-growing, acid-fast, rod-

shaped mycobacterium that most commonly infects the lungs but can also infect other organs 

including the lymph nodes, the brain and the blood system [7]. Other species of 

mycobacterium, such as Mycobacterium bovis and Mycobacterium avium, can produce 

tuberculosis-like disease in humans. Tuberculosis is transmitted person-to-person when 

tubercle bacilli in a droplet nuclei are expelled from the infected individual’s lung, through 

activities such as coughing, sneezing, speaking and singing, and subsequently inhaled by 

another individual [8]. Persons in close contact with an infected individual are at risk of 

becoming infected.  

Most persons infected with TB develop a latent tuberculosis infection (LTBI) in which the M. 

tuberculosis bacteria is resident in the body but contained by the immune system in a 

granuloma.  Persons with LTBI are not infectious to others.  In part because the organism is 

slow-growing, an individual can remain infected for years without manifest disease.  TB may re-

emerge if an individual’s immune system is weakened either through natural senescence, 

immune-compromising diseases such as HIV or diabetes mellitus, or immunosuppressive drugs 

used in cancer chemotherapy, organ transplant or patients with rheumatoid arthritis. In the 

1960s, TB researchers used observational studies to estimate the lifetime risk of reactivation of 

latent infections at 5-10% [9].  This estimate has become the benchmark for reactivation risk, 

but more recent studies suggest a lifetime risk of approximately 1% [10, 11].   This is an area of 

active research in the field. 
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Other persons infected with TB develop active disease.  The highest risk of progression to active 

disease is within the first two years of the infection [12].  Approximately 80% of all cases 

develop active disease within two years of being infected.  Those with comorbidities such as 

HIV and diabetes are more likely to progress to active disease. 

 

Epidemiology of Tuberculosis 

More than one-third of the world’s population, 2 billion people, is infected with Mycobacterium 

tuberculosis. In 2015, there were 10.4 million new cases of tuberculosis disease worldwide [2].  

The tuberculosis disease incidence rates vary greatly by country, ranging from <1 case per 

100,000 person-years to over 800 cases per 100,000 person-years in South Africa [13].  At the 

turn of the 20th century, tuberculosis was a leading cause death in the United States, but 

improved living conditions, pasteurization of milk, as well as the discovery of potent treatments 

and an aggressive control campaign contributed to a steep decline in domestic TB cases 

between 1900 and 1960.  However, TB remains a significant health burden among foreign-born, 

homeless, incarcerated and/or HIV-positive populations.  Nationally, there were 9,557 new TB 

cases in 2015 with an incidence rate of 3 cases per 100,000 [14].  This incidence rate is one of 

the lowest in the world and is on par with the case rates in Iceland and Israel [13].  Most of the 

cases in the U.S. were foreign born and, of foreign-born cases, most were from Mexico, 

Philippines, India, Vietnam or China  [14].  TB disease incidence rate among the foreign born 

was 15.1 per 100,000 compared to 1.2 per 100,000 among the U.S. born [14]. These countries 

have higher case rates than the U.S.; the rates per 100,000 person-years were 21 in Mexico, 
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322 in the Philippines, 217 in India, 137 in Vietnam and 67 in China [13].    California, Texas, 

New York and Florida accounted for half of all reported cases because of the large number of 

foreign-born residents in these jurisdictions [14].  

This research focused on Los Angeles County from 2005-2011.  In 2011, foreign-born persons 

accounted for 66% of reported verified cases of tuberculosis nationally and 78% of cases in Los 

Angeles County [15-17].  In 2012, foreign-born persons had a diagnosis case rate of 15.9 per 

100,000, in contrast to 1.4 per 100,000 for U.S.-born persons highlighting tuberculosis as an 

important factor in health disparity [15].  

 

Legal and Regulatory Precedence related to Tuberculosis Control 

TB control is one of the oldest public health efforts in the US and has a long legal history [18]. 

All states legally required reporting of TB as of 1901 and national surveillance of the disease 

began in 1953 [19]. TB-related regulation is found throughout the California Health and Safety 

Code [20, 21].  Recent legal changes in California have been driven by concerns about 

occupational safety.  In 1997, the Occupational Safety and Health Administration (OSHA) 

released a Proposed Rule on Occupational Exposure to Tuberculosis, but a federal standard for 

TB control in the workplace was never established [22]. In 2001, OSHA withdrew the proposed 

rule, claiming that the risk of infection had been overestimated and the continued decline of TB 

nationwide greatly reduced the risk overall.  California OSHA decided to follow through with the 

standard and added TB language to the OSHA-approved state plan [23]. California OSHA used 

the TB standard and widened the scope to create the Aerosol Transmissible Disease Standard 
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which is listed in the California Code of Regulations, Title 8, Section 5199 Aerosol Transmissible 

Diseases [24]. 

 

Priorities for TB control 

The Centers for Disease Control and Prevention (CDC), American Thoracic Association and the 

Society for Infectious Disease established the following priorities for TB control [25]: 

1. Early and accurate detection, diagnosis, and reporting of TB cases leading to 
initiation and completion of treatment; 

2. Identification of contacts of patients with infectious TB and treatment of those at 
risk with an effective drug regimen;  

3. Identification of other persons with latent TB infection at risk for progression to TB 
disease and treatment of those persons with an effective drug regimen;  

4. Identification of settings in which a high risk exists for transmission of 
Mycobacterium tuberculosis and application of effective infection-control 
measures.  

 

Methods 

Data Sources 

Data Collection, Processing and Management  

Aggregate and case-specific data on foreign-born reported verified cases of tuberculosis 

(RVCTs) diagnosed from 2005 to 2011 were drawn from the tuberculosis surveillance system at 

the Los Angeles County Department of Public Health, Tuberculosis Control Program (TBCP).  

Medical providers are required by law to report tuberculosis diagnoses to the TBCP [14, 21].  



 

6 
 

Basic demographic and risk data are reported to TBCP by the diagnosing provider using a faxed 

reporting form or by telephone interview.  In some cases, additional data may be collected 

through telephone interview with the diagnosing provider at the time of report especially if 

required data is missing.  Case-specific data includes age at diagnosis, sex, address at diagnosis, 

length of residence in the U.S., year of diagnosis, smear status, disease site and resistance 

profile.  Program staff verify the case through laboratory testing or other methods.  Note that in 

the case verification process cases that do not reside in Los Angeles County are re-assigned to 

their county of residence through a routine reconciliation process conducted at regular 

intervals. Upon receipt of a putative new case, the case is checked against existing cases to 

ensure that it has not been previously reported.  If no matching case is found among the 

existing cases, an investigation is initiated.  TBCP staff inform the assigned community health 

services (CHS) nurse that a case needs verification.  The nurse will travel to the case location 

and verify the case.  A contact investigation is initiated if necessary.  In the course of the 

contact investigation, the public health nurse or public health investigator will interview the 

patient and may confirm or correct previously-reported data. Data from confirmed and 

suspected cases of TB are entered into the Tuberculosis Reporting Information Management 

System (TRIMS).  Cases that are verified per CDC’s RVCT criteria are reported to the California 

Department of Public Health, TB Control Branch, who aggregate and transmit redacted data to 

the Centers for Disease Control and Prevention for national surveillance purposes (see 

Appendix 1 for CSTE 2009 case definition).  
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For this analysis, cases are defined as only those reported verified cases of tuberculosis (RVCT) 

that were reported to the California Department of Public Health, TB Control Branch as of July 

2014.  The case data reported to the state was used for address data because the address from 

TRIMS may not be the address at diagnosis.  The address data in TRIMS is the current address of 

the case; if a case’s address changes, the new address overwrites the previous address. There 

were two data systems for reported cases at the state level during the study period.  The first 

was the TB Information Management System (TIMS) which contains data on cases from 1997 

through 2007.  The second is the California Reportable Disease Information Exchange 

(CalREDIE) which contains data on cases from 2008 to the present.  Identifiers for these cases, 

together with reported address data, will be extracted from these databases and matched to 

TRIMS.  All data with the exception of case identifiers and case address were drawn from 

TRIMS. 

Address at diagnosis data was cleaned and geo-coded using a written protocol and the Los 

Angeles County geo-coding service.  The geo-coded address was spatially joined with the Public 

Use Microdata Area (PUMA) boundaries for both the 2000 and the 2010 U.S. Census.  

Data used to create population estimates of country of birth specific denominators were drawn 

from the U.S. Census’s American Community Survey via the Minnesota Population Center at the 

University of Minnesota which maintains curated copies of the American Community Survey 

Public Use Microdata Survey (ACS PUMS) data in their Integrated Public Use Microdata Series 

(IPUMS) [26]. The American Community Survey is telephone-based survey which interviews a 

1% sample of U.S. households each year.  Some individual survey data are released for public 
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use through the Public Use Microdata Survey (PUMS).  These data are manipulated to prevent 

re-identification of individual respondents while preserving the original distributions of 

measurements.  In this analysis, the PUMS data was be used in conjunction with the Public Use 

Microdata Areas (PUMA).  Each PUMA is derived by grouping census tracts and is designed to 

encompass approximately 100,000 persons.  The boundaries files for the LA Country PUMAs 

were sourced from the U.S. Census.   

 

Study Setting 
The study was set in Los Angeles County, a large, diverse county with a sizeable foreign-born 

population. The population of Los Angeles County was estimated to be 10,137,915 persons in 

2016 [27].  By population, the county is larger than 41 states [28].  The county covers an area of 

4,057 square miles and includes 88 cities [27] [29].  The population size, the large geographic 

area and the complex political and regulatory environment of the County pose significant 

challenges for local public health agencies in terms of service provision, program 

implementation and policy change. 

The Los Angeles-Anaheim-Long Beach urbanized area was the densest urban area in the nation 

according to the 2010 Census [30].  The population density of the county is 2,419 person per 

square mile, but ranges from approximately 20 persons per square mile in Vernon to 42,611 in 

Koreatown [31]. The Westlake neighborhood (directly east of Korea town) is the second most 

dense neighborhood with 38,214 persons per square mile, roughly comparable in density to the 

Brooklyn, New York which has 37,660 persons per square mile [32] [33].  



 

9 
 

Of the more than 10 million persons residing in the County, 35.3%, or approximately 3,536,025 

persons, are estimated to be foreign-born.[6]  Of foreign-born persons residing in LA County 

between 2008 and 2010, 77% had immigrated to the area since 1980; 92% had immigrated 

since 1970.[6]  The number of foreign-born persons in Los Angeles County has more than 

doubled between 2000 and 1980.[6]  Of foreign-born persons residing in the County in 2012, 

67% were from six countries: Mexico (39%), El Salvador (7%), the Philippines (7%), Guatemala 

(5%) and South Korea (5%) and China excluding Hong Kong and Taiwan (4%) [34].“Linguistic 

isolation – the proportion of immigrant-headed households in which no person over 13 speaks 

English only, or very well – is relatively high at 34%.”[6] 

Foreign-born persons are not uniformly distributed throughout the county.  A number of 

foreign-born communities exist including Artesia, Boyle Heights, East Los Angeles, Fairfax, 

Koreatown, Japantown, Palos Verdes, San Gabriel, Monterey Park, Alhambra, Glendale, 

Burbank and Westwood. 

The Los Angeles County Department of Public Health is a large local health department with 

more than 4,000 employees dedicated to the protection and improvement of the health of 

residents of Los Angeles County. The stated mission of the department is “to protect health, 

prevent disease, and promote health and well-being.”  [35]  Within the Los Angeles Country 

Department of Public Health, the Division of Communicable Disease Control and Prevention is 

responsible for the surveillance and control of communicable diseases except for sexually 

transmitted diseases including HIV/AIDS which is housed in a separate division.  Within the 

division, the Tuberculosis Control Program (TBCP) is responsible for the routine surveillance of 
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tuberculosis as well as planning special TB investigations and providing medical consultations to 

providers treating TB cases. The Community Health Services division is responsible for routine 

tuberculosis contact investigations in coordination with TBCP as well as providing clinical 

services from its 14 clinics.  

 

Study Design 

The study used a serial cross-sectional design with a study period of 2005 through 2011.  Data 

was drawn from routine tuberculosis surveillance conducted by Los Angeles County 

Department of Public Health and from the U.S. Census Bureau’s American Community Survey 

(ACS).  Individual-level data is available for persons with reported, verified cases of tuberculosis 

(RVCT).  Detailed description of the data collection and data analysis is the following chapters.  

Briefly, we estimate TB disease incidence among foreign-born persons stratifying by key factors 

of interest including:  age at diagnosis, sex, length of residence in the U.S. and PUMA.   
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TB Disease Incidence by Country of Birth, Los Angeles County 2005-2001 

Abstract 

Introduction 

Among U.S. residents, tuberculosis disease incidence rate is higher among foreign-born persons 

than U.S.-born persons and varies substantially by country of birth, yet local health 

departments seldom report TB disease incidence rates by country of birth.  With more than 3.5 

million foreign-born residents, Los Angeles County has the largest number of foreign-born 

persons of any U.S. county and contributes roughly 7% of all cases of TB disease nationally.  

Further description of local TB burden including incidence rates by country of birth would aid 

continued public health response.   

 

Methods 

Data on 5,447 diagnosed TB cases from the Los Angeles County Department of Public Health TB 

Control Program were combined with stratified population estimates available from the Public 

Use Microdata Survey to calculate incidence rate of TB disease for the years 2005 through 

2011.  Unadjusted incidence rates were calculated by country of birth and other demographic 

factors.  To mitigate issues stemming from correlated outcomes, incidence rates were modelled 

using a negative binomial regression.   Bayesian models were used to account for the 

uncertainty in the number of diagnoses and the population estimates. 
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Results 

Unadjusted incidence rates among several foreign-born populations were notably higher than 

among U.S.-born persons; the unadjusted incidence rate was 44.3 per 100,000 person-years 

among persons born in the Philippines and 38.7 per 100,000 person-years among persons born 

in Vietnam in comparison to 2.3 per 100,000 for U.S.-born persons.  The largest absolute 

number of cases of TB disease was among Mexican-born persons (n=1,234); the unadjusted 

incidence rate in this group was 12.4 per 100,000 person-years.  Accounting for age, gender, 

length of residence and year of diagnosis, persons born in Vietnam were 4.5 (95% CI: 3.8 – 5.3) 

times as likely to have been diagnosed with active TB disease than persons born in countries 

other than the eight countries reporting highest rates of TB disease.  In contrast, persons born 

in Mexico were 1.67 (95% CI: 1.47 – 1.89) times as likely as other foreign-born persons to be 

diagnosed with active TB.  Bayesian models showed similar results. 

 

Conclusion 

This study confirms that incidence of TB disease varied markedly by country of birth in Los 

Angeles County.  Even accounting for differences in age, gender, years in residence 

distributions, persons from the Philippines, Vietnam and other countries were at greater risk of 

TB disease than persons from other foreign countries.  We have also demonstrated that the 

disparity in risk by country of birth can be readily estimated using available data and that 

complex adjustment of denominator error using Bayesian techniques has limited utility. 
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Introduction 

Tuberculosis (TB) is a global public health issue with more than one-third of the world infected 

with the mycobacterium. In 2015, there were 10.4 million new diagnoses of the disease [2] and  

it surpassed HIV as the number one infectious disease killer, implicated in 1.4 million deaths [2]. 

In low incidence countries, such as the U.S., the majority of TB diagnoses occur among foreign-

born persons [14, 36, 37].  Los Angeles County is home to 3.5 million foreign-born persons, the 

largest concentration of foreign-born persons in the U.S. within a single county [38].  Earlier 

studies have shown substantial disparity in incidence rates of TB disease by country of birth 

both in Los Angeles County and nationally, yet state and local health departments do not report 

incidence rates by country of birth [39, 40].  The California TB Elimination plan identifies 

country of birth as an important risk factor and calls for additional data collection and analysis 

by country of birth.  Here we describe the risk of TB disease in Los Angeles County by country of 

birth and demonstrate incidence rate estimation using available data and a range of models 

from simple to complex. 

 

Methods 

Description of data sources 

Data on 5,447 reported verified cases of tuberculosis (RVCTs) diagnosed from 2005 through 

2011 were drawn from the tuberculosis surveillance system of the Los Angeles County 
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Department of Public Health, Tuberculosis Control Program (TBCP).  Tuberculosis surveillance 

has been described elsewhere [39, 40].   Briefly, medical providers are required by California 

State law to report persons with suspected or confirmed active TB disease and provide basic 

demographic and clinical information for these patients [20, 21, 41].  TBCP staff verify the 

diagnosis by reviewing laboratory, microbiology, and radiographic results or other clinical 

information, and may request additional diagnostics.  Cases that meet the criteria for a report 

of a verified case of tuberculosis (RVCT) are reported to the California Department of Public 

Health, TB Control Branch, who in turn report the case to the Centers for Disease Control and 

Prevention [41].   

Data used to create stratified population estimates were drawn from the U.S. Census Public Use 

Microdata Survey via the Minnesota Population Center at the University of Minnesota which 

maintains curated copies in their Integrated Public Use Microdata Series (IPUMS) [26, 42].  

Population estimates by country of birth can also be obtained through American Factfinder (see 

Appendix 2 for additional information).  The American Community Survey (ACS) is telephone-

based survey which interviews a 1% sample of U.S. households each year [43].  Detailed data 

are released for public use through the Public Use Microdata Survey (PUMS), though these data 

are manipulated to prevent re-identification of individual respondents while preserving the 

original distributions of measurements.  Population estimates were calculated using weighted 

frequencies.  Confidence intervals for these estimates were calculated by standard and robust 

methods and replicate weights available with PUMS data [44, 45].    
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Beginning in 2006, the ACS sampling frame included both institutional and non-institutional 

group quarters.  Before 2006, group quarters were not included in the ACS sampling frame.  

Cases residing in correctional facilities or long-term care were excluded if they were diagnosed 

in 2005 and included if they were diagnosed between 2006 and 2011.  Cases that were 

homeless were excluded except for cases diagnosed between 2006 and 2011 and living in a 

homeless shelter. 

We excluded a total of 494 (9%) cases: 26 cases with missing or unknown country of birth, 20 

cases that were in correctional facilities (or missing this variable) and diagnosed in 2005, 16 

cases that were in long-term care (or missing this variable), 277 cases that were homeless (or 

missing this variable) and not housed in group quarters, 13 cases diagnosed in 2005 that were 

homeless and living in group quarters, 14 administrative cases, 112 cases that were foreign-

born but missing years in residence, 15 cases with countries of birth not included in the PUMS 

data and 1 case that could not be assigned to a PUMA.  A total of 4,953 cases were available for 

analysis.  Cases residing in Long Beach or Pasadena were not included as those cases were 

reported to the Pasadena City Health Department and the Long Beach Health and Human 

Services, respectively.   

 

Data processing and definitions 

Residential addresses at time of diagnosis were geocoded following a written protocol and 

using ArcGIS and the LA County-approved locator.  Strata definitions for age, country of birth 

and length of residence were harmonized between TB surveillance data and PUMS population 
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data.  Data from South Korea and North Korea were combined into a single category because 

the American Community Survey did not separately enumerate North Koreans and South 

Koreans in the study period.  Changes in country name during the study period were taken into 

account.  Where individual country data were too sparse to produce a reliable estimate, data 

from multiple countries were aggregated to give a regional estimate, as was the case for several 

countries on the African continent.  Isoniazid mono-resistance was defined as resistance to 

isoniazid only; multi-drug resistance (MDR) was defined as resistance to isoniazid and rifampicin 

with or without resistance to addition TB medications, and extreme drug resistance (XDR) was 

defined as meeting MDR criteria “plus any fluoroquinolone and at least one of three injectable 

second-line drugs” [46, 47].  Per the CDC, culture positive was defined as a positive culture from 

sputum or direct sputum collected within 15 calendar days of the start of treatment (if 

treatment was reported) or within 15 calendar days of diagnosis (if treatment was not 

reported) [41]. 

 

Analysis 

We used serial cross-sectional design with a study period of 2005 through 2011.  Unadjusted 

incidence rates were stratified by country of birth and other demographic factors and are 

presented without confidence intervals because data were extra-dispersed and therefore 

standard confidence intervals would likely understate the variability of the estimate. Relative 

standard error (RSE) was calculated as 1
√𝑛𝑛

 where 𝑛𝑛 is the number of cases [48].  Covariates for 

the generalized linear models (GLMs) were chosen a priori based on evidence in previous 
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literature and on availability in both local TB surveillance and PUMS data [39, 40, 49].  Fitting a 

naïve Poisson GLM confirmed substantial residual over-dispersion.  A Poisson model with 

country of birth and offset alone had a dispersion statistic of 10.5; in contrast, a Poisson model 

with all available covariates had a dispersion statistic of 1.5.  We then fitted a negative binomial 

model, a common model for over-dispersed data [50].  To address under-coverage of 

confidence intervals due to residual extra-dispersion, robust confidence interval calculations 

were calculated per Hilbe [50].   

 

To account for uncertainty in the population estimates, we adopted a Bayesian framework and 

introduced probability distributions or priors for these estimates.  First, we built Bayesian 

analogues to the Poisson and negative binomial GLMs described above.  Bayesian models were 

fitted using R, OpenBUGS, and nimble [51-53].     Standard BUGS coding was used (see Appendix 

2).  Priors for the intercept and all covariate coefficients were defined to be 𝑁𝑁(0,1000).  All 

covariates were categorical and had corner constraints on the reference category.  For the 

negative binomial Bayesian model, the prior for r was 𝐺𝐺(1,10).  Two MCMC chains were run for 

100,000 iterations each.  Reasonable mixing and stability were achieved.   

Second, we introduced informative priors on the population estimates.  Theses priors were 

constructed to match the standard errors of these estimates calculated using replicate weights.  

The population estimate priors were truncated to [1, ∞] to ensure that the estimate was 

positive and non-zero.  This resulted in a distortion of the prior distribution for some estimates. 
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The reference category for nativity was “other foreign-born countries” which was comprised of 

all available foreign countries except those with the highest absolute number of cases:  the 

Philippines, Vietnam, India, China, Korea, Guatemala, Mexico and El Salvador.  In keeping with 

guidelines adopted by the California Department of Public Health, TB Control Branch 

publications, tables were limited to denominator cell sizes of five or more [54]. 

Statistical analysis and data management were done using R version 3.4, R Studio version 

1.0.143 and variety of packages [51, 55-65].  Bayesian models were run in OpenBUGS version 

3.2.2 rev 1012 [52]. This study was deemed exempt by the Los Angeles County Department of 

Public Health Institutional Review Board. 

 

Results 

Unadjusted Analysis 

The unadjusted TB disease incidence rate among foreign-born persons was 15.8 per 100,000 

person years in the study period in comparison to 2.3 per 100,000 person years for U.S.-born 

persons (Table 1).  In contrast to TB disease incidence rates among U.S.-born persons, the TB 

incidence rates were notably higher among persons born in several countries including Burma, 

Indonesia, Afghanistan, the Philippines, Vietnam, India and China and in Central, East and West 

Africa.  Diagnoses of active TB among foreign-born persons accounted for approximately 80% of 

all cases in the study period.  Of diagnoses among foreign-born persons, persons born in 8 

countries accounted for more than 83% of cases in this time period (Table 1).   Among these 8 

countries, TB incidence rates ranged from 44.3 per 100,000 among Philippines-born persons to 
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9.4 per 100,000 among El Salvador-born persons.  A more comprehensive list of countries of 

birth and associated incidence rates appears in table 2.  TB disease incidence rates were very 

high among persons born in Central Africa and Burma, 168.5 per 100,000 and 78.9 per 100,000 

respectively.   Persons born in East Africa, Indonesia and Afghanistan also had high incidence 

rates at 47.6 per 100,000, 47.4 per 100,000 and 46.7 per 100,000, respectively.  Note that 

several estimates, including estimates for Central Africa and Afghanistan, had a relative 

standard error of more than 30%, a common benchmark at which the reliability of an estimate 

is questioned [66, 67].  

 

The proportion of culture positive cases that were isoniazid mono-resistant was notably higher 

among persons born in the Philippines, Vietnam or India in comparison to those born in 

Honduras, El Salvador or Mexico (Table 2).   The proportion of isoniazid resistance ranged from 

18% to 20% for active TB cases born in the Philippines, Vietnam or India.  In contrast, the 

proportion of isoniazid resistance ranged from 3% to 8% for TB cases born in Honduras, El 

Salvador or Mexico.  Similar patterns were observed for multi-drug resistance, though the 

number of cases was low: 0.7% of cases among persons born in Mexico were MDR, whereas 

4.4% of cases among persons born in Korea were MDR.  There were no cases with extreme drug 

resistance in the study period.   

 

Among foreign-born persons, TB disease incidence rates were higher among older persons, 

men, and those residing in the U.S. for less than 2 years (Table 3).  The unadjusted incidence 
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rate for foreign-born persons 80 years old and older was 49.6 per 100,000 in contrast to an 

unadjusted incidence rate of 6.6 per 100,000 for persons under 20 years old.  Foreign-born 

persons residing in the United States for less than two years had an unadjusted incidence rate 

of 69.8 per 100,000; those residing in the U.S. for two to four years had an incidence rate of 

26.0 per 100,000.  Of all diagnoses in the study period, 59% were among persons who had 

resided in the U.S. for 10 or more years.  Incidence rates declined for both foreign-born persons 

and U.S.-born persons during the study period from 18.1 per 100,000 in 2005 to 14.0 per 

100,000 in 2011. 

 

Adjusted Analysis 

We fit two generalized linear models to the data acknowledging that data with correlated 

outcomes, such as TB, are commonly over-dispersed.  Estimates from the two models were 

similar.  Dispersion statistics for both models were close to 1, though the negative binomial 

model was a better fit for the data (Table 4).  

Accounting for other factors associated with TB incidence such as age, gender, length of 

residence and year of diagnosis, persons born in Vietnam were 4.5 (95% robust confidence 

interval 3.8 – 5.3) times as likely to have been diagnosed with active TB than persons born in 

countries outside of the TB top eight (table 4).  In contrast, persons born in Mexico were 1.7 

(1.5 – 1.9) times as likely as persons born in countries outside of the TB top eight (table 4) to be 

diagnosed with active TB. 
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Estimates calculated using Bayesian Poisson and negative binomial models were on par with 

the generalized linear models (Table 5).  There were negligible differences between the 

Bayesian models based on Poisson and negative binomial distributions.     Estimates using the 

Bayesian negative binomial model with informative priors for the population estimates were 

slightly decreased in comparison to the same model without these priors, likely due to the 

truncated distribution of the population estimate priors. 

Discussion 

In Los Angeles County, the burden of TB disease among foreign-born persons was much higher 

than among U.S.-born persons.  In the study period, TB disease incidence was approximately 8 

times more likely among foreign-born persons than among U.S.-born persons and 80% of 

reported cases of active TB were foreign-born.  Similar results have been observed nationally 

and in other major metropoles [36, 39, 40].   Furthermore, incidence varied widely by country 

of birth.  Even when accounting for other contributing factors including age, gender, and length 

of residence in the U.S., persons from the Philippines and Vietnam were approximately 4 times 

more likely than other foreign-born persons to have been diagnosed with TB.  In contrast, 

persons born in India, China, Korea, Guatemala and Mexico were roughly twice as likely as 

other foreign-born persons to have been diagnosed with TB disease in the study period.  This 

information can help guide local prevention efforts which are currently being planned as part of 

pilot latent TB testing programs.  
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Incidence rates declined for both foreign-born persons and U.S.-born persons during the study 

period from 18.1 per 100,000 in 2005 to 14.0 per 100,000 in 2011.  There was a notable decline 

in TB disease incidence over the study period; analogous declines have been seen both 

nationally and in other cities though multiple contributing factors have been cited [36, 49]. 

Furthermore, we observed higher incidence rates among males, older adults and, most notably, 

those with fewer years in residence. This was consistent with several previous reports of TB 

incidence [40, 68].  The effect of age on incidence of TB disease has been unclear with 

numerous studies showing increased disease incidence among older persons, and other studies 

showing no increase with age among when restricted to certain diagnostic subgroups [69].  It is 

important to note that persons under 20 years of age tend to progress to disease more rapidly 

after infection, though there is no evidence of that here.  While the highest incidence by years 

in residence was among those with less than 2 years in residence, the majority (59%) of foreign-

born diagnoses had resided in the U.S. for 10 or more years. 

The results also served to underscore the importance of testing for latent TB infection among 

foreign-born persons.  The California Department of Public Health TB Control Branch has issued 

a tuberculosis risk assessment which recommends testing for foreign-born persons from 

countries “with an elevated TB rate”, along with those who have or plan to have 

immunosuppression and those who are close contacts of an infectious case [70].  For medical 

providers, especially those serving foreign-born persons in Los Angeles County, detailed 

information on risk by country of birth, such as is provided in this analysis, may be helpful in a 

patent’s overall risk assessment.  
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While based on mature surveillance and survey data, this study has several limitations.  Despite 

adjusting for several influential factors, the data remained over-dispersed, which could result in 

the under-coverage of confidence intervals.  Moreover, spatial effects and disease transmission 

were not taken into consideration which may further undermine these estimates.  However, an 

estimated 85% of cases in California are due to reactivation and only 15% are due to recent 

transmission [71].  Thus, correlated outcomes typical of communicable diseases are less of a 

concern here.  Biases due to misclassification and incomplete adjustment were not addressed.  

Case ascertainment for this surveillance system is unknown although we assume that it is high, 

similar to other TB surveillance systems [72-74].   Higher TB disease incidence among recently-

immigrated foreign born could be in part the result of increased ascertainment in this group.  

Truncation of the population estimate prior to a positive, non-zero interval inflated some 

population estimates, but did so minimally.  The presented models were constructed to be 

explanatory not predictive and, as such, are not the preferred set of models to use for planning 

disease interventions.  In addition, foreign-born persons may be more likely to be screened, 

though certain foreign-born populations are less likely to have access to or use healthcare.  

Furthermore, some of the cases include in this analysis did not have culture positive results. 

Conclusion 

This study confirms that TB disease incidence varied markedly by country of birth in Los Angeles 

County.  Even accounting for differences in age, gender, years in residence distributions, 

persons from the Philippines, Vietnam and other countries have much higher rates of reported 

TB disease than other foreign countries. Furthermore, TB disease incidence rates varied 
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markedly by years in residence in Los Angeles County.  Even accounting for other factors, 

persons with less than 2 years in residence presented with much higher incidence of TB disease 

than those in residence for 2 or more years.  With this study, we established the relative 

strength of the key factors associated with TB diagnosis among the foreign-born and prepared 

the way for a model to predict future TB burden within this population.  In addition, we have 

demonstrated that simple incidence rates by country of birth can be calculated with readily-

accessible population estimates and that more complex adjusted estimates can be achieved the 

use of negative binomial models and Bayesian techniques.  This analysis helped better describe 

the local TB burden in Los Angeles County and can be used to inform a continued public health 

response. 
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Table 1: TB Incidence Rates by Selected Country of Birth, Los Angeles County 2005*-2011 

Country of Birth Diagnoses 
Person-
Years 

Proportion of 
Total 
Diagnoses 

Unadjusted 
Incidence Rate 
per 100,000 

95% Confidence 
Interval 

   
 

 
 

Foreign country 3,946 25,037,400 80% 15.8 (15.3 - 16.3) 

United States 1,008 43,987,963 20% 2.3 (2.2 - 2.4) 

      

Philippines 742 1,674,344 15% 44.3 (41.1 - 47.5) 

Vietnam 265 685,320 5% 38.7 (34.0 - 43.3) 

India 98 331,396 2% 29.6 (23.7 - 35.4) 

China 261 942,822 5% 27.7 (24.3 - 31.0) 

Korea 249 1,123,255 5% 22.2 (19.4 - 24.9) 

Guatemala 212 1,207,414 4% 17.6 (15.2 - 19.9) 

Mexico 1,271 10,212,974 26% 12.4 (11.8 - 13.1) 
Other foreign 
country 675 7,023,036 14% 9.6 (8.9 - 10.3) 

El Salvador 173 1,836,839 3% 9.4 (8.0 - 10.8) 

United States 1,008 43,987,963 20% 2.3 (2.2 - 2.4) 
Source: Los Angeles County Department of Public Health, TB Control Program & Public Use Microdata Survey via 
IPUMS.  
*For diagnosis year 2005, excluded cases indicated to be homeless, incarcerated or in long-term care facilities 
because ACS 2005 excluded these populations from group quarters. 
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Table 2: TB Incidence Rates by Selected Country of Birth (Cases in Period >= 5), Los Angeles County 2005*-2011 

Country of Birth Diagnoses 
Person-
Years 

Unadjusted 
Incidence 
Rate per 
100,000 

95% 
Confidence 
Interval 

Proportion 
of 
Diagnoses 

Culture 
Positive 

Isoniazid Resistant Multidrug Resistant 

N % N % 

Central Africa 8 4,748 168.5 (51.7 - 285.3) 0.2 * * * * * 
Burma (Myanmar) 34 43,072 78.9 (52.4 - 105.5) 0.7 22 * * * * 
East Africa 43 90,418 47.6 (33.3 - 61.8) 0.9 27 * * * * 
Indonesia 49 103,480 47.4 (34.1 - 60.6) 1.0 34 * * * * 
Afghanistan 9 19,253 46.7 (16.2 - 77.3) 0.2 * * * * * 
Philippines 742 1,674,344 44.3 (41.1 - 47.5) 15.0 447 90 20.1 13 2.9 
Vietnam 265 685,320 38.7 (34.0 - 43.3) 5.3 168 32 19.0 * * 
West Africa 26 87,117 29.8 (18.4 - 41.3) 0.5 9 * * * * 
India 98 331,396 29.6 (23.7 - 35.4) 2.0 32 6 18.8 * * 
China 261 942,822 27.7 (24.3 - 31.0) 5.3 177 11 6.2 6 3.4 
Cambodia (Kampuchea) 43 173,988 24.7 (17.3 - 32.1) 0.9 25 * * * * 
Pakistan 12 50,634 23.7 (10.3 - 37.1) 0.2 5 * * * * 
Peru 46 195,596 23.5 (16.7 - 30.3) 0.9 30 * * * * 
Korea 249 1,123,255 22.2 (19.4 - 24.9) 5.0 180 22 12.2 8 4.4 
Honduras 51 234,421 21.8 (15.8 - 27.7) 1.0 39 * * * * 
Thailand 29 155,805 18.6 (11.8 - 25.4) 0.6 18 * * * * 
Guatemala 212 1,207,414 17.6 (15.2 - 19.9) 4.3 145 12 8.3 * * 
Mexico 1,271 10,212,974 12.4 (11.8 - 13.1) 25.7 750 63 8.4 5 0.7 
Belize/British Honduras 11 94,077 11.7 (4.8 - 18.6) 0.2 5 * * * * 
Taiwan 55 476,938 11.5 (8.5 - 14.6) 1.1 40 * * * * 
Colombia 12 111,087 10.8 (4.7 - 16.9) 0.2 6 * * * * 
Ecuador 10 94,998 10.5 (4.0 - 17.1) 0.2 * * * * * 
El Salvador 173 1,836,839 9.4 (8.0 - 10.8) 3.5 101 * * * * 
Armenia 40 429,402 9.3 (6.4 - 12.2) 0.8 30 * * * * 
Hong Kong 18 193,797 9.3 (5.0 - 13.6) 0.4 10 * * * * 
Nicaragua 15 210,585 7.1 (3.5 - 10.7) 0.3 11 * * * * 
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Iran 49 746,784 6.6 (4.7 - 8.4) 1.0 31 * * * * 
Japan 21 317,750 6.6 (3.8 - 9.4) 0.4 15 * * * * 
Russia 9 157,397 5.7 (2.0 - 9.5) 0.2 * * * * * 
Argentina 6 107,344 5.6 (1.1 - 10.1) 0.1 * * * * * 
North Africa 6 124,016 4.8 (1.0 - 8.7) 0.1 * * * * * 
United States Outlying 
Areas 6 138,068 4.3 (0.9 - 7.8) 0.1 * * * * * 
Cuba 5 148,281 3.4 (0.4 - 6.3) 0.1 * * * * * 
Germany 5 176,771 2.8 (0.3 - 5.3) 0.1 * * * * * 
United States 1,002 43,849,895 2.3 (2.1 - 2.4) 20.2 464 22 4.7 * * 
United Kingdom 5 234,522 2.1 (0.3 - 4.0) 0.1 * * * * * 
Source: Los Angeles County Department of Public Health, TB Control Program & Public Use Microdata Survey via IPUMS.  Isoniazid resistance is not exclusive of 
other resistance.  
 † Incidence limits calculated based on standard error of denominator which in turn was calculated based on PUMS replicate weights.  
*For diagnosis year 2005, excluded cases indicated to be homeless, incarcerated or in long-term care facilities because ACS 2005 excluded these populations 
from group quarters. 
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Table 3: TB Incidence Rates among Foreign-born Persons by Demographic Characteristic, Los 
Angeles County 2005*-2011 

Demographic Characteristic Diagnoses Person-Years 
Unadjusted 
Incidence  
per 100,000 

95% 
Confidence 
Interval 

 Percentage 
of Total 
Diagnoses 

Age        
 0 – 19 118 1,787,626 6.6 (5.4 - 7.8)  3% 
 20 – 39 1,098 9,085,859 12.1 (11.4 - 12.8)  28% 
 40 – 59 1,365 9,597,152 14.2 (13.5 - 15.0)  35% 
 60 – 79 976 3,782,404 25.8 (24.2 - 27.4)  25% 
 80 – 106 389 784,359 49.6 (44.7 - 54.5)  10% 
        
Gender        
 Male 2,296 12,252,800 18.7 (18.0 - 19.5)  58% 
 Female 1,650 12,784,600 12.9 (12.3 - 13.5)  42% 
        
        
Years in Residence       
 0 – 1 576 824,925 69.8 (64.1 - 75.5)  15% 
 2 – 4 462 1,774,188 26.0 (23.7 - 28.4)  12% 
 5 – 9  579 3,316,024 17.5 (16.0 - 18.9)  15% 
 10 – 19 881 6,823,639 12.9 (12.1 - 13.8)  22% 
 20 – 93 1,448 12,298,624 11.8 (11.2 - 12.4)  37% 
        
Year of Diagnosis       
 2005 652 3,593,316 18.1 (16.8 - 19.5)  17% 
 2006 636 3,569,735 17.8 (16.4 - 19.2)  16% 
 2007 597 3,642,877 16.4 (15.1 - 17.7)  15% 
 2008 554 3,538,054 15.7 (14.4 - 17.0)  14% 
 2009 501 3,567,900 14.0 (12.8 - 15.3)  13% 
 2010 507 3,553,789 14.3 (13.0 - 15.5)  13% 
 2011 499 3,571,729 14.0 (12.7 - 15.2)  13% 
        
 

*For diagnosis year 2005, excluded cases indicated to be homeless, incarcerated or in long-term care facilities 
because ACS 2005 excluded these populations from group quarters. 
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Table 4: TB Incidence Rates and Incidence Rate Ratios by Selected Country of Birth, Los Angeles County 2005*-2011 

Country of Birth 
  

Unadjusted Adjusted Poisson GLM† Adjusted Negative Binomial GLM† 
Incidence IRR Standard IRR Standard Robust IRR Standard Robust 

          
Philippines 44.3 4.61 (4.28 - 4.94) 4.35 (3.91 - 4.83) (3.83 - 4.94) 4.23 (3.71 - 4.82) (3.70 - 4.83) 
Vietnam 38.7 4.02 (3.54 - 4.51) 4.54 (3.93 - 5.25) (3.84 - 5.36) 4.49 (3.79 - 5.31) (3.76 - 5.34) 
India 29.6 3.08 (2.47 - 3.69) 2.48 (2.00 - 3.09) (1.93 - 3.19) 2.45 (1.94 - 3.09) (1.90 - 3.14) 
China 27.7 2.88 (2.53 - 3.23) 2.07 (1.79 - 2.39) (1.74 - 2.46) 2.00 (1.69 - 2.35) (1.68 - 2.37) 
Korea 22.2 2.31 (2.02 - 2.59) 2.28 (1.97 - 2.64) (1.94 - 2.68) 2.20 (1.86 - 2.60) (1.86 - 2.60) 
Guatemala 17.6 1.83 (1.58 - 2.07) 2.16 (1.85 - 2.52) (1.78 - 2.61) 2.08 (1.74 - 2.48) (1.72 - 2.51) 
Mexico 12.4 1.29 (1.22 - 1.37) 1.70 (1.55 - 1.87) (1.52 - 1.90) 1.67 (1.47 - 1.89) (1.48 - 1.87) 
Other foreign country 9.6 ref 

 
ref 

  
ref 

 
  

El Salvador 9.4 0.98 (0.83 - 1.13) 1.26 (1.06 - 1.49) (1.05 - 1.51) 1.23 (1.01 - 1.48) (1.02 - 1.47) 
          
Dispersion statistic N/A   1.54   1.3   
AIC N/A   6907   6819   
Source: Los Angeles County Department of Public Health, TB Control Program & Public Use Microdata Survey via IPUMS.  
*For diagnosis year 2005, excluded cases indicated to be homeless, incarcerated or in long-term care facilities because ACS 2005 excluded these populations 
from group quarters. 
†Adjusted model includes the following covariates: age, gender, length of residence and year of diagnosis. 
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Table 5: TB Incidence Rate Ratios by Selected Demographic Characteristics – Bayesian 
Models, Los Angeles County 2005*-2011 

 
 
Demographic Characteristics Poisson Bayes 

Negative Binomial 
Bayes 

Negative Binomial Bayes 
with informative priors 
on population estimates 

Country of Birth 
   

 
Philippines 4.35 (3.88 - 4.84) 4.22 (3.67 - 4.82) 4.26 (3.70 - 4.86) 

 
Vietnam 4.54 (3.88 - 5.25) 4.47 (3.70 - 5.32) 4.41 (3.68 - 5.26) 

 
India 2.48 (1.96 - 3.08) 2.43 (1.88 - 3.08) 2.42 (1.86 - 3.07) 

 
China 2.07 (1.76 - 2.39) 1.99 (1.66 - 2.36) 2.01 (1.68 - 2.37) 

 
Korea 2.28 (1.94 - 2.64) 2.19 (1.83 - 2.60) 2.22 (1.85 - 2.63) 

 
Guatemala 2.15 (1.82 - 2.52) 2.07 (1.70 - 2.49) 2.05 (1.69 - 2.46) 

 
Mexico 1.71 (1.54 - 1.88) 1.67 (1.45 - 1.90) 1.66 (1.46 - 1.88) 

 
El Salvador 1.26 (1.05 - 1.49) 1.22 (0.99 - 1.49) 1.22 (0.99 - 1.48) 

 

Other foreign 
country reference reference reference 

     Age 
    

 
0 – 19 0.18 (0.15 - 0.22) 0.19 (0.15 - 0.23) 0.19 (0.15 - 0.23) 

 
20 – 39 0.56 (0.51 - 0.61) 0.61 (0.54 - 0.68) 0.60 (0.54 - 0.67) 

 
40 – 59 reference reference reference 

 
60 – 79 1.91 (1.74 - 2.08) 1.95 (1.74 - 2.18) 1.94 (1.73 - 2.16) 

 
80 – 106 4.28 (3.77 - 4.81) 4.39 (3.76 - 5.07) 4.32 (3.72 - 4.96) 

     Gender 
    

 
Male reference reference reference 

 
Female 0.62 (0.58 - 0.66) 0.64 (0.59 - 0.69) 0.64 (0.59 - 0.69) 

     Years in Residence 
   

 

0 – 1 
10.54 (9.41 - 
11.73) 

10.93 (9.53 - 
12.46) 10.65 (9.26 - 12.17) 

 
2 – 4 3.88 (3.45 - 4.35) 3.85 (3.33 - 4.42) 3.89 (3.36 - 4.47) 

 
5 – 9  2.51 (2.25 - 2.79) 2.51 (2.19 - 2.86) 2.51 (2.20 - 2.85) 

 
10 – 19 1.56 (1.42 - 1.71) 1.62 (1.43 - 1.81) 1.61 (1.43 - 1.80) 

 
20 – 93 reference reference reference 

 
 

   Year of Diagnosis 
   

 
2005 reference reference reference 

 
2006 1.01 (0.90 - 1.13) 1.01 (0.87 - 1.17) 1.00 (0.86 - 1.15) 

 
2007 0.90 (0.80 - 1.01) 0.93 (0.80 - 1.07) 0.91 (0.78 - 1.06) 
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2008 0.86 (0.76 - 0.96) 0.84 (0.71 - 0.97) 0.84 (0.71 - 0.97) 

 
2009 0.80 (0.70 - 0.90) 0.78 (0.66 - 0.91) 0.78 (0.67 - 0.91) 

 
2010 0.79 (0.69 - 0.89) 0.75 (0.64 - 0.87) 0.76 (0.64 - 0.88) 

 
2011 0.79 (0.69 - 0.89) 0.76 (0.64 - 0.88) 0.76 (0.65 - 0.89) 

     Source: Los Angeles County Department of Public Health, TB Control Program & Public Use Microdata Survey via 
IPUMS.  
*For diagnosis year 2005, excluded cases indicated to be homeless, incarcerated or in long-term care facilities 
because ACS 2005 excluded these populations from group quarters. 
†Adjusted model includes the following covariates: age, gender, length of residence and year of diagnosis. 
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Spatial Distribution of TB Incidence, Los Angeles County 2005-2001 

 

Abstract 

Introduction 

In Los Angeles County, the tuberculosis (TB) disease incidence rate is seven times higher among 

foreign-born persons than U.S.-born persons and varies substantially by country of birth [75].  

Spatial analyses can be used to identify areas of high TB disease incidence which may be helpful 

in scaling up latent TB testing.  

Methods 

Data on 5,447 diagnosed TB cases from the Los Angeles County Department of Public Health TB 

Control Program were combined with stratified population estimates available from the Public 

Use Microdata Survey to calculate TB incidence rates for the years 2005 through 2011.  

Country-specific TB disease incidence rates were calculated and naïve smoothing was applied.  

We investigated residual spatial component when modelling with country of birth only, all 

covariates and all covariates plus non-spatial error.   

Results 

There were notable differences in the unadjusted and spatially-smoothed maps of TB disease 

incidence for selected high-incidence countries, namely Mexico, Vietnam and the Philippines.  

Spatially-smoothed maps showed areas of high incidence in downtown Los Angeles and 

surrounding areas for both Philippines-born and Vietnam-born persons.  Areas of high 
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incidence were more dispersed for Mexican-born persons.  Residual spatial features in models 

incorporating all covariates and non-spatial error suggested that the spatial distribution of the 

disease cannot be full explained using the available covariates. 

 

Conclusion 

This study highlights areas of high TB incidence within Los Angeles County both for U.S.-born 

cases and for cases born in Mexico, Vietnam and the Philippines.  It also highlights areas that 

were high incidence even when accounting for non-spatial error and important covariates 

including age, sex, and years in residence.  The spatial patterning provided in the maps provide 

complementary granularity to descriptions of the local disease burden which may help inform 

the continued public health response by supporting targeted testing and focusing local efforts 

to support new recommendations from the USPSTF regarding testing for latent TB infection in 

high-risk individuals.   

 

Introduction 

Los Angeles County (LAC) is a capacious jurisdiction covering 4,058 square miles with a large, 

diverse population of more than 10 million people, of which 3.5 million are foreign-born [27].  

TB disease incidence is notably higher among foreign-born persons and the incidences rate by 

country of birth have been described [39, 75, 76].  However, the spatial distribution of TB 

incidence in Los Angeles County has largely remained unreported.  Local health departments do 
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not routinely report TB disease spatially although case address is reportable by law; some 

departments have done spatial analyses as special projects [77-79]. 

We anticipate that TB disease is clustered in hotspots given spatial analyses conducted in other 

locales and the nature of TB transmission and reactivation.  TB transmission and reactivation 

often reflect social patterning which is, in part, spatially defined.  Furthermore, it is assumed 

that, even when accounting for known and available risk factors, TB disease is unlikely to be 

evenly distributed.  Information on areas of elevated TB disease are especially relevant now as 

there has been substantial effort at local, state and national levels to scale up latent TB 

infection testing as part of targeted testing and treatment.  The United States Preventive 

Services Task Force (USPSTF) recently issued a grade B recommendation for latent TB infection 

testing in high-risk individuals [80].  An important consequence of this recommendation is that, 

under current ACA regulations, health insurance plans would be required to cover the cost of 

latent TB infection testing. 

 

We used data from the LAC TB surveillance system and the American community survey to 

produce unadjusted TB incidence by country of birth and sub-county area.  We then smoothed 

these maps using empirical Bayes to attenuate the effect of sparse data.  Finally, we created 

extended models to account for additional covariates and non-spatial error. 
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Methods 

Data collection and management have been described previously [75].  Briefly, between 2005 

and 2011, 5,447 TB cases meeting the definition for the report of a verified case of tuberculosis 

(RVCT) were diagnosed and reported to the Los Angeles County Department of Public Health TB 

Control Program TB surveillance system [14, 81].  Address at diagnosis was geocoded using a 

Los Angeles County-approved geolocator allowing the case to be assigned to one of 67 Public 

Use Microdata Areas (PUMAs) in Los Angeles County as defined by the 2000 U.S. Census [42, 

82].  Data for population estimates stratified by PUMA and other covariates of interest were 

obtained from the Integrated Public Use Microdata Series, a curated copy of the U.S. Census’s 

Public Use Microdata Survey and other microdata [26].    PUMAs were chosen as the geography 

of interest because they were the smallest area for which the full joint distribution for key 

covariates was available.  Population estimates were calculated using replicate weights; 

exclusions, replicate weights and sampling frame were discussed in detail in prior work [45, 75].  

In summary, 494 (9%) cases were excluded due to missing data or differences in sampling frame 

between Los Angeles County TB surveillance and the American Community Survey leaving 4,953 

cases available for analysis.  An additional 1,008 (18.5%) U.S.-born cases were excluded from 

those analyses which included years in residence as a covariate because years in residence was 

undefined for U.S.-born cases and regardless collinear with age, an important covariate [75].  

Unadjusted TB incidence rates stratified by PUMA alone and by country of birth and PUMA 

were calculated.  Adjustment was achieved using multiple regression in a Bayesian framework 

and a conditional autoregressive regressive term from Besag et al. which is used frequently in 

spatial applications [83-85].  The preliminary model (Equation 1 below) accounts for area and 
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country of birth only.  Following the notation of Kleinschmidt et al., 𝑌𝑌𝑖𝑖𝑖𝑖 is defined as the 

observed diagnoses occurring in area 𝑖𝑖 and among country of birth 𝑐𝑐; 𝑃𝑃𝑖𝑖𝑖𝑖 is defined as the 

person-time for the same stratum [86].    Additionally, we define 𝜂𝜂𝑖𝑖𝑖𝑖 ≡ 𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖]  and assume that 

𝑌𝑌𝑖𝑖𝑖𝑖 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜂𝜂𝑖𝑖𝑖𝑖).  The transformed linear regression is then: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜂𝜂𝑖𝑖𝑖𝑖) = log(𝑃𝑃𝑖𝑖𝑖𝑖) + 𝛼𝛼 +  𝛽𝛽𝑐𝑐𝑋𝑋𝑐𝑐 + 𝜑𝜑𝑖𝑖#(1)  

where 𝜑𝜑𝑖𝑖 denotes a spatially-correlated random effects term defined by the following [85]: 

 

𝜑𝜑𝑖𝑖|𝜑𝜑−𝑖𝑖 =  𝑁𝑁 �𝜑𝜑𝚤𝚤� ,
𝜎𝜎𝜑𝜑2

𝑛𝑛𝑖𝑖
 � 

 𝜑𝜑𝚤𝚤� =  
1
𝑛𝑛𝑖𝑖

� 𝜑𝜑𝑖𝑖
𝑗𝑗 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑖𝑖 

 

 

Neighbors of area 𝑖𝑖 were defined with queen-style contiguity (Figure 1) [87]. 

Subsequent models (equations 2 and 3) used the following transformed linear regressions: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝜂𝜂𝑖𝑖𝑖𝑖) = log(𝑃𝑃𝑖𝑖𝑖𝑖) + 𝛼𝛼 +  𝜷𝜷𝜷𝜷 +  𝜑𝜑𝑖𝑖#(2)  

𝑙𝑙𝑙𝑙𝑙𝑙(𝜂𝜂𝑖𝑖𝑖𝑖) = log(𝑃𝑃𝑖𝑖𝑖𝑖) + 𝛼𝛼 +  𝜷𝜷𝜷𝜷 + 𝜑𝜑𝑖𝑖 +  𝜔𝜔𝑠𝑠#(3)  

where s denotes the stratum, 𝜷𝜷𝜷𝜷 denotes the vectors of covariates and covariate betas, 𝜔𝜔𝑠𝑠 

denotes the spatially-uncorrelated heterogeneity with the distribution 𝜔𝜔𝑠𝑠 ~ 𝑁𝑁(0,𝜎𝜎2).  The 

priors were set as follows:  𝛼𝛼 was given a flat prior, 𝜷𝜷 were given N(0, 1000), and 𝜑𝜑𝑖𝑖 and 

𝜔𝜔𝑠𝑠 were both given Gamma(0.5, 2000).  Bayesian models were run with two chains for 100,000 

iterations and 10,000 iterations of burn-in.  Mixing was evaluated through visual inspection of 



 

37 
 

caterpillar plots and density charts.  ArcGIS 10.0 was used to geocode and check geolocation. R 

version 3.4, R Studio version 1.0.143 and variety of packages were used to manage and analyze 

data and create maps [51, 55-62, 64, 65, 88-93].  Bayesian models were run in OpenBUGS 

version 3.2.2 rev 1012 [52] (see Appendix 3 for OpenBUGS model code).  Due to limitations 

stemming from sparse data for most country-of-birth groups, only a select group of countries of 

birth were analyzed via unadjusted and adjusted TB incidence (Equation 1).  Data from all 

country-of-birth groups were included in subsequent models (Equations 2 and 3). 

 

Results 

As previously reported, the tuberculosis incidence rate in Los Angeles County 2005-2011 was 

7.2 per 100,000, with 2.3 per 100,00 occurring among U.S.-born persons and 15.8 per 100,000 

occurring among foreign-born persons [75].  The map for unadjusted incidence among all 

residents shows higher incidence in central areas of the county and lower incidence in outer 

areas (Figure 2A).  For reference, the California and U.S. TB disease incidence rate in the same 

period were 7.1 per 100,00 and 4.1 per 100,000 [94].   Areas of notable high incidence include 

Panorama City, Pico Heights and Echo Park, and Monterey Park-Rosemead, which are in the 

Northwest, center and East sections of the county.  These areas had unadjusted incidences of 

13.2, 19.7, 17.2 and 19.2 per 100,000 respectively.  Adjustment through Bayesian smoothing, 

using Equation 1, had minimal effect on estimates (Figure 2B); median absolute difference 

between adjusted and unadjusted incidences was 0.13 per 100,000 with a maximum of 0.59 per 

100,000.     
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TB incidence among U.S.-born persons and foreign-born persons showed different spatial 

patterns.  Among U.S.-born persons, there were areas of high incidence including Los Angeles 

City downtown, Watts and East Los Angeles (Figure 2C).  These areas had incidences of 8.0, 7.9 

and 6.1 per 100,000 respectively.  In contrast, among foreign-born persons, TB incidence was 

notably higher in Monterey Park/Rosemead, Pico Heights and Echo Park.  These areas had TB 

incidences of 32.8, 26.2 and 28.3 per 100,000 respectively.  Also noteworthy were two areas of 

elevated incidence separated from the central form, specifically Panorama City (northwest) that 

had an incidence rate of 23.1 per 100,000 and Carson (due South of downtown) that had an 

incidence rate of 25.1 per 100,00. Changes in estimates via Bayesian smoothing for both U.S.-

born and foreign-born persons were minor (Figure 2D, Figure 2F).   

 

Prior reports have shown notable differences in incidence by country of birth with the largest 

absolute number of cases occurring among persons born in Mexico, Philippines and Vietnam 

[39, 75].     The map for unadjusted incidence rates among Mexican-born persons shows a 

condensed spatial form centered north of downtown Los Angeles in contrast to maps for 

unadjusted incidence among Filipino-born and Vietnamese-born persons which show more 

dispersed patterning throughout the county (Figure 3: A, C, E).  Maps of incidence rates 

adjusted through smoothing had a less dispersed pattern than unadjusted maps and show 

concentrated areas of high incidence (Figure 3: B, D, and F).   Maps for adjusted incidence rates 

among Mexican-born and Filipino-born persons show a cluster of areas of high incidence 



 

39 
 

centered on the Los Angeles City downtown (Figure 3: B, D).  The adjusted map for incidence 

rates among Vietnamese-born persons shows a small area of high incidence centered on the 

Los Angeles downtown (Figure 3: F). 

 

 Subsequent models including additional covariates (Equations 2 and 3) showed condensed 

spatial patterns (Figure 4).  Models are country of birth only, with all covariates and with all 

covariates and a non-spatial error term.  Maps show a high degree of spatial patterning even 

when accounting for covariates and when accounting for covariates and non-spatially 

correlated error. 

 

Discussion 

TB disease incidence has a distinctive spatial pattern overall and in several country-of-birth sub-

groups, with several identifiable hotspots within Los Angeles County.  Areas of elevated 

incidence among U.S.-born persons were evident in downtown Los Angeles as well as to the 

East of the city center.  Among Filipino-born and Vietnamese-born persons, unadjusted TB 

incidence exhibits a highly-dispersed spatial pattern.  In contrast, among Mexican-born persons, 

a condensed spatial pattern in unadjusted TB incidence is evident.  Maps of TB incidence rates 

adjusted through smoothing show, at least in the case of incidence among Filipino-born 

persons, a strong spatial pattern with areas of high incidence centered on the Los Angeles 

downtown area.  The adjusted map of incidence among Vietnamese-born persons shows one 

area of high disease incidence.  The notable differences in the unadjusted and adjusted maps 
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for the selected countries of birth shows the utility of empirical Bayesian smoothing; low 

absolute values of strata numerators and denominators for Filipino-born and Vietnamese-born 

subgroups produced highly variable incidence estimates.  Smoothed maps are easier to 

interpret because they account for part of the underlying uncertainty in the incidence rates.   

Spatial patterning persists even when considering covariates and non-spatial error.  Spatial 

patterns of the single covariate models (country of birth) suggests that we are justified in 

constructing further models to explain the spatial differences, in that country of birth alone is 

not sufficient to explain the existing spatial pattern.  This is confirmed by examining the spatial 

distribution of the incidence rate ratio for the country of birth only model (Figure 4A).  

However, additional models attenuate but do not remove the spatial heterogeneity and form 

as is evidenced by Figure 4B and Figure 4C, suggesting that additional data is necessary to 

explain the clustering of high incidence areas.  We believe this confirms the complex mixture of 

recent transmission and reactivation of latent infection that is ongoing within Los Angeles 

County and the nation as a whole.  Both recent transmission and reactivation has socio-spatial 

components so it is difficult to disentangle which of these is underlying the clusters seen in 

adjusted results.  Additional analysis incorporating recent advancements in prediction of recent 

transmission would helpful in understanding which of the case sub-populations is driving 

clustering[71].    

For the local clinical community, we believe that this information can add supportive detail to a 

clinical risk assessment.  The California Department of Public Health TB Control Branch recently 

issued a tuberculosis risk assessment [70].  Additional detail on country of birth specific risks 

and even risks specific to a local community could help providers though care must be taken 
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that this information does not divert attention from or discourage testing among other high-

risk groups.   

 

 

This analysis has additional limitations beyond issues of cases ascertainment and survey error 

discussed in prior work [75].  This analysis is vulnerable to the modifiable areal unit problem 

(MAUP) and may yield different results based on the size and shape of the areas under study.  

Low absolute numbers in strata numerators and denominators make incidence calculations 

more variable.  Edge effects mean that PUMAs on the edge of the county have fewer neighbors 

and so may not be as well smoothed as PUMAs in the middle of the county.  Also, cases from 

Long Beach and Pasadena are not included here.  As a result, areas around Pasadena are 

missing a neighbor and so are not smoothed as they would be if Pasadena cases had been 

included.  Similarly, areas around Long Beach are also not smoothed as they would be; this is 

especially problematic as Long Beach had a substantial number of cases for the size of its 

population.  PUMA boundary definitions from the 2000 Census allowed for non-contiguous 

areas.  In Los Angeles County, there are several non-contiguous PUMAs which can distort 

smoothing process by creating neighbors for non-contiguous areas. 

 

Conclusion 

This study confirms that TB disease incidence is spatially heterogeneous within Los Angeles 

County and remains so within high-risk countries of birth and when accounting for non-spatial 
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error and important covariates including age, sex, and years in residence.  The spatial 

patterning in the maps provides complementary information to descriptions of the local disease 

burden.  We hope that this information will inform the continued public health response by 

supporting targeted testing and focusing local efforts to support new recommendations from 

the USPSTF regarding testing for latent TB infection in high-risk individuals.  Because TB control 

has historically relied on direct intervention on transmission through case investigation and 

treatment, therefore analyses like this one may have application to TB control efforts, either 

through influencing case investigation or alternative control efforts.  We expect that these 

analyses could be extended by using ecological variables and by integrating information from 

algorithms to identify recent transmission [71]. 

This study reinforces the importance of spatial data in local description and suggests further 

that they be of use in predictive models of TB incidence, both directly, as a covariate, and 

indirectly, through leveraging of other spatial data.  For example, domestic TB prediction 

models based on routinely-reported TB surveillance data lack socio-economic status and 

crowding data.  Spatial data could augment existing TB data by linking available microdata or 

ecological data to reported cases.    
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Figure 1: Queen Neighbor Matrix for PUMAs from Census 2000, Los Angeles County with Long 
Beach and Pasadena Removed 
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Figure 2: Unadjusted and Adjusted TB Incidence among Selected Subgroups, Los Angeles 
County 2005-2011. 
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Figure 3: Unadjusted and Adjusted TB Incidence among Selected Countries of Birth, Los 
Angeles County 2005-2011. 
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Figure 4: Incidence Rate Ratio of Spatial Component of Full Bayesian models 
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TB Disease Incidence Rate Prediction among Foreign-born Persons, Los 
Angeles County 2005-2011 
 
Abstract 
Introduction 

The TB disease incidence rate among foreign-born persons in Los Angeles County is seven times 

the rate among US-born [75].  Detailed description of this epidemic has helped focus local 

control efforts, but further refinement in the prediction of TB diagnoses would provide 

additional benefit. Earlier efforts have shown that area-based ecological proxies of known risk 

factors for TB diagnosis improve predictive models.  Here we attempt to improve prediction of 

previously-described non-spatial and spatial models.  

 

Methods 

Strata-specific incidence rates were calculated using TB case data from the LA County DPH TB 

surveillance system combined with stratified population estimates constructed using the Public 

Use Microdata Series (PUMS).  Using a framework of known risk factors, we selected 

comparable area-based, ecological variables estimated from PUMS.  AIC-monitored backward 

elimination of ecologic covariates in a non-spatial Poisson general linear model was used with 

data from a training partition.  Using a testing partition, the ecologic model was compared with 

the non-ecological model with mean squared error (MSE).  Using a Bayesian spatial model and a 

10-fold partitioning scheme, we ran stochastic variable selection to test the inclusion of 

ecologic covariates and tested the most supported spatial model against reversed test partition. 
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Results 

No improvement was shown by the inclusion of ecologic covariates selected by the bootstrap 

backward elimination.  The MSE of the minimum model was 0.214 and the MSE of the model 

including ecologic covariates was 0.208.  Using stochastic variable selection in a spatial context, 

the model most select excluded all ecological covariates.  The improvement of MSE across all 

test partitions was minimal.   

 

Conclusion 

Area-specific ecological variables did not improve prediction in non-spatial or spatial models.  

Additional work is necessary to test whether prediction is improved with ecological variables 

attach to other covariates namely country of birth.  Models using country of birth, age, sex and 

years in residence have reasonable predictive ability for TB diagnoses among the foreign-born.  

Changes to routine reporting may be necessary to examine socio-economic status among TB 

diagnoses. 

 

Introduction 

The TB incidence rate among foreign-born persons is Los Angeles County is seven times higher 

than TB incidence among U.S.-born [75].  Among some country of birth groups, the incidence 

rate is more than 22 times the rate among U.S.-born [75].  Increased incidence rates among 
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country of birth subgroups have been noted both locally and nationally [39, 95].  Earlier efforts 

to describe TB epidemics in detail have been fruitful, but were designed to provide accurate 

estimation not prediction.    

 

Analyses of communicable diseases are hampered by violations of the distributions on which 

standard regression models rely.  This has led many researchers to use compartment models or 

agent-based models for prediction and estimation of communicable disease [96, 97].  However, 

the TB epidemic has become perhaps easier to predict because recent analyses in the U.S. 

suggest 85% of cases are due to reactivation with the remaining of latent TB infection and with 

the remaining 15% due to transmission [71].  

 

Much is known about the individual-level and ecological-level risk factors for TB disease, yet it is 

unclear whether earlier estimation models recast as prediction models can be improved 

especially in the domestic context [75, 98-101].  Furthermore, there is a need to consider the 

utility to public health practitioners at the state and local level [102, 103].  

 

Here we attempt to assess the predictive ability of previously-described non-spatial and spatial 

estimation models and improve these models with ecological data [98, 101].  Using a 

framework on known risk factors, we selected reasonable analogues to these risk factors from 

comparable area-based, ecological variables.  For non-spatial models, we reduced the available 
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covariates using a backward elimination.  For spatial models, we conducted stochastic variable 

selection (SVS) in a Bayesian spatial model. 

 

Methods 
Data Sources 

Data on TB diagnoses drawn from the Los Angeles County Department of Public Health TB 

surveillance system were combined with stratified population estimates constructed using the 

Public Use Microdata Series (PUMS) available through the Minnesota Population Center’s 

Integrated Public Use Microdata Series (IPUMS) as described previously [26, 42, 75, 101]. 

Ecological data was also drawn from PUMS via IPUMS.  Addresses at diagnoses was geocoded 

and assigned to an U.S. Census 2000 Public Use Microdata Area (PUMA) using a written 

protocol [75]. 

 

Construction of Prediction Model: Two Approaches 

Construction of prediction models is categorically different from the construction of estimation 

or causal models, both in aims and challenges.  Causal models are designed to elucidate causal 

pathways for a specific outcome and estimate parameters describing those pathways.  In 

contrast, prediction models are designed to optimize the prediction of an event without regard 

to establishing causal links.  The canonical issues in constructing prediction models are over-

fitting and limitations of computational resources [104].  Over-fitting occurs when the model is 

constructed in such a way as to be highly-predictive with the existing data, but minimally-
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predictive with new data.  A slew of methods have been developed to overcome these hurdles; 

here, we use two [104, 105].  To construct the non-spatial model, we created bootstrap 

replicates and used a stepwise elimination method on a negative binomial general linear model 

(GLM) for each replicate, similar to prior work [75].  For the spatial model, we used stochastic 

variable selection (SVS) on a Bayesian spatial Poisson general linear mixed model (GLMM) 

described previously [101, 106]. 1,19 

 

Ecological Variables 

To reduce computational burden and improve performance of variable selection procedures, 

we selected only those PUMS variables that were reasonable analogues of TB risk factors 

detailed in a framework by Hargreaves et al. [100].  A total of 14 variables were selected and, 

using survey weights, 15 population estimates were calculated for each PUMA (two versions of 

income were created): proportion renting home, proportion enrolled in the Supplemental 

Nutrition Assistance Program (SNAP) commonly called food stamps, proportion linguistically 

isolated, average number of rooms, proportion with incomplete plumbing, average number of 

units in structure, average family size, proportion with a high school education (or equivalent) 

or higher, median income, average income, average Federal poverty level, average socio-

economic index, average Hauser and Warren socio-economic index, proportion with any health 

insurance, population density.  Households in which “no person age 14+ speaks only English at 

home, or no person age 14+ who speaks a language other than English at home speaks English 

‘Very well’…” are categorized as linguistically isolated; variable definitions are available from 
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IPUMS and other sources [26]. Population density was calculated by estimating the population 

by PUMA using survey weights for the entire study period and dividing by the number of years 

in the study period and the number of square miles in the associated PUMA.  Our criteria for 

what constituted a reasonable analogue were subjective, but given our goal of constructing a 

prediction model, we were generally inclusive.  Later analysis assessed the predictive value of 

each variable and managed issues arising from variable correlation.  Certain variable pairs were 

known a priori to be correlated, for example median income and proportion with high school 

education or higher as well the socio-economic index and the Hauser and Warren socio-

economic index, but both members of the correlated pairs were included because statistical 

methods could better determine which member of the pair (if either) was more predictive of 

the outcome.  Note that some variables were assessed at the individual level and others at the 

household level.  Household level attributes, such as average number of units in structure, were 

attached to individuals.   All ecological variables were estimated for the study period except for 

proportion with any health insurance which had data for 2008-2011 only.  A total of 5,447 cases 

were drawn from the surveillance system with diagnosis dates between 2005 and 2011.  We 

excluded 1,008 (19%) U.S.-born cases  and 494 (9%) cases due to missing data or definition 

incompatible with denominator data: 26 cases with missing or unknown country of birth, 20 

cases that were in correctional facilities (or missing this variable) and diagnosed in 2005, 16 

cases that were in long-term care (or missing this variable), 277 cases that were homeless (or 

missing this variable) and not housed in group quarters, 13 cases diagnosed in 2005 that were 

homeless and living in group quarters, 14 administrative cases, 112 cases that were foreign-

born but missing years in residence, 15 cases with countries of birth not included in the PUMS 
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data and 1 case that could not be assigned to a PUMA.  Additional cases were excluded in 

spatial analysis, leaving 3,792 cases available. Cases residing in Long Beach or Pasadena were 

not included as those cases were reported to the Pasadena City Health Department and the 

Long Beach Health and Human Services, respectively.   

 

Non-spatial Prediction with Bootstrap Replicates 

After selecting analogues to TB risk factors from PUMS data, two methodological approaches 

were pursued.  The first approach constructed a non-spatial prediction model.  Cross-

correlation of ecological variables was examined via correlation plots and a variance cluster tree 

[107, 108]. Redundancy among ecological variables was assessed using parametric additive 

models available through the redun function of the Hmisc package [107].  Variables were 

eliminated stepwise.  In each round, R2 was calculated for each variable based all other 

variables and the variable with the highest R2 was eliminated.  The process was terminated 

when all variable predictions were below a pre-determined cutoff of R2 = 0.9.  

Individual-level diagnosis data were partitioned into a training dataset with two-thirds of the 

data and testing dataset with the remaining third.  Likewise, denominators were calculated for 

training and testing datasets by multiplying the stratum-specific denominator by 2/3 and 1/3 

respectively.  Ecological variables selected with the redundancy test were entered into a 

negative binomial general linear model (GLM) together with covariates shown to be predictive 

in previous work, namely age, sex, country of birth and years in residence [39, 40, 75].  The base 

model was defined as containing the covariates age, sex, country of birth and years in 
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residence.  This model was then subjected to a stepwise backwards elimination process using 

the Akaike Information Criteria (AIC) on 1000 bootstrap samples of the training dataset.  This 

was achieved using the a custom bootstrap function and the stepAIC functions from the MASS 

packages [109].  To create each bootstrap sample, we randomly selected diagnoses with 

replacement from the individual-level numerator data before aggregating and combining with 

the denominator data.  The negative binomial GLM was modelled on these aggregated data.  

The frequency of selection for each variable was recorded as well as the final AIC of each 

model.  The final model was chosen by establish a cutoff for frequency with which the model 

arose among the 1000 bootstraps.  This reduced model was compared by mean square error 

(MSE) to a model without ecological covariates using one-third of the data reserved for testing 

purposes.  Mean squared error (MSE) is defined as:  

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖))2
𝑛𝑛

𝑖𝑖=1

 

 

Where 𝑦𝑦𝑖𝑖 is the observed value and 𝑓𝑓(𝑥𝑥𝑖𝑖) is the predicted value for the 𝑖𝑖𝑡𝑡ℎobservation of 𝑛𝑛 

total observations [110].  

 

Spatial Prediction with Stochastic Variable Selection 

In the second approach, each diagnosis available in the individual-level data was randomly 

assigned to 1 of 10 partitions following a k-fold procedure [110].  Then, each combination of 
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nine partitions was used to create a training dataset with the corresponding single partition, 

the “hold-out” fold, used to create a test dataset.  The individual case data was aggregated and 

combined with population estimates to create strata-specific numerators, denominators and 

incidence rates by the following covariates: country of birth, age, sex, years in residence.  These 

data were then used to create puma-specific observed cases and expected cases; the expected 

cases were calculated by standardizing observed cases by country of birth, age, sex, and years 

in residence.  A similar operation was done with the corresponding single, “hold-out” partition, 

thus creating both training (9 parts in 10) and testing (1 part in 10) PUMA-specific data 

standardized to the aforementioned covariates.   

 

Similar to prior work, the data were modelled using a spatial Poisson general linear mixed 

model BYM using the ecological variables listed above, though these data were aggregated to 

PUMA strata, instead of PUMA, age, sex, country of birth and years in residence as was done 

previously [101].   The spatial model described previously is commonly used in disease mapping 

applications, but here was extended with stochastic variable selection to assess the predictive 

utility of the ecological variables.  Stochastic variable selection (SVS) applies a mixture model to 

each beta in the linear regression [106, 111].19,25 Following the notation of Kleinschmidt et al. 

and Lunn et al., 𝑂𝑂𝑖𝑖 is defined as the observed number of diagnoses occurring in area 𝑖𝑖; 𝐸𝐸𝑖𝑖 is 

defined as the expected number of diagnoses for the same area [52, 86].  Additionally, we 

define 𝜂𝜂𝑖𝑖 ≡ 𝐸𝐸[𝑂𝑂𝑖𝑖]  and assume that 𝑂𝑂𝑖𝑖 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜂𝜂𝑖𝑖).  The transformed linear regression is 

then: 
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𝑙𝑙𝑙𝑙𝑙𝑙(𝜂𝜂𝑖𝑖) = 𝑂𝑂𝑖𝑖 + 𝛼𝛼 +  𝜷𝜷𝜷𝜷 +  𝜑𝜑𝑖𝑖#(1)  

 

where 𝜷𝜷 denotes the vector of covariate betas, 𝑿𝑿 denotes the vector of covariates and 𝜑𝜑𝑖𝑖 

denotes a spatially-correlated random effects term defined by the following [85]: 

 

𝜑𝜑𝑖𝑖|𝜑𝜑−𝑖𝑖 =  𝑁𝑁 �𝜑𝜑𝚤𝚤� ,
𝜎𝜎𝜑𝜑2

𝑛𝑛𝑖𝑖
 � 

 𝜑𝜑𝚤𝚤� =  
1
𝑛𝑛𝑖𝑖

� 𝜑𝜑𝑖𝑖
𝑗𝑗 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑖𝑖 

 

 

Neighbors of area 𝑖𝑖 were defined with queen-style contiguity [87].  A map of Los Angeles 

County vintage 2000 PUMAs is shown in Figure 1. 

To set up the mixture models for beta, we start with the prior probability of each individual 

possible model which is defined as: 

𝑃𝑃𝑤𝑤 =
1
𝑚𝑚

 

where 𝑤𝑤 is an index for each model and 𝑚𝑚 is the number of models.  The matrix 𝑀𝑀 was 

constructed such that each possible combination of the putative covariates was represented as 

an individual row with 0 or 1 indicating the exclusion or inclusion of the particular variable in 

the specific model:   
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𝑀𝑀 = �
𝑎𝑎11 ⋯ 𝑎𝑎1𝑗𝑗
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑚𝑚
� 

where 𝑚𝑚 is the number of models and 𝑗𝑗 is number of putative covariates. In this case 14 

variables were considered, resulting in 16,384 possible models and thus a 16,384 by 14 matrix.  

Covariate betas were defined by the following mixture model: 

𝛽𝛽𝑗𝑗  ~ 𝑁𝑁�0, 𝜏𝜏𝑗𝑗� 

𝜏𝜏𝑗𝑗(𝛾𝛾𝑗𝑗) = � 
0.1𝛾𝛾𝑗𝑗, 𝛾𝛾 = 1
10𝛾𝛾𝑗𝑗 , 𝛾𝛾 = 0 

𝛾𝛾𝑗𝑗 = 𝑀𝑀[𝑘𝑘, 𝑗𝑗]  

𝑘𝑘𝑤𝑤 ~ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑤𝑤) 

 

The indicator variable 𝛾𝛾, which is confined to the interval (0,1), signifies the degree of support 

for the corresponding variable in the model.  Indicator values near zero connote little support 

for the inclusion of the corresponding variable.  The 𝜏𝜏 mixture essentially ensures that 

covariates with a probability close to 1 are included in the mode and those with probabilities 

close to zero are excluded.  Additional priors were set as follows:   

𝛼𝛼 ~ 𝑈𝑈(−∞, +∞) 

𝜑𝜑 ~ 𝐺𝐺(0.5, 2000 ) 

The model applied to the 10 training datasets.  Each MCMC run had 2 chains of 100,000 

iterations each with a burn-in period of 10,000.  Thinning was not used as many no longer 

recommend the practice [112].  Model diagnostics were calculated including effective size.  

Support for individual variables was assessed by summing 𝛾𝛾𝑗𝑗 all iterations.  Likewise, support 
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for individual models was assessed by summing 𝑘𝑘𝑤𝑤  across all iterations.  Each resulting model 

was compared against the corresponding test dataset to compute an 𝑀𝑀𝑀𝑀𝑀𝑀 and a k-fold cross 

validation metric was calculated using the following: 

𝐶𝐶𝑉𝑉(𝑘𝑘) =
1
𝑘𝑘
�𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

R version 3.4, R Studio version 1.0.143 and variety of packages were used to manage and 

analyze data [51, 55, 57, 58, 60-63, 65, 88-90, 92, 93, 113-118].  Bayesian models were run in 

OpenBUGS version 3.2.2 rev 1012 [52].  

 

Results 
Non-spatial Models 

Correlation plots and tree plots showed highly-correlated pairs among the 15 ecological 

variables chosen.  The redundancy test produced a smaller group of 7 covariates: proportion 

receiving SNAP, proportion linguistically isolated, average number of rooms, proportion with 

incomplete plumbing, average number of units per structure and average income.  The reduced 

set of ecological variables was examined with correlation and tree plots.   

 

Results of the bootstrap process are detailed in tabular form.  The frequency of selection in final 

model by variable for 1000 bootstrap replicates is shown in Table 6.  Age, sex, country of birth 

and years in residence were all forced into the model based on performance in earlier studies 

and, as such, have frequency of selection of 1000 among 1000 bootstrap replicates [75].  The 



 

61 
 

next most frequently selected variables were proportion in SNAP, average Federal poverty 

level, and proportion linguistically isolated all of which were selected for inclusion in more than 

94% of the final models.  In terms of the most frequently selected final models, the model 

including proportion on SNAP, proportion linguistically isolated, population density, average 

Federal poverty level, average family size, and proportion with a high education equivalent or 

higher was the final model among 6% of replicates.  Table 7 includes frequencies of other final 

models.   

 

Model specification, fit and predictive ability for the three non-spatial models are listed in Table 

8.  The minimum model, which was defined based on previous studies, is used as the baseline 

for comparison.  The model constructed by naïve reduction had a moderately improved AIC in 

comparison to the baseline model.  In addition, the model resulting for the bootstrap stepwise 

elimination method was a slight improvement in fit from the naïve reduction model.  However, 

the predictive ability of these models was nearly identical.  After running the models on the 

reserved test data, the mean squared error (MSE) for the minimum model was 0.21.  There was 

negligible difference in the MSE between the baseline model and either the naïve reduction 

model or the bootstrap stepwise elimination model which yielded MSEs of 0.23 and 0.21 

respectively. 

 

Spatial Models 
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MCMC from all 10 folds had reasonable effective sizes for variables of interest (beta, gammas 

and k).  Indicator variables from all proposed ecological variables across all 10 training 

partitions showed more support for average poverty and socio-economic index than other 

variables (Figure 5).  Among proposed models and across all 10 folds, support was highest for 

the model without any ecological variables henceforth called the “null” model (Figure 6).    We 

ran the null model against the reserved test partitions and computed mean squared error for 

each fold and a cross validation metric (Table 9).  MSEs between the non-spatial and spatial 

models are not directly comparable because of differences in included covariates. 

 

DISCUSSION 

TB-related ecological covariates at the PUMA level did not improve prediction of TB disease 

incidence rates in our models.  In contrast to what has been observed in other locales, we did 

not observe correlation between TB incidence rates and TB-related ecological covariates 

specifically those which may serve as proxies for socio-economic status, crowding, population 

density and low access to health care [99, 100, 119-121]. 

 

In both non-spatial and spatial approaches, we were unable to substantially improve upon 

existing models with PUMA-level ecological variables [75, 101].  Results from non-spatial 

prediction showed limited benefit to adding the proposed ecological covariates.  Similarly, 

results from spatial prediction models also showed limited benefit of ecological variables.  Due 

to the preponderance of previous ecological and non-ecological literature showing the 
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association between TB incidence and socio-economic variables, it is reasonable to consider 

that these ecological variables failed to improve the prediction of TB incidence because of the 

lack of specificity among ecological covariates at the PUMA level.  PUMAs are designed to 

encompass approximately 100,000 persons; the amount of variation in socio-economic 

variables among those within a given PUMA is large, even in Los Angeles County where many 

PUMAs are geographically compact.  It is also possible that country of birth and PUMA already 

capture much of the predictive information in the ecological variables tested.   

 

There is some indication that ecological covariates at the census tract level can improve 

prediction of TB incidence [122].  Further research should include attempts using smaller 

geographic areas as well as attachment of ecological variables to strata other than geographies.  

For example, can assignment of ecological variables to country of birth strata improve the 

prediction of TB incidence?   

 

While these avenues may incrementally improve prediction models, we would advocate for the 

collection of socio-economic data on TB cases, specifically the highest grade of education 

attained.  Education level can be easily aligned with the American Community Survey and is 

recognized as a key component of socio-economic status (SES) [123].  Furthermore, national 

standards for TB reporting are revised decennially and new standards will be adopted in 2020.  

Currently, the standard TB surveillance has limited information of socio-economic status, 
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though indication of employment and homeless are available.  Also, a crude SES proxy could be 

created using the type of practice at which the case was first diagnosed. 

 

By collecting socio-economic data at the case level using definitions harmonized to the 

American Community Survey, jurisdictions could calculate incidence rates by socio-economic 

status and adjust for SES in other analyses.  These analyses have a significant advantage over 

ecological studies in that they are not subject to the ecological fallacy.  In addition, 

improvement or changes to TB surveillance should work to include variables that directly align 

with those classifying the population-at-risk.  Domestic TB control programs have increasingly 

drawn attention to the high proportion of cases (85%) estimated to be the result of reactivation 

of latent TB infection.  Together with increased in interest in higher rates of progression to 

disease among persons with medical co-morbidities, such as diabetes, this further recommends 

socio-economic variables because of they can serve as proxies for access to care and quality of 

self-care. 

 

These analyses have a number of limitations.  The most prominent limitation is the lack of 

granularity among the available ecological data.  Misclassification of key variables cannot be 

ruled out and using estimates from different data sources, though both mature, opens the door 

to errors due to the cross-misclassification of data.  Case ascertainment and survey error 

remain important limitations and are discuss fully in prior work [75].   
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CONCLUSION 

This study showed no improvement to TB disease incidence rate prediction models when 

including PUMA-level, socio-economic ecological variables.  This was true both in non-spatial 

and spatial models and using multiple approaches to construct the prediction models including 

bootstrap backwards elimination, stochastic variable selection and k-fold partitioning.  Socio-

economic conditions are known to be important contributors to TB infection and progression to 

disease and these findings represent a failure to detect rather than a detection of absence.  

Improvement in prediction of TB incidence is sought in the expansion of routine surveillance to 

include collection SES data, especially given the importance of access to care among latent TB 

infected persons and the utility of SES data in predicting that access. 
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Table 6: Frequency of selection in final model by variable in 1000 bootstrap replicates 

Variable N 
Age 1000 
Country of birth 1000 
Sex 1000 
Years in residence 1000 
Proportion in SNAP 994 
Average Federal poverty level 957 
Proportion linguistically isolated 944 
Average family size 834 
Population density 752 
Proportion with high school education equivalent or higher 643 
Average Hauser-Warren socio-economic index 486 
Average income 432 
Average socio-economic index 413 
Proportion with incomplete plumbing 389 
Proportion renting 354 
Average number of rooms 232 
Proportion with any health insurance 226 
Average number of units in structure 210 
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Table 7: Heat map of Variable Inclusion and Frequency of final models in 1000 bootstrap replicates* 

   
Model 

 

 
Variables included in model 

 
A B C D E F G H I J K L M N O P 

 

 
Average Federal poverty level 

                  

 
Proportion in SNAP 

                  

 
Proportion linguistically isolated 

                  

 
Average family size 

                  

 
Population density 

                  

 
Proportion with high school education eq. or higher 

                  

 
Average Hauser-Warren socio-economic index 

                  

 
Average socio-economic index 

                  

 
Proportion renting 

                  

 
Proportion with incomplete plumbing 

                  

 
Average income 

                  

 
Proportion with any health insurance 

                  

 
Average number of rooms 

                  

 
Average number of units in structure 

                  

                    

 
Frequency of model in 1000 bootstrap replicates 

 
64 28 24 23 22 22 18 17 11 11 10 10 10 10 10 9 

 
 

Relative Frequency 
 

6% 3% 2% 2% 2% 2% 2% 2% 1% 1% 1% 1% 1% 1% 1% 1% 
 

 

 
* models below 1% frequency not displayed 

 
                  



 

68 
 

 

Table 8: Non-spatial models – specification, fit and predictive ability 

Model Variable† AIC MSE 

Minimum Country of birth, age, sex, years in residence 9206.38 0.2136 

Naïve reduction Minimum model plus: 
proportion on SNAP,  
proportion linguistically isolated,  
population density, 
proportion with incomplete plumbing,  
average number of units per structure, 
and average income  
 

9011.44 0.2300 

Bootstrap 
stepwise 
elimination 

Minimum model plus: 
proportion on SNAP, 
proportion linguistically isolated,  
population density, 
average Federal poverty level, 
average family size, 
and proportion with a high education equivalent or 
higher 
 

8990.00 0.2079 

† Variables shared by the naïve reduction model and the bootstrap stepwise elimination model 
are highlighted in grey 
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Figure 5: Posterior Frequency of Variables by Fold
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Figure 6: Posterior Proportion by Fold for top 10 Most Frequent Models across All Folds 
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Table 9: Summary of Mean Square Error and Cross Validation Metric for Spatial Models 

Fold (𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖))2 MSE 

1 436.468 0.693 

2 343.154 0.545 

3 270.435 0.429 

4 479.420 0.761 

5 438.125 0.695 

6 334.141 0.530 

7 439.771 0.698 

8 389.847 0.619 

9 343.040 0.545 

10 327.570 0.520 

 

 

 

Sum of MSE CV 

All Folds 6.035 0.603 
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Conclusion 

This thesis examined TB disease incidence among foreign-born persons in Los Angeles County, 

2005-2011 using three analytical approaches.  In the first approach, we examined TB incidence 

rates using non-spatial data only.  The main conclusions of the non-spatial analysis are that: 1) 

TB disease incidence rates vary substantially by country of birth and therefore country-of-birth-

specific incidence rates should be reported whenever possible; 2) TB disease incidence rates by 

country of birth can be calculated easily using available data from TB surveillance and the 

American Community Survey; 3) Poisson and Negative Binomial distributions are reasonable 

approximations of TB disease incidence provided that the proportion of recent transmission is 

low and there are sufficient covariates such that over-dispersion is limited;  and 4) uncertainty 

in Census-derived population estimates used in the incidence rate calculations does not in this 

case affect point estimates and has limited effect on credibility intervals.   

In the second approach, we examined TB incidence rates this time recognizing the spatial 

context of the disease.  From the spatial analysis we conclude that: 1) TB disease incidence 

rates are heterogeneous across Los Angeles County even when accounting for important 

covariates such as age, sex, country of birth and years in residence; 2) unadjusted TB disease 

incidence rates estimation is limited by sparse data but this issue can be mitigated using spatial 

smoothing; 3) spatial models, building on non-spatial models from the first analytical approach, 

are reasonable approximation of this communicable disease. 

In the third and final approach, we constructed prediction models building on non-spatial and 

spatial models.  The main conclusion of this approach was that PUMA-level ecological variables, 
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including poverty, linguistic isolation and educational attainment among others, did not 

improve the prediction over simpler models.  Others have reported improvements in prediction 

using census tract ecological variables.  It remains to be seen whether ecological variables can 

reliably improve prediction models for TB disease incidence rates.   

In context, these results identify and fill a notable gap:  country-of-birth-specific TB disease 

incidence rates are not regularly reported at the local, state or national level.  We have shown 

here that calculating these rates is relatively straightforward and that necessary data for the 

denominator is accessible.  Concerns about further modelling of TB disease incidence rates with 

standard distributions in count models are justified.  However, we show empirically that 

standard distributions perform well in this context, presumably due to the low proportion of 

cases estimated to result from recent transmission.   Together with careful construction of 

count models and diligent use of model diagnostics, we believe standard distributions can 

reliably be used and reasonable concerns regarding these methods can be addressed.  We have 

also shown that we need not–and perhaps should not–be constrained to county geographies 

when analyzing TB incidence data even when including country of birth in the analysis.  With 

this additional granularity, sparse data can easily limit analyses but with the application of 

spatial smoothing, we can extract useful information while addressing issues arising from 

sparse data.  Finally, in an effort to improve the prediction of TB incidence rates, we have 

shown that PUMA-level ecological variables failed to improve both simple non-spatial models 

and more complex spatial models.  While we still believe that ecological variables can improve 

prediction of TB incidence, we are forced by this result to consider repeating these efforts using 

alternate geographies and perhaps a wider range of ecological predictors. 
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Appendices 

Appendix 1: Tuberculosis 2009 Case Definition – CSTE position statement 09-ID-65 [124, 125] 

Tuberculosis (TB) (Mycobacterium tuberculosis)  
2009 Case Definition 

CSTE Position Statement(s) 

• 09-ID-65 

Clinical Description 

A chronic bacterial infection caused by Mycobacterium tuberculosis, usually characterized 
pathologically by the formation of granulomas. The most common site of infection is the lung, 
but other organs may be involved. 

Clinical Criteria 

A case that meets all the following criteria: 

• A positive tuberculin skin test or positive interferon gamma release assay for M. 
tuberculosis 

• Other signs and symptoms compatible with tuberculosis (TB) (e.g., abnormal chest 
radiograph, abnormal chest computerized tomography scan or other chest imaging 
study, or clinical evidence of current disease) 

• Treatment with two or more anti-TB medications 

• A completed diagnostic evaluation 

Laboratory Criteria for Diagnosis 

• Isolation of M. tuberculosis from a clinical specimen,* OR 

• Demonstration of M. tuberculosis complex from a clinical specimen by nucleic acid 
amplification test,** OR 

• Demonstration of acid-fast bacilli in a clinical specimen when a culture has not been or 
cannot be obtained or is falsely negative or contaminated. 

Case Classification 

Confirmed 
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A case that meets the clinical case definition or is laboratory confirmed 

Comments 

A case should not be counted twice within any consecutive 12-month period. However, a case 
occurring in a patient who had previously had verified TB disease should be reported and 
counted again if more than 12 months have elapsed since the patient completed therapy. A 
case should also be reported and counted again if the patient was lost to supervision for 
greater than 12 months and TB disease can be verified again. Mycobacterial diseases other than 
those caused by M. tuberculosis complex should not be counted in tuberculosis morbidity 
statistics unless there is concurrent tuberculosis. 
 
*Use of rapid identification techniques for M. tuberculosis (e.g., DNA probes and mycolic acid 
high-pressure liquid chromatography performed on a culture from a clinical specimen) are 
acceptable under this criterion. 
 
** Nucleic acid amplification (NAA) tests must be accompanied by culture for mycobacteria 
species for clinical purposes. A culture isolate of M. tuberculosis complex is required for 
complete drug susceptibility testing and also genotyping. However, for surveillance purposes, 
CDC will accept results obtained from NAA tests approved by the Food and Drug Administration 
(FDA) and used according to the approved product labeling on the package insert, or a test 
produced and validated in accordance with applicable FDA and Clinical Laboratory 
Improvement Amendments (CLIA) regulations. 
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Appendix 2: Quick guide to population estimates by country of birth 

1) Navigate to American Factfinder Advanced Search, https://factfinder.census.gov 

2) Enter “B05006” into table name box 

3) Select “B05006: PLACE OF BIRTH FOR THE FOREIGN-BORN POPULATION” from available 
selections 

4) Enter jurisdiction for which you have case counts by country of birth 

5) Select the standardized jurisdiction name from selection 

6) From resulting table list, select appropriate year/table 

a. For one year of case counts, choose the appropriate year and the dataset 
marked “ACS 1-year estimates”, e.g. “2015 ACS 1-year estimates” 

b. Choose the appropriate year and dataset marked “ACS 5-year estimates.”  ACS 5 
year estimates are labelled with the final year of data collection.  For example, 
the 2015 5-year estimates represented data from 2011-2015 averaged. 
Equivalent to one year estimate but with smaller MOE 

7) Download data 

  

https://factfinder.census.gov/
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Appendix 3: OpenBUGS Model code 

model{ 
  for (i in 1:numrec) { 
 
    numer[i] ~ dpois(mu[i]) #Poisson numerator declaration 
 
    # alternatively negative binomial numerator declaration: 
    # numer[i] ~ dnegbin(p[i], r) 
    # p[i] <- r/(r + mu[i]) 
 

 
    log(mu[i]) <-  
      alpha +   
      beta.cob[cobn[i]] +  
      beta.age[agecatn[i]] +  
      beta.sex[sexn[i]] + 
      beta.year[yearn[i]] + 
      beta.yres[yres_catn[i]] + 
      log(denom[i])  
  } 
   
   
  alpha ~ dnorm(0,0.00001) 
   
  beta.cob[1] <- 0 
  for (j in 2:numcob) { 
    beta.cob[j] ~ dnorm(0,0.001) 
  } 
   
  beta.age[1] <- 0 
  for (k in 2:numage) { 
    beta.age[k] ~ dnorm(0,0.001) 
  } 
   
  beta.sex[1] <- 0 
  for (m in 2:numsex) { 
    beta.sex[m] ~ dnorm(0,0.001) 
  } 
   
  beta.year[1] <- 0 
  for (n in 2:numyear) { 
    beta.year[n] ~ dnorm(0,0.001) 
  } 
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  beta.yres[1] <- 0 
  for (p in 2:numyres) { 
    beta.yres[p] ~ dnorm(0,0.001) 
  } 
} 
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