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ABSTRACT

Genome-wide expression profiling is a powerful
15 tool for implicating novel gene ensembles in cellular

mechanisms of health and disease. The most popular
platform for genome-wide expression profiling is
the Affymetrix GeneChip. However, its selection of
probes relied on earlier genome and transcriptome

20 annotation which is significantly different from cur-
rent knowledge. The resultant informatics problems
have a profound impact on analysis and interpreta-
tion the data. Here, we address these critical issues
and offer a solution. We identified several classes of

25 problems at the individual probe level in the existing
annotation, under the assumption that current
genome and transcriptome databases are more accu-
rate than those used for GeneChip design. We then
reorganized probes on more than a dozen popular

30 GeneChips into gene-, transcript- and exon-specific
probe sets in light of up-to-date genome, cDNA/EST
clustering and single nucleotide polymorphism infor-
mation. Comparing analysis results between the ori-
ginal and the redefined probe sets reveals �30–50%

35 discrepancy in the genes previously identified as dif-
ferentially expressed, regardless of analysis method.
Our results demonstrate that the original Affymetrix
probe set definitions are inaccurate, and many con-
clusions derived from past GeneChip analyses

40 may be significantly flawed. It will be beneficial to
re-analyze existing GeneChip data with updated
probe set definitions.

INTRODUCTION

While extensive attention has been devoted to improving the
45accuracy and sensitivity of the statistical algorithms used

to estimate gene expression levels and to detect differential
expression in GeneChip-based expression analyses (1–4), pro-
blems related to probe and probe set identity likely lead
to significant errors, especially under conditions where expres-

50sion changes are not dramatic. GeneChips for expression
analysis use probe sets containing 11–20 pairs of 25mer oli-
gonucleotides to represent a target gene or transcript. Each
oligonucleotide pair consists of an oligo with perfect match to
a target sequence region (PM probe) and another oligo with a

55single base mismatch in the center of the oligo (MM probe)
to the same target region. Although Affymetrix utilized the
most complete information available at the time of GeneChip
design, tremendous progress in genome sequencing and anno-
tation in recent years renders existing GeneChip probe set

60designs suboptimal. For example, when the HG-U133 chip
set was designed, the human UniGene Build 133 contained
�2.8 million cDNA/EST sequences and the human genome
sequence was only �25% complete (5). Currently, the human
UniGene builds contain over 5 million sequences and the

65human genome build 35 has 99% of the euchromatic portion
of the genome sequenced (6). Our analysis indicates that many
of the old probe sets do not faithfully reflect the expression
levels of a significant number of genes in a given tissue due to
several informatics-related issues which impact probe identity.

70It should be pointed out that three recent papers also investi-
gated some of the problems for the HG-U133A, HG-U95A
and HG-U133 Plus 2.0 GeneChips but no systematic solution
was provided (7–9). For example, Harbig et al. re-annotated
37% of the probes on the HG-U133 Plus 2.0 array based on
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BLAST sequence match. They also envisioned several ways to
automate the GeneChip probe annotation process and called
help from the bioinformatics community. Here, we present a
user-friendly solution compatible with all existing GeneChip

5 analysis software. The impact of the updated probe set defini-
tion on the interpretation of GeneChip data is also evaluated
using a public domain data set.

METHODS

Generation of reorganized probe sets based
10 on the UniGene database

We want to describe the procedure for generating the UniGene-
based probe set definitions first since the UniGene database is
the most widely used gene classification system and most
researchers will first map the GeneChip results to the UniGene

15 database in order to understand the biological significance of
the GeneChip data. Generating UniGene-based probe sets is
complicated because UniGene clusters often contain multiple
sequences of unknown reliability and strand direction.

The following are the steps in our UniGene probe set
20 re-organization process. These steps are applied in the order

presented.
(i) Perform sequence alignments. There are two components

in this step: (a) map all GeneChip probe sequences to indivi-
dual sequences in UniGene, dbSNP and the genome sequence

25 of the corresponding species. Only perfect matches are
retained. (b) Align all sequences in the UniGene database
to the most current genome assembly of the corresponding
species. Since UniGene clusters can frequently contain
sequences from other genes, we will use the genome alignment

30 results in later steps to provide some easily automatable
cleanups.

(ii) We require each probe in a probe set should only have
one perfect match with the corresponding genome sequence.
This may exclude probes that also match a non-transcribed

35 region in the genome, but this filter is not dependent on the
completeness of genome annotation or cDNA/EST sequence
collection and, therefore, should be more stable in the long
term. The ubiquitous presence of non-coding transcripts also
supports the use of this somewhat more aggressive strategy

40 (10). Given the fact that only 10% or less probes are eliminated
by this criterion, we believe the slight drop in statistical power
for each probe set is a worthwhile price for the gain in the
confidence in the final results.

(iii) Because EST sequences are subject to a relatively high
45 error rate, we require a probe to perfectly match a genomic

region that can be aligned with mRNA/EST sequences col-
lected in the UniGene database. Probes with perfect match
only to EST sequences but not to the corresponding genomic
sequence will not be included in the final probe sets. An

50 exception to this rule is exon–exon junction probes with per-
fect match to the mRNA reference sequences in the same
UniGene cluster. We add such exon–exon junction probes
back to the corresponding probe set and assign the lowest
probe pair number(s).

55 (iv) In order to ensure that a probe is specific for one Uni-
Gene cluster, we eliminate probes with multiple matching
cDNA/EST sequences that can be assigned to more than
one UniGene cluster. Our previous requirement for genomic

sequence alignment can reduce false non-specific probes
60caused by erroneous EST sequencing or contaminating EST

sequences. Although this filter may remove good probes due to
errors in UniGene clustering, it will guarantee that every probe
set is consistent with current UniGene clustering.

In theory, a probe with the potential to hybridize with
65transcripts from more than one gene is still useful if the unin-

tended transcripts are not expressed at a level that leads to
significant probe signal interference in a given tissue or sam-
ple. However, while tissue- or sample-dependent probe set
definitions can increase GeneChip probe utilization, the sim-

70plicity and the consistency of a tissue/sample-independent
probe set definition should be more advantageous in most
situations.

In the ideal situation, a gene-specific probe set should
only contain probes whose sequence will be present on the

75shared sequences of all splicing products from the same gene,
as the signal level of such a probe set will not be influenced
by the alternative splicing in different tissues or individuals.
For most genes, current knowledge of potential alternative
splicing products is far from complete. Thus, we choose

80to pool all probes targeting the same gene for the definition
of a gene-specific probe set. We believe the gene-based probe
set definition is useful for evaluating the overall transcription
activity of a gene, which is in fact claimed in most microarray
research papers. Potential alternative splicing events can

85conceivably be explored by our transcript- or exon-specific
probe sets. Since some researchers prefer to examine probes
targeting at the 30 end of transcripts, we also created probe sets
that contain no more than 11 probe pairs at the most 30 end.

(v) Except for genes with known mRNA/reference
90sequences, we require all probes in each probe set be aligned

in the same direction on the genome, as old probe sets repre-
senting the same gene can sometimes target different strands
of the same transcript. This constraint ensures the directional
homogeneity of newly defined probe sets during the merging

95of probes from multiple old probe sets. Probes with perfect
match to the same genomic region but in different directions
are separated into two probe sets if there is no mRNA/refer-
ence sequence in the UniGene cluster for determining the
transcription orientation on the genome.

100(vi) We also require that probes targeted to the same
UniGene cluster be aligned continuously on the genomic
sequence in the same direction. For example, if probes rep-
resenting a UniGene cluster are distributed across different
genomic regions or chromosomes, the largest continuous set

105of probes will be used to represent this UniGene cluster. All
other probes intermingling with probes targeting different
UniGene clusters will be omitted from the final probe set.

An exemption to this rule is when an mRNA reference
sequence in a UniGene cluster can be aligned to diff-

110erent genomic locations, as mRNA reference sequences are
probably more reliable than the current version of genome
assembly.

(vii) Each probe set should contain at least three probe pairs.
Targets that cannot be represented by at least three probe pairs

115are eliminated in the final probe set definition. This threshold is
largely arbitrary, but a probe set with three probe pairs should
satisfy the minimum requirements of most probe-level analy-
sis algorithms. In our new UniGene probe set definitions,
probe sets containing three or four probe pairs account for
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<10% of the all probe sets. The size of most probe sets are�1·
or 2· of the original probe set size on a given GeneChip (e.g.
�11 or 22), although some probe sets can have several dozen
probe pairs due to the redundancy of original GeneChip probe

5 sets described before.

Generation of Refseq, DoTS, Entrez gene, ENSEMBL gene,
Transcript and Exon probe sets. Generation of custom probe
sets for these target types is much easier since each target
sequence and direction are well-defined in the corresponding

10 databases. After identifying all perfect match probes on a
GeneChip to the corresponding target sequences, we remove
probes with more than one perfect hit on the corresponding
genomic sequence and we also require each final probe set
that contains more than three probes. The 30-focused probe sets

15 only contain the most 30 eleven probes in the corresponding
gene or transcript definitions.

Generation of allele-independent probe sets. In order to
reduce the noise caused by single nucleotide polymorphisms
(SNPs) in different samples, we also generated probe sets

20 by removing all probe pairs known to have allele-specific
base in the central 15 bp region of either the Perfect
Match or the Mismatch probes. Of course, unknown high
heterogeneity SNP sites may still cause high noise for some
probe sets.

25 Naming of the final probe sets. If a probe passes our selection
criteria, it is added to a preliminary pool of probes for the same
target (gene, transcript or exon) based on the target definition
in the corresponding databases. As described above, there
can be additional criteria before generating the final probe

30 set, such as only retaining the most 30 11 probes or the removal
of allele-specific probes. An initial probe set does not lead to
a final probe set if it only contains one or two probes. The
final probe set will have the corresponding target name in the
related database. Following Affymetrix’s nomenclature, we

35 add ‘_at’ at the end of the sequence ID name. Consequently,
Hs.10000_at, Mm.1111_at, NM_12235_at, ENSG00003456_
at, etc., can be probe set names in the corresponding custom
CDF files.

Assignment of the best match accession number to probe sets.
40 Since many of the non-GenBank accession number-based

probe set Ids, such as UniGene ID and ENSEMBL transcript
ID, are not very stable, we also assign a GenBank acces-
sion number to all gene- and transcript-specific probe sets,
including the original GeneChip probe sets, by identifying

45 the accession number for the most reliable short sequence
that has the highest percentage of probe matches for the
corresponding probe set. Among the sequences with the
same top probe hit rate for a given probe set, the order of
sequence selection is Refseq > cDNA > EST. If there is still a

50 tie, the shortest sequence is selected. There are a number of
situations where the above procedure still leads to multiple
sequences and we simply pick the accession number with the
lowest alphabetic order as the designated best accession
number for a probe set.

55 All procedures described above are implemented on a
4· dual opteron/8 GB memory cluster and a dual Itanium
Oracle server with 16 GB of memory. We usually generate
a new CDF build every 3–4 months and each build takes

�10 days to finish on our current setup. A total of six custom
60CDF builds have been generated since early last year.

Use of custom CDF. Custom CDF files can be easily selected
based on species, Affymetrix GeneChip type, CDF file type
and CDF file format on our CDF download grid. The follow-
ing are three examples that cover all common GeneChip

65probe-level analysis situations.

Example 1. Use custom CDF in Affymetrix MAS5 or
standalone dCHIP: the ASCII format CDF files are for
Affymetrix MAS5 and standalone dCHIP programs. After
unzipping the ASCII CDF package, an ASCII format custom

70CDF file can be used exactly the same way as an Affymetrix
CDF file. Please note that the dCHIP program only accepts
Affymetrix CDF names thus one has to change the name
of a custom CDF file to the corresponding Affymetrix CDF
file name.

75Example 2. Use custom CDF in R environment by calling
custom CDF packages directly on a computer with Internet
link. The following is an example session:

library(affy)
data<-ReadAffy()

80UMRepos<-getOption(‘‘repositories2’’)
UMRepos[‘‘UMRepository’’] ¼ ‘http://arrayanalysis.
mbni.med.umich.edu/repository’
options(‘repositories2’ ¼ UMRepos)
data@cdfName<-‘‘HS133A_HS_UG_5’’

85result<-rma(data)
write.exprs(result, file¼’output.txt’)

Strings in bold italic are the extra commands that a user need
to add in an R session. The custom CDF file name ‘HS133A_
HS_UG_5’ can be replaced with any custom CDF file name on

90the CDF download page (‘CDF file name’, the fourth column
from left on the CDF download grid).

Example 3. Use of a custom CDF in R environment after
downloading the corresponding custom CDF R package onto
user’s local computer.

95Please notice there is an R package for LINUX/UNIX/MAC
OS X and another R package for the Windows platform. After
the correct package is downloaded, one needs to perform the
following actions:

Under Linux/Unix/MAC OS X, use command ‘R CMD
100INSTALL ?.tar.gz’.

Under Windows, select menu ‘Packages->Install package(s)
from local zip files’.

In order to use the custom CDF files in data analysis after
installation, a single line of R command should be added

105to replace the default Affymetrix CDF file. The following
are two examples for different chip and custom probe set
combinations:

data ReadAffy()
data@cdfName<-‘‘HS133A_HS_UG_5’’

110data<-read.affybatch(‘1.cel’, ‘2.cel’);
data@cdfName<-‘HS133B_HS_ENSG_5’.

Again, the CDF name in the bold italic part can be replaced
with the name of any custom CDF you download. The stan-
dard name for each custom CDF is in the fourth column of the

115CDF download grid for a given CDF version.
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RESULTS

Problems in the original GeneChip probe set definition
and annotation

Unreliable representative accession numbers. The prevailing
5 method for associating the latest gene identity and func-

tion annotations to probe sets on GeneChips is to map the
Affymetrix ‘Representative Public ID’ for each probe set to
the current version of gene and annotation databases such as
UniGene (11,12), LocusLink/Entrez Gene (11,12) and Gene

10 Ontology (http://www.geneontology.org). While the use of one
nucleic accession number to represent all probes in a set sig-
nificantly simplifies the handling of GeneChip data, this
approach implicitly assumes that all probes in a probe set
are derived from the same gene as their ‘Representative Public

15 IDs’. This assumption can be problematic because a significant
percentage of probe sets were created based on the so-called
‘consensus sequence’ derived from merging several sequences
in an old UniGene cluster. Probes excluded from the ‘Repre-
sentative Public ID’ sequence can possibly be assigned to a

20 different UniGene cluster because old clusters have been split
in the more recent build. In addition, many of the representa-
tive accession numbers are no longer in the current version
of UniGene/Refseq/EST databases. Our analysis indicates that
between 10 and 40% of the original accession numbers

25 assigned to probe sets on popular GeneChips either match
less than half of the probes in the corresponding set or are
retired from current databases. These probe sets are more
likely to contain probes for non-associated genes or probes
derived from untrustworthy sequences (Table 1).

30 Probe set redundancy. The infusion of new cDNA/EST
sequences results in the merger of some old UniGene clusters,
the effect of which is obvious since 15–50% of UniGene IDs
are represented by more than one probe set based on the
‘Representative Public ID’ assigned to each probe set

35 (Table 1). Since understanding the real biological implication
of each probe set (e.g. target transcripts or exons) is not
straightforward, most researchers just use the latest UniGene
ID associated with the probe set accession number as the
identity of a given probe set, leading to high level of probe

40 set redundancy. There is no standard way to deal with data
from redundant probe sets. Some reports use the average signal

of all probe sets representing the same gene while others
focus on the probe set showing differential expression, regard-
less of the behavior of other probe sets representing the same

45gene. Redundant probe sets will also create bias in function
category-based analysis, such as Fisher’s Exact Test and Gene
Set Enrichment Analysis utilizing Gene Ontology. For most
analyses, a one probe set-to-one target relationship would be
highly desirable.

50Non-specific probes. A significant increase of cDNA/EST/
genome sequence information leads to the possibility a probe
thought to be specific for one gene can actually hybridize
to transcripts from additional genes or non-coding transcripts.
As shown in Table 1, according to the current version of the

55UniGene database, for most GeneChips 10–30% of probe
sets contain at least one non-specific probe. Probe alignment
to genomic sequences also reveals that 5–16% of probe sets
contain a probe(s) with more than one genomic sequence
hit(s). The difference between the UniGene- and genome-

60based criteria may largely be due to UniGene clustering or
EST sequencing errors.

Deleted target sequence. Some probes no longer match any
sequences in the current UniGene database or the genomic
sequence of the corresponding species in either strand direc-

65tion. The major cause is probably the removal of sequences
used for probe design from the new UniGene database.

Genomic location issues. The alignment of single-hit probes
to genomic sequence reveals additional issues at the probe set
level. Some probe sets contain at least one probe with a perfect

70match to a unique sequence in another chromosome or to a
different strand on the same chromosome. Other probes
supposedly representative of different UniGene clusters are
intermingled with each other on the same strand of a given
chromosome. Sequence clustering problems and/or earlier

75genome assembly errors are probably the cause of these
complications.

Furthermore, thousands of probes targeted to the opposite
strand of the same genomic region can be aligned with
cDNA/EST sequences assigned to particular UniGene IDs.

80This is likely due to the use of pure EST clusters in probe
set design, since it is often hard to determine the transcription
direction of a pure EST cluster without a known cDNA

Table 1. Percent of potentially problematic GeneChip probe sets

Chiptype Unreliable
representative
public ID

UniGene
redundancy

Containing probe(s)
with multiple
UniGene hit

Having probe(s)
with multiple
genome hit

With genomic
location or
strand issues

Including
probe(s) with
no known target

Containing
allele-specific
probe(s)

HG-U95Av2 27.9 21.1 36.6 16.2 8.8 4.6 40.5
HG-U133A 14.4 34.2 36.0 16.3 10.1 3.6 42.7
HG-U133B 22.2 31.4 22.3 9.3 10.4 5.0 35.2
HG-U133 Plus 18.2 47.2 26.1 11.6 12.0 4.8 37.6
Human X3P 21.0 50.8 22.8 10.6 10.3 4.8 32.7
MG-U74Av2 42.7 18.8 28.8 16.1 8.8 10.0 11.7
MOE430A 13.3 38.6 30.9 15.0 10.4 4.1 11.0
MOE430B 28.5 31.2 16.5 5.5 9.9 11.6 4.6
Mouse430 20.8 44.7 23.6 10.2 11.2 7.8 7.8
Rn34A 21.3 28.0 17.4 15.8 7.0 8.2 18.1
RAE230A 10.7 17.5 16.5 13.2 8.7 3.6 19.5
RAE230B 32.8 15.1 6.8 7.0 5.0 15.8 7.8
Rat230 21.5 24.8 11.7 10.1 8.3 9.6 13.7
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sequence. Probe sets affected by these issues are listed in
Table 1 as ‘with genomic location or strand issues’. Although
the current genome assemblies are by no means perfect,
a large portion of such location problems is likely caused

5 by shortcomings in earlier version of the UniGene databases
and genome assemblies.

Allele-specific probes. The remarkable increase in known
SNP sites in the human genome in the last few years creates
another type of probe identity issue: some GeneChip probes

10 are allele-specific, and therefore may behave differently across
samples from different individuals. Our analysis indicates
that between 30 and 40% of probe sets on popular human
GeneChips contain at least one probe that overlaps with
known SNP sites in the central 15 bp region of the probe.

15 We focused solely on probes with allele-specific bases in the
central 15 bp region because a mismatch in the central region
is more likely to cause a significant change in binding energy
than a mismatch near the end of a probe sequence (13,14).

Generation of updated probe set definitions
20 and related utility functions

Given the extent of the probe identity problems in the existing
GeneChip probe set definitions, we applied a series of probe
selection and grouping criteria utilizing the latest sequence
and annotation information. We generated new GeneChip

25 library files (CDF files) for popular human, mouse and rat
GeneChips according to different target definitions, such as
UniGene (11,12), Refseq (11,12), DoTS (http://www.cbil.
upenn.edu/downloads/DoTS/), ENSEMBL Gene, Transcript
and Exon (15).

30 All the custom CDFs we generated as well as the statistics
related to the most recently three versions of custom CDFs
can be freely accessed at our custom CDF webpage at http://
brainarray.mbni.med.umich.edu/CustomCDF. These CDF files
are compatible with all popular R analysis packages (e.g.

35 RMA, GCRMA, fitPLM, MAS5, dCHIP, three-step) as well
as independent probe-level analysis programs, such as Affy-
metrix’s MAS5, and Li and Wong’s dCHIP. Since different
programs and operating systems require different custom
CDF data format, we provide custom CDF R packages for

40 LINUX/MAC OS X, Windows R package and ASCII CDFs
for use in non-R programs such as Affymetrix’s MAS5 and the
independent dCHIP program.

In addition to the updated probe set definitions, we provide
four useful files related to each CDF. (i) The probe set pack-

45 age. This package is required for analysis methods such as
GCRMA that utilize probe sequence in low-level signal mod-
eling. (ii) Best accession number list for each gene and tran-
script in the corresponding CDF files. (iii) Probe-genome map
file: list the genomic location of each probe in a probe set on

50 the corresponding genomic sequences. (iv) Probe set group
file: list the probe content of each probe set. Users can easily
find redundancies in related probe set definitions, such as
shared probes among different transcripts from the same
gene. These files are all freely downloadable through our

55 custom CDF page.
Furthermore, we developed a series of auxiliary functions

that will help researchers to compare and explore the details of
each probe set definition, such as mapping custom probe
sets to entries in the corresponding target definition database,

60finding the genomic location for each probe in a list of probe
sets, finding whether probes in a probe set overlap with known
SNPs, examining the probe set content, match probe sets
across different GeneChips, probe set definitions and species.
These web functions are listed under the ‘download custom

65CDF’ link on our main custom CDF page.
Most importantly, users can test the effect of these custom

CDF files on GeneChip analysis results through the ‘GeneChip
Analysis Using Custom CDF Files’ link located on the custom
CDF page. All popular GeneChip analysis functions in the

70BioConductor package (16) and GeneChip cel files deposited
in the NCBI Gene Expression Omnibus database (17) are
accessible through this function. As indicated in this function,
‘public’ is both the username and password for login.

Comparison of the new and old GeneChip probe sets
75based on the UniGene database

Since the UniGene database is the most widely used gene
definition system and is also the foundation for existing
GeneChip designs, we summarized the comparison of our
updated UniGene-derived probe set definitions with the

80original GeneChip probe sets in Table 2. We present the
SNP-containing version of UniGene probe set definitions
here, as we are investigating the pure effect of gene definition
change rather than including the additional effect of removing
allele-specific probes. Table 2 shows that the new annotation

85impacts over 30% of the UniGene IDs for all GeneChips
examined: this percentage includes the sum of all the com-
pletely reassigned UniGene IDs in the new probe set defini-
tions, as well as the probe sets that retain their old UniGene
IDs but with over 50% difference in probe content. Since this

90comparison is performed under the same UniGene build
and does not involve the assignment of the same probe set
to different UniGene in different UniGene builds, it is likely
that at least 30% of genes will have very different absolute
expression values under the new probe set definitions.

95Detailed statistics for differences between Refseq,
ENSENBL gene, Entrez Gene and the original Affymetrix
probe set definitions can be found on our website at
http://brainarray.mbni.med.umich.edu/Brainarray/Database/
CustomCDF/cdfreadme.htm#Statistics_of_Affymetrix_and_

100custom_CDF_files_. Information for exon-based probe set
can also be found by following this link. Researchers inter-
ested in investigating the details of each probe set and com-
paring probe sets derived from different definitions can use the
corresponding web functions on the main custom CDF page

105for querying probe set content, genomic location of probes,
probe match to any cDNA sequences as well as cross-chip,
cross-target definition and cross-species probe set match.

However, the key question is will the new custom probe
set definitions lead to significant variation in the actual

110genes identified as differentially expressed in a GeneChip
experiment? The ultimate purpose of most GeneChip-
based expression profiling experiments is not to quantify
absolute expression levels but to establish a reliable list of
differentially expressed genes.

115Impact of updated probe set definitions on GeneChip
analysis results

Since the HG-U133A chip is one of the most widely used
GeneChips, we use our internal as well as public domain
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HG-U133A data sets to examine the impact of updated probe
set definitions on the differentially expressed gene lists under
various analysis methods and cut-off thresholds. Our analyses
suggest that updated CDF files under most situations can cause

5 between 30 and 40% difference in the final lists of differen-
tially expressed genes for various data sets derived from HG-
U133A chips. Table 3 is a comparison of results derived from
the old Affymetrix probe sets and various new probe set defi-
nitions using a heart tissue expression profiling data set depos-

10 ited in the Gene Expression Omnibus database (GSE974) (18).
We selected this data set since its use of paired samples from
each individual significantly reduced the impact of allele-
specific probes in paired t-tests or false discovery rate analysis,
as our main goal here is to assess the pure effect of gene/

15 transcript definition changes on the interpretation of GeneChip
data. The R implementation of RMA was used to generate
probe set-level data, which were analyzed by the SAMR pack-
age (19) for deriving differentially expressed gene lists under
various false discovery rate thresholds for genes showing at

20 least 20% expression changes. Differentially expressed gene/
transcript lists derived from non-UniGene probe sets are
mapped to UniGene IDs in the same version of the UniGene
database using the best accession number we generated for
each probe set. The average percentage of shared distinct

25UniGene IDs for a given probe set definition pair (e.g. Affy-
metrix and ENSG) is presented in Table 3, as the same Q-value
thresholds usually leads to different number of unique genes
under different probe set definitions. It can be seen that the
consistency between the old and new probe set definition is

30usually �60–70%, regardless of the cut-off thresholds or cus-
tom probe set definitions used. Consequently, 30–40% of
genes thought to be differentially expressed under the old
probe set definitions can be problematic based on current
gene and transcript definitions.

35In order to make sure that the observed probe set effect is not
unique to our routine analysis approach, we tested other ana-
lysis methods, such as MAS5, dCHIP, affyPLM and GCRMA
as well as t-test P-value based gene ranking. Table 4 is a
summary of top-ranked gene list similarity between the Affy-

40metrix and other probe set definitions. Each similarity value
in Table 4 is the average of 50 similarity values for the cor-
responding probe set definition pair (e.g. Affymetrix versus
UniGene) under five different analysis methods (RMA,
MAS5, dCHIP, affyPLM and GCRMA), two gene ranking

45methods (P-value from t-test and Q-value from SAMR) and
five different thresholds (top 10, 20, 50, 100, 200 genes based
on P-value; SAMR Q-value cut-off at 1, 2, 5, 10 and 20%). In
addition, we require all genes/transcripts in the differentially
expressed list to show at least 20% expression change. Regard-

50less of the analysis methods and cut-off thresholds, using an
updated probe set definition always leads to 30–50% differ-
ence in the differentially expressed gene lists for HG-U133A
data (data column 1 in Table 4), suggesting the difference in
probe set content indeed caused the 30–50% difference in

55differentially expressed gene lists.
A closer scrutiny of Table 4 reveals that with the exception

of DoTS-based transcript definitions, results from widely
adopted gene and transcript definitions such as UniGene,
Entrez Gene (originally LocusLink), ENSEMBL gene, tran-

60script and mRNA reference sequences are often more similar
to each other than those from the original Affymetrix probe
set definition. Figure 1 is the dendrogram derived from the
similarity data in Table 4 using the R hclust function at its
default setting. It confirms the fact that the original Affymetrix

65probe set definition is very different from all widely used

Table 3. Percent of shared UniGene ID between Affymetrix and other probe set

definitions under different FDR thresholds

FDR (SAM Q-value)
cut-off (%)

<1 <2 <5 <10 <20

UG 73.0 73.0 65.1 63.9 71.6
3UGa 75.4 75.4 67.8 63.8 68.2
ENTREZG 64.4 54.8 64.1 62.3 71.8
ENSG 70.9 62.3 61.7 62.0 70.5
REFSEQ 66.0 58.1 70.4 62.2 72.2
3REFSEQa 67.5 67.5 67.7 64.5 70.6
ENST 69.7 52.3 67.1 64.8 71.7
3ENSTa 72.9 65.6 65.8 62.9 69.2
DOTS 56.7 61.1 65.6 65.2 67.7
3DOTSa 60.6 61.4 65.0 65.5 69.3

aProbe set definition started with ‘3’ are those only containing the most 30

11 probes if there are more than 11 probes in a probe set.

Table 2. Probe set content comparison between Affymetrix probe sets and updated UniGene probe setsa

Chiptype Total Affymetrix
probe sets

UGID shared by
both definitions

100% Identical
probe sets

Probe set content
difference > 50%

Unique UGID in
Affymetrix probe
set definition

Unique UGID in
updated UniGene
probe sets

HG-U95Av2 12 558 6847 3275 1153 956 1355
HG-U133A 22 212 11 182 4800 1920 1612 657
HG-U133B 22 577 7924 2799 2155 4912 1052
HG-U133 Plus 54 613 18 555 5624 5450 5496 1483
Human X3P 61 297 18 250 6339 5673 5714 1507
MG-U74Av2 12 422 6531 3056 1217 1455 1253
MOE430A 22 626 11 488 5732 1694 1461 753
MOE430B 22 511 7866 2834 1904 3751 1147
Mouse430 45 037 17 215 6487 4074 3356 1507
Rn34A 8740 3934 1538 886 990 595
RAE230A 15 866 9296 4586 1354 2614 722
RAE230B 15 276 6379 2453 1141 3034 890
Rat230 31 042 14 598 5899 2992 4303 1384

aThe UniGene build used in Table 2 is HsUG 183, MmUG 146 and RnUG 142. If several old probe sets are mapped to the same new UniGene ID, probes in these old
probe sets are merged before comparing probe content with the corresponding new UniGene-based probe set.
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gene/transcript definitions at this time. While there must be
problems in the current gene/transcript databases, that fact
that the original Affymetrix probe set definition does not
like any of them while most of the current gene/transcript

5 definitions are more similar to each other suggest that the
original Affymetrix probe set definition is no longer accurate
in the presence of new genome and transcriptome information.

DISCUSSION

Our analyses suggest that the original GeneChip probe set
10 definition is problematic in many aspects based on the current

genome and transcriptome knowledge. We believe the

reorganized probe set definitions should provide more accurate
interpretation of GeneChip data.

Since HG-U133A is actually one of the GeneChips with
15relatively high probe set content consistency between the new

and old probe set definitions (Table 2), it is conceivable that
the use of updated probe set definitions for data from other
chips, particularly those from HG-U133B, mouse_U74Av2
and rat Rn34A will lead to significantly higher gene-level

20differences. A significant alteration in the final differentially
expressed gene list or ranking not only influences the selection
of genes for follow-up studies but also changes the results
for function category-based analysis, such as Gene Set
Enrichment Analysis and the Fisher’s Exact Test using func-

25tional categories (20,21).
We believe combining all probes for a gene provides the

possibility of detecting the overall transcription activity of
a gene. Given our limited understanding of the alternative
splicing events related to various genes, the gene-based

30probe sets should be very useful in expression profiling.
In addition, for all popular probe level analysis algorithms,
such as MAS5, RMA and dChip, more probes in a probe set
usually provide higher statistical power for detecting subtle
changes.

35Researchers interested in examining individual transcripts
may want use our probe set definitions based on Refseq,
ENSEMBL transcript and DoTS. These transcript-based defi-
nitions provide the possibility of detecting splicing variants as
well as the corroboration of findings on different transcripts

40from the same gene. However, we have to point out that these
transcript-targeted probe sets are not transcript-specific, as
probe sets targeting transcripts from the same gene may
share many or even all probes. Under many circumstances,
it is not possible to generate transcript-specific probe sets

45containing at least three probes for genes with multiple tran-
scripts based on probes available on the current generation of
GeneChips.

If a researcher is more interested in alternative splicing, the
most sensitive approach is to use our exon-based probe set

50definitions. Each exon-based probe set only contains probes
in a particular exon without the ‘averaging’ effect caused by
probes on shared exons between different transcripts. We
believe the exon-based probe sets is superior to redundant
Affymetrix probe sets for detecting alternative splicing, as

55Affymetrix redundant probe sets representing the same gene

Table 4. Average similarity between different probe set definitions based on differentially expressed gene lists derived under various cut-off thresholds and analysis

methodsa

Probe set definition AFFY UG 3UG ENTREZG ENSG REFSEQ 3REFSEQ ENST 3ENST DOTS 3DOTS

AFFY 100.0
UG 66.0 100.0
3UG 71.5 77.7 100.0
ENTREZG 65.8 80.1 73.2 100.0
ENSG 66.4 78.4 72.6 87.8 100.0
REFSEQ 67.2 78.5 73.7 89.1 86.5 100.0
3REFSEQ 68.6 72.8 82.3 80.1 78.1 83.4 100.0
ENST 66.0 74.9 71.8 83.7 87.8 87.4 78.4 100.0
3ENST 68.7 68.9 79.6 76.3 79.8 78.2 84.4 82.5 100.0
DOTS 60.0 59.0 58.6 62.2 63.1 62.9 60.8 63.6 62.3 100.0
3DOTS 61.3 57.0 61.0 60.4 61.5 61.7 62.7 62.4 64.2 89.0 100.0

aSimilarity values <70% are in bold.

DOTS

3DOTS

AFFY

3UG

3REFSEQ

3ENST

UG

ENTREZG

REFSEQ

ENSG

ENST

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Height

Figure 1. Hierarchical clustering of probe set definition similarity based on
differentially expressed gene lists derived from the GSE974 data set using
different probe set definitions and analysis methods.
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have very complex relationship with each other and they
usually span a couple of exons as well as overlap with each
other in different ways.

Whether the 30-focused version of CDFs is better than their
5 corresponding full probe set version is still debatable. Our

experience suggests that 30-focused probe sets usually lead
to higher noise. It is also interesting to note that results
from the 30-focused CDFs showed lower consistency among
themselves than results from the corresponding full probe set

10 versions in Table 4.
We think gene-, transcript- and exon-targeted probe sets

as well as the 30-focused version of gene and transcript
probe sets provide different views of the complex transcription
activities related to individual genes. In the solution we devel-

15 oped, a researcher has the freedom of choosing any CDF
or utilizing all CDFs for a more comprehensive analysis.
Comparing results from Affymetrix probe sets and the custom
probe sets may also lead to interesting findings and as
mentioned previously, we provided various web functions

20 to facilitate such exploration processes.
It is conceivable that mapping GeneChip probes to the latest

sequence and annotation can facilitate the development of
novel analysis methods for detecting alternative splicing
and sequence polymorphism related to hundreds or thousands

25 of genes in large GeneChip data sets. Without doubt, such re-
analysis and re-interpretation of existing GeneChip data would
not be possible if Affymetrix did not publish GeneChip probe
sequences. The importance of making the actual probe
sequences public was addressed in an open letter from the

30 Microarray Gene Expression Data (MGED) Society recently
and our results strongly support this vital request (http://www.
mged.org/Workgroups/MIAME/MIAME_reporters.pdf).

The possibility of applying different probe set definitions
for the same data set provides a very good way for confirm-

35 ing analysis results under different gene/transcript models.
Although consistency does not equal to truth, the fact that a
set of genes or transcripts can always pass a cut-off threshold
regardless of the probe set definitions used will strongly sug-
gest the reliability of the detected expression changes.

40 It would also be interesting to estimate how much ‘real’
improvement that these custom CDFs may bring to GeneChip
analysis. Although we believe all current gene/transcript defi-
nitions are more accurate than the information Affymetrix
used in existing GeneChip designs, gene/transcript models

45 from different databases are not 100% identical, thus some
of the differences between the new and old CDF may due to
problems in current databases. Comparing the consistency of
results from different probe set definitions will give us a rough
idea about the ‘real’ improvements from these CDF. However,

50 a reliable estimation should be based on the comparison of
results from Affymetrix CDF and custom CDFs that are based
on more stringent gene/transcript definitions, as definitions
using aggressive rules, such as UniGene and DoTS, may con-
tain significant noises. It can be derived from Table 4 that the

55 average consistency of results from the Affymetrix CDF with
results from the full probe set version (i.e. not the 30-focused
version) of Entrez Gene, ENSG, ENST and Refseq CDFs is
66.4%, while the average consistency of results from the later
four CDFs is 87.1%, suggesting �20% ‘real’ improvement in

60 using CDFs based on more stringent gene and transcript defi-
nitions. We would also like to point out that the impact of

custom CDFs on other GeneChips is likely to be bigger since
HG-U133A mainly represents known genes and transcripts. In
the long run, we expect different gene/transcript definitions

65will converge but their differences with the genome and tran-
scriptome information used by Affymetrix several years ago is
likely to increase. Consequently, updating probe set definitions
based on the latest genome and transcriptome information will
bring more real improvements for GeneChip analysis in the

70future.
In summary, our analyses show that a significant percentage

of existing GeneChip probe set definitions on popular human,
mouse and rat GeneChips are no longer consistent with gene
and transcript models in major public databases. The probe

75identity issue is of critical importance, as it can dramatically
influence the interpretation and the understanding of expres-
sion data derived from GeneChips. We therefore recommend
re-analysis of previous GeneChips data using the more accu-
rate annotation we have made publicly available, and which

80will need to be continuously updated with additional improve-
ment in genome and transcriptome informatics.
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