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1 Introduction

In 1955 Fraenkel-Conrat and Williams [1] showed that the rod-like Tobacco Mosaic

Viruses (TMV) assembles spontaneously in solutions containing the molecular compo-

nents of the virus (capsid proteins and the RNA genomic molecules). Because of their

highly reproducible size and shape and their precise structural organization, the shells

of viruses, or capsids have since found many applications in materials science. Directed

evolution of the capsid proteins allows attachment of particular receptor groups on the

exterior surface. Functionalized viral shells have been used to create metallic wires, so-

lar cells, batteries, and fuel cells [2]. This review discusses the application of methods

borrowed from statistical physics, condensed matter physics, soft-matter physics and

elasticity theory to the self-assembly and material properties of viral capsids.

2 The Structure of Viral Capids

2.1 The Cowpea Chlorotic Mottle Virus

Figure 1 shows the Cowpea Chlorotic Mottle Virus, a roughly spherical virus with a ra-

dius of about 15 nm that infects the cowpea plant. Like TMV, CCMV self-assembles

spontaneously [3]. The physical properties of CCMV have been extensively studied

and it also is applied extensively in material and medical science. Panel A of the fig-

ure shows an image of the CCMV capsid, reconstructed by Cryo Transmission Electron

Microscopy and X-ray Diffraction methods [4, 5]. The regular surface structure of the

CCMV capsid resembles a crystal and, like a crystal, it can be characterized by its sym-

metry operations. Figure 1A is oriented along a two-fold symmetry axis. The capsid also

has three-fold and five-fold rotation axes. The various rotational symmetry operations

coincide with those of the icosahedron (see Fig. 1B). Note that the image of Figure 1A
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Figure 1: Structure and assembly of CCMV. A) Cryo Transmission Electron micrograph

[5]. The red arrows indicate pentamers and hexamers. B) The two-fold, three-fold, and

five-fold symmetry axes of an icosahedron. C) Locations of the capsid proteins in the

CCMV shell. Symmetry-equivalent proteins have the same color (from the lab of J.

Johnson). D) Assembly diagram of CCMV capsids [6]. The horizontal axis is the pH

level. The vertical axis is the salinity.

has the orientation of the first panel of Fig. 1B.

The red arrows in Fig. 1A indicate ring-like structures with apparent six-fold and five-

fold symmetry known as “hexamers”, respectively, “pentamers”. They are composed of

six, respectively, five capsid proteins (CPs). CCMV capsids have in total twelve identical

pentamers and twenty identical hexamers so in total 180 identical CPs. Figure 1C shows

schematically how the 180 proteins are distributed over the shell. Proteins in symmetry-

equivalent positions are indicated by the same color. Sixty pentamer proteins are marked

red. Sixty hexamer proteins are marked green (B) and another sixty blue (C).

Finally Fig. 1D shows the assembly diagram of CCMV capsids in a solution of CPs

[6]. The vertical axis is the ionic strength I, the salt concentration and the horizon-

tal axis is the pH (I ⇠ 0.1 and pH ⇠ 7 under typical physiological conditions). In an

aqueous physiological solution, CCMV CPs form dimers at low protein concentrations
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(typically in the microMolar range). Hexagonal layers or spherocylinders form at higher

concentrations. Reducing the pH to below the physiological level leads to the formation

of CCMV capsids at higher I values and concentric multi-shells at lower I. The fact

that reducing the salinity stimulates aggregation is an indicator that electrostatics plays

an important role in the interactions between CPs. In the Debye-Hückel (DH) theory

of aqueous electrostatics, the range of electrostatic interactions is inversely proportion-

alto I1/2 [7]. The reason for the dependence of CCMV capsids on the acidity level is

discussed below. If viral RNA molecules are included in the solution, then infectious

viruses will assemble at reduced pH. In this review, we will focus exclusively on empty

capsids.

2.2 The Amphiphilic Capsid Protein.

Figure 2 shows schematically the structure of a typical CP as obtained from X-ray

diffraction studies of crystals composed of viruses,[5] (maximum resolution currently

in the range of an Angstrom). CPs are, like all proteins, composed of chains of amino

acids, or “residues”, linked by chemical bonds, together forming the “primary structure”

of the protein. The polymeric backbone is indicated in Fig. 2 as a light gray tube that

winds around inside the prismatic outline [8]. The end points of the primary structure

of a protein are known as the N and C terminals and are indicated in Fig. 2. Parts of

the chain that are highlighted as parallel colored arrows are sections of the main chain

whose residues are linked by hydrogen bonds. These “b sheets” provide rigidity to the

spatial structure of the CP. The CPs of a large number of viruses share this particular

structural motif, which is known as the “jelly roll” [8], even when they may have very

different primary amino acid sequences.

The top and bottom surfaces of the CP outline are lined with hydrophilic residues,
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Figure 2: Capsid Proteins. A) The jelly roll folding motif (from [8]). The amino acid

backbone is shown as a grey tube while b sheets are indicated by parallel arrows. The

outlined vertical surfaces are hydrophobic while the horizontal surfaces are hydrophilic.

The outlined midplane shows that CPs do not have an up-down mirror plane. B) Attrac-

tive pairing between residues of different capsid proteins (from [9]). C) Three proteins

fit together to form an equilateral triangle with slanted edges. D). Sixty triangles fit

together to form small virus.

some charged, while hydrophobic residues line the vertical sides of the protein. Molecules

that have both hydrophobic and hydrophilic exposed groups are known as amphiphiles.

The phase diagram of amphiphiles has been extensively studied in the context of soft-

matter physics [7] with surfactants and lipids as the favorite examples. Surfactant and

lipids in dilute aqueous solution tend to assemble spontaneously and reversibly into ag-

gregates that may be spherical (micelles and vesicles), planar (e.g. the La phase), or
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three-dimensional (e.g. the L3 phase). These aggregates often constitute minimum free

energy states but they typically are delicate and subject to strong thermal fluctuations [7].

The spontaneous formation of capsids from CPs in aqueous solution has some similarity

with amphiphilic self-assembly, but there are also important differences as we shall see.

The hydrophobic edges of the CPs can be matched together so water molecules are

expelled from the shared interface. In addition, specific residues are capable of pair

formation across the shared interface [9]. CPs have very large electrical dipole moments

with (for CCMV) about ten negative charges on the surface facing the exterior of the

virus and a similar number of positive charges facing the interior. The net electrostatic

charge is however modest and changes sign as a function of the pH level because of

protonation/deprotonation of certain CP residues. Capsid assembly is possible only if

the electrostatic repulsion between two adjacent CP dipoles — which is in the range of

ten’s of kBT — is overcome by hydrophobic attraction [10] 1. The reason that CCMV

capsids do not form under physiological conditions is that in that regime the electrostatic

repulsion is strong enough to overcome the attractive interactions. Reducing the pH

reduces the electrostatic charge of certain CP residues sufficiently to allow for capsid

assembly. Reducing pH also enhances the pairing interactions.

We will need a coarse-grained representation in the form of simple building blocks.

One possible choice is shown in Figure 2B, where a CP is outlined as a prism with a

parallelogram base that has two interior angles of 60 degrees and two interior angles of

120 degree. The vertical surfaces are hydrophobic; the horizontal surfaces hydrophobic.

Three of these prisms can be assembled into a triangular truncated pyramid, as shown in
1The electrical fields surrounding CPs are so strong that DH theory cannot be applied to viral assembly.

Interesting effects of aqueous electrostatics in the strong charging regime, such as counterion condensation

and release, correlation attraction, and overcharging may well play an important role in viral assembly but

this is not yet well understood.
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Figure 2C. By changing the slant of the edges of the blocks, one can fabricate a range

of “deltahedral shells” shells with different radius. The assembly of deltahedral shells

is also a convenient model for studying viral assembly by numerical simulation [11, 12,

13]. The smallest shell of this type is the icosahedron, composed of twenty triangular

blocks, so 60 proteins in total (known as a T =1 shell). The next smallest shell, shown

in Figure 2D, is composed of 60 blocks, so the same number of proteins as for CCMV.

Though this shell does not look much like CCMV, it is in fact a reasonable representation

of the capsid of certain other viruses (such as the noda and picornaviruses). 2

2.3 The Caspar-Klug Construction

One can construct a systematic “crystallography” for deltahedral shells with icosahedral

symmetry of any size [15]. Start from a flat hexagonal sheet composed of triangles and

draw the lattice vector ~A(h,k) = hâ1 + kâs in the hexagonal sheet. Here, {h,k} is a pair

of integers and â1,2 are a pair of basis vectors of the hexagonal lattice (see Fig. 3). Next,

complete an equilateral triangle that has ~A(h,k) as its base. The vertices of the triangle

are lattice sites of the hexagonal sheet. Cut out twenty identical equilateral triangles from

the hexagonal layer and assemble then together in the form of icosahedron. This con-

struction can be carried out for every pair of integers h and k. Figure 3 shows examples

with h = 1,k = 1 and h = 2,k = 1. In general, the size of the icosahedron is determined

by the length of the base vector ~A(h,k). It follows from trigonometry that |~A(h,k)|2

equals T (h,k) = h2 + k2 + hk. The triangulation number, T , specifies the number of

inequivalent CP positions in the lattice. For instance a T = 1 capsid has one class of

lattice positions, with all CPs equivalent by icosahedral symmetry. The T = 3 shell has
2This “building block” description probably leaves out important physics. CPs in solution in solution

are likely to have a different configuration from CPs that are part of a capsid. In addition, CPs that are part

of capsids may exhibit strong structural fluctuations [14].
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Figure 3: Caspar-Klug Construction: T = 3 and T = 7(laevo) shells are constructed from

hexamer lattices by gluing the edges of the folding template. Notice that T = 7 is a chiral

structure, (2,1) 6⌘ (1,2), while T = 3 is achiral.

three inequivalent positions (fig. 1); each icosahedral face is three-fold symmetric, with

each of the three crystallographic units containing one protein from a pentamer (blue in

fig. 1), and two proteins from a hexamer (red and green in fig. 1). Likewise for T = 7

(fig. 3) each crystallographic unit covers a CP from one pentamer and all six proteins

from one hexamer. The total number of proteins is then T CPs per unit times 3 units per

face times 20 faces, or N = 60T , organized into 12 pentamers and 10(T �1) hexamers.

This is the Caspar-Klug (CK) construction that remains the basis of structural virology.

Every virus with an icosahedral shell has a characteristic T -Number. As an example,

Fig. 4 shows a micrograph of the Hong Kong 97 virus, or HK97, a bacteriophage virus

with a double stranded DNA genome [16]. HK97 is quite a bit larger than CCMV. It has

an icoosahedral shell composed of twelve pentamers and sixty hexamers consistent with

a T = 7 shell with h = 2 and k = 1. Interestingly, T = 7 shells are chiral. Construct a
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Figure 4: Cryo-electron micrographs of the HK97 viral capsid. Note that the hexamers

are strongly sheared.

T = 7 shell from the vector ~A(h = 2,k = 1) by taking two steps along the â1 axis of the

hexagonal lattice and then one step along â2. An alternative manner to construct a T = 7

shell is to start from the mirror reflection of ~A(h,k) along the â1 axis, which corresponds

to h = 1 and k = 2. The resulting shell is the mirror image. Using the conventions of

chemistry, they are denoted as laevo and dextro. Because CPs are composed of chiral

amino acids, dextro and laevo shells must have different energies so T = 7 shells should

have a definite handedness. HK97, for example, is laevo. The chirality of HK97 will

play an important role later on.

3 The Statistical Mechanics of Capsid Assembly

The equilibrium self-assembly by “classical” amphiphilic molecules (like lipids and sur-

factants) is well understood through the application of basic statistical mechanics meth-

ods [7] and in this section we apply these same methods to the self-assembly of capsids

by CPs [17].

3.1 The Cluster Size-Distribution Function

The self-assembly of capsids normally takes place under conditions of fixed temperature

and pressure. According to the Second Law of thermodynamics, the Gibbs free energy of
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a solution in a state of thermodynamic equilibrium should be at a minimum with respect

to any free parameters. Assume a dilute solution of sticky-edged building blocks, such as

the truncated triangular pyramids of the previous section. We will call them “particles”.

Let C(n) be the concentration of an n-particle aggregate with n = N >> 1 the assembled

capsid. The Gibbs free energy of a dilute solution of aggregates of all sizes is:

G/V ⇠
N

Â
n=1

{E(n)C(n)+ kBTC(n)(lnC(n)/f0 �1)} (1)

Here, E(n) is the cohesive free energy of an n-particle cluster with E(n = 1) = 0 and

f0 is an undetermined constant. Minimizing G with respect to C(n) under the constraint

that the total particle concentration ÂN
n=1 nC(n) = f is fixed leads to

C(n)/f0 = exp�b [�µn+E(n)] = (C(1)/f0)
n exp�bE(n) (2)

The Lagrange multiplier µ = kBT ln(C(1)/f0) was used to impose the constraint, It can

be identified as the chemical potential of the particles. The resulting relation is known

in physical chemistry as the Law of Mass Action (LMA) . By measuring C(n) one could

— in principle — measure the complete free energy spectrum E(n) of n-particle clusters

(such measurement are done by methods like Size-Exclusion Chromatography3).

First assume the simple case that the concentration of clusters with 1 < n < N is

negligible, so only single particles (n=1) and assembled capsids (n=N) are appreciable.

The two corresponding concentrations are related by f 'C(1)+NC(N). Together with

Eq. 2, there are then two equations for the two unknowns C(1) and C(N). After solving

for C(1) and C(N) one finds that for N >> 1 there should be practically no capsids for f

less than a threshold concentration f ⇤ = f0 exp(E(N)/(NkBT )). At this point the chem-

ical potential µ for the particles in solution equals the binding energy e(N) = E(N)/N

3A gel filtration technique that separates molecules and their aggregates according to size or molecular

weight. See, for example, [18].
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of a particle as part of a shell (for the closely analogous case of micelle formation by

lipids, f ⇤ is known as the “Critical Micelle Concentration” [7]). On the other hand, for

f larger than f ⇤, the fraction f (f) of particles that are part of a capsid rises with f as

f (f) ' 1� f⇤

f . One can formally view f ⇤ as the critical point of an equilibrium phase

transition. Finally, we can crudely estimate the constant f0 for our case by noting that

for E(N) smaller than kBT , capsids should be unstable against thermal fluctuations un-

til the particle concentration is so high that capsids can be stabilized by close-packing.

From this condition we estimate that f0 ⇠ N/R3 with R the radius of the capsid.

The agreement between these predictions and chromatography studies of the self-

assembly of CCMV [18] and other viruses is excellent. The concentration of assembly

intermediates is indeed negligible. From the single fitting parameter: f ⇤ one obtains an

estimate for the cohesion energy �E(N) of a capsid. For CCMV, �E(N) is found to

be of the order of 103 times the thermal energy kbT . That means that e(N), the binding

energy per CP, must be in the range of 3-5 kBT . This surprisingly low value means

that thermal fluctuations must play an important role during viral assembly, with many

forward and backward steps, as is confirmed by simulation studies [11, 12, 13].

So why is the concentration of intermediate-sized protein clusters negligible? It fol-

lows from Eq. 2 that for f ⇠ f ⇤ the relative concentration of half-formed clusters can be

estimated as C(N/2)/C(N) ⇠ exp�b (E(N/2)�E(N)/2). The difference 2E(N/2)�

E(N) is the scission energy, the free energy cost of breaking a capsid up into two equal

sized hemi-spheres. If the characteristic energy scale e(N) for the bond between two

particles is a few kBT then for N ⇠ 100 the scission energy is in the range of tens of

kBT . That means that the concentration of hemispherical assembly intermediates indeed

should be negligible compared to that of fully assembled capsids.
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3.2 The Equilibrium Assembly of Caspar-Klug Icosahedra

It is easy to assemble a T =1 capsid from twenty triangular protein units. However, the

assembly of shells with larger T is not so simple: how do you know when to insert one

of the twelve pentamer along the rim of a growing shell? Numerical simulations show

that assembly of larger T -Number shells requires delicate fine-tuning of the shape of

the building blocks [13]. Even then the yield is low: many assembly events produce

malformed structures. One suggestion is that the CPs could have a complex spectrum of

internal states that are “programmed” to facilitate the assembly process [19]. Alterna-

tively, if the Caspar-Klug icosahedral shells would the minimum free energy structures of

aggregates of CPs then, provided the kinetics is not too slow, annealing by thermal fluc-

tuations should produce the Caspar-Klug structures. What sort of structural fine-tuning

is required of building blocks for that to happen, assuming that there is no complex

spectrum of internal states?

The hexamers and pentamers of Fig. 1 are roughly circular. Many larger viruses as-

semble on spherical surfaces, which are known as “scaffolds”. As a naive model of

capsid assembly, one could think of the hexamers or pentamers as circular disks with

attractive edges placed on a spherical surface. Assume N circular disks are placed on the

surface of the scaffold sphere and that the radius of the sphere is reduced to its smallest

possible value. The close-packed N-disk structure should correspond to the minimum

energy structure of a shell composed of N sticky disks. Finding these structures is known

as the “Tammes problem”, after a Dutch botanist who studied the structure of pollen par-

ticles. Tammes structures exhibit a variety of interesting symmetries [20] but, sadly, the

Caspar-Klug icosahedra are not among them.

Let’s make the model a bit more realistic by distinguishing hexamers from pentamers

by representing them as two different types of particles — denoted by H and P — that
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again condense on the surface of a scaffold sphere. Let the H and P particles interact

via a Lennard-Jones (LJ) interaction where the repulsive part of the LJ potential repre-

sents the resistance of hexamers and pentamers against compression while the attraction

represents the hydrophobic attractive interaction between hexamers and pentamers mi-

nus electrostatic repulsion. H-H, P-P and H-P particles interact via LJ potentials that

have different minimum energy separations. The choice of the minimum energy spacing

is determined by the geometrical construction shown at the top of Fig. 5. Because the

hexagons and pentagons of the CK construction have the same edge length, the ratio of

the radii of the circles that circumscribe pentamers and hexamers is 0.93 and the equi-

librium spacings between H and P particles are chosen to correspond to this ratio. The

depth of the LJ potential e0 between particles should be in the range of 10kBT for the

cohesive energy of a completed shell of 100 particles to be in the range of 1000kBT .

Place again N of these particles on the surface of a sphere and allow the system to

evolve towards a minimum free energy state, for example by Monte-Carlo simulation,

allowing H and P particles to switch identity (an HP chemical potential difference can be

included). The energy E(N,R) of this N-particle system is then minimized with respect

to R in order to optimize the choice of R. Figure 5 shows e(N) = E(N)/N. Recall

that the onset-concentration for capsid self-assembly from solution is determined by the

condition that the chemical potential µ(f) of the building blocks of the capsid equals

e(N). It follows that the minima of the curve e(N) should correspond to the shells that

are formed as the concentration of particles in solution is raised. The plot of e(N) is

quite jagged. The lowest minima are near certain “Magic Numbers”: N=72, 42, and 32.

Self-assembly from solution thus should produce predominantly these structures when

the chemical potential of the components in solution are increased. The minimum energy

structures are shown in Fig. 5. It turns out that each of these structures has exactly twelve
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Figure 5: Left panel: Capsid energy per particle e(N) as a function of the number of

particles. From [21]. Right panel: minimum energy structures. They correspond to the

T =1, 3, 4, and 7 Caspar Klug icosahedra.

P particles and that they are in fact the T =7, T =4, and T =3 Caspar-Klug icosahedra with

72, 42, and 32 hexamers plus pentamers.

What determines whether a T =3, a T =4 shell, or a T =7 shell emerges? Hexagonal

sheets of capsid proteins have a spontaneous curvature due to the lack of up-down sym-

metry of the capsid proteins (see Fig. 2A) [17]. Let the preferred curvature radius be

R⇤ and include a global “bending energy” term of the form (1�R/R(T ))2 that has a

broad minimum at a preferred curvature radius R = R(T ) roughly in the neighborhood

of a T -number shell. The sharp minima of e(N) at the magic Numbers then assures

us that only that T -number shell will form as the solution concentration of the particles

increases. In summary, provided CPs have the ability to form pentamers and hexamers

and provided a hexagonal sheet of CPs has preferred curvature radius that is roughly

in the right range then the Caspar-Klug icosahedron of choice will assemble. It is not

necessary to require the CPs to be programmable. This of course does not explain why
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the T -number structures are so prevalent among viral shells, but that is a question of

evolutionary microbiology.

3.3 The Next Level: Self-Assembly Mark II.

Classical equilibrium assembly theory seems to describe successfully in vitro capsid as-

sembly studies, but there is a problem. Neither the cytoplasm of our cells nor the extra-

cellular fluid surrounding our cells carries, under normal conditions, many free-floating

CPs. In an equilibrium description, viruses should disassemble under these conditions,

which — unfortunately — they do not: virus assembly is clearly an irreversible process.

The in-vitro assembly experiments of empty capsids actually show hysteresis and irre-

versibility as well [22]. If, for example, the CP concentration is reduced back down to

below f ⇤, then capsids should disappear. This, again does not happen 4.

The mechanism behind the exceptional stability of viral capsids, as compared with

traditional self-assembled equilibrium structures composed of amphiphiles, can be illus-

trated by an elegant model for capsid assembly due to Zlotnick [23] where the capsid

is a dodecahedron assembled from twelve regular pentamers with sticky, slanted edges.

There are many different assembly pathways to fit twelve pentamers together to form

a dodecahedron but if one maximizes the binding energy of an n-pentamer partial shell

for each n, then the assembly pathway is unique, apart from trivial degeneracies. This

pathway is illustrated in Fig. 6: Let e be the edge-to-edge binding energy between two

pentamers. Figure 6 gives the energy gain E(n+1)�E(n) when a pentamer is added for

each successive step. The average energy gain for the intermediate steps is about 2.5e

with only a modest variation around the average. However, the energy gain of the very
4In order to re-dissolve self-assembled capsids it is necessary to change thermodynamic conditions, for

example by increasing the pH
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Figure 6: A) Assembly path of a dodecahedral virus constructed from sticky-edged

pentamers. From [18]. The cohesive energy gain of each step is indicated. Exceptional

cases are circled. B) Forward and backward rates of n’th step of the assembly process

written in the form of a polymerization chemical reaction

first step is less, only e , while the energy gain of the last two steps, the “closure” of the

shell, together equals 9e . Let’s take e to be 3kBT , based on the equilibrium assembly

studies discussed above. Then 2.5e ⇠ 7.5kBT and 9e ⇠ 27kBT . The initial “nucleus” for

capsid assembly — two pentamers — is thus rather unstable, the intermediate states are

more stable, while the final closure of the capsid involves binding energies so large that

capsid disassembly by thermal fluctuations may not take place on laboratory time-scales.

The assembly of the dodecahedon can be viewed as an eleven step random walk along

the optimal assembly pathway linking the first and last state.

As a simple generalization, assume a capsid composed of N capsomers that has a

unique N-1 step minimum energy assembly pathway. The energy gain DE for adding

one capsomer is now assumed the same for all assembly intermediates. The exceptions
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are the last step – closure – for which the energy gain is assumed infinite and the first

step – nucleation – for which the energy gain DE0 is less than DE. Finally, the “on-rate”

k+ for adding a capsomer is independent of n, which corresponds to the limit of low CP

solution concentrations where transport is diffusion limited. This model is analytically

tractable [24] by the methods of random-process theory [25]. Define C(n,t) to be the

time-dependent concentration of a partial shells composed of n capsomers and define

the assembly current J(n, t) to be the net rate at which n-mers are transformed into n+1

mers at the nth step. The assembly current then can be expressed as the difference

between an assembly and a disassembly term:

J(n, t) = k+C(1, t)C(n, t)� k�(n)C(n+1, t) (3)

with k�(n) the disassembly or “off-rate” and k+ the on-rate. Because the number of

capsomers in solution is conserved, there is a conservation equation for each site of the

assembly pathway:

∂C(n, t)
∂ t

= J(n�1, t)� J(n, t) (4)

which is the Master Equation of the stochastic process. It must be solved under the con-

straint ÂN
n=1 nC(n)= f . Under conditions of thermal equilibrium all currents J(n, t) must

be zero because of time-reversal symmetry, the condition of Detailed Balance. The set of

conditions J(n, t) = 0 should be consistent with the equilibrium cluster size distribution

C(n) µ exp(�µ(f)n+E(n)) discussed in the previous section. For the intermediate

steps, this leads to

k�/k+ = f0ebDE (5)

independent of n. The exception is the off-rate rate for the dimer state k�(1)/k+ =

f0ebDE0 , which is higher. In the continuum limit of large N, the Master Equation reduces
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to a variant of the Advection-Diffusion Equation 5:

∂C(n, t)
∂ t

=V (t)
∂C(n, t)

∂n
+D(t)

∂ 2C(n, t)
∂n2 (6)

Here, V (t) = (k+C(1, t)� k�) is the assembly velocity while D(t) ' 1/2(k+C(1, t) +

k�)+ .. acts as a assembly diffusion coefficient. The capsomer concentration C(1,t) must

obey the self-consistency condition C(1)+NC(N)+
R N�1

n=2 nC(n)= f . The rate equations

for C(1,t) and C(N,t) must be maintained separately in their discrete form (see Eq.4). e.g.

∂C(1,t)
∂ t =�k+C(1, t)2+k�(1)C(2, t) from which it follows that if the dimer breakup rate

k�(1) is high then the monomer concentration C(1, t) decreases only slowly.

Assume that at time t=0 there are only monomers in solution with concentration f . If

f > k�/k+, then a shock front emerges in configuration space at n=1 that moves with a –

time-dependent – velocity V (t). Because of the diffusion term, the shock front becomes

more rounded in time. After the shock front has reached N, capsid assembly starts. The

“waiting time” is thus of the order of N/(k+f � k�). The advection velocity V(t) dimin-

ishes with time as the monomer supply is depleted and stops when C(1)' k�/k+ when

V ' 0 and D ' k�. The Master Equation thus reduces to the diffusion equation, a much

slower form of transport as compared to front propagation. The assembly intermediates

are now in a state of quasi-equilibrium with respect to the monomer concentration and

this stifles capsid assembly, apart from the residual diffusion current. If the front stops

before reaching N, then this corresponds to a case where many partial capsids form but

few completely assembled shells. This happens when the dimer disassembly rate k�(1)

is decreased significantly, which increases the magnitude of the assembly current.

The fraction of capsomers in capsid form in this quasi-equilibrium state is approxi-

mately f (f) ' 1�C(1)/f . This expression has the form of the Law of Mass Action

if one identifies C(1) with the CMC. If one compares C(1) ' k�/k+ ' f0 expDE/kBT

5see Advective Diffusion Equation, lecture notes by Scott A. Socolofsky and Gerhard H. Jirka
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with the actual CMC f ⇤ = f0 expE(N)/(NkBT ) then one sees that the quasi equilibrium

state obeys the Law of Mass Action for a fictitious capsid with E(N)/N = DE. Numer-

ical solution of specific models reach the same conclusion [22]. Assembly shock fronts

have been seen as well in simulations [26]. Measurements of C(N, t) by Small-Angle

Light Scattering [27] for papillomavirus assembly kinetics are also consistent with the

“quasi-reversible assembly-line” model outlined here. If correct, this means that the

free energies measured from chromatography studies do give us information about the

energetics of the intermediate reversible states, but not about the total capsid free energy.

From the viewpoint of material science, this hybrid form of assembly can be viewed

as a brilliant improvement on equilibrium self-assembly. Just as for equilibrium assem-

bly, the intermediate reversible assembly steps allow for a “cautious” assembly where

the modest energy gain per step allows for reverse steps, and hence for the correction

of the assembly errors as discussed below. But unlike equilibrium assembly, the final

irreversible step (or steps) that complete(s) assembly prevent destruction of assembled

capsids by thermal fluctuations when the concentration of assembly units in solution

goes to zero.

3.4 The Death of a Traveling Pathway and Entropic Stabilization.

It would seem that a minimum-energy assembly pathway provides a royal road for error-

free, irreversible assembly of robust viral shells. Natural selection surely must have pro-

duced such a pathway for every viral shell. Or has it? The assembly of small capsids does

appear to be guided by minimum energy pathways. However, both experimental[28] and

numerical [29, 30] studies of the assembly of small capsids indicate that the minimum

energy pathway actually has side-branches, dead-end streets in the form of aberrant,

malformed structures that act as kinetic traps. Numerical simulations of the simple mod-
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els that include all possible ways of putting the building blocks together [29, 30] show

that the effects of kinetic traps become more noticeable as the assembly velocity V(0) of

the last section increases and also as the complexity of the structure increases. Natural

selection appears to have minimized the effects of side-branching for the assembly of

small viruses but it has certainly not succeeded in eliminating them altogether, which

would appear to be mathematically impossible.

As the size of the capsid increases, the very concept of a minimum-energy pathway

starts to break down. Construct a large shell by adding hexamers one-by-one along the

rim of a growing circular nucleus. In the next section we will discuss that, with certain

restrictions, large shells can be described by continuum elasticity theory and we can

apply it to the growing nucleus. Recall that sheets of CP hexamers have a spontaneous

curvature so the nucleus will starts to curve in, which generates elastic stresses. To be

specific, consider a 12 hexamer nucleus of a T =13 shell centered at a 3-fold symmetry

site (see Fig. 7. This is the point where it is necessary to insert pentamers if one wants

to construct a T =13 shell. It in fact follows from continuum elasticity theory that the

curvature-induced elastic energy of the nucleus can be reduced by inserting pentamers.

Could the release of elastic stress determine a minimum energy pathway for the assembly

of a T =13 shell ? Figure 7 shows the elastic energy of the twelve-hexamer nucleus [31]

with the preferred curvature set equal to that of a T=13 shell. The elastic energy of

each hexamer computed numerically is indicated (in arbitrary units). The elastic moduli

were given values that would be consistent with those measured by micromechanical

means. In order to end up with a T-13 shell, three equidistant pentamers must now be

inserted along the rim. However, Fig. 7 shows that when a pentamer is inserted there

is a large increase of the elastic energy of the adjacent hexamers Inserting a ring of

pure hexamers would in fact be the minimum energy pathway at this stage of assembly,
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Figure 7: Growth nuclei of a T =13 shell. The energy of the nucleus is computed from

continuum elasticity theory. The elastic energy of individual capsomers is indicated

(arbitrary units). Left panel: twelve hexamers. Right panel: three pentamers are added as

required for a T =13 shell. The elastic energy of the hexamers adjacent to the pentamers

is strongly increased.

so T =13 shells could not form. For no reasonable value of the elastic parameters is it

possible to have the pentamers correctly inserted. This resut is not a result specific to this

particular model. In continuum elasticity theory, pentamers acts as 5-fold disclinations.

Disclinations are attracted by a strong image force to free boundaries where they would

be expelled, preventing pentamer insertion. In short, according to continuum elasticity

theory there is no no minimum-energy assembly pathway for large shells. Simulations

of the assembly kinetics of larger shells [32] reveal that a variety of additional growth

instabilities appear, such as “closure catastrophe” and “hole implosion”. They are related

to growth instabilities encountered in condensed-matter physics, such as the Mullins-

Sekerka instability [33] and the Asaro-Grinfeld-Tiller instability [34]. The combined

effect of all of this is a wild proliferation of defects during the later stages of assembly
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[32]. There is no royal road for the assembly of large viruses. Very similar problem

are encountered in the growth of crystals with large, complex unit cells, such as quasi-

crystals[35].

How can larger viruses assemble if there can be no minimum energy pathway? There

appear to be two options. The first is that the CPs are clever nano-computers with a

complex spectrum of internal states that do the necessary computations to decide when

and where to insert [19]. It is not obvious that this is physically even possible but,

anyway, there currently is no evidence for the existence of such CP-devices. The second

is that CPs are not clever but that thermal annealing transforms disordered shells into the

Caspar-Klug icosahedra if these are the minimum free energy states. The success of this

transformation would be guaranteed by the Second Law of Thermodynamics, though it

might be quite slow. In this view, Caspar-Klug icosahedra are entropically stabilized

during and following growth. Entropic stabilization may well explain the growth of

quasi-crystals [35]. If entropic stabilization is the assembly route that nature follows for

large viruses, then the capsids of large viruses in their initial state must be sufficiently

fluid to allow for the transport of pentamers during annealing. The irreversible steps at

the end of the viral assembly process discussed above are, in this view, postponed till

after the formation of the Caspar-Klug shell. These irreversible steps may have to be

quite drastic. Some large viral capsids act as pressure vessels capable of withstanding

pressures in the range of tens of atmospheres. These pressures could not possibly be

absorbed by thermally equilibrated capsids with interaction energies in the range of a few

kBT . Such a reinforcement process — which is irreversible — is a form of maturation,

which indeed is commonly encountered in viral assembly, as we will now discuss.
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4 A Structural Mechanics for Capsids

In the previous section we focused on descriptions of viral capsids at larger length scales,

without paying attention to the capsid proteins and their mutual interactions. We men-

tioned that the spectrum of internal states of a protein and the effect of interactions be-

tween proteins might play a role during assembly and, in general, should be an integral

part of a description of the physics of a capsid. In principle, the physical mechanisms

governing capsid conformation could be understood with all-atom molecular dynamics

modeling. While such simulations are increasingly within feasible range with modern

computing resources, especially for small viruses such as CCMV and other T = 3 viruses

[36], molecular models introduce challenges of their own, including (a) the need to in-

terpret the results of large datasets from dynamic trajectories, and (b) the difficulty of

extracting general principles from molecularly specific models. These issues are com-

pounded when posing the question of how conformational deformation is managed (or

even utilized) for viruses with large T -numbers, many of which can exhibit large con-

formational changes during the viral maturation processes we just mentioned. (Fig. 8)

In this section, we explore a different approach based on continuum elasticity. It is

by no means obvious that continuum theory is applicable, given the relatively large size

of the molecular components — the CPs — with respect to the that of the capsids. We

will see that there are indeed fundamental obstacles in the applications of conventional

continuum theory to viral capsids, in particular during maturation processes, and we will

discuss the development of a new form of elasticity theory designed to overcome these

obstacles.

As before, we construct capsids from a flat hexagonal sheet, but we now place six

“real” CPs on the hexagons and allow them to bond forming a two-dimensional (2D)

crystal with hexagonal symmetry where all protein locations are symmetry-equivalent.
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Figure 8: Many viruses assemble into an initial “prohead” conformation and subse-

quently “mature” by undergoing large conformational changes. (Left) For bacteriophage

HK97 the transition from the prohead “P-II” state to the expansion intermediate “EI-II”

state involves unshearing of skewed hexamers to symmetric conformations. (Right) The

maturation of bacteriophage l from prohead to head state exhibits a similar symmetriza-

tion of skewed hexamers. Coordinates obtained from ViperDB [37] and EMDB [38] and

rendered in Chimera [39].

The proteins adopt a configuration that corresponds to the minimum free energy state of

the 2D crystal. We will treat this 2D crystal as the stress-free reference state. Now, carry

out a CK construction on this 2D crystal to produce a T -Number icosahedron. Only for a

T =1 shell will all proteins remain in symmetry-equivalent locations, with three proteins

per equilateral triangle. For general T , there are T inequivalent protein locations . The

physical interactions among proteins in different symmetry environments are necessar-

ily different as well. The minimum free energy configuration of the protein molecule

cannot be simultaneously compatible with assembly into the T distinct symmetry envi-

ronments of the shell. It follows that there must be some conformational deformation

of the proteins away from the minimum free energy state to accommodate the incom-

patibility. The assembled structure is thus determined not purely by the CK geometric

principles, but also by the physical principle of free energy minimization that reflects

a balance of forces produced by the stretching of the (non-covalent) bonds holding the
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shell together. In other words, the protein lattice is strained.6

High-resolution X-ray structures have shown that capsid proteins indeed take on dif-

ferent conformations depending on their locations. One possibility is that these con-

formational variants “pre-exist” as (metastable) local free energy minima of isolated

proteins, as envisioned in the local-rule model [19]. For example, the isolated cap-

sid proteins of a T = 3 virus could undergo switching among the three conformational

states A, B, and C. Alternatively it could be that these three states are, in effect, only gen-

erated by the (quaternary) interactions with neighboring subunits as established during

assembly.

4.1 A “Classical” Theory of Elasticity for Viral Shells

A significant step forward in understanding the connection between protein conforma-

tion and capsid mechanics came from examining the T ! • mathematical limit of the

CK construction by Lidmar, Mirny, and Nelson [40] (LMN). In effect, LMN assumed

that proteins have no internal states and can be treated as pieces of homogeneous elastic

material, as we did at the end of last section. LMN introduced an elastic shell the-

ory for capsids by taking the equilateral hexametric lattice as the stress-free reference

configuration of a sheet of these elastic capsid proteins. Recall that the CK construc-

tion was achieved by aligning a hexagonal sheet with an unfolded flat template for an

icosahedron such that so that icosahedral vertices are connected by integral steps h and

k along the hexamer lattice basis vectors (see Fig. 3). Trimming along the boundaries

of the icosahedral template removes a wedge of angle p/3 from each of the capsomers

positioned over an icosahedral vertex. As the template is folded along its edges (green
6Caspar and Klug argued that the CK construction represents a minimal deviation from perfect symme-

try equivalence between proteins, and introduced the term “quasi-equivalence” to describe this.
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in Fig. 3), the joining of adjacent boundary edges leads to the Volterra construction of

five-fold disclinations at each of the 12 icosahedral vertices. In the LMN approach, the

pentamers are transformed into topological defects of the hexagonal lattice. The folding

of the sheet along icosahedral edges allows the formation of a closed shell from a flat

sheet in a locally isometric way, i.e., without any local stretching of the sheet. Equilat-

eral triangles remain equilateral triangles. A CK icosahedron has sharp folds connecting

the twelve vertices. For an elastic sheet of finite physical thickness, the elastic energy

cost induced by bending deformations is, to lowest order, a quadratic function of the

local principal radii of curvature, and can be expressed in terms of the mean curvature

H = 1/2(1/R1+1/R2) and Gauss curvature K = 1/R1R2 — with R1,2 the principal radii

of curvature of the surface — as

Fbend =
Z

dA
�1

2 k(2H)2 +kGK
�
.

Micromechanical studies of capsids [41] indicate that the mean bending modulus k ⇠

10�100kBT . (The classical derivation from 3-D elasticity theory gives kG = (n �1)k ,

suggesting a similar order of magnitude if the Poisson ratio n in the typical range 0 n 

0.5.) Accordingly the (infinite) curvature produced by folding along icosahedral edges

will generally be relaxed over larger length scales, which can only be accomplished

though some in-plane stretching of the sheet. The energy of this in-plane stretching is,

to lowest order, quadratic in the strain tensor ui j

Fstretch =
Z

dA 1
2
�
l (ukk)

2 +µui jui j
�
,

where the elastic Lamé coefficients l and µ are related to the 2-D Young’s modulus Y

and Poisson’s ratio n as l = Y
(1�n2) and µ = Y

2(1+n) . To account for the coupling between

bending and stretching deformations it is essential to include the nonlinear dependence

of strain on the displacements of the surface, which to lowest order gives ui j =
1
2(∂iu j +
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∂ jui +∂i f ∂ j f ) for displacement components {u1,u2} in the reference plane, and u3 = f

in the normal direction. For open sheets, Seung and Nelson [42] found that disclinations

drive a bifurcation-type buckling instability when the Föppl-von Kármán number, g =

Y R2

k , a ratio of stretching to bending moduli normalized by sheet radius R reaches a

critical value of ⇡ 150. For g subcritical, bending stiffness dominates and the sheet

stretches to remain flat. As g increases above the critical point the sheet will buckle

out of the plane. Five-fold disclinations, like those at the vertices of the icosahedron,

drive sheets to buckle into conical shapes. For closed icosahedral shells this buckling

transition is manifest in the asphericity of the shell. As the FvK number increases above

a value of g ⇡ 250 the shell shape transitions rather abruptly from spherical to facetted,

with the icosahedral vertices buckling radially outward (see Fig. 9).
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Figure 9: The buckling transition for icosahedal and asymmetric elastic shells. Adapted

from [40].

These predictions of elasticity theory turn out to be consistent with a trend that can be

observed in X-ray and CryoEM structures — larger capsids tend to be more facetted than

smaller capsids. The theory has also found agreement [43] with coarse-grained molec-

ular models [44] in identifying the buckling transition as a soft mode of mechanical de-
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formation for icosahedral viruses. Likewise the theory has been extended to explain the

formation of spherocylinder and conical capsid shapes [45], capsid polymorphism [46],

and the nonlinear mechanical response under atomic force microscopy (AFM) loading

[47] (for a review, see [41]).

4.2 A Mechanics Theory for Active Capsids

Despite these successes it is clear that something fundamental is missing from the narra-

tive provided by thin-shell elastic theory: proteins are functional structures with internal

“gears” and “wheels”, the above-mentioned internal states. Viral capsids are in fact not

merely passive containers but macromolecular machines able to perform specific tasks

associated with protein conformational changes [48]. These issues are well illustrated by

the case of HK97, where insertion of the viral genome molecule into the capsid triggers

a complex sequence of conformational changes, an example of the earlier-mentioned

maturation, that progressively strengthen the shell against the large internal pressures

exerted by the tightly packaged genome [48]. The sequence initiates with the “P-II to

EI” transition [49, 50, 51] (see Fig. 8). Cryo-EM pictures of HK97 show that this trans-

formation is marked by both a buckling-like transition in capsid shape from spherical to

polyhedral and a change in the shapes of the hexons from skewed or “twisted” to sym-

metric (Fig. 4). Detailed X-ray reconstructions reveal that the transformation is driven

by the release of elastic energy, stored in the highly deformed hexons [52, 51]. At a later

stage of maturation, a spherical structure reappears. Many other viruses go through simi-

lar maturation sequences involving both local skewing of capsomers and global changes

in morphology [53, 54, 55, 56, 57]. The LMN theory would require an interpretation

of such events as being based on changes in the effective mechanical properties (Y and

k) of the protein shells, perhaps linked to changes in the effective thickness or bonding
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structure due to the conformational changes. However, thin shell theory simply cannot

account for the observed displacements of the capsid proteins during maturation, such

as the fact that for HK97 the hexamers commonly take on skewed shapes in the initial

prohead configuration and are made symmetric in the final head configuration (Fig. 8).

Moreover, observed relative displacements of the capsid proteins are much too large to

be compatible with elasticity theory. This failure is puzzling given the fact thin shell

theory explains a number of observations made on the mechanics of capsids.

These puzzles are related to deeper questions about the use of condensed-matter

physics and elasticity theory in describing protein aggregates in general. The most ob-

vious question is whether continuum theory could reasonably be expected to apply at

length scales of the size of a capsid protein or of a protein hexamer/pentamer. Elastic

network models are actually quite able to describe small deformations of proteins down

to length scales of a few nm, provided proper account is taken of the heterogeneous

structure of proteins. The more fundamental concern is the identification of the stress-

free reference state of protein aggregates. In the LMN theory, the stress-free reference

state is, by assumption, a hexagonal sheet. For the case of HK97, structural studies reveal

locally asymmetric (i.e., skewed) capsomers that simply cannot be assembled into a flat

hexagonal sheet. More generally, the irregular, asymmetric shape of a protein in general

need not be geometrically compatible with the final assembled shell. The internal forces

holding together the assembly necessarily deform the units, inducing internal residual

stresses. This problem is accerbated when conformational transitions of proteins pro-

duce large displacements and deformations that are discontinuous across protein-protein

interfaces, as is the case for HK97; motions that will further modify the state of residual

stress in the assembly. In short, LMN theory identifies only one of the two sources of

intrinsic stress of a viral capsid, namely the one due to the incompatibility between a
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hexagonal sheet and a closed shell. The second source of intrinsic stress derives from

the incompatibility between the minimum energy structures of asymmetric protein ag-

gregates and the geometry of a closed shell. We now will discuss a generalization of

elasticity theory that incorporates these “incompatibility stresses of the second kind”.

y = G(⌘) · x

a1a2

x = s

↵
a↵

dz = F · dy
z(x)

rz = F ·G

G(⌘) = I+ ⌘(n̂⌦ m̂)
n̂

m̂

skew
⌘

Figure 10: Conformational skewing of hexamers breaks the CK construction. The mat-

uration process can be modeled by a Landau theory in which the conformational strain

order parameter h is coupled to shell mechanics through the elastic deformation gradi-

ent F, which restores the integrity of the shell broken by incompatible hexamers shear

G(h).

4.3 A Viral Martensite

We need to re-examine the very foundation of elasticity theory: the assumption of a

stress-free reference configuration and apply the concept of structural phase transitions
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from condensed matter physics [58] to viral shells [59]. The symmetric and sheared

conformations of HK97 can be viewed as analogous to, for example, the austenite and

martensite phases in iron-carbon alloys. We will borrow from condensed matter physics

the concept of the Bain strain [58]. In our case, this is an affine transformation of

the position ~x of a material point in the symmetric hexamer reference configuration,

to a point ~y = G ·~x in the asymmetric hexamer state. The conformational deformation

gradient tensor G= I+h n̂⌦m̂ represents an area-preserving shear of magnitude h along

the direction of unit vector m̂, in local Cartesian frame {m̂, n̂}. The lower-symmetry

skewed units in the ~y configuration can tile the plane with a uniform shear orientation

m̂(~x) = const. The CK construction of an icosahedral shell, however, requires that the

units be oriented according to the icosahedal group. This constraint breaks geometric

compatibility, and requires that the lattice units undergo some additional elastic strain to

assemble into a continuous shell.

The case for an analogy with structural phase transitions is strengthened further by the

observations that the conformational motions in maturation represent soft modes of the

capsid structures [60, 44, 61]. Widom, Lidmar, and Nelson [43] showed that the radially

dominant displacement patterns of the buckling transition of icosahedral shell theory are

closely matched with the lowest frequency elastic normal modes of the shell. However

this is only part of the story told by more detailed molecular models, which show that

even the conformational motions parallel to the shell surface (sliding and twisting of

subunits, e.g., the hexamer skewing in HK97) are strongly reflected in the low frequency

icosahedral modes. This suggests that these conformational motions act like special

degrees of freedom, internal coordinates or mechanisms, that couple to the elasticity of

the shell on larger lengths scales.
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4.4 A Landau Theory for the Structural Mechanics of Viral Shells

The natural framework to describe the coupling between internal degrees of freedom and

macroscopic strain is by Landau theory [59]. Construction of a Landau theory for capsid

maturation starts by identifying the appropriate symmetries of the field variables. HK97

has multiple soft modes, which in principle should be included in a Landau description,

but we will restrict ourselves here to the Bain strain as the sole order parameter. This is

a rank-two second-order tensor with unit determinant, tracked by the scalar shear mag-

nitude h(~x), to which we attribute a Landau energy g(h). Because maturation events

involve large displacements, the description of the elastic deformations is now more

involved, requiring the machinery of large-deformation, nonlinear elasticity on curved

surfaces. We can track the motion of material points using the lattice vectors âa in the

CK hexagonal sheet, defining reference positions~x = sa âa (employing the Einstein con-

vention), with (s1
,s2) acting as convected curvilinear coordinates on the shell surface.

For each hexagon i in the reference sheet we define the conformational deformation

~y = Gi ·~x by a shear direction m̂i and magnitude hi, which in general will not be ge-

ometrically compatible from one hexagon to the next. The sheared hexagons can then

be deformed elastically to enforce compatibility and folding of the sheet into a closed

shell by the CK construction. If positions of material points on the final closed shell are

denoted by mapping~z(sa), then the elastic deformation is described by the mapping of

differential elements d~y in the sheared hexagons to elements d~z of the tangent space of

the shell surface, written as d~z = F ·d~y. Pulling these differentials back to the symmetric

reference configuration, we can write

—~z ·d~x = d~z = F ·d~y = F ·G ·d~x ) F = (—~z) ·G�1 = (∂a~z⌦ âa) ·G�1
,
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where âa are the dual basis vectors such that âa · âb = d a
b . Differential lengths then

transform as

d`02 = |d~z|2 = d~y ·Cd~y,

where C = F

T ·F is the metric tensor (commonly referred to as the right Cauchy-Green

Deformation tensor) of the elastic deformation from ~y to ~z. The nonlinear (Green-

Lagrange) strain tensor E = 1
2(C� I) gives the relative change in lengths as

d`0 �d`
d`

⇡ d`02 �d`2

2d`2 ⌘ d~y
d`

·E · d~y
d`

.

The contribution of elasticity to the Landau free energy can be defined by a strain-

energy density function parameterized either by the metric w(C), or by the strain w(E).

For protein hexamers this function ought to obey the symmetries of the so-called “hexagonal-

pyramidal” group [62, 63], defined by rotations q 2 {�2p/3,+2p/3,p} about the nor-

mal to the reference plane. To quadratic order the tensor invariants of this group are the

isotropic invariants I1 = tr C, and I2 =
1
2 [(tr C)2� tr (C2)]. The elastic energy can then be

truncated only to depend only on I1 and I2. For further simplification, we can separate

the contributions of area dilatation
p

I2 = J ⌘ dA0

dA , from area-preserving deformations

parameterized by I1/J. To lowest order this would give

w =
K
2
(J�1)2 +

µ
2
(I1/J�2) =

K
2
(l1l2 �1)2 +

µ
2

✓
l1

l2
+

l2

l1
�2

◆
,

where la are the square roots of the eigenvalues of C (the principal stretches).

The free energy of in-plane deformations, both elastic and conformational, can then

be modeled with some generality as

F =
Z

w(C)dA+
10(T�1)

Â
i=1

g(hi).

The Landau energy g defines the free energy of the individual hexamers in isolation,

which in general will depend on the detailed molecular interactions. Viewing conforma-

tional change as a chemical reaction, the conformational strain magnitudes hi play the
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role of reaction coordinates for the isolated hexamers. Through the definition of g(h)

we can model the kinetics of maturation. Because the deformation metric C measures

the elastic strains, it depends both the displacement degrees of freedom~z(sa) and on the

conformational degrees of freedom h(sa).

We should mention that similar generalizations of large-displacement elasticity theory

have been applied to growing tissue, where one also is confronted with the problem of

elastic stress in systems whose internal stress-free reference state should be treated as

evolving in time (see for example, [64]). While it is often referred to as “morphoelastic-

ity”, one might be tempted to call this new area the “elasticity of life”.

4.5 A View Askew

Applying this theory to the concrete example of HK97, we start from the observation

that the initial hexamer skewing in the prohead state is driven by interactions among

the so called Delta domains that line the interior surface of the capsid and that tense the

hexamers. After these domains are cleaved, energy is released and the hexamers “spring”

from the skewed to the symmetric configuration. This can be understood as a change in

the Landau energy g(h) from having a minimum at finite h (skew) to one at zero h

(symmetric). A simple way to model the skewed prohead state is to fix h at a nonzero

value, and relax the elastic strain energy of the shell [65]. This yields states of elastic

strain and residual stress in the shell that are discontinuous across the interfaces between

hexamers. The results are shown in Fig. 11 . Recall that in classical thin-shell elasticity

theory there is a critical value gB for the dimensionless FvK Number Y R2
/k tat which

the shell undergoes a buckling transition. Figure 11 gives, for fixed h , the critical FvK

number gB(h) for which the shell undergoes a buckling according the theory presented

above. This critical FvK Number diverges around h ' 0.2. For the EI capsid, where
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h = 0, the best fitted value is about ten times the buckling threshold. Our theory predicts

that, if we increase h , a reverse buckling transition takes around h ' 0.15. The h value

of the Prohead structure, which is about 0.2, is larger so the Prohead structure should be

roughly spherical, as indeed is the case. In the Prohead structure, the residual stresses of

the conformational strains counteract the stress-field due to the pentamer disclinations,

resulting in shells that are close to spherical in shape.

The next step is to minimize the full free energy with respect to h . The scission of the

Delta domains is described in Landau theory as an exchange of the absolute minimum

of g(h) from h ' 0.2 to h ' 0. This, in turn, drives a buckling transition as described

above. Landau theory has provided us with a connection between events at the molecular

level, as described by the change of g(h), to events at the level of the shape of the

capsid as a whole. For h greater than 0.2, the capsid adopts a dodecahedral shape (see

Fig. 11). In this regime, it would no longer be possible to fit the capsid shape with the

LMN thin-shell elasticity theory that uses CK icosahedra as the reference state, though

it might be possible to do so with a thin-shell elasticity theory that starts from a perfect

dodecahedron as the reference state. The advantage of the generalized theory over thin-

shell elasticity theory is thus that it has removed the dependency on the choice of the

stress-free reference state.

As we step back to look at the overall structure of the Landau theory of capsid mat-

uration, it becomes clear that it offers a more generic framework for macromolecular

assemblies in general. The Caspar-Klug idea of quasi-equivalence must be generalized

to the notion that the conformation of a protein subunit as it interacts with others in a

large assembly may be very different from its conformation in isolation. When defin-

ing a theory of macromolecular elasticity, what conformation should be taken as the

stress-free reference configuration? It may indeed be neither the assembled nor isolated
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Figure 11: Phase diagram of the HK97 Prohead-to-Expansion-Intermediate transition

as a structural phase change. The critical FvK number gB (solid and dashed lines) is

defined as the value of g at which the shell is buckled.

conformations. Most generally, the reference configuration of the units in an assembly

should be treated theoretically as an internal variable. Together, Landau theory and

nonlinear, finite-deformation continuum elasticity provide a general framework for the-

oretical treatment of the mechanics of macromolecular aggregates including both elastic

and conformational degrees of freedom. In principle, the framework also outlines a sys-

tematic path toward multiscale modeling of such systems: detailed molecular models

can be used to identify key conformational modes, and parameterize the energetics of

“internal” conformational degrees of freedom, which can then be inserted into the con-

tinuum theory in the form of a Landau energy to understand coupling to elasticity on

larger length scales.
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4.6 An Armour for a Molecular Machine

The maturation of HK97 is an amazing sequence of transformations. But what is the

point of this molecular dance? We mentioned that viruses with double-stranded DNA

genomes are able to withstand very large internal pressures. The sequence of displace-

ments of the HK97 shell is coupled to a parallel sequence of coordinated chemical re-

actions taking place across the outer surface of the capsid. The CP of HK97 has two

relatively flexible loops, called the E and P loops. One specific residue on the E loop

(a lysine residue) is capable of forming a covalent chemical bond with another specific

residue on the P (an arginine residue). It is not possible for the E and P loops of the

same CP to be stapled together – as they are to far away from each other – but adja-

cent CPs can form such a bond [50]. In the initial, highly strained EI-I/II states, the P

loop is rotated away and it is not possible to establish such bonds. As the shell passes

through its sequence of transformation the CPs are knitted together by a progressively

more complex pattern of covalent bonds, as shown in Fig. 12. In the end, the capsid

covered by a mesh of interlocking rings resembling chain mail. The structural transfor-

mations provide a changing stage for the orderly formation of these chemical bonds so

the final capsid can withstand the large pressures exerted by the genome. We speculate

that the soft modes of the shell may play an important role in the establishment of the

bonds: thermally excited soft modes may allow the E and P loops of adjacent CPs to

search each other in preparation of establishing a chemical bond, which could be viewed

as a molecular dating service.

We have moved very far indeed from the notion that viral capsid are just containers

characterized by a T -Number. The capsid of HK97 is truly an active molecular machine

that transforms elastic and chemical energy into the synthesis of a shell that is one gi-

gantic spherical molecule. The basic fold of HK97 that enables this extraordinary form
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Figure 12: Spreading of covalent bonds over the HK97 capsid during maturation. From

Ref.[66]. The CPs are represented as ovals, hexamers are in red and pentamers in blue.

During the first step (A), pentamers are lined by closed rings of bonds. In the second step

(B), hexamers are linked by open rings. In the final steps (C), the rings close forming an

interlocking mesh.

of physico-chemical wizardry is encountered in many other viruses, including the Her-

pes virus. One can at least hope that materials science will be able to develop synthetic

versions of these devices but we fully expect that the exploration of the working of vi-

ral molecular machines will provide new opportunities for the application of methods

borrowed from statistical physics, elasticity theory, and condensed-matter physics.
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