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This thesis is organized in a slightly unconventional fashion: algorithms lead and appli-

cations fill out the content. I think this emphasizes my interests during graduate school -

I built algorithms and tools to address issues that were otherwise inaccessible to different

areas of computational chemistry (including applied machine learning) and enzymology. Two

sets of scientific thrusts underscore the bulk of my work: algorithms to analyze dynamic,

heterogeneous fields in the context of enzymology and flexible machine learning algorithms,

including those that leverage quantum descriptors, for rigorous molecular and reaction-level

properties. Each section will include grounding on applications and broader impacts for

the reader as well. Now we pivot to discussing the main thrusts and outlining each chapter

briefly.

General ML and Quantum Theory of Atoms-in-Molecules (QTAIM): QTAIM

serves as a mathematical decomposition algorithm for electronic basins within a molecule.

The algorithm intakes molecular densities, as computed (typically) by density functional

theory (DFT), and uses the flux of density to partition the scalar field into 3-dimensional

atomic basins of density [14, 16]. These objects are known as atomic basins and represent

the quantum atom within a molecule. By constructing these structures, we compute a rich

set of mathematical descriptors that map to many features including energies, bonding,
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and electron delocalization. These features have been correlated, in the past, to activation

energies, reactivity, and overall system energies, but these uses largely relied on human

intervention and small datasets [44, 62, 65, 111, 142, 287]. By developing software centered

around high-throughput QTAIM calculations and machine learning, I was able to bring these

descriptors to larger datasets and a wide host of applications.

In Chapter 2, I discuss an algorithm I implemented to predict Diels-Alder reaction

barriers from QTAIM signatures alone. In this study, we showed that QTAIM features, can be

used to surmise reaction barriers while also using machine learning techniques to understand

what signatures were most informative to our models. Here QTAIM electrostatic potentials

and delocalization indices alone were able to yield great performance on withheld datasets.

In addition, we demonstrated that QTAIM features can allow a machine learning model to

generalize, to an extent, to much larger Diels-Alder reactions. This chapter was adapted from

the following: Machine Learning to Predict Diels–Alder Reaction Barriers from the Reactant

State Electron Density. S. Vargas*, M. Hannefarth, Z. Liu, A.N. Alexandrova. Journal of

Chemical Theory and Computation 2021 17 (10), 6203-6213. 10.1021/acs.jctc.1c00623.

In Chapter 3, I discuss a package developed to perform high-throughput QTAIM

calculations on datasets of molecules and reactions. This package is currently adapted to

work with open-source packages such as ORCA and Multiwfn. These softwares, respectively,

compute DFT densities at a user-specified level of theory and subsequently compute QTAIM

descriptors. The package is built with high-performance compute (HPC) in mind as it

can operate on a single dataset with an arbitrary number of concurrent jobs. Here I also

used the package to compute QTAIM values for a diverse set of important and difficult

datasets and developed graph neural networks to predict molecular and reaction properties

leveraging QTAIM as inputs. This chapter was adapted from the following: This was adapted

from High-throughput quantum theory of atoms in molecules (QTAIM) for geometric deep

learning of molecular and reaction properties Santiago Vargas, Winston Gee, and Anastassia

N. Alexandrova. Digital Discovery 2024 3, 987-998.
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Advancing Analysis of Electric Fields in Proteins: The later chapters follow our

work in developing algorithms to ingest, interpret, and predict on electric fields in protein

active sites. This work builds on the notion of electrostatic preorganization, a theory that

posits that protein scaffolds arrange to electrostatically catalyse chemical reactions, and

thereby, destabilizing reactants while suppressing transition state energies [299,301].

Chapter 4 depicts exhaustive efforts to apply heterogenous electric field analysis to

understanding directed evolution in the context of a protoglobin directed evolution (DE)

trajectory. Previous DE efforts optimized protoglobin to efficiently catalyze carbene transfer

reactions. We show that traditional explanations for increased catalytic activity across the

DE lineage, substrate access and binding, cannot account for the dramatic improvements in

protein activity. By tracking the 3-D electric field and using clustering algorithms, we pinpoint

representative structures for QM/MM calculations and show that changes in the electric field,

along DE, improve carbene transfer reactivity. These findings highlight the role electrostatic

organization, notably its dynamic effect, has on determining protein function and points to

its future importance in designing proteins for relevant chemical processes. This chapter is

adapted from Directed Evolution of Protoglobin Optimizes the Enzyme Electric Field. Shobhit

S. Chaturvedi, Santiago Vargas, Pujan Ajmera, and Anastassia N. Alexandrova. Journal of

the American Chemical Society 2024 146 (24), 16670-16680 DOI: 10.1021/jacs.4c03914.

In Chapter 5, I introduce a machine learning framework designed to predict enzyme

functionality directly from the heterogeneous electric fields applied to protein active sites. We

apply this method to a dataset of Heme-Iron Oxidoreductases. Previous studies here, focused

on simple, point electric fields along the Fe-O bond, are insufficient for reasonable accuracy.

On the otherhand, our 3-D, heterogenous model can accurately predict protein activity

without relying on additional protein-specific information. In addition, feature selection

elucidates what electric field components most inform our models and thus highlight important

components to reactivity and selectivity. Finally, we apply previously-mentioned electric

field clustering algorithms and QM/MM calculations to reveal how dynamic complexities in
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protein structures can complicate predictions and thus provides a path forward for improved

models in this space. This chapter is adapted from Machine-learning prediction of protein

function from the portrait of its intramolecular electric field. S. Vargas*, S. Chaturvedi, A.N.

Alexandrova. (Accepted, Journal of the American Chemical Society)

v



The dissertation of Santiago Vargas is approved.

Chong Liu

Daniel Neuhauser

Philippe Sautet

Anastassia N. Alexandrova, Committee Chair

University of California, Los Angeles

2024

vi



To my mother Hilda, father Jaime, and sister Sarah - todo se puede, y a pesar

de todo, ustedes han y siempre seran mi razon de luchar.

It’s also for the immigrants. The narratives, characters, and joy you add to

this country are the best part about it.

vii



Contents

Abstract ii

List of Figures xi

Acknowledgements xvi

1 Introduction 1
1.1 Quantum-Informed Geometric Learning for Chemistry . . . . . . . . . . . . 2
1.2 Electrostatic Preorganization via Classical Electric Fields . . . . . . . . . . . 11

2 Machine Learning to Predict Diels–Alder Reaction Barriers from the
Reactant State Electron Density 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 High-throughput Quantum Theory of Atoms in Molecules (QTAIM) for
Geometric Deep Learning of Molecular and Reaction Properties 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Directed Evolution of Protoglobin Optimizes the Enzyme Electric Field 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Machine-Learning Prediction of Protein Function from the Portrait of
its Intramolecular Electric Field 89

viii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Appendices 112

A Supporting Information for Machine Learning to Predict Diels–Alder
Reaction Barriers from the Reactant State Electron Density 113
A.1 Dataset Statistics and References . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.3 Variable Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.4 Feature Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.5 Top Model Parameter Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.6 Permutation Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.7 Parity Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.8 Variable Correlation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.9 Barrier Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B Supporting Information for High-throughput Quantum Theory of Atoms
in Molecules (QTAIM) for Geometric Deep Learning of Molecular and
Reaction Properties 131
B.1 Full set of QTAIM descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2 Dataset Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.3 Parity Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.4 OOD True vs. Predicted Plots . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.5 Tox21 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.6 Full Learning Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.7 Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.8 Scatterplots of competing models . . . . . . . . . . . . . . . . . . . . . . . . 148
B.9 Correlation of QTAIM Values to Targets . . . . . . . . . . . . . . . . . . . . 152

C Supporting Information for Machine-Learning Prediction of Protein
Function from the Portrait of its Intramolecular Electric Field 158
C.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.2 Hyperparameter Tuning Information on Crystal Structure Prediction . . . . 159
C.3 Crystal Structure PCAs Visualized . . . . . . . . . . . . . . . . . . . . . . . 160
C.4 MD Prediction Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
C.5 Cluster Center Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
C.6 Compressed Frames along PCA components . . . . . . . . . . . . . . . . . . 166
C.7 MD combined PCAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
C.8 MD train only PCAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

ix



D Supporting Information for Directed Evolution of Protoglobin Optimizes
the Enzyme Electric Field 174
D.1 MD RMSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
D.2 Traditional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
D.3 Spin State Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
D.4 PCA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
D.5 QM Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
D.6 Topology Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
D.7 Mulliken Charges of Cluster Centers . . . . . . . . . . . . . . . . . . . . . . 193

x



List of Figures

1.1 The Process of an Encoder Graph Neural Network . . . . . . . . . . . . . . . 9
1.2 An Exemplar Heterograph Contruction for Molecules in Graph Neural Networks. 10

2.1 Scheme for QTAIM-Machine Learning Prediction of Diels-Alder Reaction Barriers 19
2.2 Backbone of Sampled QTAIM features . . . . . . . . . . . . . . . . . . . . . 22
2.3 Dataset Distribution w/ PCA components . . . . . . . . . . . . . . . . . . . 24
2.4 Permutation Importance of Different QTAIM Features . . . . . . . . . . . . 29
2.5 Correlation of QTAIM Features . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Top QTAIM-ML Model Performance . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Diels Alderases Used for OOD Testing . . . . . . . . . . . . . . . . . . . . . 36
2.8 Diels–Alder Reaction between 4-Carboxylbenzyl-trans-1,3-butadiene-1-carbamate

and N,N -Dimethylacrylamide Catalyzed by the Diels–Alderase Enzymes CE11
and CE20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 An outline of the current workflow for QTAIM property prediction. Users can
either start from a JSON of data or use our helpers to parse xyz files into
compatible JSON formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The heterograph construction of our molecular property prediction algorithm. 51
3.3 The full framework of our molecular property algorithms. Several different

message passing and global pooling operations are implemented for intensive
and extensive molecular properties. . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Parity plot of our model, with QTAIM, on the qm9 test set . . . . . . . . . . 56
3.5 Parity plot of our model, with QTAIM, on the LIBE test set . . . . . . . . . 59
3.6 Parity plot of our model, with QTAIM (a) and without QTAIM (b) . . . . . 64

4.1 (A) Protoglobin with directed evolution mutation sites highlighted in red and
labeled with the bound substrate (PDB ID: 7UTE). (B) the carbene transfer
reaction being optimized along the directed evolution path. . . . . . . . . . . 69

4.2 This study’s approach measures electrostatic preorganization by analyzing the
heterogeneous electric field topology across replica MD simulations. It further
involves comparing these topologies using a pairwise distance matrix, clustering
based on similarity, and then quantifying reactivity through QM/MM methods.
The reactivity difference is chemically elucidated using Principal Component
Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xi



4.3 Initial parameters investigated as the cause of higher reactivity along DE
path. (A) The mean and standard deviation of Fe-Carbene distance for all
MD trajectories across all variants. (B) The mean and standard deviation
of substrate-protein binding free energies (Gbinding). (C) The total electric
field magnitude computed on the Fe-Carbene bond of IPC for all systems
across replica molecular dynamics. (D) The z-component of the electric field
computed at the center of the Fe-Carbene bond of IPC for all systems across
replica molecular dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 (A) Illustration of a 3Å box centered on the Fe-carbene bond for calculating the
3D heterogeneous electric field topology. (B) Example of a 3D heterogeneous
electric field topology calculation. (C) Affinity Propagation clustering of electric
field topologies for each variant, with blue indicating the most prevalent, orange
the second, and green the third; clusters under 5% are in grey.(D) A pairwise
distance matrix comparing the similarity (0) or difference (1) of electric field
topology clusters across all systems. The first number in the labels indicate
the stage of directed evolution (1=WT, 5=GLAVRSQLL), and the second
number indicates how often the field topology is visited along the trajectory
(1=the most frequently visited). . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 (A) Transition state free energy barriers for reactive clusters from each variant;
(B) Product stabilization energies for reactive clusters from each variant. (C)
Observed transition states from the best performing cluster centers of each
variant. Transition state and product stabilization energies/structures were
obtained from reaction path scans. . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 (A) Distribution of structures from replica molecular dynamics of all systems
across the Principal Component 9. (B) Projections of GLAVRSQLL electric
field cluster centers on PC9. (C) Schematic of the PC9 direction plotted on
TS-GLAVRSQLL-EF2 with the relative partial charges polarization marked
on the atoms involved in bond rearrangements. . . . . . . . . . . . . . . . . 86

5.1 The dataset includes three classes of hemes: oxygenases, catalases, and peroxi-
dases, each with distinct axial ligands. The total number of examples for each
class is indicated on the figure, highlighting the representation of each class
within the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 (a) The cubic box centered on Fe, used for computing the electric field on the
grid. (b) An example of typical principal component computed on the dataset,
plotted on the exponential scale for clarity. . . . . . . . . . . . . . . . . . . 94

5.3 (A) Workflow for predicting protein function using Machine Learning models
(B) Surrogate model to test ML machinery with applied fields. (C) Principal
components selected by permutation importance and Boruta. Visualized
structures (PC7, PC3, PC6, and PC4) were also flagged by Boruta as important. 98

5.4 (A) Cumulative explained variance between PCAs constructed from crystal
structure fields show these fields require fewer components to explain dataset
variability. (B) An outline of our method for selecting representative frames
based on electric field topologies. . . . . . . . . . . . . . . . . . . . . . . . . 106

xii



A.1 Permuation Importance for the Physical Feature Set. . . . . . . . . . . . . . 121
A.2 Permuation Importance for the Pooled Feature Set. . . . . . . . . . . . . . . 122
A.3 Permuation Importance for the Filtered, Uncorrelated Feature Set. . . . . . . 122
A.4 Parity, XGB w/ Physical Feature Set. . . . . . . . . . . . . . . . . . . . . . . 123
A.5 Parity, XGB w/ Pooled Feature Set. . . . . . . . . . . . . . . . . . . . . . . 123
A.6 Parity, XGB w/ Filtered, Uncorrelated Feature Set. . . . . . . . . . . . . . . 124
A.7 Parity, Extra Trees w/ Pooled Feature Set. . . . . . . . . . . . . . . . . . . . 124
A.8 Parity, Extra Trees w/ Filtered, Uncorrelated Feature Set. . . . . . . . . . . 125
A.9 Parity, Extra Trees w/ Physical Feature Set. . . . . . . . . . . . . . . . . . . 125
A.10 Physical Feature Set Correlation With Barriers . . . . . . . . . . . . . . . . 126
A.11 Pooled Feature Set Correlation With Barriers . . . . . . . . . . . . . . . . . 127
A.12 Filtered, Uncorrelated Feature Set Correlation With Barriers . . . . . . . . . 128
A.13 Pooled Feature Set Correlation With Barriers . . . . . . . . . . . . . . . . . 129
A.14 Filtered, Uncorrelated Feature Set Correlation With Barriers . . . . . . . . . 130
A.15 Physical Feature Set Correlation With Barriers . . . . . . . . . . . . . . . . 130

B.1 LIBE corrected energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 QM8 QTAIM test Partity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.3 QM8 non-QTAIM test Partity. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.4 QM9 QTAIM test Partity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.5 QM9 non-QTAIM test Partity. . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.6 LIBE QTAIM test Partity, charge-partitioned. . . . . . . . . . . . . . . . . . 137
B.7 LIBE non-QTAIM test Partity, charge-partitioned. . . . . . . . . . . . . . . 138
B.8 Green QTAIM test Partity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.9 Green non-QTAIM test Partity. . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.10 LIBE OOD QTAIM charge-stratified test Partity. . . . . . . . . . . . . . . . 141
B.11 LIBE OOD non-QTAIM charge-stratified test Partity. . . . . . . . . . . . . 141
B.12 QM9 OOD non-QTAIM test Partity. . . . . . . . . . . . . . . . . . . . . . . 142
B.13 QM9 OOD QTAIM test Partity. . . . . . . . . . . . . . . . . . . . . . . . . . 142
B.14 LIBE Learning Curve on MAE . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.15 QM8 Learning Curve on MAE . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.16 QM9 Learning Curve on MAE . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.17 Parity Plot QM9 chemprop no QTAIM . . . . . . . . . . . . . . . . . . . . . 148
B.18 Parity Plot QM9 chemprop QTAIM . . . . . . . . . . . . . . . . . . . . . . . 148
B.19 Parity Plot QM9 PaiNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.20 Parity Plot QM9 Schnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.21 Parity Plot QM8 chemprop, no QTAIM . . . . . . . . . . . . . . . . . . . . . 150
B.22 Parity Plot QM8 chemprop, QTAIM . . . . . . . . . . . . . . . . . . . . . . 150
B.23 Parity Plot QM8 PaiNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.24 Parity Plot QM8 Schnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
B.25 Correlation of NCP values with QM8 target values . . . . . . . . . . . . . . 152
B.26 Correlation of BCP values with QM8 target values . . . . . . . . . . . . . . 153
B.27 Correlation of NCP values with QM9 target values . . . . . . . . . . . . . . 154
B.28 Correlation of BCP values with QM9 target values . . . . . . . . . . . . . . 155
B.29 Correlation of NCP values with LIBE target values . . . . . . . . . . . . . . 156

xiii



B.30 Correlation of BCP values with LIBE target values . . . . . . . . . . . . . . 157

C.1 Magnitude of Fields at Sampled Points Along the dataset. Average: 1.14, StD:
2.94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.2 Crystal Structure Training Set PC0. . . . . . . . . . . . . . . . . . . . . . . . 160
C.3 Crystal Structure Training Set PC1. . . . . . . . . . . . . . . . . . . . . . . . 160
C.4 Crystal Structure Training Set PC2. . . . . . . . . . . . . . . . . . . . . . . . 161
C.5 Crystal Structure Training Set PC3. . . . . . . . . . . . . . . . . . . . . . . . 161
C.6 Crystal Structure Training Set PC4. . . . . . . . . . . . . . . . . . . . . . . . 162
C.7 Crystal Structure Training Set PC5. . . . . . . . . . . . . . . . . . . . . . . . 162
C.8 Crystal Structure Training Set PC6. . . . . . . . . . . . . . . . . . . . . . . . 163
C.9 Crystal Structure Training Set PC7. . . . . . . . . . . . . . . . . . . . . . . . 163
C.10 Crystal Structure Training Set PC8. . . . . . . . . . . . . . . . . . . . . . . . 164
C.11 Crystal Structure Training Set PC9. . . . . . . . . . . . . . . . . . . . . . . . 164
C.12 Cluster Centers Projected Along PC3. . . . . . . . . . . . . . . . . . . . . . 166
C.13 Cluster Centers Projected Along PC4. . . . . . . . . . . . . . . . . . . . . . 167
C.14 Cluster Centers Projected Along PC6. . . . . . . . . . . . . . . . . . . . . . 167
C.15 Cluster Centers Projected Along PC0. . . . . . . . . . . . . . . . . . . . . . 167
C.16 Cluster Centers Projected Along PC7. . . . . . . . . . . . . . . . . . . . . . 168
C.17 Combined Train/Test PC0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
C.18 Combined Train/Test PC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
C.19 Combined Train/Test PC2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
C.20 Combined Train/Test PC3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
C.21 Combined Train/Test PC4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
C.22 Train PC0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
C.23 Train PC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
C.24 Train PC2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.25 Train PC3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.26 Train PC4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

D.1 RMSD Analysis of the Alpha Carbon Atoms of the Wild-Type Protoglobin
and the Four Directed Evolved Variants. . . . . . . . . . . . . . . . . . . . . 174

D.2 Mean distances and standard deviations between the benzyl acrylate substrate
and the carbene across each replica run for all analyzed systems. . . . . . . . 175

D.3 Correlation between the mean distance from the benzyl acrylate substrate to
carbene and the binding free energy of the benzyl acrylate substrate in LVRQ. 176

D.4 Comparison of the free energy of the cyclopropanation reaction at the triplet
(blue), open-shell singlet (red) and closed shell-singlet (green) spin state at
the most reactive GLAVRSQLL cluster [10.3%]. Note several attempts to
optimize the missing open-shell structures were not successful. The QM/MM
calculations are at TPSSh functional with def2-TZVP basis set for all atoms. 177

D.5 Distribution of structures from replica molecular dynamics of all systems across
the top Principal Components. . . . . . . . . . . . . . . . . . . . . . . . . . . 178

D.6 Visualization of the Principal Component 9 directions plotted on the TS-
GLAVRSQLL-EF2 structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xiv



D.7 QM region selected for all the QM/MM calculations. . . . . . . . . . . . . . 180
D.8 Distribution of CPET distances for WT trajectories. The vertical denotes the

cutoff distance we used prior to compression. . . . . . . . . . . . . . . . . . . 181

xv



Acknowledgements

To my scientific and academic family in the trenches: Thank you to my advisor
Anastassia Alexandrova for your infinite patience and massive vision - without you, my crazy
ideas would’ve never panned out. I think we did some great science together and hopefully
that continues. You were a source of positive energy, patience, and ideation that I have come
to appreciate immensely. Without your flexibility and adaptability I would not have made
it this far as a scientist, full stop. Many thanks to my committee members Phillipe Sautet,
Chong Liu, and Daniel Neuhauser for constant and lucid feedback.

Without my past advisors I simply would not have become the scientist I am today:
thanks to Alan Aspuru-Guzik, Peter Bloomingdale, John Calarco, Walfre Franco, Scott Joray,
Antari Khot, and Tim Menke. Alan and Tim, thank you for seeing excitement and potential
in me and pushing me towards computational sciences. John Calarco, thank you for being
such a knowledgeable and patient mentor and a pretty solid libero as well. Peter and Antari,
thank you for having faith and patience in a student from another domain and adapting my
knowledge to new and exciting directions. Walfre, huge thanks for exposing me to medical
research and showing me new avenues to apply my algorithms. Finally, Dr. Joray: your
immense efforts to create exciting science education and research at AMSA were not lost on
me.

To my bio-boys, Shobhit and Pujan, I simply could not have accomplished this without
your expertise, brilliant minds, and consistency. At many points in graduate school I had
lost the joy for science but working with y’all has been an absolute joy. Sam Blau, you were
an absolute force in science and showed me how rewarding and fun collaborations could be.
Thank you for being an open mentor willing to make academia less serious and intimidating.
Prof. Evan Spotte-Smith, thank you for your constant energy and unmatched ability to
generate difficult datasets. I would like to thank Dr. Rishabh Guha for being an amazing
sounding board for new ideas and helping me gain experience and confidence in a new field.
Wenbin Xu, it’s been quite fun developing algorithms with you for some objectively insane
ideas. Winston thank you for the faith and energy in our algorithms and for always being so
kind and patient around my, at times, janky code. A shout of appreciation and thanks to my
other collaborators Matthew Hennefarth, Dr. Patricia Poths, Hootan Roshandel, Amy Lai,
and Dr. Daniel Bim.

To the members of the lab, past and present, I owe immense gratitude for creating a
home away from home and a home within the science: Zerina Mehmedhovic, Thomas Cross,
Patricia Poths, Harry Morgan, Dr. Chaturvedi, Nathaniel Johnston, William Laderer, Taras
Khvorost, Pujan Ajmera, Dr. Julen Munarriz, Dr. Han Guo, Dr. Daniel Bim (and many
more!). This journey is as much about science as the friends you make along the way.

xvi



To the folks at the Advanced Math and Science Academy: y’all were fundamental in my
journey and I cannot thank you enough for equipping me with the tools and confidence to
take up a challenge. Special thanks to Padmaja Bandaru, Joe Bengiovanni, Madhavi Marathe,
Martha Tassi-Richardson, and Lyubov Schmidt for teaching me foundational subjects and
being amazing mentors.

To the folks at Harvard’s LS50, especially Andrew Murray, consider your experiment
successful on this data point. Despite the wide-array of topics I learned through the course, I
think the biggest takeaway from LS50 is the confidence to operate, hypothesize, and experiment
in any area of science. My journey since has been a rotating circus of computational chemistry,
pharmacokinetics, enzymology, machine learning, and graph algorithms where I have made
progress and leveraged ideas from all these subjects to do interesting science that I think few
others could (or more likely - would).

I would also like to thank the DOE CSGF Fellowship and everyone at the Krell Institute
(thanks Lindsey and Michelle!) for giving me the opportunity to explore my interests and
develop into the scientist I am today.

To my family, both chosen and not: Para la familia - muchisimas gracias Ma y
Pa. Esto es de todos nosotros, todos fuimos parte de este logro y les tengo mucho cariño y
admiración. Estos años fueron de los más difíciles de mi vida pero estamos saliendo adelante.
Ma - tu mensaje diario “Hijoooooo” siempre me acordaba de que están pensando en mi.
Gracias por enseñarme a trabajar duro y a dar todo por los demás. Pa - montar bici y hablar
de todo han sido refugios para mi, gracias por siempre compartir eso conmigo. Sin ti no
sabría lo que es meterle energía y creatividad a la vida. Sarah, it has been such a joy and
privilege seeing you grow up, your resolve and ability to recover from hard times is something
I think nobody can rival. Thank you for helping me grow up as well and being patient.
Nobody else has shared so much of the difficult and incredible times from the last few years
with me. You’re a confidant, a fellow shit-talker, music-lover, and absolute menace. Glow on
little shit. Finally, love and thanks to the two pets, Kiwi and Nugget, who can’t read but
nonetheless have been a source of unconditional love and constant support.

Priya, Adit, and Andrew, thank you for taking care of me during the hardest period of
my life. I owe so much to you three and I will always love you immensely. Huge gratitude to
Andrew for sharing these incredible and difficult years with me and for being an absolute
constant in my life - I’m excited for the next years of joy we’ll both have. Priya, I would not
be the person I am today without your gentleness, love, and positive energy. Adit, thank you
for always being an open door and sibling to me, you’re an incredible friend and person.

Jesse, you constantly inspire me and are ultimately a massive part of my decision and
ability to become a scientist. Paul, thank you for keeping me from becoming a total

xvii



curmudgeon these last few years - your unseriousness and 5 am chats were a source of refuge
during some difficult times. Kim, you’re goofy for real and I cannot imagine the vignettes of
the last few years of life without you. Will, I cannot tell you how much you motivate me to
be better - kinder, more curious, and less serious. Constant walks for lil treats and a shared
sense of humor indecipherable to those around us are highlights of graduate school. Zerina -
thank you for welcoming me into grad school and being a constant, caring friend along the
way.

Bidart me da mucha felicidad tenerte cerca, fisicamente, emocionalmente, y cientificamente.
Marley - you have been a bedrock friend since I met you and I cannot emphasize how much
I appreciate your constant humor and effort in staying close. Vera, thank you for being a
foundational friend growing up, I cannot thank you enough for your patience towards an
insufferable me over the years.

I would also like to share unending gratitude to the creatives and artists who crafted
wonderful pieces of culture that filled me with joy, curiosity, and perspective over the last
years. Thank you to Arca, Michelle Zauner, Anthony Bourdain, Jhumpa Lahiri, Raveena,
Turnstile, SOPHIE, and the illustrious Gabriel Garcia Marquez. I extend Jhumpa Lahiri’s
voice when she said “That’s the thing about books. They let you travel without moving your
feet” to encompass music, film, and television. In a Time of Cholera (COVID), the universes
these creatives crafted inspired and contextualized my science - it is our responsibility to
remain curious, empathetic and develop technologies for those outside the lab. There is
immense beauty out in the world and science is neither isolated from it nor the only source
of it.

xviii



Vita

Education

Harvard College 2015 - 2019

Bachelor of Arts, Chemistry and Physics

Awards

Darleane Hoffman Distinguished Postdoctoral Fellowship April 2024

Charles J. Pederson Dissertation Award April 2024

DOE Computational Science Graduate Fellow April 2020

Ford Foundation Predoctoral Fellowship, Honorable Mention March 2020

Fulbright Research Fellowship April 2019

Publications

Theory of local fields in proteins and enzymes. P. Ajmera, S. Chaturvedi, S. Vargas, T.

Wilson, A. N. Alexandrova, M. Eberhart. (Submitted).

Machine-learning prediction of protein function from the portrait of its intramolecular

electric field (2023) S. Vargas*, S. Chaturvedi, A. N. Alexandrova (Accepted, Journal of the

American Chemical Society).

A foundation model for atomistic materials chemistry. I. Batatia . . . , S. Vargas, . . .

(10.48550/arXiv.2401.00096, Submitted).

High-throughput Quantum Theory of Atoms in Molecules (QTAIM) Applied to Geo-

metric Deep Learning. S. Vargas*, W. Gee, A. N. Alexandrova. Digital Discovery, 2024,

xix



10.1039/D4DD00057A.

Thermodynamic Equilibrium versus Kinetic Trapping: Thermalization of Cluster Catalyst

Ensembles Can Extend Beyond Reaction Time Scales. P. Poths, S. Vargas*, P. Sautet, and

A. N. Alexandrova. ACS Catalysis 0, 14, 10.1021/acscatal.3c06154.

Directed Evolution of Protoglobin Optimizes the Enzyme Electric Field (2023) S. Chaturvedi,

S. Vargas*, P. Ajmera, A. N. Alexandrova. Journal of the American Chemical Society,

10.1021/jacs.4c03914.

HEPOM: A predictive framework for accelerated Hydrolysis Energy Predictions of Organic

Molecules (2023) R. D. Guha, S. Vargas*, E. W. C. Spotte-Smith, A. R. Epstein, M. C.

Venetos, M. Wen, R. S. Kingsbury, S. M. Blau, K. A. Persson (in press, accepted at NeurIPS

AI4Mat, https://openreview.net/forum?id=eDlEn1PPJw).

An Artificial Intelligence Framework for Optimal Drug Design (2022) G. Ramey, S. Var-

gas*, Dinesh De Alwis, Anastassia N. Alexandrova, Joe Distefano III, Peter Bloomingdale

bioRxiv 2022.10.29.514379. 10.1101/2022.10.29.514379.

Computational and Experimental Design of Quinones for Electrochemical CO2 Cap-

ture and Concentration A. M. Zito, D. Bím, S. Vargas, A. N. Alexandrova, and J. Y.

Yang ACS Sustainable Chemistry and Engineering 2022 10 (34), 11387-11395. 10.1021/ac-

ssuschemeng.2c03463.

Machine Learning to Predict Diels–Alder Reaction Barriers from the Reactant State

Electron Density. S. Vargas*, M. Hannefarth, Z. Liu, A.N. Alexandrova. Journal of Chemical

Theory and Computation 2021 17 (10), 6203-6213. 10.1021/acs.jctc.1c00623.

xx



Team-based Learning for Scientific Computing and Automated Experimentation: Visual-

ization of Colored Reactions. (2019). S. Vargas*, S. Zamirpour, S. Menon, A. Rothman, S.

Sim, T. Menke, and A. Aspuru-Guzik. Journal of Chemical Education 2020 97 (3), 689-694.,

10.1021/acs.jchemed.9b00603.

Seasonal changes in diet and toxicity in the Climbing Mantella frog (Mantella laevigata).

N. A. Moskowitz, . . . , S. Vargas, . . . , 2018. PLoS ONE 13(12): e0207940, 10.1371/jour-

nal.pone.0207940.

xxi



Chapter 1

Introduction

Much like the two branches of this thesis, the introduction will take two sections to introduce

existing methods, studies, and algorithms in each area detailed in subsequent chapters. For

QTAIM-informed geometric learing, I begin by briefly introducing the field of chemoinfor-

matics, including descriptors, algorithms, and graph neural networks. From here, I pivot to

provide grounding on ab initio descriptors in machine learning algorithms before providing

some outlook on the future of this area (and naturally how this leads into my own work).

The later half of the chapter overview electrostatic preorganization, including computational

and experimental methods for its quantification, and how groups have used electric fields

for a proxy to analyze the electrostatic contributions of the protein scaffold. Again, I briefly

provide some prognosis for the field, including high-dimensional algorithms and dynamical

studies and how these ideas tie into my own developments.
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1.1 Quantum-Informed Geometric Learning for Chem-

istry

1.1.1 Descriptors for Machine Learning in Chemistry

0-D Descriptors

0-D descriptors encompass a set of single-valued descriptors that inform chemoinfomaticians

on the global structure of a molecule without granularity towards atom or bond-level values.

Many such descriptors (Pm), including molecular polarizability, molecular weight, molar

refraction, diamagnetic sensitivity, and parachor [62,66,116,116,154,313] can be computed

as the simple global averaging or sum of atomic-level descriptors(pi):

Pm =
N∑
i=1

pi (1.1)

Typically these descriptors are limited to only processing the overall chemical composition

of a molecule, and thus, are limited to relatively crude information such as number of

specific elements in a molecule, molecular weight, etc. Despite this, many 0-D descriptors

are considered when constructing more complex models with 1-D, 2-D, and 3-D descriptors

included [113,122,313].

1-D Descriptors

1-D descriptors extend to vectorized representations of molecular information, including,

some baseline information on molecular bonding. These features can encompass concepts

such as H-donors/acceptors, number of ring atoms, counts of different atom hybridizations,

etc. [76]. This family of descriptors also encompasses some of the ubiqitious "fingerprints"

used throughout pharamcology and traditional chemoinformatics. MACCS fingerprints,

for example, count a set of 320 drug-like structural fragments that are used to encode

structures [76]. Daylight fingerprints are another example that, instead of using a predefined
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set of motifs, compute unique structural motifs across a dataset before hashing these vectors

to 1028 or 2024-item vectors [76].

2-D Descriptors

2-D, or topological descriptors extend the previous mapping of molecular motifs to looking

at the overall molecular topology, i.e., its graph structure. The earliest such descriptor, the

Wiener index, was introduced in 1947 and describes the sum of distances between any two

carbon atoms in the molecular graph [76,315]. In other words, it is the number of "jumps"

between carbon atoms (di,j), summed across the entire atom:

W (G) =
N∑
i=1

N∑
j>i

di,j (1.2)

Lipophilicity is another example that is used widely in biological applications of small

molecules. Despite being a single-value, lipophilicity is computed as a convolved property

across the molecular graph [186]. Topological Polar Surface Area (TPSA) is another descriptor,

often used in drug design, and describes the processed property between molecular surfaces

and partial charge calculations [61, 213]. This value is often calculated (and is thus a 2-D

property) as the sum of tabulated fragment values across the molecular graph [78].

Two cornerstone 2-D descriptors are the Extended Connectivity Fingerprints (ECFP)

and Morgan fingerprints. ECFPs and Morgan fingerprints are similarly constructed by

considering each atom as a "seed". At each seed, the algorithms grow to consider all atoms 1,

2, etc. graph hops away where it indexes different potential graph motifs such as rings and

hybridization. This leads to the consideration of larger graph fragments. Finally, each vector

representative of a each seed is hashed to a fixed-sized vector [239]. motifs, it counts the

number of graph degrees present at each atom node in the molecular graph representation.

The Morgan algorithm will then sort atoms by how densely interconnected they are [248,317].

Morgan Fingerprints are computed similarly but instead of growing and considering
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specific molecular

3-D Descriptors

3-D descriptors extend from molecular graph structures to molecular geometries in 3-

dimensional real space. This naturally leads to the question of how geometries are generated

including the cost of such calculations. Most current schemes will leverage cheap conformer

generation through CORINA [253], xTB [110] or UFF [231]. Given, hopefully cheap, ge-

ometries, a host of descriptors exist in this space. Radial Distribution Functions build on

experimental techniques for determining 3-D molecular structure. This algorithm scans

electron intensity at different observation radii(r) while inputting interatomic distances(ri,j).

B is a smoothing parameter and pi/pj are properties associated with each atom and are often

set to 1 or to atomic partial charges charges [125]:

g(r) = f
N−1∑
i=1

N∑
j=i+1

pipje
−B(r−rij)

2

(1.3)

This method has been used extensively throughout traditional chemoinformatics as well

as for machine-learned interatomic potentials (MLIPs) [23, 35,294]. Other descriptors in this

family take 3-D structures and compute single-valued structures on them, for example, radius

of gyration, molecular electrostatic potential, etc. [76].

1.1.2 Ab Initio Descriptors/Properties for Machine Learning in

Chemistry

As mentioned above, ab initio methods can also be leveraged as descriptors for machine

learning. Here we will quickly introduce several such potential methods and their application

to quantitative structure-activity relationship (QSAR) studies:

Net Atomic Charges: Partitioning overall molecular charge into substituent atoms is a

common approach taken to describe a molecule at the atomic level. One family of approaches
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depend on linear combinations of atomic orbitals (LCAOs) that assign electrons to atomic

orbitals around a given atomic nucleus. These methods are somewhat reasonable given smaller

basis sets but can quickly spiral when applied to larger basis sets with diffuse functions that

overlap with adjacent atoms in a system. Natural Population analysis (NPA) is an

alternative approach that reformulates charge under the paradigm of natural atomic orbitals

rather than the basis set used for the calculation. This method, is thus, generally robust to

the basis set used [234]. Other approaches include "atoms in molecules" approaches that

divide electronic density into fragments in 3-D space. One such approach, by Streitweiser

et. al [271]. projects density onto a 2-D plane and thereby partitions 3-D space. Here I also

mention Bader’s Quantum Theory of Atoms in Molecules (QTAIM) which will be covered in

more detail in the following section [16].

Orbital energies are often used directly as descriptors, both in QSAR, and more

recently, in machine learning approaches. This approach often relies on the chemical notion

that interacting orbitals, often highest occupied molecular orbital (HOMO) of one molecule

will interact with the lowest unoccupied molecular orbital of another species (LUMO) [67].

These values can be computed semi-empirically or through ab initio methods. Surface

descriptors are another alternative that bridge 3-D structural information with electronic

structure data. Much like orbital energies, these values can be approximated semi-empirically

through methods such as charged polar surface area descriptors (CPSA) [269] or through DFT

calculations and provide especially interpretable descriptors for tasks such as the prediction

of nucleophilic/electrophilic reaction sites [78].

1.1.3 QTAIM

Bader et. al. introduced the quantum theory of atoms-in-molecules(QTAIM) in the 1980s

[14, 16]. This methodology intakes the electronic density of a system, computed via any

arbitrary method, and yields a rich, surjective mapping of bonding networks and interpretable

descriptors for analyzing density in a system. Mathematically, QTAIM is derived from two,
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Type Eigenvalues Interpretation

Maximum(3, -3) 3λ < 0
Nuclear Critical Point,
Nonnuclear Attractor

Saddle Point(3, -1) 2λ < 0, 1λ > 0 Bond Critical Point
Saddle Point(3, +1) 1λ < 0, 2λ > 0 Ring Critical Point

Minimum(3, +3) 3λ > 0 Cage Critical Point

Table 1.1: Given critical point Hessians eigenvalues (λ), critical points can be interpreted.

simple conditions on electronic density(ρ): ∇ρ(rc) = 0 and ∇ρ ·NSΩ. In the first condition,

we find points (rc), known as critical points, where electronic density reaches critical values.

Critical points can be interpreted as chemical concepts such as nuclei, bonds, rings, etc. by

simply computing the eigenvalues of the second derivative of ρ:

Notably, bond critical points (BCPs) also map back to nuclear critical points in the form

of bond paths, these yield a skeleton of molecular "interactions" [64]. Here interactions

are used instead of bonds to separate from the notion of bonding as strictly defined as

covalent, ionic, etc. - QTAIM interactions obfuscate away these distinctions. Though this is

seemingly a negative feature, values derived from QTAIM are often used to map back to these

traditional chemical bonding concepts [Tab. B.1]. On the other hand, this formulation allows

for the treatment of non-standard bonding involving metal bonds, hydrogen bondings, and

other weak bonding regimes not typically parsed correctly by traditional chemoinformatic

methods [233, 286]. Thus, QTAIM is an attractive methodology for describing bonding,

rigorously, to computers.

The second condition, ∇ρ ·NSΩ, describes boundaries between atoms in molecules as

surfaces where the flux of electronic density is zero [Tab. B.1]. This bounding provides atomic

basins that correspond to different atoms within a molecule, hence QTAIM is an atoms-

in-molecules methodology. Given these atomic chunks, various mathematical operations

including Laplacians, Hessians, Electrostatic Potentials, etc. can be performed on each

bounded surface to yield a rich set of descriptors at each atom, bond, ring, and cage critical

point. These descriptors have been leveraged to understand various properties of molecular
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and solid-state systems [Tab. B.1].

1.1.4 Algorithms for Supervised Learning

Linear Models

As a baseline, linear regression and regularized versions of the linear regression algorithms

were tested on the data set. Linear regression minimizes the residual sum of squares between

predicted and training target variables. LASSO, appends the weighted sum of the weight

vector to the cost function, Ridge Regression includes the L2norm and Elastinet uses both

weighted L1 and L2 norms appended to the cost function in order to regularize a linear

model [185].

Decision Tree Regression

Decision trees and their derivatives were tested heavily throughout this work for both the

QTAIM-ML and electric field efforts. Decision Trees separate data into nodes and leaves

based on sets of binary decisions made for inputs. Decision trees are highly flexible with

a large number of hyperparameters to tune and are leveraged in both classification and

regression tasks. Tuning these hyperparameters allows us to construct generalizable models

that are more resistant to overfitting. Multiple decision trees can also be combined to create

an ensemble model known as a Random Forests. These models tend to outperform any single

Decision Tree Algorithms by pooling weaker regressors into a weighted sum. Random Forests

also utilize the bagging method where random subsets of the data set are sampled, with

replacement, to train each decision tree. Further decision tree-based algorithms included

the XGBoost algorithm that trains sequential predictors on the residual errors of previously

trained models [102]. This algorithm is attractive due to its scalable GPU- implementation and

cutting-edge performance in a plethora of different regression and classification tasks [49,180].
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Neural Networks

Neural networks encompass a wide-range of different implementations, but at their very core,

neural networks are perceptrons:

y(x,w) = σ(
M∑
j=1

wjxj + bj) (1.4)

σ accounts for non-linear "activation functions", wj are weights, bj biases, and xj is a

variable within a vector x. Multilayer perceptrons or "deep" neural network stack these

non-linearities, each with their own weights and biases, to get progressively more complex

functions. When we train neural networks, we are simply updating these weights and biases

to reduce a training loss on a given optimization function such as mean square error, mean

absolute error, cross entropy, etc. These algorithms have been tinkered with to allow for

deeper training, regularization, dropouts, etc. [34] but this implementation suffers from a

notable shortcoming: it necessitates a fixed-size input vector. Thus, feed-forward neural

networks have been used in the context of chemistry [161], but typically with fixed-size input

vectors. This leads to a discussion, in the next section, on graph neural networks, which do

not suffer from this setback.

1.1.5 Graph Neural Networks (GNNs)

Graph neural networks(GNNs), unlike most convolutional and feed-forward neural networks,

allow for predictions and training on data with varying input sizes. This is achieved through

a few notable tweaks to standard neural networks. First, input graphs, which we will discuss

in more detail briefly, are updated from their initial set of input features. These updated

features qualitatively reflect their starting values while also incorporating information on

edges and neighboring nodes in the graph structure. These updated features can be iteratively

updated an arbitrary number of times, more iterations allow for information passing between

nodes and edges further "hops" away in the graph structure [115, 282]. Following these
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update steps, the new graph is embedded into a corresponding fixed-size vector [Fig. 1.1].

The global embedding function, as its known, can encompass a wide-range of functions,

from mean pooling features across a graph to complex attention-based methods. Given a

fixed-sized vector representing the updated graph, GNNs typically proceed with a traditional

feed-forward neural network.

Figure 1.1: The Process of an Encoder Graph Neural Network

This begs a question on representation: how do we encode molecules as graphs? Historically,

molecules as graphs have been represented with atoms as nodes and edges as bonds [115]. This

translation makes sense as graphs are constructed from entirely chemical motifs. Heterographs,

as opposed to homographs with bonds as edges, allow for separate relationships between each

different edge type and enable the addition of a separate global node type to store important

molecular-level information. Heterographs achieve this by encoding nodes and bonds, both,

as nodes. This leads to the creation of difference edges bonding bonds to bonds, atoms to

bonds, etc. Heterographs I have leveraged (G = (B,A,g)) consist of B as bond information

vectors, A is atom-level information, and g is the molecular-level feature vector (Fig. 1.2).

Several works have used heterograph structures to encode molecules as graphs, in particular,

for instances of molecules with varying spin and charge [24,57,122,286,313].
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Figure 1.2: An Exemplar Heterograph Contruction for Molecules in Graph Neural Networks.

1.1.6 What Do We Need?

In 2003 Gasteiger et. al. wrote: "Why do we note have databases of quantum chemical

calculations?" [76] - and while efforts such as the Opencatalyst Project [50], Materials

Project [208], and Quantum Machine [252] initiatives have certainly put a dent in this

assertion, there is work to be done. For one, datasets of quantum mechanical features are

few and far between [68,175,286]. In addition, these features are not computed at concerted

levels of theory that would allow for the training models across different chemical domains.

The construction of unified, cross-discipline chemical datasets could see the generation of

effective, general models.

Indeed, one area for future development is not just immense datasets of quantum chemical

features, spanning diverse chemical domains, but using these data to train highly-general

foundational models of features such as QTAIM or NBO. Similar foundational models are

already making impacts in chemistry [22, 326] but a "universal", quantum feature generator

could yield improved analytical techniques, and even, plug into improved MLIPs. In chapters

2 and 3 we show that QTAIM can afford improvements in model performance, including

stability in out-of-domain(OOD) predictions - this could be an approach for improving

existing machine learning models to unseen predictions.
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1.2 Electrostatic Preorganization via Classical Electric

Fields

My work focuses on improving the analysis of electrostatic preorganization via high-dimensional,

dynamical algorithmic processing of classical electric fields in a protein active sites. This is,

naturally, not the only method for treating electrostatistic preorganization, nor is electro-

statistic preorganization the only method for analyzing protein function and activity. Here I

provide a quick overview of electrostatic preorganization and build on several methods for its

use in functionalizing and understanding proteins. This will build towards current methods,

and finally, a cursory look at my approaches.

1.2.1 Electrostatic Preorganization

Warshel linked the notions of electrostatic environments to their effects on enzymes - a

concept known today as electrostatic preorganization [300,302,304]. More concretely, this

theory treated larger enzyme structures as a scaffold that imparts electric fields onto a

protein active sites. He postulated that these aligned fields would aid chemical reactions by

lowering transition barriers and/or destabilizing reactants. With time, this theory has been

sustained through a slew of experimental and computational results [134,146,160,184,189,330].

Furthermore, this theory has increasingly been leveraged in de novo campaigns for enzyme

design where focus on structure has migrated towards increasing emphasis on designing

optimized charge distributions for chemical activity [39, 51, 93, 147, 155, 283, 312, 321, 323, 331].

Another advantage to this approach is that by leveraging the direct, clear relationship between

charge placement in a protein structure and imparted field, electrostatic preorganization

serves as a simple concept for generating mutagenic targets for enzyme enhancement [2, 30,

59,176,222,274]. Naturally, no one theory can alone explain or predict protein activity but

electrostatic preorganization, in conjunction with other target properties such as entropy

changes, long-range interactions, and dynamics promises to add to the toolkit of approaches
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for design [63,75,182,203,210,321,322,324,328].

1.2.2 Experimental Methods for Electric Field Analysis

Stark Spectroscopy

The Stark effect underpins Stark spectroscopy and thus serves as the basis for an incredibly

powerful tool for probing electric field atomistically [89]. This effect is characterized by the

interactions between electric fields and atomic/molecular energies. Notably, the application

of electric fields was found to alter molecular spectral lines and provides a framework for

analyzing electric field interactions with matter. Stark spectroscopy inverts this understanding

by using changes in spectra, pertaining to specific vibrational modes, to measure electric

fields at certain probes within a molecule. This interaction is calculated by measuring the

shift in vibrational frequency at a given probe(νobs) in an environment field (|Fenv|) and a

Stark tuning rate |∆µprobe|:

νobs = νprobe − |∆µprobe| · |Fenv| (1.5)

This method has been used extensively to understand how proteins functionalize electric

fields towards productive chemical transformations [88]. For example, Boxer et. al. [88] used

the method to observe substantial intrinsic fields in proteins on the order of 100 MV/cm. In

addition, VSE linked fields to catalytic activity in ketosteroid isomerase (KSI) proteins [4,86].

Researchers have utilized VSE to explore deviations in local electric fields due to mutations

and conformational changes throughout a molecular dynamics (MD) trajectory [42, 80]. Here

is it vital to note the interplay between molecular dynamics (MD) and VSE as, together,

they yield averaged properties over a trajectory. A shortcoming to this method is the fact

it relies on probes to measure electric fields at given points - avoiding higher-dimensional

analysis of the complex, heterogeneous electric fields present at protein active sites.

The popularity of VSE has coupled to computational studies that provide high-quality
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information regarding fields and their effects on chemical activity. For one, molecular dynamics

(MD) studies are often used to calibrate VSE measurements. Notably, MD simulations have

been used to map the relationship between electric fields at specific probes and the effects

of different solvents or local environments [42]. MD has explained deviations in local

electric fieds from bulk electric fields as well as how mutations and ligands influence VSE

measurements [38,88,159,226].

Beyond pure MD studies, quantum mechanics/molecular mechanics(QM/MM) simulations

have provided highly accurate benchmarks for VSE studies. For example, one study by

Wang et. al. took frames from QM/MM simulations and mapped them to experimental

observations [296]. This study was key in determining an interplay between electric fields at

protein active sites and enzyme activity. Another study, by Hammes-Schiffer et. al., used

QM/MM to in silico predict experimental shifts in system energies in KSI [168].

Empirical Valence Bond(EVB)

Empirical Valence Bond(EVB) theory provides a method for comparing dynamical energies

of chemical reactions in the condensed phase to those in solution [306]. The method involves

the construction of a pseudo-Hamiltonian mapping diabatic covalent and ionic states to their

respective empirical energies (including their respective couplings). Here the interactions

with the environment are treated as entirely electrostatic and thus interact with the ionic

states while preserving covalent ones untouched. This method builds on valence bond theory

by integrating empirical measures from quantum chemical calculations or experiment - thus

providing a practical tool for studying bonding in enzyme systems [187]. The framework can

thus study fields as interactions with ionic states. Similar to VSE, dynamics are treated as a

convolved property across protein motions (and thus varying intrinsic fields).

EVB is ubiquitous in the study of electric fields in proteins including its initial application to

study the enzymatic mechanism of lysozyme [306]. Here the decomposition of the reactants into

ionic states demonstrated as strong interplay between transition states and the surrounding
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ligand environment. Further studies have established the relationship between electric fields

and several metrics such as pKas, reductions potentials, binding specificity, dynamics and

so forth [3, 11, 179, 223]. Given this wide-breath, it is not surprising that EWB has been

functionalized within the context of rational enzyme design [98]. Given the relatively-

muted success of most computationally designed design efforts, EVB, and electric fields

more generally, are being explored as further optimization targets for functional proteins.

Several examples, including studies on Kemp eliminase demonstrated novel functionalities

and improved activites via electrostatic interactions. This included a remarkable study that

showed electrostatic preorganization energies contributed a 27.4 kcal
mol

stabilization in the top

performing variant [92,165].

1.2.3 Computational Field Representations Beyond Single Points

Several of the aforementioned studies relied on single-point analysis of induced electric fields.

One study projected electric fields along several important bonds to design improved mutants

of Kemp Eliminase [32]. Outside of proteins, Shaik et. al. [194,297] applied uniform electric

fields to study their effects on enationselectivity and activity in Diels-Alder reactions. Head-

Gordon et. al [311] analyzed electric field residue contributions in KSI at critical points to

illuminate the dynamical effects of fields. This study is one of the few to integrate electric

field analysis with dynamic movements to understand how field fluctuations may influence

protein behavior.

Induced electric fields, at a point, are represented by 3-D vectors. Extending this to a

domain, say a cubic 3-D box, each infinitesimal point in real space has its respective 3-D

vector. This quickly becomes a problem of sampling or convolutions over this domain as

you cannot intake a continuous representation of every point in space. Sampling will require

some executive decision around mesh size where input dimensions can rapidly increase to

105− 107 points for each electric field considered. This dimensionality complication motivates

the use of single, chemically-intuited, points for analyzing induced electric fields in a protein
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active site [41,311]. Despite this, single-point analytics have demonstrated their inability to

accurately describe heterogenous fields present at protein active site [54, 126,128,285]. Here

we discuss two approaches our group has used to iterate on single-point approaches: QTAIM

as a reported for electrostatics and a topological analysis of electric field slipstreams within a

box.

QTAIM

QTAIM was outlined in the previous introductory section1.1.3 and thus we will avoid

introducing it here. Instead we will briefly mention on how it has probed electrostatic

interactions in proteins and small molecules. Our group has leveraged QTAIM as a quantum

mechanical reporter of electrostatics [95, 198,284]. Studies here have included a work linking

descriptors at bond and ring critical to changes in density induced by applied, linear electric

fields [95]. This work further established a relationship, via QTAIM, between applied fields

and reaction barriers in KSI. Another study by Valdez et. al. simulated carboxypeptidase

A (CPA) mutants, via QM/DMD, to map QTAIM parameters between activate sites with

bound substrates to transition state QTAIM parameters - thereby establishing a link between

electrostatics and activity for this set of proteins [284]. Finally, my own work [287] used

QTAIM descriptors to train a supervised machine learning model that correctly predicted

the relative activity of 3 Diels-Alderases.

Topological Representations - CPET

Our group previously developed a distance metric to measure differences between 3-D electric

fields, dubbed Classical Protein Electric Field Topology (CPET) [127]. This formulation enjoys

important mathematical properties such as rotational, scalar, and translational invariance -

essential properties for describing dynamical structures. Our group has used this approach in

a slew of different applications including the reactivity of KSI, Diels-Alderases, protoglobin,

and natural hemes [54,126,128,285].

15



The method samples points within a rectangular prism where linearizations of the electric

field are computed and followed to calculate curvature. These lines are known as streamlines,

r(t), and provide a highly parallelizable compute unit, as each streamline can be calculated

independently. We compute the curvature (κ) at the beginning and end of these streamlines

with:

κ =

∣∣∣∣r′
(t) x r′′

(t)
∣∣∣∣

||r′ (t)||3
(1.6)

Mean curvature values of the start and end points are compiled across each individual

streamline along with the Euclidian distance between the start and end points to yield

a histogram distribution of curvatures and mean distances for each electric field, a form

of topology. This method computes the pairwise distance between two such normalized

distributions (f, g) via the χ2 distance across N bins:

χ2 : D (f, g) =
1

2

N∑
i=1

(f [i]− g [i])2

f [i] + g [i]
(1.7)

With a defined distance comparing electric fields we can then create a graph where the

edge lengths are the distances between two electric fields. This method requires the user to

specify several parameters, including box size (Å), number of streamlines, and the step size

(Å) for each linearization step along a streamline.

1.2.4 What Do We Need?

Here I hope to motivate the difficulty and importance of establishing rich, informative

descriptors for electrostatics in protein analysis. First, these descriptors should move beyond

the notion of simply probing field magnitudes at a single point, say, at a metal center. Chemical

reactions are driven by distal factors that bring reactants together, stabilize transition state

complexes favorably, and finally, yield products. This is a dynamic, multi-dimensional process

that cannot be parsed with such simple descriptors. Here I have introduced the CPET
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method developed by our group but in chapter 4 I will discuss how we used it to create

dynamical probes of electric fields in a protoglobin directed evolution study. An alternative is

introduced in chapter 5 where 3-D electric fields, in a volume, are processed across a dataset

or MD trajectory via principal component analysis (PCA). This yields important motifs

across the analyzed electric fields as well as an intermediate dimensionality between a single

point and a full 3-D electric field analysis that is more amenable to human interpretation.

An ongoing debate in the field is whether dynamics contribute meaningfully to reactivity

[145]. Warshel famously stands against this notion while some have identified protein

promoting vibrations linked to reactivity [13,94]. The fact remains: non-static charged atoms

will yield non-static fields, and therefore, I developed analytical techniques (Chapters 4 and

5) that both provide information on the electric field as the protein evolves with time. We

use dimensional reduction and compression algorithms to wrangle and interpret the immense

space of heterogenous fields at an active site along an MD trajectory. Notably, we determine

that comparatively rare field configurations can yield dramatically catalytic reaction profiles.

These "black swan" configurations, and their respective importance suggest that new analytic

techniques should work with the varying electric field.

Many proteins, including those with metal cofactors, require more complicated electro-

static simulations including quantum mechanical treatment of metal coordination, backbone

sampling, and polarization [284]. With these, approaches such as QTAIM, may be preferable

to classical electric fields. The trade-off with these approaches is the computational cost of

QM/MM or full QM methods to compute electronic density. Perhaps here, approaches that

leverage machine learning to calculate QTAIM descriptors would be critical.

Finally, de novo campaigns should be built to leverage the rich set of tools available

to understand protein activity - including (but not limited to) electrostatic analysis of a

protein scaffold on an active site. These campaigns can look to other "handles" for tuning

proteins including long-range effects, entropic effects, and dynamics. In chapters 4 and 5 we

introduce methods to merge electric field analysis with dynamics - these could serve as one
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such approach to merge dynamics with electrostatics but could also include more traditional

energetic and distance-based approaches for tackling protein design.
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Chapter 2

Machine Learning to Predict Diels–Alder

Reaction Barriers from the Reactant

State Electron Density

2.1 Introduction

For any reaction, we are typically interested in the transition state (TS), activation energy,

and potential energy surface [131]. We often want to know how various alterations from the

base reaction, or modifications of a catalyst, or reaction conditions might alter TS structures

and the forward rate of reaction. Despite a wealth of different approaches, the scaling of

this process with system size is poor. At the same time, it is often of interest to quickly

Figure 2.1: Scheme for QTAIM-Machine Learning Prediction of Diels-Alder Reaction Barriers
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predict many barriers for many variations of the same reaction. Thus, being able to quickly

screen reactants, reactions, and potential catalysts and accurately predict barriers without

expensive TS calculations would greatly accelerate the chemical discovery process. The

problem lends itself well to the realm of machine learning, particularly for extensively studied

reactions. A few pioneering studies have applied machine leaning to reactivity predictions,

albeit with limitations in the diversity of the data sets, quality of the fits, and/or eventual

performance [90, 141, 196, 262, 292]. Here, we propose a direct prediction of the reaction

barriers through quantum electronic descriptors of the reactant state: the electron density,

ρ(r), and its derived mathematical properties. We are building on the following previous

findings: our previous work on the Ketosteroid Isomerase enzyme and its mutants [97]

and the Diels–Alder reaction [128], with and without external electric field applied, have

shown robust linear correlations between topological features of ρ(r) and ∆G‡. Furthermore,

there exist works that construct linear QSAR models based on ρ(r) to determine chemical

parameters such as pKa [55,191], binding energies [190], bond dissociation enthalpies [263],

and cytotoxicity [181]. Additionally, previous studies have used topological quantities of

ρ(r) to predict reactivity. [144, 158, 200] This study expands on these previous works by

considering a much larger host of variables and, to the best of our knowledge, is the first

work in predicting reaction barriers of a family of reactions altogether. In addition, this

work seeks to model more complex, nonlinear phenomena using modern machine learning

algorithms. Finally, and centrally, according to the Hohenberg–Kohn theorem, [129] the

total energy of the system is given as a functional of ρ(r). We extend these ideas toward

proposing that reaction barriers correlate with a set of features of the reactant state ρ(r) ,

which, conveniently for machine learning, are continuous and physically meaningful.
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2.2 Methods

2.2.1 Density Functional Calculations

All QM calculations for the machine learning algorithm were performed in Gaussian 09 [91].

Geometries were optimized with the B3LYP functional [27,169,270,293] and 6-31G* basis set.

[72,121] The B3LYP functional is known to perform well for the Diels–Alder reaction; however,

it has also been shown to overestimate the barrier for polar cycloadditions [79]. TS geometries

were taken from the literature, and an IRC calculation with the local quadratic approximation

algorithm was performed in the gas phase. We then computed the corresponding activation

energy and constructed our data set from these values. QTAIM analysis of the electron

density generated from Gaussian was performed using the AIMALL software [149].

2.2.2 Molecular Dynamics

A total of five replicate QM/DMD trajectories were run for each Diels–Alderase mutant,

with each trajectory corresponding approximately to 15 ns. For a detailed description of the

QM/DMD method, we refer the reader to [265]. CE20 QM/DMD trajectories started from

the 4O5T crystal structure [224]. Mutations were performed on this structure to generate

the CE11 starting structure. Residues included in the QM active site were chosen based on if

they provided hydrogen bonds to the substrates or steric interactions for proper substrate

alignment. All QM calculations during QM/DMD were performed with Turbomole (version

6.6) [6, 7, 279,291,309] with the pure meta-GGA TPSS functional [123] with D3 dispersion

correction [108]. All atoms were treated with the double-ζ def2-SVP basis set [309]. The

conductor-like screening model (COSMO) [156] with a constant dielectric of 4 was used to

approximate the screening and solvation effects from the protein scaffold in this buried active

site. [246] πDMD [225,261] was used for DMD within QM/DMD. πDMD uses an implicit

solvent along with discretized potentials.
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Figure 2.2: Backbone of Sampled QTAIM features

2.2.3 Quantum Theory of Atoms in Molecules

We computed ρ(r) in the reactant state and thereafter calculated QTAIM values on these

densities, a mathematically rigorous partition of the electron density into disjoint regions

called atomic basins (AB), Ω. Ωs are defined by zero-flux surfaces, S(Ω), where the normal

vector at any point on the surface is orthogonal to the gradient of the electron density2.1.

ρ(r) · n(r) for all r ∈ S(Ω) (2.1)

There are four types of critical points (CPs) of ρ(r): nuclear (NCP), bond (BCP), ring

(RCP), and cage (CCP). Each CP is defined by the curvatures of ρ(r) at that point. A NCP

is a maximum in all three spatial directions, a BCP is a maximum in two spatial directions

and a minimum in one spatial directions, a RCP is a maximum in one spatial direction and a

minimum in two spatial directions, and a CCP is a minimum in all three spatial directions.

There are four types of critical points (CPs) of ρ(r): nuclear (NCP), bond (BCP), ring

(RCP), and cage (CCP). Each CP is defined by the curvatures of ρ(r) at that point. A NCP

is a maximum in all three spatial directions, a BCP is a maximum in two spatial directions
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and a minimum in one spatial directions, a RCP is a maximum in one spatial direction and a

minimum in two spatial directions, and a CCP is a minimum in all three spatial directions.

2.2.4 Dataset

A vast array of scientific literature detail’s reaction mechanisms and barriers for important

reactions, such as the Diels–Alder family of reactions. We utilize computational data on the

Diels–Alder reactions collected from over a dozen articles as our case study [105,106,118,138,

143,167,172,173,177,178,214,215,219,329]. We first recompute the reaction barriers with a

standardized basis set and functional to reduce artifacts generated from using a different level

of theory; then, we use the quantum theory of atoms in molecules (QTAIM) [15] to generate

topological parameters of ρ(r) from our computed reactant state structures(Fig. 2.2). Jointly

with more traditional descriptors, such as system mass and charge, they constitute input

variables. These two sets were used to train both feature selection and regression algorithms.

Feature selection was used primarily to determine a subset of factors that are essential for

computing barrier energies, while also reducing dimensionality of regression algorithms and

mitigating noise. This reduced space was then used to train regression algorithms that

approach DFT accuracy while requiring a fraction of the compute time to find a reaction

barrier. We then verify the utility of this method, including for a related but substantially

more complicated system: two artificial Diels–Alderase enzymes separated by eight mutations

(introduced through laboratory directed evolution) [224].

The compiled data set consists of 296 Diels–Alder reactions from over a dozen different

sources, including reactions with a diverse set of functional groups, sizes, and geometries( Tab.

A.3). While the canonical Diels–Alder reaction features the formation of two new C–C bonds

with four new stereocenters, our data set also includes hetero Diels–Alder cycloadditions, with

nitrogen and oxygen as possible heteroatoms. The reactions also encompass a large diversity

of electronic barriers, with a minimum barrier of 5.6 kJ/mol (1.3 kcal/mol) and maximum of

274.5 kJ/mol (65.5 kcal/mol)(Fig. 2.3). The majority of the reactions have a barrier within
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Figure 2.3: Dataset Distribution w/ PCA components

the range of 50 to 150 kJ/mol (12 to 35.9 kcal/mol), while higher/lower reaction barriers are

underrepresented within the data set. Our data set only includes Diels–Alder reactions that

proceed via a concerted mechanism and does not include reactions that proceed stepwise.

2.2.5 Machine Learning and Feature Importance

Feature Selection

Feature selection reduces the dimensionality of an input space and can result in improved

accuracy in regression and classification tasks by removing noise in training data. This

is especially important in the low-to-medium regimes of data where noise can be severely

detrimental to the accurate learning of a data set. Furthermore, decreasing the dimensions

of an input space increases algorithm performance and can allow further tuning of regres-

sion/classification algorithms for a given amount of computation time. For our purposes,

feature selection is also beneficial as it allows for greater interpretability in models and can

inform physical understanding of how electron density properties determine reaction barriers.

Wrapper, embedded, and filter feature selection algorithms were tested. Filter methods
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compute statistical features of the data set including variance or correlation to a target

variable. Wrapper and embedded methods both rely on training a regression or classification

algorithm that reports feature importance. Wrapper methods rank features and iteratively

remove them, a new model is then retrained and tested on the new subspace of input features.

This process is repeated until a cutoff criterion is reached. Embedded methods generally take

one training instance to select features. In our trials, wrapper feature selection algorithms

and embedded schemes proved more stable in their selection despite variations in algorithm

hyperparameters. Once feature selection was completed using several different algorithms,

the resulting variables were compared and common features between algorithms were used to

construct accurate regression algorithms.

LASSO

Least Absolute Shrinkage and Selection Operator Regression (LASSO) regression adds a

regularization term to the cost function of the least squares optimization/fitting problem.

The LASSO regression method consists of the following general loss function:

n∑
i=1

(h(xi)− yi)
2 + α||w||1 (2.2)

Equation (1) - The first term corresponds to the standard least squares’ regression term with

h(xi) as the predicted value of a response variable yi is a scale parameter appended to the

coefficient vector w [102].

This algorithm appends the L1- norm of the weight vector to the cost function. This choice

of a linear term specifically brings model weights towards zero for large enough, thereby

eliminating non-important terms and performing feature selection. The choice of α was made

through cross-validation using sklearn’s LASSOCV module. This method has been used in

feature selection on chemical systems prior to this study [139].
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Recursive Feature Elimination

Recursive Feature elimination was also used to compile a set of statistically relevant features.

The algorithm is simple as it only requires the successive training of a regression or classification

algorithm that determines feature importance for a given training instance. These training

instances report feature importance and the variable with the lowest rank is removed. This

step is reiterated until a user-defined limit is reached. This flexibility makes this algorithm

easy to tune and use, furthermore a fixed number of features can be selected for. This work

used random forests of varying depths from 3 to 7 features due to computational cost and

consistency. This algorithm has been used in bioinformatics [12] and agroindustrial [107]

modeling with Support Vector Machine and Random Forest base regressors. Random Forest

algorithms usually compute feature importance through gini importance or means decrease

accuracy. Mean decrease accuracy scrambles values for a given variable across different

samples and computes the loss in training accuracy. More important features result in a

higher loss in accuracy when scrambled. GINI importance, which was used in this work, is

computed as the loss/gain in regression variance when a variable is removed from training

Boruta

The Boruta algorithm is a wrapper feature selection algorithm that finds all relevant features

within a model. The underlying mechanic removes features iteratively by fitting input variables

to a random forest classification/regression algorithm and extracting feature importance from

this trained fit. Some other feature selection algorithms, e.g. Sklearn’s SelectFromModel,

filter features based on a threshold level of feature importance on a trained model. The

selection of this threshold can yield different results and is somewhat arbitrary. Boruta differs

from similar methods by constructing “shadow” inputs to a regression model. These variables

are constructed by shuffling values between input samples and appending these new variables

to the input vector. These inputs should result in nonzero importance values only due to

random noise in the input data, this serves as a baseline for the original input variables to
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determine which variables were truly important in model performance. This algorithm finds

all relevant features to an output variable and therefore is a viable option for our purpose

in trying to elucidate important features in the large input space of our initial model [163].

The Boruta algorithm repeats this process on different shuffles in the shadow input space to

ensure rejected/accepted variables are correctly sorted due to statistical importance, not just

variability in data. This method has been used for feature selection in a multitude of applied

scientific uses including biomechanical studies [220] and biomarker detection [84].

PCA

Finally, to determine how many independent variables might be needed to explain variance

in the barrier energy, principal component analysis (PCA) was performed on a sweeping

number of different components. PCA projects data into an orthogonal basis and, in the

processing, groups heavily correlated variables. Specifically, PCA decomposes a data matrix

X into three matrices:

X = UΣV t (2.3)

The resulting matrices consist of, a diagonal matrix of singular values, U , the left singular

matrix of X or the original basis of data V , and V consists of the unit vectors of the

principal components. Finally, these components are sorted in descending order based on

their eigenvalues which can be quantitatively compared to determine the importance of

each feature. As mentioned above, lower model dimensionality can reduce noise, increase

interpretability, and prevent overtraining on correlated variables that existed in the original

model [76].

Permutation Importance

The final feature selection method, permutation importance, was used to establish a quanti-

tative measure of which features were more important versus each other in the final physical

feature set. Permutation is a simple, yet powerful method that trains an arbitrary regres-
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sor/classifier then retrains the same algorithm but randomly permutes individual features

between different samples. This algorithm will permute a single feature at a time and com-

pute the change in a given predictive metric (mean average error, mean squared error, etc.).

This sample-resample is repeated on each variable for a user-specified number of trials [36].

Features that more negatively impact the metric are deemed to be more essential and thus

help establish interpretability in a quantitative sense for the construction of a physical model.

Implementation Details

A command-line interface was created to allow for rapid testing of different regression

algorithms, including the choice of algorithm, number of Bayesian optimization instances,

and what subspace of the features to use. Most regression and feature selection algorithms

were created using the Scikit-Learn package. The notable exceptions were some of the

neural network methods tested [1], Gaussian Process Regression [71], and the GPU-enable

XGBoost algorithm [58] which each had their own respective methods. Tensorflow was used

to test neural networks with more customizable features, namely dropout layers. Bayesian

hyperparameter optimization was performed using skopt with custom dictionaries [120].

Each algorithm type was tuned for 25 training instances per tunable feature. Custom cost

functions were implemented for XGBoost, Random Forest, Gradient Boost, and Extra Trees

Regression algorithms. The purpose of this was to output the Mean Average Error, Mean

Squared Error, and L2 of both trained and withheld datasets for training, thus allowing

for the optimization of commonly used Mean Squared Error while reporting interpretable

Mean Average Error. XGBoost was used following the Python XGBoost implementation, the

GPU-enabled version was used [58]. Recursive feature elimination, LASSO, and PCA methods

used were the Scikit-Learn implementations and the Boruta algorithm used was from the

BorutaPy implementation [163]. For Borutapy and Recursive Feature Elimination, Random

Forest Algorithms of 3, 5, and 7 features were used and the features from each instance were

collected. The top 20 features in Recursive Feature Elimination were selected. Visualization
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Figure 2.4: Permutation Importance of Different QTAIM Features

was performed using the seaborn package [307]. A 80-20 split of training-testing data was

used to create the regression algorithms with a redefined random seed. The implementation

for feature selection, regression, and plotting functions along with the dataset we created can

be found here

2.3 Results and Discussion

Diels-Alder Models and Feature Importance

First, to visualize the input space of this model and understand how variables correlate

within the data set, principal component analysis (PCA) analysis was performed. Along

the first three principal component axis, we see that there are no apparent gradients for

increasing/decreasing barrier energies(Fig. 2.3). Both high and low ∆E‡ appear to be spread

out throughout the component space implying that this data is nonlinear and that linear

models might not be suitable for regression. However, the first three components only explain

50% of the variance in the data, and to account for 95% of the input space variance, 38

orthogonal components are needed. The first two eigenvectors are shown, and there is a heavy
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concentration of diene variables in the primary principal component and a strong contingent

of dienophile components in PC1, showing the independence between these two variable

sets. We also note the almost complete set of Φ between these two components supports

the notion that electrostatic potential is an important value in this quantitative structure

activity relationship (QSAR) analysis.

To construct regression models, we pooled the variables (this set is labeled as “raw pooled

features” in this text) selected by the three feature selection algorithms: LASSO, Boruta,

Recursive Feature Elimination (Sec. 2.2.5, 2.2.5, 2.2.5) for a detailed description of each of

these methods). In addition, permutation importance was used to remove multicollinear

features and to gain a robust measure of feature importance relative to each other. Coupling

the results from the raw pooled feature selection algorithms to the ranked list of features from

the permutation ranking(Sec. 2.2.5), Φ (including both Φnuc and Φe) and Bader charge (e)

appear to be the most physically important set of descriptors from a statistical standpoint(Tab.

A.5). The permutation ranking of features from the physical data set is shown(Figs. A.1,

A.3), and the permutation ranking for features in the full pooled data setA.2.

The fact that electrostatic potentials and electron density curvatures affect the Diels–Alder

reaction barriers is physically meaningful. Within DFT a localized potential is used to express

the potential energy in solving the one-electron Schrödinger equation, which is the sum of

the external potential (vex(r)), Hartree electron–electron interaction potential, and exchange-

correlation potential(Eqn. 2.4).

v[ρ] = vex +

∫
dτ

′ ρ(r′)
|r− r’|

+
δEex[ρ]

δρ
(2.4)

vex(r) is the potential created by the nuclei and is exactly equivalent to Φnuc. Similarly,

the middle term is exactly equivalent to Φe. Thus, our selection algorithms have picked out

that the potential, which specifies the system’s Hamiltonian in the reactant state, is also

deterministic of the energy of the system at the TS. Furthermore, it seems that it is enough

to know only the potential energy and contribution from the nuclei and electrons separately
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feature type raw, pooled pooled, uncorrelated physical
1 AB q, Ee, Φ, λ, T , δ, δbond q, Ee, Φ, δ q, Ee, Φ, δ
2 AB q, Φ, δbond q, Φ q, Ee, Φ, δ
3 AB Ee, Φ, λ, T , δ Ee, Φ, δ q, Ee, Φ, δ
4 AB q, Ee, Φ, δbond, T q, Ee, Φ q, Ee, Φ, δ
5 AB q, Φ, Φnuc, λ, δ q, Ee, Φ, δ q, Φ, Φnuc, δ
6 AB Φ, λ, δ, δbond Φ, δ q, Φ, δ
7 BCP ϵ, dsum, d′, d ϵ, dsum ϵ
8 BCP ϵ ϵ ϵ
9 BCP ϵ ϵ ϵ
10 BCP Φe, Φ Φe, Φ ϵ, Φ
total features 38 24 28

Table 2.1: Variables Collected by Each Feature Selection Algorithm: Features
included in several algorithms that completed a set of variables were pooled to construct
regression algorithms. Beyond that, features selected were used to gain physical insight and
build a more general physical model. ϵ: bond ellipticity, T: electronic energy of molecule,
Ee: contribution of atom to electronic energy, q: electronic charge, σ: stress, Φ: electrostatic
potential, δ: delocalization index, δbond: bond delocalization index, λ: localication index, d:
average number of electronic pairs formed in atom a, d′: half of average number of electron
pairs formed between atom A and other atoms of molecule, dsum sum of d′ and d.

at these nuclei and CPs, rather than the full function, to approximate the change in electronic

energy at the TS. In conjunction with the electrostatic potential, the ellipticity (ϵ) at the

majority of the BCPs was also selected as an important feature( Table A.4).

ϵ =
λ
(1)
Hρ

λ
(2)
Hρ

− 1 (2.5)

ϵ is a measure of the elliptical nature of the density within the plane orthogonal to the

bond direction(Eqn. 2.5). Generally, ellipticity can be a measure of the π-character in the

bond, as double bonds lack symmetry of the electron density around the bond axis, whereas

axial symmetry is present for σ-bonds. Since the Diels–Alder reaction is often rationalized

through the interaction between the frontier orbitals (π-orbitals), it makes physical sense

that ϵ should be a strong determinant of the barrier.

Models were trained using the features selected from the selection algorithms, with an
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Figure 2.5: Correlation of QTAIM Features

addition of “missing features” that completed the physically meaningful set. For example, if

feature selection algorithms determined that a given feature was important in all but one CP

or AB, we “completed” the set by including this missed feature. The compiled data set of

38 variables still presented a large input space relative to the size of the data set; therefore,

we wanted to further reduce the number of input variables. Heavily correlated features, as

computed through a Pearson correlation coefficient with a magnitude above 0.8, were removed

and yielded a reduced subspace of 24 variables; features with the highest permutation score

were kept, while lesser important correlated features were removed(Fig. 2.5). This reduced

data set (labeled “pooled, uncorrelated features”) was used to train benchmark regression

algorithms. The removal of heavily correlated features can be important, not just in reducing

model training times (and thereby allowing the testing of more hyperparameter sets for a

given computational cost) but in creating more stable, generalizable models; multicollinearity

can yield models that overfit one set of highly correlated features [325]. Here we see that
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physically related descriptors are often correlated with each other. For example, d7, d′7, d7,sum

are all definitionally related as the latter is the sum of the former two values. In addition,

some identical variables at different features also correlate heavily, as was the case with Φ at

the two of the dienophile nuclei (which makes chemical sense).

The input space of uncorrelated variables was used to train a diverse array of algorithms

optimized for their mean squared error to barrier energies. Performance metrics on withheld

data are reported(Fig. 2.6). We see that all linear models (LASSO, Ridge) perform quite

poorly, confirming the complex nature of the input space to these models. Tree based

regressors (XGBoost, Gradient Boost, and Extra Trees) performed quite well, all of which

achieved correlations above 0.8 on the validation set. This is not surprising as these models

are quite flexible and consist of tunable parameters to prevent overfitting. Extra Trees

and Gradient Boost both performed well versus other regression algorithms, withheld data,

and had a baseline metric of guessing the mean barrier energy of the data set for every

instance(Tab. A.2).

Beyond training the best performing model, we wished to create a more general and

physically intuitive regression algorithm for predicting instances outside of our data set. To

do this, we completed sets of physical features labeled as “physical feature set” by adding

back some of the physically meaningful though possibly correlated variables(Tab. A.4). For

example, bond ellipticity, ϵ, was originally selected in three of the four BCPs as an important

feature; in the completed/physical set of variables we included of all four BCPs. In principle,

reintroducing correlated variables and statistically unimportant variables would increase

training loss and reduce performance metrics, but we benchmarked models trained on this

data set and determined that there was almost no loss in performance(Tab. A.2). In general,

these best performing algorithms were quick and accurate and could effectively be used to

circumvent more expensive barrier calculations for this family of reactions.

Beyond predicting the overall barrier energy of any given Diels–Alder reaction, this model

would be more practical if it were able to predict the relative energies of endo/exo reaction
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Figure 2.6: Top QTAIM-ML Model Performance

pairs and thereby predict the preferred reaction product of a Diels–Alder reaction. Our data

set contained a mixture of such reaction pairs, but about half of the reactions available did

not have the corresponding alternative reaction. In total, our data set contained 61 endo/exo

pairs or 122 compounds. This represents less than half of the total available data set, and

therefore the process of training is more difficult. To fully extend this aim, we would likely

require more data, but we nonetheless retrained the best model above, Extra Trees, with a

physical feature set and an 80–20 train-validation split. Our splitting scheme kept endo/exo

reaction pairs in the same data set to allow for comparison after regression. We opted to avoid

further hyperparameter tuning and simply reuse the model parameters from the previous

models for simplicity, and therefore a test set was not used. On the validation set, the Extra

Trees regression algorithm was able to correctly predict endo/exo ordering 70% of the time,

although this figure could likely be improved with more data.

Next, we wish to understand the limitations of our regression models, including regimes

where their predictive ability falls short. From the top four regression algorithms, we noted

two data points with barrier energies of 251.8 kcal/mol (60.23 kcal/mol) and 177.9 kJ/mol

(42.56 kcal/mol)(Fig. 2.6) that contributed heavily to training loss in all instances. The

consistently large error for predicting these values across different families of algorithms
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required further probing into the physical reasons yielding such poor performance. First,

these data points fall in the underrepresented high-barrier region, where the model might have

had insufficient training instances. Figure 2.6 shows the two systems responsible for these

two largest testing residuals. Notably, these systems involve dienes with more delocalized

-systems, and thus, the electronic density shifts during the Diels–Alder reaction within these

systems extend over the entire conjugated -system of the diene. Hence, more bonds change

order than in our descriptor set, and the set of mathematical features at just 10 features may

prove limited. There are other conjugated systems, in both the training and test set data,

but the two outliers feature the greatest extents of -delocalization. It must be noted that

QTAIM properties are computed on optimized reactant geometries; therefore, our method

is not agnostic to the shortcomings of the DFT methodology and basis sets, and poorly

performing methods may reduce the performance of machine learning models. Our data set

also includes other regioisomers for the reaction occurring in Figure 2.6, with the preferred

regioisomer being the [5, 10] addition and the least preferred being the [12, 14] addition [118].

Upon testing with our best performing algorithm, Extra Trees, we can correctly predict that

the [12, 14] addition is still least preferred, and the [5, 10] addition is most preferred. Hence,

our algorithm, while it may not accurately predict the barrier for the [12, 14] addition, still

predicts the correct regioisomer.

Diels-Alderase Study

Finally, we put the model to a stringent test and probe its expandability to a considerably

more complicated regime of enzymatic catalysis, where calculating the barriers is indeed

very challenging. Since the model was trained on reactions in solution, there is no guarantee

that it would successfully predict the barriers for the Diels–Alder reaction catalyzed by

enzymes. Artificial Diels–Alderases have been designed and undergone laboratory directed

evolution to enhance the performance by several orders of magnitude. (87) These enzymes

catalyze the reaction between 4-carboxylbenzyl-trans-1,3-butadiene-1-carbamate and N,N-
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Figure 2.7: Diels Alderases Used for OOD Testing

Figure 2.8: Diels–Alder Reaction between 4-Carboxylbenzyl-trans-1,3-butadiene-1-carbamate
and N,N -Dimethylacrylamide Catalyzed by the Diels–Alderase Enzymes CE11 and CE20

dimethylacrylamide (Fig. 2.8). Using our top performing regression algorithm, we compare

the barrier energies of two Diels–Alderase enzymes at the beginning and end of a directed

evolution optimization (CE11 and CE20). There is a total of eight mutations between CE11

and CE20 with the majority being within the appended lid element and none within the active

site(Fig. 2.7). Therefore, these mutations represent realistic, subtle changes to the active

site electron density topology brought about by distant point mutations through long-range

interactions.

We utilized our in-house quantum mechanical/discrete molecular dynamics (QM/DMD)

engine [265] to perform sampling of the two protein variants with the bound substrates. The

QM active site shown (Fig. 2.7) included Tyr132 and Gln206 which directly hydrogen bond
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the dieneophile and diene respectively Additionally, in the crystal structure, a single water

molecule was located near the carbonyl on the dieneophile which seemed to be a hydrogen

bond donor and was included as well. Using the lowest energy QM active sites from each

mutant, we performed the QTAIM analysis to generate the input vector for our machine

learning algorithm.

The top-performing Extra Trees algorithm with the physical feature set was used and

correctly predicted the ordering of the reaction barriers of these two Diels–Alderases: CE11

should have a higher barrier than CE20, thus being less active. We note that ranking of the

artificial enzyme variants in terms of activity is often all that is needed in the protein design

and optimization process. Despite the correct ordering of enzyme energies relative to each

other, the barrier energy and the gap between them were considerably higher than the values

estimated from experiment, 20 kJ/mol (5 kcal/mol) for the difference in electronic barriers,

with a difference of 2.2 kJ/mol (0.52 kcal/mol) free energy difference at 25 °C [224]. The

difference could arise from several factors including the lesser representation of low-barrier

reactions in the training set and the missing entropic contributions to the free energy barrier.

In this particular experiment, the choice of feature set did not change the ultimate result as

we predicted the same ordering with every feature set. Note also that further investigation

upon these structures is warranted to understand how the mutations alter the reaction barrier,

though it is outside the scope of this present paper.

2.4 Conclusions

Here we showed that QTAIM descriptors based on the ground state electron density can

be coupled to a supervised machine learning algorithm to predict reaction barrier energies.

Fundamentally, QTAIM appears to be an ideal tool for feature generation in machine learning

as it produces sets of physical, continuous descriptors. As a proof-of-concept, we present

this study of Diels–Alder reactions. We computed reaction barriers of a diverse array of
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Diels–Alder reactions from the literature and extracted a wealth of electron density and

derived mathematical descriptors for their reactant states. This initially massive feature set

was refined via feature selection methods to yield an interpretable set of important variables

consistent with physical intuition. From there we trained and tuned several regression

algorithms with excellent predictive ability based on physical descriptors. Additionally, we

were able to qualitatively predict the ordering of activity for two Diels–Alderase enzymes.

Thus, we were able to sidestep the necessity of finding the TS geometry to determine the

TS energy with this model example. Further, since the electron density is an observable,

it is possible to map the electron density experimentally and deduce the barrier directly,

without computations or kinetics experiments. Therefore, this study alone could serve as

a screening filter for experimental and computational studies on the Diels–Alder reaction.

Beyond building a library of barrier prediction algorithms, the proposed descriptor sets could

be generalized to a fixed-length descriptor compatible with any molecule, adding to the set

of descriptors that might be useful in the chemoinformatics toolkit. Future studies may

include building classifier algorithms to bin reactions into categories or test the ability to

predict the reactivity for stepwise Diels–Alder reactions using QTAIM features. Preliminary

tests with classification algorithms showed promising results with high accuracy and ROC

scores, though the problem of data balance remains. We choose to avoid making classifier

algorithms as regression algorithms, with a high degree of accuracy, could themselves serve

as screening methods for computational chemical applications. In addition, benchmarking

versus traditional fingerprinting algorithms would be a useful metric that was not possible

as our diverse set of systems included a diverse length of molecular sizes and even number

of molecules. Another area of interest is generalizing these descriptors to an arbitrary-size

system through perhaps graph representations and corresponding graph neural networks. We

do note that BCP, RCP, and CCP can disappear catastrophically (described by catastrophe

theory [112]), and hence a given set of CPs may not be uniformly present across all of

the systems. If this is the case, then simply supplying the null vector for the features
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at that particular CP should allow fixed-length input ML algorithms to work, as well as

provide incredibly important information about the system (that is, if a CP is present or

not is chemically important information and includes important bonding information for

that system). Hence, machine learning on QTAIM CPs can be generalized to include CPs

that can disappear catastrophically. To summarize, we show that there appears to be, at

minimum, a statistical relationship between the reactant state electronic density and the

reaction barrier. Within DFT, the reactant state energy is a functional of the electron density;

therefore, we extend this and conjecture that the TS energy is a functional of the reactant

state electron density. This is of fundamental curiosity because the ground state density

in principle is mostly agnostic to unoccupied states that can be important for reactivity;

this could arise as a limitation in similar algorithms for some reactions. Statistical learning

algorithms demonstrate a high degree of accuracy in predicting barrier energy from a small set

of density descriptors, suggesting an underlying analytic relationship between these variables.

This motivates further studies with different reaction families and the development of more

generalizable QTAIM descriptors and algorithms.
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Chapter 3

High-throughput Quantum Theory of

Atoms in Molecules (QTAIM) for

Geometric Deep Learning of Molecular

and Reaction Properties

3.1 Introduction

The Quantum Theory of Atoms in Molecules (QTAIM) is an illustrious methodology for

deriving insight from the electronic density distribution of a molecule. QTAIM assigns the

electronic density ρ to particular atoms and delineates bonding interactions between them.

By topological analysis, QTAIM partitions ρ into atomic basins bounded by zero-flux surfaces

S(Ω) that satisfy ∇ρ(r) · n(r) = 0. Integrating electronic properties over each enclosed basin

yields descriptors such as atomic energies and electron delocalization. Similarly, QTAIM

identifies critical points (CP) at nuclei and between them where ρ is maximized according to

its second derivative; these nuclear (NCP), bond (BCP), ring (RCP), and cage (CCP) critical

points are differentiated by how many dimensions exhibit local maxima in ρ. Properties of the
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density measured at CPs provide a compact set of descriptors that encapsulate the molecule’s

electronic distribution. Furthermore, a unique path of steepest ascent in ρ (i.e. the gradient

path) exists from each bond CP to its two adjacent nuclear CPs, thereby linking neighboring

atoms with a bonding interaction. In other words, QTAIM gives bonding networks as well as

higher-order information about a molecule’s electronic structure.

As a density-based theory, QTAIM builds upon either theoretical calculations or x-ray

diffraction data, and is thus applicable across computational and experimental disciplines [192].

Exemplar studies utilize QTAIM to understand ligand-receptor interactions in biological

systems [241], predict chemical activation barriers [288], describe toxicity [230], and estimate

spectroscopic parameters in organic compounds [192]. Tab. 3.1 shows a representative set of

descriptors alongside previous interpretations for properties they report on. Given QTAIM’s

high descriptiveness and prior use in QSAR approaches, we believe that it can be leveraged

to improve machine-learned predictions of molecular, protein, and periodic system properties.

QTAIM’s unique bond definitions, rooted in quantum chemical information, can also serve as

powerful alternatives to cheminformatic heuristics such as bond cutoffs [208] for resolving

bonding in difficult chemistries involving aromaticity, multi-center bonds, and metals. Several

studies have utilized QTAIM as a fine-grained analytical tool in bonding analysis, these

include both covalent and non-covalent interactions. Bader previously investivated how Ti

bonds to cyclopentadienyl and a substituted dienyl fragment, with QTAIM differentiating

whether or not a C bonds to Ti by the presence or absence of a bonding interaction [17].

Farruga et. al. also compared the covalency of transition metal-carbon bonds based on the

density and other QTAIM values at bond critical points [81]. Given these examples, we also

probe whether QTAIM features could improve performance for datasets containing metals.
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Value Derived Concepts

Electron Localization
Function (ELF)

electrophilic/nucleophilic
sites [111,142]

Laplacian (∇2ρ)
electrophilic/nucleophilic sites,

atomic graph [16]

Electrostatic Potential (ϕ)
interaction strengths w/ nuclei,

other electrons [19,99]

Energy Density Valence shell polarization [44,229]

Delocalization Index (ϵ) π-character [65]

ETA Index interaction type [205]

Localized Orbital Locator e localization [249]

Table 3.1: A set of QTAIM features and how they have been interpreted in the past.

Our goal is to merge the interpretive richness and relevance of QTAIM descriptors with

powerful geometric learning algorithms. Previous QTAIM/ML approaches incorporated a

limited set of hand-selected features based on existing heuristics, [100, 207,218,288] and thus,

potentially missed leveraging many useful features. With our approach, we integrate a rich

set of over 20 atom and 20 bond critical point features for an exhaustive toolkit of electronic

descriptors (Tab. B.1). Integrating these features into graph neural networks (GNNs) allows

for greater applicability to systems with varying chemical structures and unexplored chemical

motifs where heuristics have not yet been developed [115]. In addition, graphs are a flexible

data structure that can readily intake spatial information such as atomic positions and/or

bond lengths to further inform predictions. Given the power and ubiquity of geometric

learning in chemical spaces, coupling them to electronic structure-informed features could

extend their applicability and ability to generalize on smaller datasets [25, 101, 104, 320].

Notably, graph neural networks (GNNs) often perform poorly under low data regimes [282,314]

— regimes where experimental and high-accuracy quantum chemical calculations may operate

and electronic descriptors could offer a strategy for suitable performance. Furthermore, GNNs

suffer from poor out-of-domain (OOD) extrapolation and we probe whether QTAIM features

can help alleviate this shortcoming [282]. We note one other study [135] that takes a somewhat
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similar approach to using QTAIM for geometric machine learning; our work differs by not

having benchmarks on standard cheminformatic datasets, testing on spin/charge-varying

datasets, testing out-of-domain performance, and providing tools for generating and training

QTAIM-informed geometric learning models for both molecules and reactions.

We make a few important advances to the utilization of QTAIM in machine learning.

First, we create a set of easy-to-use, pythonic tools for computing QTAIM descriptors at

scale and using them for machine learning tasks. These tools include high-throughput job-

runners for calculating QTAIM values, visualization tools for descriptive statistics, parsing

utilities for compiling data into single data structures, and ready-to-use graph neural network

architectures. These tools work together in an ecosystem for harnessing QTAIM in geometric

learning. We also compute QTAIM values on several datasets chosen for benchmarking or

developing algorithms to handle tricky chemical domains with varying charges, spins, and

reactivities. In addition, we benchmark the usage of QTAIM features to demonstrate their

ability to improve overall model performance, learning on smaller datasets, and out-of-domain

predictions. We hope that these contributions can serve as an important foundation for

further studies using hybrid QTAIM/ML approaches to tackle machine learning in difficult

chemical domains with experimental or small datasets. In addition, these tools can serve as an

important basis for developing more advanced QTAIM-enabled machine learning algorithms.

3.2 Methods

3.2.1 Quantum Chemical Calculations

QTAIM calculations build on top of quantum chemical density calculations. Our package

can intake any format compatible with Multiwfn [183] or Critic2 [211] and thus could use a

number of DFT codes such as Q-Chem [77] or Gaussian [91]. We use ORCA [204] as it’s

open-source, free under academic licenses, and implements a wide range of basis sets and

levels of theory. For now, we have implemented options files that allow the user to write a

43



wide-range of custom ORCA input files, including relativistic corrections, individual atomic

basis sets, and parallelization options. Generalization to other quantum chemical packages

requires new methods for writing input files but otherwise can fit into our ecosystem for

high-throughput QTAIM and molecular/reaction graph neural networks. We chose differing

levels of theory for our dataset construction considering the relative expense of computed

properties in each dataset — we wanted to ensure that the cost of DFT and subsequent

QTAIM calculations did not rival the expense of computed properties. We outline the different

levels of theory below for each dataset.

3.2.2 QTAIM Calculations

Our current implementation uses critic2 [211] or Multiwfn [183] to handle QTAIM calculations.

All datasets here, however, leverage Multiwfn due to its richer set of QTAIM descriptors,

including spin information, energies, etc. (Tab. B.1). These calculations intake any density

file format supported by Multiwfn including .cube and .wfn files and yield a single text file

for analysis.

3.2.3 Dataset construction

We format our datasets into standard JSONs, constructed either by standard tools from

rdkit [233] and pymatgen [208] or by our built-in scripts for construction and formatting (Fig.

3.1). These scripts parse molecular charge and spin information from xyz files and produce a

database. Initial guesses at bonding can optionally be handled by rdkit. The resulting json

includes the following notable data structures in order to write DFT input files and perform

subsequent machine learning:

Molecules (pymatgen molecules) - Pymatgen molecules, without bonding information,

used to featurize the molecules for machine learning and write input files with coordinates at

atomic sites.

Molecular graphs (pymatgen MoleculeGraphs) - Pymatgen molecular graphs with
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added bonding information from molecules.

IDs - index of the molecule in the json, can be user specified

Names (for xyz construction) - name of the file from which a datapoint is constructed

Spin (if specified) - molecular spin state, otherwise singlet

Charge (if specified) - molecular charge, otherwise neutral

Bonds (if specified) - We include an option to specify bonding with rdkit’s tools but

any user-specified bonds work. These bonds can be optionally overwritten by the bond paths

determined by QTAIM.

Given the dataset, our create_files.py script reads in several options, including

information on writing DFT input files, QTAIM parser information, and reaction/molecular

options. Users can also specify custom options for executables used in running DFT and/or

QTAIM calculations. Folders of input files become jobs for a high-throughput job man-

ager/runner in our package. This runner randomly selects folders and checks for pending

QTAIM and DFT jobs. Incomplete tasks are performed and the implementation allows for

concurrent jobs on high-performance computing resources.

Finalized directories of QTAIM properties contain either jsons (critic2) or text files

(Multiwfn) with QTAIM information including bonding, energetics, and critical point types.

Our parse_data.py script intakes these folders and merges QTAIM information into the

original json. This merge process involves parsing a user-specified set of QTAIM features,

and optionally, imputation. We compile all of the QTAIM values for the dataset and use

these to compute mean and median values for imputation where information is missing or

where QTAIM and prior bond definitions are not in alignment. The user can also select

to update bond definitions using QTAIM BCPs and whether to parse the dataset as a

dataset of molecules or reactions. Atom and bond mappings are computed between final

bond definitions and features. This is vital for the construction of reaction-property datasets

where atom/bond-mapping across different numbers of reactions/products is non-trivial.

The finalized output of these processes is a new json containing pymatgen objects, bonding
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information, QTAIM features, mappings, and optional features such as spin and charges. The

entire pipeline allows for QTAIM calculations at scale, and as such, we include several large

datasets for further experimentation and development.

Figure 3.1: An outline of the current workflow for QTAIM property prediction. Users can

either start from a JSON of data or use our helpers to parse xyz files into compatible JSON

formats.

3.2.4 Dataset visualization and statistics

Included in our toolkit are also basic visualization scripts that compute summary statistics

such as mean, mode, median for debugging and visualization purposes. We compute these

features for each element in the dataset and output a breakdown of statistics at the elemental

level as well. For visualization, we break down QTAIM descriptors at the global and element

level with log scaling for highly-variable features (which is often the case for NCP energies).

These tools were created to allow users to filter features with low variability and heavy

outliers.

3.3 Datasets

We selected key datasets across varying levels of computational complexity and computed

properties to highlight the flexibility of our package. Key considerations for these datasets and
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the level of theory for subsequent QTAIM calculations were the following: first, we wanted to

highlight important features of our package such as support for reactions and spin/charge.

Second, we informed the level of theory in our QTAIM calculations with the relative expense

of computed properties. In other words, inexpensive orbital energies of organic molecules only

justified a modest level of theory in our dataset construction. Conversely, more expensive

vertical excitation or vibrationally-corrected free energies on metal-containing complexes

justified more expensive calculations. We wanted to reflect real use cases where computing

descriptors should be considerably less expensive than the properties they are used to predict.

Finally, we sought to integrate datasets that are either already in use by the community

or could be adopted readily to test the limits of new models on domains such as molecules

with varying spins and charges, transition metals, and reactions. Towards understanding the

relationship of individual QTAIM features to individual target variables, we conducted a

simple correlatory study. Here we mean-pooled each QTAIM across individual molecules and

correlated these values with labels in molecular property datasets. We briefly describe the

datasets we based our QTAIM datasets on as well as the labels we used to test and validate

the use case for QTAIM descriptors in machine learning:

3.3.1 QM9

Perhaps the most widely-adopted dataset for structure-to-property benchmarking, QM9 is a

dataset of optimized, small organic compounds consisting of 134,000 structures [227, 242].

These structures are limited to up to 9 heavy (CONF) atoms and up to 29 atoms including

H. We constructed a train-test split of 90/10 and the validation set was constructed from

the training set with a split of 80/20 for model selection and hyperparameter tuning. We

benchmarked on 3 of the reported properties in the dataset, namely the energy of highest

occupied molecular orbital (ϵHOMO), energy of lowest unoccupied molecular orbital (ϵLUMO),

and the HOMO-LUMO gap (∆ϵ). We used this limited set as it included only size-intensive

properties. Algorithms were trained in a multi-task fashion to predict all three properties.
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QTAIM properties for this dataset were computed at TPSS [275]/def2-SVP [124] with

D3BJ [109] dispersion. Here we aimed to study the efficacy of QTAIM features at lower levels

of theory, given the comparatively low level of theory and cost of computed target values.

3.3.2 QM8

QM8 encompasses a set of time-dependent density functional theory (TD-DFT) calculations of

electronic excited states [228,242]. The dataset contains 22,000 molecules, which are a subset

of QM9 with up to 8 CONF atoms, and further refinement for strained geometries. Computed

properties include the vertical excitation energies for the two lowest-lying excited states

and corresponding oscillator strengths. For benchmarking, we only trained/tested on the

excitation energies at second-order approximate coupled-cluster (CC2) [60]/def2-TVZP [310]

level of theory, yielding two target variables. We constructed a random train-test split of

90/10 and the validation set was constructed from the training set with a random split of

80/20 for model selection and hyperparameter tuning. Algorithms were trained in a multi-task

fashion to predict both properties. QTAIM properties for this dataset were computed at

PBE0 [216]/def2-TZVP [124] level of theory. Here we aimed to study the efficacy of QTAIM

features at higher levels of theory (hybrid functionals via PBE0) given the expense of vertical

excitation properties (labels for machine learning).

3.3.3 Tox21

The Toxicology in the 21st Century (Tox21) dataset measures the toxicity of 8,000 compounds

across 12 different toxicity targets including nuclear receptors and stress response pathways

[133,193]. Structures in this dataset are provided as SMILES structures with RDKit [233]

embedding their geometries prior to optimization. GFN2-xTB [20] further optimized these

structures prior to DFT and QTAIM. We constructed a random train-test split of 90/10

and the validation set was constructed from the training set with a split of 80/20 for model

selection and hyperparameter tuning. Algorithms were trained in a multi-task fashion to
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predict all 12 properties (toxicity toward 12 targets). QTAIM properties for this dataset

were computed at TPSS [275]/def2-SVP [124] with D3BJ [109] dispersion following geometry

optimization. The dataset consists of various missing values across the 12 labels so we imputed

mode values for training but at testing no imputation was performed. Here we aimed to

study the efficacy of QTAIM features at high levels of theory given the experimental nature

of this dataset. We did, however, use a relatively cheap method for geometry optimizations

to probe how robust QTAIM is to the quality of the geometry.

3.3.4 LIBE

Lithium-ion Battery Electrolyte (LIBE) is a dataset composed of a diverse set of lithium-

ion battery solid electrolyte interface (SEI) species. These structures were generated via

fragmentation and combination operations on the principal molecules known to be present in

the Li-ion battery SEIs. The dataset contains 17,000 structures of varying spin and charge

states “labeled” with both raw and corrected enthalpies, entropies, and free energies [268].

We used the rigid-rotor harmonic oscillator (RRHO) approximated free energies [236] as a

training target, units are reported in eV as in the original publication(Tab. B.2, Fig. B.1).

To approximate molecular formation energies, we performed an energy correction calculation

via linear regression to approximate individual atomic energies at infinite separation (Fig.

B.1, Tab. B.2). We constructed a random train-test split of 90/10 and the validation set

was constructed from the training set with a random split of 80/20 for model selection and

hyperparameter tuning. The inclusion of the LIBE dataset was also of note as there is

currently no benchmark predicting molecular properties on this dataset and it would allow

us to test the ability of QTAIM descriptors to generalize across different charge and spin

states. LIBE also contains metals with nonstandard bonding interactions - an instance where

QTAIM’s rigorous bonding definitions should fare well. QTAIM properties for this dataset

were computed at TPSS [275]/def2-SVP [124] with D3BJ [109] dispersion.
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3.3.5 Grambow 2022

To test QTAIM performance on predicting reaction-level properties we benchmarked a dataset

recently published by Green et. al. [266]. This dataset consists of 12, 000 reactions with

barrier heights and reaction enthalpies computed at three levels of theory. Reactions in the

dataset involve only C, N, O, and/or H atoms with up to 7 heavy atoms. We benchmarked

predicting activation energies at the highest level of theory they were computed (CCSD(T)-

F12a [5]/def2-TZVP [124]). We constructed a random train-test split of 90/10 and the

validation set was constructed from the training set with a random split of 80/20 for model

selection and hyperparameter tuning. QTAIM here was computed at TPSS [275]/def2-

SVP [124] with D3BJ [109] dispersion level of theory given the large number of individual

molecules in the entire dataset.

3.4 Models

A host of geometric learning algorithms were developed or adapted to interoperate with our

QTAIM generation framework: molecular graph neural networks spanning graph convolutional

networks (GCNs), residual convolutions, heterograph graph attention (GAT) layers, Chemprop

(albeit only for molecular property predictions with atomic QTAIM features), and a variant

of the BondNet architecture for reaction-level property predictions. Further details on each

architecture implementation follow.

3.4.1 Molecular Representation

Molecules, and molecules within reactions, are represented similarly as heterographs with

atom, bond, and global feature nodes (Fig. 3.2). Heterographs, as opposed to homographs

with bonds as edges, allow for separate relationships between each different edge type

and enable the addition of a separate global node type to store important molecular-level

information. Graphs (G = (B,A,g)) consist of B as bond information vectors, A is atom-
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level information, and g is the molecular-level feature vector. This followed prior work that

also featurized molecules as complex knowledge graphs [24, 57, 122, 313]. Notably, we also

intake user information on molecular charge and spin information, and transform it into

one-hot encoded vectors in the global feature vector g. Features from the original graph

encoding are transformed via iterative message-passing steps to yield an updated molecular

graph G′ = (B′,A′,g′) with updated node features B′, A′, g′. These features are embedded

into a fixed-size vector prior to a dense, feedforward network for property prediction similar

to other molecular property graph neural networks [282].

Figure 3.2: The heterograph construction of our molecular property prediction algorithm.

3.4.2 Molecular-Property Graph Neural Network

Our graph neural network models rely on complex encoder architectures where raw features

are embedded to a fixed-size vector at each node prior to neural message passing. This

amounts to a rectifying step that allows for greater parameterization in our models at the node

level [313]. Message passing is then used to update a rich set of features in a graph. The final,

updated graph is passed through a global graph pooling operation to readout the graph into

a meaningful, learned vector representation (Fig. 3.1). Under the message passing paradigm,

these updates are computed as a function of differentiable update and aggregate functions on

neighbor features. These functions can take an arbitrary number of forms and herein lies much
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of the rich diversity of graph neural networks developed [252, 255]. Typically, these functions

are applied in various successive rounds to propagate information further across the initial

graph. A pitfall lies with the potential of over smoothing where features become uniform

across the graph. This updated graph is then embedded into vectors using one of a number

of different methods we implemented to make it amenable to traditional neural networks

for supervised learning tasks. These embedding schemes have also been an active area of

research with schemes such as set2set [290], setTransformers [170], and self-attention graph

(SAG) pooling [171] created to balance computational complexity with expressiveness. In

particular, we implmented MeanPooling, WeightedMeanPooling, Self-attention pooling [171],

and set2set pooling [170] as a diverse set of pooling approaches.

Figure 3.3: The full framework of our molecular property algorithms. Several different

message passing and global pooling operations are implemented for intensive and extensive

molecular properties.

We implemented several graph neural network architectures in our approach to ensure

a wide-range of algorithms were benchmarked with/without QTAIM descriptors. These

architectures included different update and pooling functions to ensure that relatively up-to-

date models were compared. For update functions, we used traditional graph convolutions

[153], graph attention mechanisms [289], and residual convolutions [119]. These layers were

selected for their diversity and ability to learn at different model depths with attention and

residual connections typically being more resistant to oversmoothing [243]. These layers have

use across the chemical structure-to-property domain with strong results in cases including
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predicting aqueous solubility [62], reactivity [237], and cost [247]. Pooling functions ultimately

intake raw or processed graphs and compute a fixed-sized representation for visualization or

tasks via a dense neural network. These layers are highly important and vary in complexity

from simple sum operations to complex setTransformer architectures incorporating attention

and beyond [170, 254]. Here we integrate 4 such operations into our potential space of

graph neural networks: global summing, weighted global summing, set2set, and global

attention pooling. These layers were selected to span a space of expressiveness and cost for

our benchmarking and provide a wide toolkit for future QTAIM-enabled machine learning

experiments. In order to merge QTAIM-features with nodes in our heterographs, we parsed

Multiwfn’s outputs to map features at NCP/BCPs to nodes based on "attractors" that

aligned with atomic positions. For BCPs, Multiwfn also outputs NCPs that terminate bond

paths, which we parsed to their respective bonds. This avoided any non-nuclear "attractors"

(NNAs) appearing as atom nodes in our graphs.

3.4.3 ChemProp

Chemprop is a flexible framework for computing a host of different molecule-level and reaction-

level properties [122]. The algorithm incorporates a local embedding from atom/bond features,

a graph-level embedding function that transforms finalized representation graphs to a fixed-

size vector, and a standard feed-forward neural network for property prediction. We adopted

our QTAIM generator to construct atom-level QTAIM features in a format compatible with

Chemprop’s featurization. Here we limit ourselves to atom-level molecular features, excluding

both bonds and reactions due to the inflexibility of Chemprop for user-defined bonds and

the added complexity of atom-mappings. Hyperparameter optimization was performed using

their convenient bayesian optimization functionalities.
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3.4.4 BondNet

BonDNet is a reaction-property graph neural network originally constructed for the prediction

of reaction ∆Grxn values in single bond dissociation reactions. It consists of two modules, the

graph-to-graph and graph-to-property modules, each constitute the processing of the original

feature graph towards final prediction. The graph-to-graph module intakes the original

knowledge graph G(B,A,g) and transforms it, via successive message-passing steps, to the

final graph G(B′,A′,g′). Updates are performed on each separate reaction molecule prior to

the construction of a global reaction difference graph. The reaction graph is constructed via

the mapping of atoms and bonds in reactants to corresponding atoms in the products prior

to a simple subtraction. The finalized reaction graph is embedded into a fixed-size vector

via a global embedding set2set layer prior to feed-forward neural network layers for property

prediction. Here QTAIM descriptors offer a promising avenue for highlighting nuanced

changes in electronic structure between products and reactants, even at distal locations from

the reaction site. We adapted our code to work natively with newer variants of the BonDNet

architecture. This architecture was recently updated to improve generalizability for custom

user descriptors and arbitrary reaction molecularity - essential quality of life updates that

make it a prime model for testing an integrated QTAIM/ML approach [113]. Furthermore,

this updated architecture allows for custom bond definitions, thus, we integrate QTAIM bond

path connectivities to define bonds within our molecular graphs.

3.4.5 Benchmarks

QTAIM-enabled algorithms were pitted against a diverse set of molecular-graph property

algorithms. Our aim here was not necessarily to outperform SOTA models but to demonstrate

that models with QTAIM features could approach these models in performance and thus

serve as the basis for more-advanced QTAIM-enabled algorithms. Benchmarks on molecular

properties were performed using Schnet, PaiNN, and Chemprop. We briefly overview Schnet

and PaiNN here. The Schnet architecture introduced the concept of continuous convolution
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filters. These convolution operations allow for the arbitrary position of atoms within the model

representation and give SchNet improved performance over their direct legacy algorithms,

DTNNs. PaiNN is an equivariant neural network architecture, it couples ideas from SchNet

to new representations, enabling more data-efficient learning. Perhaps the biggest algorithmic

development of PaiNN is the use of equivariant message passing functions that incorporate

not only rotationally invariant distances but also rotationally equivariant neighbor directions

as part of the message-passing update function. This allows the algorithm to predict tensorial

properties, as well as generalize well with less data. Its efficient representations also allow for

effective models with fewer parameters and shorter inference times. We note that our baseline

GNN architectures are comparatively less sophisticated than many of these algorithms, and

as such, we hope to bridge performance gaps with these models via the inclusion of QTAIM

features alone. These models were benchmarked competitively on QM8 and QM9 as the

remaining datasets required spin/charge information or covered reaction-level properties.

Other benchmarks to note are the use of our QTAIM-enabled algorithms vs. those

without on the LIBE, Green, and Tox21 datasets. Here we opted to remove the above

benchmark datasets to avoid added complexities in treating classification tasks, reaction-

property predictions, and spin/charge-varying molecules with algorithms that cannot encode

this information. For Tox21, both models sets of models perform comparably and we include

both the dataset and performance in supplementary information (Tab. B.3). To gauge

the effect of QTAIM on model learning, we benchmarked model test performance on LIBE,

QM8, and QM9 given 102, 103, 104, (and 105 for QM9) training data points. These learning

curves are often used in machine learning to measure the learning capacity of a model and

extrapolate to how accuracy varies with dataset size.
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3.5 Results and Discussion

In addition to the experiments that follow, we evaluated a classifier variant of our model on

the Tox21 dataset with and w/out QTAIM features (Tab. B.3). Here we see marginal but

comprehensive improvements in performance with QTAIM features.

Figure 3.4: Parity plot of our model, with QTAIM, on the qm9 test set

3.5.1 QM9

Evaluating model performance on QM9, we note how our QTAIM-enhanced models are

able to compete with the performance of the otherwise best-performing model, Chemprop

(Tab. 3.5.1). We also augmented Chemprop with QTAIM NCP-only features but here we

actually see a slight drop in testing performance. We emphasize that Chemprop does not

include vital BCP QTAIM features and thus does not leverage the comprehensive set of

QTAIM descriptors. Even here, the performance difference between QTAIM-enabled and

non-QTAIM Chemprop models is quite small and also suggests the model is near or at

capacity - not that QTAIM features are not informative. Analyzing scatterplots of QM9

test performance, we can also determine the robustness of QTAIM-informed models with

few outlier points between predicted and true labels. Interestingly, our outlier points are

generally some of the heaviest molecules in QM9. It is also worth noting that the QM9
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dataset constitutes a comparatively-simple dataset for machine learning with the difference

between the top-performing models being relatively small. Observing correlations of target

variables to individual QTAIM values - QM9 exhibits the highest correlations of any of our

datasets (though still quite low). Here several values emerge as important, these include

electron localization values and bond Lagrangian values (Fig. B.27).

Model HOMO LUMO Gap Average

Schnet 0.0109 0.0115 0.0151 0.0125

PaiNN 0.0136 0.0148 0.0158 0.0147

ChemProp
(w/out QTAIM) 0.0028 0.0031 0.0038 0.0032

Our Best
(w/out QTAIM) 0.0058 0.0076 0.0090 0.0075

ChemProp
(w/ QTAIM) 0.0030 0.0035 0.0042 0.0036

Our Best
(w/ QTAIM) 0.0028 0.0036 0.0042 0.0035

Table 3.2: Test performance (MAE, Hartrees) of various geometric learning algorithms on

orbital energies in QM9.

In addition, we examine the learning curves of our models with and without QTAIM

features. To give each set of models even footing, we conducted hyperparameter tuning on

models with and without QTAIM features separately and thus these curves (and overall test

performance) correspond to the best models for each descriptor set. We see QTAIM yielding a

distinctive improvement in performance in the low data regime with consistent advantages in

test performance across all training set sizes (Fig. B.16). Beyond 10,000 structures, however,

there is little improvement in test performance of the QTAIM-informed model suggesting the

mode is at capacity to generalize or that mainly irreducible errors remain.
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3.5.2 QM8

Across both tasks (first and second vertical excitation energies) QTAIM-enabled models

were the top-performing algorithms (Tab. 3.3). Chemprop and our models with QTAIM

yielded improved test errors over all other models with a notable gap in performance between

QTAIM/ML models and all others. Again, we note that Chemprop’s QTAIM featurization

was limited to only QTAIM NCP features, and even then, this led to increased performance.

Finally, when examining predicted versus true plots of our models, it becomes evident that

QTAIM-enhanced models exhibit greater robustness, displaying fewer outlier residual errors

compared to their non-QTAIM equivalent (Fig. B.2). Our correlation study (Fig. B.25) also

shows remarkably low correlations between vertical excitation energies and any one QTAIM

value - underlying the relative complexity of this property. We do note that some of the

highest correlations are with BCP QTAIM features, suggesting Chemprop could improve

with these features.

Model E1-CC2 E2-CC2 Average

Schnet 0.517 0.379 0.448

PaiNN 0.0133 0.0145 0.0139

ChemProp
(w/out QTAIM) 0.0373 0.0270 0.0322

Our Best
(w/out QTAIM) 0.0130 0.0130 0.0130

ChemProp
(w/ QTAIM) 0.0052 0.0060 0.0056

Our Best
(w/ QTAIM) 0.0062 0.0067 0.0064

Table 3.3: Test performance (MAE, Hartrees) of various geometric learning algorithms on

orbital energies in QM8.

The learning curves further reinforce the advantage of QTAIM-enabled models, illustrating

a consistent improvement in performance across varying training set sizes (Fig. B.15).

Additionally, the learning curves for both QTAIM and non-QTAIM models do not appear
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to reach saturation, implying that additional training data could potentially lead to further

reductions in prediction errors for both types of models.

3.5.3 LIBE

Figure 3.5: Parity plot of our model, with QTAIM, on the LIBE test set

The LIBE dataset presents a more challenging task due to its inclusion of spin-varying and

charged species. Moreover, the dataset exhibits a wide range of molecular free energies

which further add to the difficulty of learning energetics here. In pitting QTAIM/ML versus

non-QTAIM models we note that our non-QTAIM models do directly describe spin and

charge as one-hot encoded global features while the QTAIM/ML models add QTAIM features,
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including α spin, β spin, and spin density at each critical point, to further inform learning.

Both models perform quite well with the top QTAIM/ML model yielding a reduced error on

formation energies from 76.26 meV/Atom to 45.09 meV/Atom and an increased proportion

of predicted energies within chemical accuracy to true labels (8.5% vs. 5.4%) versus its

non-QTAIM equivalent (Tab. 3.4). Analyzing correlation values (Fig. B.29, B.30) we see

again that electron localization functions and electrostatic potentials, specifically at BCPs,

emerge as the most correlated features to formation energies. This interpretation in agreement

with previous studies that leveraged both electron localization and electrostatic potential

values to analyzed bonding strength and orbital interactions [83,201].

Model MAE (meV/Atom)

QTAIM-Embed
(Ours, No QTAIM) 76.26

QTAIM-Embed
(Ours, QTAIM) 45.09

Table 3.4: Test performance of our geometric learning algorithms on formation energies in

LIBE.

In addition, no discernible trends can be gleaned across predicted vs. true values for the

QTAIM/ML models while non-QTAIM models perform slightly worse on low spin, positively-

charged species (Fig. 3.5, B.7, B.6). Learning curves here present a more obfuscated picture

with the non-QTAIM model outperforming the QTAIM/ML model on the smallest training

set (Fig. B.14). This narrative shifts at larger dataset sizes as the QTAIM/ML model,

again, outperforms the top non-QTAIM model. Here, there is no pronounced improvement

in the learning curves between the two sets of models as QTAIM models have a slightly more

aggressive learning curve - indicative of their ability to increase model generalizability at

higher data regimes.
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3.5.4 Green 2022

Model Test MAE (kcal/mol)

Bondnet
(w/out QTAIM) 4.18

Bondnet
(w/ QTAIM) 2.60

Table 3.5: MAE Performance of our model with/without QTAIM on Green 2022 barriers.

The Green 2022 dataset represents a comprehensive compilation consisting of approximately

12,000 gas-phase reactions, meticulously calculated at high-level theory (CCSD(T)-F12a

[5]/def2-TZVP [124]). This dataset was constructed to facilitate transfer learning approaches

by incorporating two lower levels of theory (ωB97X-D3 [47]/def2-TZVP [310], and B97-

D3 [29]/def2-mSVP [310]). Remarkably, our experimental results demonstrate a performance

on par with the original authors’ findings, achieving comparable results without necessitating

a transfer learning approach at lower levels of theory [267]. Notably, the original authors

employ significantly higher levels of theory for transfer learning, specifically ωB97X-D3/def2-

TZVP [310] and B97-D3 [29]/def2-mSVP [310]. In contrast, our descriptors are limited to

the TPSS [275]/def2-SVP [310] level, yet they enable us to attain comparable performance.

It would be intriguing for the original authors to explore and compare the transfer learning

process from the lowest level of theory to the highest level of theory (without the intermediate-

level of theory). This would effectively simulate the relative performance of QTAIM versus

transfer-learning labels at inference time. Furthermore, when evaluating their non-transfer

learned models, it’s observed that those roughly align (4.17 kcal/mol versus 4.07 kcal/mol)

with our Bondnet training without QTAIM integration (Tab. 3.5). The incorporation of

QTAIM features with Bondnet, however, elevates its performance, surpassing the non-transfer

learned models with a reduced mean absolute error (MAE) of 2.6 kcal/mol (Tab. B.8, B.9).

This discrepancy underscores the advantageous impact of QTAIM integration in enhancing

model accuracy and predictive capabilities.
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3.5.5 OOD Tests

Beyond a measure of train/test performance, we wanted to demonstrate whether QTAIM could

functionalize machine learning models to make out-of-domain predictions. We conducted two

sets of experiments here. First, we trained/tested models with/without QTAIM features on

the LIBE dataset where the training set was trimmed to only include examples of neutral

molecules and the test set was refined to only include test molecules with charges ∈ {−1, 1}.

The baseline model included only a one-hot encoding of molecular charge in the global feature

node; the QTAIM-enabled model adds QTAIM features to the model. None of the prior

benchmark models include native support for spin and charge; therefore we only conducted

this experiment on our own architecture. Second, we tested model performance of our GNNs

with/without QTAIM features on sub-selected variants of QM9 train/test sets. Here we

stratified the datasets along molecular size: molecules in the training set with fewer than 13

atoms included were included in the OOD training set and those with more than 13 atoms in

the original test set included in the OOD test set.

Model HOMO LUMO Gap Average

Our Best
(w/out QTAIM) 0.0177 0.0320 0.0376 0.0291

Our Best
(w/ QTAIM) 0.0155 0.0243 0.0330 0.0243

Table 3.6: Test performance (MAE, Hartrees) of various geometric learning algorithms on

orbital energies in QM9 OOD.

Model MAE (meV/Atom)

QTAIM-Embed
(Ours, No QTAIM) 191.65

QTAIM-Embed
(Ours, QTAIM) 119.13

Table 3.7: Test performance of our geometric learning algorithms on formation energies in

LIBE OOD.
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For QM9 stratification, there is a significant decline in model performance between both

QTAIM and non-QTAIM models (Fig. B.4, B.5, 3.6). Despite this, QTAIM-informed models

demonstrate a moderate ability to generalize to much larger molecules despite being trained

entirely on small molecules. We also note that the filtering of the QM9 dataset to only

molecules with fewer than 13 atoms results in a training set of only 4,000 molecules. This

comparatively small (2 orders of magnitude smaller than the full QM9 test set) training set

also shows how QTAIM could be an effective tool for leveraging smaller datasets. We note the

systematic overprediction of THE LUMO/gap energies and underprediction of THE HOMO

energies in the QTAIM informed model, and couple this to the mean values for each label in

the training and testing set: -0.263 Ha, -0.057 Ha, 0.206 Ha in training and -0.239 Ha, 0.0131

Ha, 0.252 Ha in the test set for HOMO, LUMO, gap respectively (Fig. B.4, B.5). Here these

systematic changes can be partially attributed to the comparative difference between the two

label distributions as well as to the model itself. The mean absolute error (MAE) values

highlight the effectiveness of QTAIM, with an average MAE of 0.0243 Ha compared to 0.0291

Ha without QTAIM (Tab. 3.7).

63



Figure 3.6: Parity plot of our model, with QTAIM (a) and without QTAIM (b)

LIBE OOD tests also show a marked drop in testing performance, though not to the

extent of the QM9 OOD test (Tab. 3.7). The QTAIM model here remains quite serviceable

while the model without QTAIM features is drastically worse versus in-domain testing.

Changes in performance can be partially attributed to the reduction in training data (only

5,200 molecules in training). This notion is somewhat qualified by our learning tests (Fig.
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B.14) where non-QTAIM models had better test errors (<125 meV/Atom) with only 1,000

training examples. Notably, both models exhibited a trend of overpredicting for positively

charged molecules and underpredicting for those with a -1 charge, yet this deviation was less

pronounced in QTAIM-informed models where a greater portion of test examples were within

chemical accuracy (2.88% vs. 1.35%) (Fig. 3.6). These results show that QTAIM can be an

effective method for improving model robustness in out-of-domain experiments, especially in

the context of charged species.

3.6 Conclusions

Here we present a framework for leveraging QTAIM descriptors as general, robust features for

geometric machine learning tasks. Our framework extends to both molecular and reaction-

level predictive tasks and thus can be applicable in a wide-set of use cases. We created tools

for both high-throughput calculation of QTAIM descriptors and a custom machine learning

package for easily implementing models that use these features.

Furthermore, we performed extensive testing to demonstrate how QTAIM can functionalize

machine learning models to perform better on out-of-domain tasks and smaller datasets. In

the case of QM8, our test showed that QTAIM features helped both our architectures and

Chemprop improve model performance given identical datasets - suggesting our featurization

package could be used with outside machine learning models as well. In the future, we plan

on writing more “translation” functionalities to allow users of other architectures to leverage

QTAIM features for their learning tasks.

Future work in this space should see further integration beyond algorithms to include

more databases and DFT codes. For example, the native dovetailing of this software into

the larger Materials Project ecosystem could see QTAIM integrated into their workflows. At

present, the Materials Project only natively supports Q-Chem [77] (for molecular DFT) as a

DFT software - a commercial software we aimed to avoid to increase accessibility. Additional

65



work could also see integration of input files and execution scripts for other DFT packages

such as Gaussian, NWChem, etc. We also implement reaction parsing and processing with

compatibility for BondNet and Chemprop (to a lesser extent) but native dataset compatibility

for more algorithms could facilitate benchmarking and development.

Also in development are graph-neural networks that could leverage QTAIM-descriptors

while avoiding computationally-expensive message-passing graph neural networks. The aim

here would be to rely on QTAIM descriptors to capture distal relationships between nodes

(atom, bonds) rather than using iterative message-passing steps to achieve this task. From

a conceptual DFT standpoint, the native integration of parsers and data structures that

support ring and cage critical points would be beneficial.
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Chapter 4

Directed Evolution of Protoglobin

Optimizes the Enzyme Electric Field

4.1 Introduction

Nature has evolved enzymes as remarkably proficient biocatalysts to facilitate a vast array of

chemical transformations [318]. Through billions of years of evolutionary fine-tuning, natural

enzymes have unlocked extraordinary catalytic power, selectivity, and efficiency [48, 202,209].

The drive to push beyond nature’s set of catalyzed reactions, and achieve similarly efficient

catalysis for other transformations has led to innovative approaches in modifying enzymes,

[10, 39, 182, 281] and designing them de novo [132]. Indeed, enzyme design has become a

frontier of innovation, with the goal of customizing enzymes for the sustainable production of

a variety of chemicals, pharmaceuticals, and materials.

Creating highly active enzymes from scratch remains an unsolved task, despite the poten-

tial [18].The initially designed enzymes often need more catalytic vigor, and are subjected

to subsequent rounds of directed evolution (DE) to reach appreciable activity levels [298].

DE serves as an optimization step that provides designed enzymes with properties ab-

sent from initial designs, from improving enantioselectivity in rhodium-catalyzed artificial

67



metalloenzymes, [235] to dramatic boosts in the activity of computationally designed retro-

aldolases [9, 103],and Kemp eliminases [152,245], to name just a few examples. DE produces

stunning enhancements of k cat/KM of over 4400-fold [9,103,152,206,235,245].The need to

evolve designed enzymes to attain catalytic viability underscores significant gaps in de novo

design protocols. Understanding what DE contributes to enzyme design is crucial, as DE

appears to provide essential elements that are missing in initial designs, potentially unlocking

key strategies for efficient enzyme design in the future.

We study the directed evolution of Aeropyrum pernix Protoglobin, a Fe-heme protein,

which was evolved to perform a new-to-nature selective carbene transfer to catalyze cyclo-

propanation of benzyl acrylate [Fig. 4.1]. [69,221] Mutations introduced by DE are dispersed

throughout the protein structure, located both close to the Fe-center (F145Q, I149L, Y60A,

W59L), and as far as >15 Å away from it (F175L, C102S, V63R), and include both hydropho-

bic and hydrophilic residues. We use this rich evolutionary journey to gain an understanding

of how DE can imbue new catalytic functions into an enzyme. We perform and analyze

replica molecular dynamics (MD) simulations of wild-type (WT) Protoglobin and four evolved

variants (LVRQ, LVRQL, GLVRSQL, GLAVRSQLL) that showed a progressive increase

in activity, initially focusing on substrate access and binding improvements at the active

site. Upon indications of changes in electrostatic preorganization at the active site along the

evolutionary pathway, we develop and utilize a novel framework to study the dynamics of the

heterogeneous electric field in the active site, combining electric field topological analysis,

high-throughput computation, and graph compression algorithms for a comprehensive picture.

Finally, we correlate changes in electrostatic preorganization with experimental yield through

QM/MM reaction mechanism calculations. This workflow illuminates the critical factors DE

exploits to enhance enzyme catalysis—insights crucial for refining enzyme design protocols.
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Figure 4.1: (A) Protoglobin with directed evolution mutation sites highlighted in red and
labeled with the bound substrate (PDB ID: 7UTE). (B) the carbene transfer reaction being
optimized along the directed evolution path.

4.2 Methods

Our developed methodology has six primary components, visualized in Fig. 4.2.

We use MD simulations to sample configurations of the protein. We use methods

in field analysis to calculate the point electric field and electric field topology at

the active site throughout the molecular dynamics trajectories. These topologies

are compared using statistical distance metrics to obtain a distance matrix for each

trajectory. To analyze how these field topologies change, we then use clustering
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on the distance matrices to obtain representative “snapshots” of the electric field

at the active site. These snapshots are subjected to quantum mechanical/classical

mechanical (QM/MM) reaction path calculations and principal component analysis

(PCA).

Figure 4.2: This study’s approach measures electrostatic preorganization by analyzing
the heterogeneous electric field topology across replica MD simulations. It further involves
comparing these topologies using a pairwise distance matrix, clustering based on similarity,
and then quantifying reactivity through QM/MM methods. The reactivity difference is
chemically elucidated using Principal Component Analysis.

4.2.1 System Preparation and Molecular Dynamics:

We performed MD simulations on the carbene-substrate intermediate of the WT Protoglobin

and the four directed evolved variants—LVRQ, LVRQL, GLVRSQL, and GLAVRSQLL. When

compared to the WT, the LVRQ evolved variant presents mutations W59L, G60V, F145Q, and

V63R. The LVRQL variant includes an additional I149L mutation. The GLVRSQL variant

incorporates further C45G and C102S mutations. Lastly, the GLAVRSQLL evolved variant

70



introduces additional mutations V60A, G61V, and F175L. We used the crystal structure of the

Protoglobin GLVRSQL variant as the template to model the carbene-substrate intermediate

of the other evolved variants. In the absence of an experimentally determined crystal structure

for WT Protoglobin ApPgb, we employed the AlphaFold2 model as a vital alternative. [45]

Notably, the AlphaFold-predicted structure for WT Protoglobin ApPgb demonstrated a high

average pLDDT confidence score of 96.8, indicating a robust prediction. This high level

of confidence was uniformly maintained across the core structural regions, crucial for our

analysis, with only a few terminal residues displaying confidence scores below 95. Furthermore,

the experimentally structure of the GLAVRSQL mutant of Protoglobin [69,221] aligns closely

with an RMSD of 0.5 Å in respect to the AlphaFold2 model, reinforcing the validity of using

this approach for our simulations. AlphaFold2, and its subsequent successors, have been

revolutionary in yielding rapid, largely reliable structure predictions for a large swath of

protein space. It excels in predicting structures of single protein chains, protein-protein

complexes, and even complex hetero-multimers [21,276]. However, AlphaFold2 is not without

limitations [31,276]. It can struggle with accurately predicting structural alterations resulting

from point mutations and may misplace functionally relevant residues, [212] particularly in

lower-confidence structures. Additionally, its performance can be limited when dealing with

orphan proteins or proteins from less-studied families. However, these limitations did not

significantly impact our study. The structure of Protoglobin used in this study has high

confidence scores, ensuring the reliability of the functionally relevant residues in our analysis.

Furthermore, since our study employed the crystallized GLAVRSQL structure for initial MD

simulations of point mutations, the issue of predicting structural changes due to mutations

was not a concern. Lastly, Protoglobin is a well-characterized protein, mitigating concerns

related to lesser-known protein families [217].

The carbene was modeled taking the Micro-ED crystal structure as a reference to simulate

the carbene-substrate intermediate in WT Protoglobin. The substrate benzyl acrylate was

docked into the active site using AutoDock Vina [74,280]. The setup for the MD simulation
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was done via Amber 22 and AmberTools 22 modules. [46] The active site parameters for the

carbene-substrate intermediates encompassing the heme, Fe, carbene, and an axial histidine

were derived using AmberTool’s Metal Center Parameter Builder (MCPB) v3.0 [174]. This

protocol has been successfully utilized to model several metal containing systems especially

hemes and non-heme iron complexes. [43, 53, 148, 327] The GAFF tool in Antechamber

generated the topology for the substrate benzyl acrylate. The protonation states of the

protein in the carbene-substrate intermediate were determined using Chimera routines, and

the parameters for the rest of the protein were generated using the AmberFF19SB [277] force

field. The LEaP module of Amber 22 neutralized the system by adding counterions. The

system was then immersed into an OPC water box of at least 10 Å from the surface of the

protein. Periodic boundary conditions were applied to the system, and long-range electrostatic

interactions were calculated using the particle mesh Ewald method with a cut-off distance of

8 Å. The SHAKE algorithm [244] was used to constrain bonds involving a hydrogen atom.

The systems were minimized in two steps: using the steepest descent (10,000 steps), and

(2) the conjugate gradient (10,000 steps) methods. During this phase, the protein’s heavy

atoms were restrained using a harmonic potential of 100 kcal mol-1 Å2, and the protein’s

hydrogen atoms, along with solvent molecules, were minimized. Subsequently, the entire

system underwent a comprehensive minimization process without any restraints via steepest

descent (10,000 steps) and conjugate gradient (10,000 steps) methods. The system was then

heated from 0 to 300 K in 50 ps using an NVT ensemble and then remained at 300K for

another 50 ps. Next, A weakly constrained MD with constant pressure was performed to

achieve uniform density in the systems, followed by equilibration MD in an NPT ensemble

for 10 ns with restraints on the benzyl acrylate substrate to equilibrate it in the active site

and then without any restraints for 2 ns. Finally, all production runs were performed using

the GPU version of the AMBER 22 package. To enhance the credibility and precision of

MD analysis, five replica MD simulations, each with a 100 ns duration, were performed [157].

RMSD was performed with CPPTRAJ to validate equilibration of all runs and is provided in
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Fig. D.1. Distance analysis was also done using CPPTRAJ [238]. The binding free energies

were calculated with the MMPBSA/MMGBSA module implemented in AMBER 22 [197].

4.2.2 Topological Electric Field Measurements and Comparison by

Distance Metric

Many previous studies incorporating electric fields as an analytical tool for protein activity use

the protein structure in the context of a single structural snapshot - either crystalized variants

or at a single frame within a larger MD trajectory are common [40,127,250,311,319]. These

miss the effects of dynamics. Few studies, however, do incorporate dynamical information,

including a study by Head-Gordon and coworkers where projections of electric field components

were measured and correlated along an MD trajectory [311]. These projections amount to

a low-dimensional embedding of the entire heterogeneous electric field and here we aim to

increase the bandwidth to 3-D heterogenous electric fields within a sampling box with our

topological distance metric. We used a distance metric to construct a matrix of pairwise

distances of electric fields along an entire MD trajectory. Every 5th frame of a 100 ns

trajectory was used for the description of electric fields in the active site. The atomic charges

were computed for the protein in each frame using ChargeFW2 [232]. The field was calculated

in a 3 Å box defined that is centered by the heme Fe – carbene carbon bond. We zero the

charges on the heme, iron, and carbene moiety in all systems. This approach was taken

to isolate and examine the charge effects originating from the protein scaffold alone. The

pairwise distances between each electric field’s topology (see eq (1) and (2)), were computed,

and subsequently fed into a graph clustering algorithm. The number of streamlines used for

all calculations is 10000 with a step size of 0.001 - information on testing of box size can

be found in the SI Table S1. Raw fields were preprocessed prior to input in visualization

and clustering schemes. For clustering, we determined an upper boundary CPET distance

above which edges were removed [Tab. D.1]. This cutoff was the 10%ile distance from the

collective distance matrix of all 5 WT runs. For affinity propagation, we also standardized
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the remaining distances. We used max_it = 10000 and 0.5 dampening. For PCA analysis,

raw fields were used.

4.2.3 Affinity Propagation

Affinity Propagation intakes the “affinity” or similitude between different data points in a

distance matrix, this can include non-connected graph nodes. We refer the audience to

the original implementation of Affinity propagation [85] but will provide a brief outline of

the method as follows. Affinity propagation is built on the iterative message passing of

responsibility and availability between nodes in a graph. If X = {x_1. . . x_z} represents a set

of data points and s(i, j) represents a similarity metric between points i and j. Responsibility

r(i, k) describes how representative point k is for point i and availability a(i, k) measures how

reasonable it is for k to pick i as a representative for itself. These values are updated using

the following equations:

r (i, j) ← s (i, k) −max
k′ ̸=k

{
a
(
i, k

′
)
+ s

(
i, k

′
)}

(4.1)

(Update Responsibility matrix r )

a (i, k)← min

0, r (k, k) +
∑

i′ /∈{i,k}

max
(
0, r

(
i
′
, k

)) (4.2)

(Update availability matrix a )

Message-passing updates are repeated until convergence of representative structures/boundaries

or a maximum number of iterations are reached.

4.2.4 PCA

Principal Component Analysis (PCA) is a widely-used dimensionality reduction algorithm that

intakes descriptors on a dataset and performs a basis change to orthogonal components by order
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of descending variance – these new components are referred to as principal components [34].

PCA yields a few important statistical objects, namely the eigenvalues of the new principal

components (PCs) and principal components themselves. Eigenvalues elucidate the variability

in the dataset along the new basis and can be used to diagnose dataset dimensionality. The

principal components themselves can be analyzed, along with the eigenvalues, to determine

the directions of greatest variability in the dataset. We constructed PCA components from

the compiled dataset of electric fields at every frame considered in the graph compression

(all 5 mutants). This amounted to 25,000 electric fields where each field was centered at the

heme-Fe. From here, we constructed a sampling mesh of 10 equidistant points in the six

axial directions up to the boundary of 1.5 Å. This results in a 21 x 21 x 21 mesh of points

spanning a 3 Å box – and thus, an input dimensionality of > 27,0000 points to the PCA

algorithm. Remarkably, 5 components accounted for > 77% of the explained variation, 10 for

> 95%, and 25 for > 98%. This shows that a small number of components likely can be used

to understand the variability in the electric fields – though we note that variability does not

signify importance and therefore we extend our analysis to include several lower-variance PCs.

We selected the 10 most important components and projected the cluster centers’ electric

fields on those components – these 10 components account for 95% of the variance in the

dataset and consist of components with >1% of the total variance each. This allows us to

decompose the complex electric fields into simpler motifs for analysis and interpretation.

Electric fields for the entire population of a mutant were analyzed along principal components

to understand how the dynamic electric field evolves with mutations.

4.2.5 QM/MM Reaction Mechanism

For cluster centers obtained from affinity propagation, the reaction mechanism of carbene

transfer and its energetics was elucidated with hybrid QM/MM reaction path optimizations

and thermodynamics calculations. ChemShell [164,260] was used for QM/MM calculations

in combination with DL_POLY [278] for the energy of the molecular mechanics region
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and TURBOMOLE [8] for the energy of the quantum mechanical region. The QM region

included the Fe, carbene, reduced heme, and substrate, while the rest of the protein was

in the MM region [Fig. D.7]. The AmberFF19SB force field generated the protein MM

region parametrization. To have a well-refined reaction path, only cluster centers with the

benzyl acrylate within 5 Å of the heme Fe were included in the reaction profile calculation.

To determine the reaction profile, we used a collective variable that optimally combined three

factors: decreasing the distance between CC and C1, increasing the distance between Fe and

CC, and reducing the distance between CC and C2. For the QM reaction path optimization,

the TPSS DFT functional [216, 275] was employed, with def2-TZVP and def2-SVP basis sets

for the Fe atom and the remaining atoms in the QM region, respectively. The transition

states and products were freely optimized. Vibrational frequency calculations were used to

verify the validity of product and transition states and to compute free energies within the

harmonic approximation. Single point calculations were done at the reactant, product, and

transition states using the TPSSh functional, with the def2-TZVP basis set for all atoms

in the QM region to provide more precise electronic energies. To ensure the robustness

of our findings, the QM/MM calculations were repeated using the B3LYP functional [28].

Finally, we performed single-point QM/MM calculations at the near-gold standard DLPNO

CCSD(T) [114] level using the def2-TZVP basis set to obtain accurate energy estimates for

the reaction mechanism. ORCA was employed for the QM region calculations along with

DL_POLY in ChemShell for these QM/MM calculations. All reported QM/MM free energies

are derived from these single-point energies at the DLPNO-CCSD(T) level, incorporating

thermodynamic corrections.
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4.3 Results and Discussion

4.3.1 Can substrate binding explain the yield increase?

Based on the microcrystal electron diffraction structure of the GLVRSQL Protoglobin variant,

it was proposed that DE facilitates the new-to-nature catalysis by enhancing substrate access

to the active site [69,221]. We analyzed the substrate access to the active site of Protoglobin,

by measuring the distance between the terminal C1 atom of the benzyl acrylate substrate

and the reactive CC atom of the carbene across the five replica molecular dynamics (MD)

simulations of 100 ns each, for all variants [Fig. 4.3]. In agreement with experiments, the

mean distance of the substrate to the active site was high in the WT enzyme, measuring 17.10

± 9.25 Å, suggesting the benzyl acrylate substrate stays away from the active site and has a

very low chance of undergoing catalysis. However, during DE, the mean distance reduced in

LVRQ (7.78 ± 3.53 Å) and LVRQL (8.87 ± 8.72 Å), signifying an improvement in substrate

accessibility to the active site. The large standard deviation observed for LVRQL indicates

instances where the substrate approaches close to the active site but, on average, remains

further away. The mean and the deviation of distances from each of the five LVRQL runs can

be seen in Fig. D.2. The reduction in substrate distance from the active site was further

pronounced in the GLVRSQL variant (4.44 ± 0.90 Å), suggesting a significant enhancement in

substrate entry and stabilization within the active site. However, in the GLAVRSQLL variant,

the distance of the substrate to the active site remained comparable to GLVRSQL (4.53 ±

1.09 Å), while the experimental yield dramatically increased. This observation challenges

the notion that solely substrate access to the active site dictates yield enhancements. While

enhanced substrate access might be a major contributor to yield improvement from WT to

GLVRSQL (0-6%), it could not explain the drastic increase in yield going from GLVRSQL to

GLAVRSQLL (6-28%) [221].

Further, we sought to explore if enhanced benzyl acrylate substrate binding is the reason

for the observed yield increase [Fig. 4.2]. MMGBSA binding free energy calculations
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Figure 4.3: Initial parameters investigated as the cause of higher reactivity along DE path.
(A) The mean and standard deviation of Fe-Carbene distance for all MD trajectories across
all variants. (B) The mean and standard deviation of substrate-protein binding free energies
(Gbinding). (C) The total electric field magnitude computed on the Fe-Carbene bond of IPC
for all systems across replica molecular dynamics. (D) The z-component of the electric field
computed at the center of the Fe-Carbene bond of IPC for all systems across replica molecular
dynamics.

were performed, across the five replica MDs for each variant. The MMGBSA method has

demonstrated efficacy in reproducing and rationalizing experimental outcomes, accurately

reflecting the trends in experimental binding free energies across a variety of ligands and

protein systems. [130, 273] Notably, the substrate binding in the evolved variants (LVRQ: -23

± 4, LVRQL: -18 ± 7, GLVRSQL: -23 ± 4, GLAVRSQLL: -25 ± 5 kcal/mol) was consistently

stronger than in the WT (-10 ± 5 kcal/mol). However, the free energy of substrate binding

did not reveal a discernible trend across the DE path. Specifically, LVRQ exhibited a higher

binding energy, albeit at a larger distance from the active site, indicating strong substrate
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binding at non-active site regions and potentially contributing to the lower yield of carbene

transfer [Fig. D.3]. The mean binding free energies for GLVRSQL (-23 ± 4 kcal/mol) and

GLAVRSQLL (-25 ± 5 kcal/mol) were within their respective standard deviations, and

thus again, failing to provide a definitive explanation for the substantial yield increase from

GLVRSQL to GLAVRSQLL. These findings suggest that while substrate binding energy is

an important factor, it also does not adequately justify the enhancement in yield during DE

of Protoglobin.

4.3.2 Electric field evolution during directed evolution

Now, we pivot towards analyzing if the electric fields generated by the studied enzyme changes,

and its link to Protoglobin reactivity. Enzyme catalysis is often attributed to electrostatic

preorganization and dynamics, [51,89,117,256,311] occasionally put in contradiction with each

other [305]. We have previously observed that the reactivity of Fe-heme oxidoreductases is

strongly regulated by the electric field form the protein scaffold, in addition to the regulation

by the axial ligand to Fe [41]. Electrostatic preorganization has also been cited previously as

a compass of directed evolution of Kemp eliminases [165]. To comprehensively address both

electric fields and dynamics, we performed an electric field analysis over several replica MD

trajectories to sample and compare the electrostatic behavior of the enzyme in a dynamic

fashion.

We performed point electric fields calculations at the center of the Fe-carbene bond,

for the carbene-substrate intermediate replica MDs of all systems. The mean electric field

magnitude is evidently seen to not change meaningfully along DE, with only a very small

decrease in the GLVRSQL variant [Fig. 4.3]. A more noteworthy observation emerged when

examining the z-component of the electric field measured at the Fe-carbene bond center

(the z-component being normal to the heme plane). The projection shows larger variation

across the mutants, especially in the field directionality [Fig. 4.3]. This suggests that a

point electric field-based analysis is not enough to capture the changes in the heterogeneous
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3-dimensional (3D) electric field of the enzyme, therefore requiring a more comprehensive

approach (introduced in Fig. 4.2).

We previously developed a method to quantify the heterogeneous 3D electric field topology

in volumes within an enzyme active site, and map it to a single metric [127]. Using this

method, we correlated 3D electric fields in ketosteroid isomerases to their reactivity. This

is notable as electric field magnitudes at a point or along a particular bond showed no

relationship between these two variables [127]. This approach involves defining a volume of

interest for electric field topology calculations, which, in this study, is a cubic box centered

on the Fe-carbene bond [Fig. 4.4]. The heterogeneous electric field was calculated for a total

of 5,000 frames derived from 5 x 100 ns replica MD runs for each variant. To analyze this

vast dataset, we employed an affinity propagation algorithm to cluster similar electric field

topologies within a dynamical trajectory. Affinity propagation provides a distinct advantage

by eliminating a priori knowledge of the number of clusters. This flexibility allows us to

track the changes in the distribution and the number of clusters along the DE of Protoglobin

- signaling how diverse or, inversely, tightly controlled the electric field is within the protein’s

active site. Additionally, this clustering algorithm yields a single best representative frame

for each cluster, aiding visualization and further analysis of the 3D electric field that the

active site samples. The predominant clusters (those representing >5% of the MDs) from

each system were considered and subsequently compared using a distance matrix [Fig. 4.4]. A

distance closer to 0 indicates high similarity in the 3D heterogeneous electric field topologies,

while a score of 1 indicates high dissimilarity, for example, between WT and evolved variants.

WT Protoglobin features two highly distinct 3D electric fields, with clusters WT-EF1

(visited by the system 64.53% of the time) and WT-EF2 (34.58%). The LVRQ variant

introduces four electric field clusters, LVRQ-EF1 to LVRQ-EF4, with visitations of 58.32%,

19.36%, 8.60%, and 5.68%, respectively. LVRQ-EF1 and LVRQ-EF3 closely resemble each

other and WT-EF1, while LVRQ-EF2 and LVRQ-EF4 diverge significantly, marking the

introduction of two novel electric fields. LVRQL further evolves this pattern, showing two main
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Figure 4.4: (A) Illustration of a 3Å box centered on the Fe-carbene bond for calculating
the 3D heterogeneous electric field topology. (B) Example of a 3D heterogeneous electric
field topology calculation. (C) Affinity Propagation clustering of electric field topologies for
each variant, with blue indicating the most prevalent, orange the second, and green the third;
clusters under 5% are in grey.(D) A pairwise distance matrix comparing the similarity (0) or
difference (1) of electric field topology clusters across all systems. The first number in the
labels indicate the stage of directed evolution (1=WT, 5=GLAVRSQLL), and the second
number indicates how often the field topology is visited along the trajectory (1=the most
frequently visited).

fields: LVRQL-EF1 (76.04%) and LVRQL-EF2 (21.36%), which are derivatives of LVRQ’s

clusters, illustrating an ongoing modification from WT through DE. GLVRSQL presents

three clusters: GLVRSQL-EF1 (65.98%), GLVRSQL-EF2 (24.34%), and GLVRSQL-EF3

(9.68%), with EF1 and EF3 showing regressive similarity to WT-EF1 and EF2, respectively,

while GLVRSQL-EF2 (0.92 and 0.62 from WT-EFs) remains distinct, reflecting influences

from LVRQ-EF4 and LVRQL-EF2. The final GLAVRSQLL variant has three clusters:
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GLAVRSQLL-EF1 (79.82%), GLAVRSQLL-EF2 (10.34%), and GLAVRSQLL-EF3 (6.46%).

GLAVRSQLL-EF1 demonstrate nuanced similarities to WT-EF1 (0.05) and GLAVRSQLL-

EF2 is closest related to GLVRSQL-EF3 and WT-EF2 (0.08 and 0.11, respectively), indicating

evolutionary modifications. In contrast, GLAVRSQLL-EF3 introduces a distinct electric field,

diverging from WT, which evolved throughout the directed evolution process. It now remains

to be seen how these field variations impact the reactivity.

4.3.3 Link between evolving electric fields and reactivity changes

The carbene transfer reaction in the engineered Protoglobin proceeds through the iron

porphyrin carbene (IPC) intermediate with the substrate bound nearby [69]. The IPC

intermediate contains a highly reactive carbene carbon, which reacts with the double bond in

the benzyl acrylate substrate, leading to the formation of two new carbon-carbon bonds and

culminating in the formation of a cyclopropane ring embedded within the substrate. The

IPC intermediate is capable of adopting three spin states, each potentially influencing the

cyclopropanation pathway differently. However, most experimental evidence points to the

existence of a closed-shell singlet spin state [150,151]. Unpaired electron states (triplet or open

shell singlet) may lead to a stepwise process, while a closed shell singlet state favors a direct,

concerted mechanism either synchronous or asynchronous, without intermediates [70]. To

explore the cyclopropanation reactivity, we performed hybrid quantum mechanics/molecular

mechanics (QM/MM) calculations on the cluster centers for WT Protoglobin and the evolved

variants. The calculations indicate the preferred spin state for the IPC complex is the closed

shell singlet, favored over the triplet by 14.7 kcal/mol, with several attempts to converge

the open shell singlet IPC leading to the closed shell singlet structure. The spin preference

for closed shell singlet IPC is also supported by similarities in Fe-CC bond lengths between

the QM/MM optimized closed-shell singlet state (1.79 Å) and the crystallized Protoglobin

IPC intermediate (1.74 Å), contrasting with the longer bond length (1.93 Å) in the triplet

state [69]. Additional calculations across the complete reaction profile further confirm that
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the triplet spin state is energetically higher than the closed-shell singlet spin state. Moreover,

the only successfully optimized open-shell singlet structure also exhibits an energy level

comparable to that of the corresponding triplet state [Fig. D.4]. Therefore, all further

calculations were performed at the open-shell singlet spin state.

The reactivity calculations using a hybrid QM/MM method were conducted on all electric

field clusters for variants containing the substrate within a reactive proximity (<5 Å) to the

CC. The results showed that for the WT-RCs and EF1, EF2, and EF4 clusters for the LVRQ

variant, the substrate was positioned at distances greater than the reactive range from the

CC atom, classifying these states as unreactive [Tab. D.2]. Consistent with other carbene

transfer studies, all reactive clusters for the LVRQ, LVRQL, GLVRSQL, and GLAVRSQLL

variants, with closed shell singlet spin state, demonstrated a concerted reaction mechanism,

lacking stable intermediates and characterized by the asynchronous formation and breaking of

bonds [70, 240,308]. Initially, the CC and substrate C1 atom bond formation and elongation

of the Fe-CC bond is favored, followed by complete breaking of the Fe-CC bond, culminating

in the bond formation between CC and C2. For the LVRQ variant with EF3, the Gibbs free

energy barrier was identified as 28.8 kcal/mol, coupled with a product stabilization energy

of -36.2 kcal/mol. The LVRQL variant exhibited a free energy barrier ranging between 23.8

and 32.0 kcal/mol and product stabilization energies between -38.7 and -41.9 kcal/mol. The

GLVRSQL variant showed a barrier range of 27.0 to 35.9 kcal/mol and product stabilization

energies between -30.8 and -33.4 kcal/mol. Lastly, the GLAVRSQLL variant displayed a

barrier range from 13.4 to 34.6 kcal/mol with product stabilization energies between -34.6

and -53.5 kcal/mol.

The results indicate that LVRQ do not produce very high free energy barriers and in

LVRQL the barriers are even lower with a significant reaction exothermicity, aligning with

some experimental activities observed [221]. This suggests the observed low experimental

reactivity in the LVRQ and LVRQL variants likely not due to a complete lack of intrinsic

reactivity but rather from rare visiting of reactive configurations, as suggested by the mean
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Figure 4.5: (A) Transition state free energy barriers for reactive clusters from each variant;
(B) Product stabilization energies for reactive clusters from each variant. (C) Observed
transition states from the best performing cluster centers of each variant. Transition state
and product stabilization energies/structures were obtained from reaction path scans.

distances from molecular dynamics (MD) simulations (7.78 ± 3.53 Å for LVRQ and 8.87

± 8.72 Å for LVRQL). Conversely, the primary reason for the low experimental yields in

GLVRSQL, despite the close proximity of the benzyl acrylate substrate (MD mean distance

of 4.44 ± 0.90 Å), appears to be the absence of effective electric fields necessary for effectively

lowering the barrier of the cyclopropanation reaction and improving the overall reaction
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energy. This underscores the principle that mere access of the substrate to the active site is

insufficient for high yield; the presence of a conducive electric field is critical for enhancing

reactivity. The GLAVRSQLL variant, alongside the close binding of the benzyl acrylate

substrate (MD mean distances of 4.53 ± 1.09 Å), has an effective electric field leading to

both low energy barriers and favorable reaction energy, indicating its proficiency in catalyzing

the cyclopropanation reaction. This agrees with and rationalizes the yield increase from

approximately 8% in GLVRSQLL to about 28% in GLAVRSQLL. These trends in reactivity

are also in line with additional QM/MM calculations with TPSSh and B3LYP functionals

[Tab. D.3].

Intriguingly, QM/MM calculations also reveal that the nature of the reaction TS within

different enzyme variants is significantly influenced by the electric fields present. We identified

two distinct types of TSs. The first type, observed in the most efficient EF clusters of the

variants LVRQL and GLAVRSQLL, is characterized by the formation of the CC-C1 bond

accompanied by a slight elongation of the Fe-CC bond. In contrast, the second type of TS,

found in LVRQ and GLVRSQL variants for the same cyclopropanation reaction, showcases

a fully formed CC-C1 bond and a complete dissociation of the Fe-CC bond. Thus, the

distinct 3D electric fields can facilitate a mechanism change of the cyclopropanation reaction.

Moreover, within the GLVRSQL variant, EF3 and EF1 both exhibit TS of the second type,

whereas EF2 presents a TS of the first type. Hence, enzyme’s dynamically visiting diverse

electric fields has the potential for diverse mechanistic pathways to be active within the same

enzyme.

4.3.4 Principal Component Analysis of the Fields

To link the 3D heterogeneous electric fields to reactivity in a chemically meaningful

manner, we employed Principal Component Analysis (PCA). We mapped cluster

centers to PCA components constructed from the compiled set of electric fields across all

trajectories for each variant. This yields a single basis for electric field variability within
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the protein active site. The population density of each mutant, as illustrated in [Fig. D.5],

is mapped across PC0-9 components. This mapping reveals that every mutant, including

GLVRSQL and GLAVRSQLL, exhibits significant variance from the WT Protoglobin along

several PC components, confirming that DE influences the electric field and its dynamics

within the active site considerably. The most dramatic shift between variants GLVRSQL and

GLAVRSQLL, the mutations that incur the greatest change in activity, is observed along

component PC9 [Fig. 4.6]. The population density of GLAVRSQLL shifts positively along

PC9, suggesting a robust alignment of its electric field with this PC. The findings that the

most pronounced changes occur in higher-order components point to a multifaceted impact

of mutations on the electric field’s characteristics, re-emphasizing that the full spectrum of

electric field components, rather solely the dominant one, must be analyzed to elucidate the

role of fields in the catalytic process.

Figure 4.6: (A) Distribution of structures from replica molecular dynamics of all systems
across the Principal Component 9. (B) Projections of GLAVRSQLL electric field cluster
centers on PC9. (C) Schematic of the PC9 direction plotted on TS-GLAVRSQLL-EF2 with
the relative partial charges polarization marked on the atoms involved in bond rearrangements.
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The isolated PC9 can be analyzed visually. It is curvy, and defined by two main directions:

one tracing the path from the CC atom to the Fe and the other – from the C1 atom of the

benzyl acrylate to the CC [Fig. 4.6, D.6]. This field is straightforwardly linked to chemistry:

in the TSs, the C1-CC bond is formed, and the electron density shifts from CC to C1 – a shift

aided by the field of opposing direction. Similarly, the field pointing from CC to Fe aids the

Fe-CC bond breaking in the TS. This implies that the intrinsic electric field alignment with

PC9 in GLAVRSQLL facilitates the barrier crossing. This relationship becomes even clearer

when we plot the electric field clusters along PC9. We observe that the degree of alignment

with PC9 in GLAVRSQLL directly corresponds with the free energy barrier [Fig. 4.5, 4.6].

Hence, the efficient catalysis observed in GLAVRSQLL is largely driven by a shift in its

intrinsic electric field toward the positive direction of PC9, which plays a key role in stabilizing

its TS. The development of a PC9-type electric field appears to be a key achievement of DE

of Protoglobin.

4.4 Conclusions

While computational design often struggles to enable enzymes to catalyze new chemical

reactions, DE has emerged as a potent method for imparting novel catalytic abilities to

enzymes. This contrast poses a crucial dichotomy: despite being effective, DE is a black box

method where mechanisms for improved activity are obfuscated by the enzyme complexity.

We shed new light on one possible mechanism by studying Protoglobin, a protein that,

through DE, has developed the ability to catalyze carbene transfer reactions, leading to the

cyclopropanation of benzyl acrylate. Initial analysis of multiple MD simulations of wild-type

Protoglobin and its four evolved variants indicated that merely enhancing substrate access

and binding to the active site does not fully explain the improved cyclopropanation yield.

Therefore, we turned our attention to the enzyme’s electrostatic preorganization. We have

developed a detailed and broadly applicable protocol to measure the 3D electric field topology
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and dynamics, and analyzed and compared these dynamic fields along the DE path using an

affinity propagation clustering algorithm. We discovered significant alterations in the active

site electric field as Protoglobin evolved. Through PCA, we identified a chemically meaningful

field component that emerges and takes the lead during DE and facilitates crossing the barrier

to carbene transfer. The catalytic role of the evolved electric field was confirmed by QM/MM

mechanistic calculations. These calculations revealed that the nature of the reaction TS

(concerted Fe-CC bond breaking and C1-CC bond formation, or asynchronous and led by

the Fe-CC bond breaking) can be altered by the field geometry. In summary, fine-tuning

the global electric field in the active site appears to be the key achievement of DE and is,

therefore, an aspirational goal for de novo enzyme design.
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Chapter 5

Machine-Learning Prediction of Protein

Function from the Portrait of its

Intramolecular Electric Field

5.1 Introduction

The notion that electric fields can act as catalytic components deviates from the framework that

catalysts must be purely chemical. Numerous studies have demonstrated that electric fields

significantly influence both chemical reactivity and selectivity across a wide range of proteins,

both metal-free and metal-dependent [3, 40, 52,73,87, 127,134,137,140,188,199,257–259,295]

Ketosteroid isomerases (KSI) became a key example demonstrating this effect through several

in silico studies [82,303]. Following these numerous computational demonstrations, Boxer

provided experimental validation by showing that in ketosteroid isomerases, the electric

field acting on the charged enolate intermediate correlated with the reaction’s free energy

barrier [87]. Subsequently, the quantum theory of atoms in molecules (QTAIM) was employed

to examine how electric fields impact the reactivity of KSI, where it revealed that fields

manipulate electron density throughout the substrate [96,127,316].
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In the realm of metal-containing enzymes, significant attention has been devoted to

exploring electric fields within Fe-heme containing enzymes and their model systems [41,54,

166,272]. Even with identical Fe-heme coordination, mere variation in axial ligands such as

cysteine, histidine, and tyrosine, heme enzymes exhibit diverse reactivity. Our prior research

unearthed a pivotal revelation: beyond the axial ligand, the electric field from the surrounding

protein (excluding the heme and the axial ligand) strongly influences reactivity [41]. This

underscores the heme scaffold’s role as a molecular capacitor, where specific configurations

of charged amino acids generate a characteristic electric field along the Fe(IV)=O bond in

Compound I (Fz). Notably, we predicted that a heme equipped with the suitable axial ligand

for its intended function yet situated within a protein environment typical of a different class

of oxidoreductases may acquire an unintended function, such as off-pathway oxidation [41]. In

a recent study of laboratory evolved protoglobin for the catalysis of carbene transfer reactions,

we furthermore showed that it is the catalytic component of the electric field in the active

site that the evolution develops in its course [54]. We infer the impact of fields within protein

active sites on chemical reactivity, and thus offer another avenue in the pursuit of effective

protein design [51]. Such insights could bridge the existing gap between computationally

designed proteins and genuinely effective enzymes, whether naturally occurring or laboratory

evolved.

Since electric fields are so prominent in governing enzyme reactivity, here we flip the

problem and explore whether machine learning can predict enzyme reactivity solely based

on the electric field of the protein scaffold. For this purpose, we use the previously reported

dataset of c. 200 Hemoglobin proteins [41] and, with the electric field as a sole input,

classify these proteins as catalases, peroxidases, or monooxygenases [Fig. 5.1]. In other

words, we train a ML model that would predict the heme Fe reactivity strictly from the

heterogeneous field that the protein produces. Indeed, the task is analogous to a classic image

recognition problem where spatial field components act as pixel components for machine

learning algorithms.
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Figure 5.1: The dataset includes three classes of hemes: oxygenases, catalases, and per-

oxidases, each with distinct axial ligands. The total number of examples for each class is

indicated on the figure, highlighting the representation of each class within the dataset.

5.2 Methods

Despite the broad success of theoretical analyses of electrostatic preorganization, they often

have two shortcomings: firstly, they lack dynamic information, in the sense of the dynamics

of the field itself. Naturally, the structural dynamics of the protein is included via molecular

dynamics (MD) simulations and subsequent averaging of computed properties, such as

reaction barriers and electric fields. Some exceptions exist; for example, the effects of KSI

conformational changes on the electric field have been tracked to explain transition state

stability [311]. Secondly, analysis is generally reduced to a field at a single point in an enzyme.

The reason that the single point analysis is incomplete is that, for many systems, the reaction

mechanism is not localized to a single bond. For example, the ubiquitous Diels-Alder reaction

as an example where reactivity is delocalized across a number of atoms and bonds. Recently,

a second dimension was added to field analysis, mitigating the problem to an extent [137,295].

Here, we analyze the field in the active site in its entirety, considering also field dynamics, and

then use the fundamental components of the field from dimensional reduction and machine
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learning, for protein function recognition.

The issue of ingesting raw heterogeneous electric fields is dimensionally daunting - a

coarse sampling of electric field values can lead to tens of thousands of input dimensions

as each spatial point is associated with three directional components. This scaling leads to

an intractable problem for manual analysis where we simply cannot separate signal from

noise in such a high dimensional space. In addition, even statistical/machine-learned (ML)

methods can struggle to find meaningful descriptors without a large enough dataset for either

supervised or unsupervised machine learning tasks. We address this by using dimensionality

reduction, via principal component analysis (PCA), to create a more manageable, data-

informed set of input dimensions. PCA is often used as a preprocessing step before supervised

machine learning tasks to reduce noise in data and simplify learning tasks. For our use case,

PCA was highly attractive as it is a data-first representation scheme where prior knowledge

of a system is not necessary. This establishes our framework as a universal scheme that

could be used to study and explain families of proteins where domain knowledge is lacking

or where representative fields are simply too complex to construct a priori. We envision

using this methodology to recognize the functions of active sites of newly discovered proteins,

distinguish active sites from areas in proteins that look like active sites but are not, and

attributing selectivity to an enzyme without lengthy mechanistic investigations.

5.2.1 System set up and field calculations and analysis

To represent each protein, we take crystal structures from the Protein Data Bank, remove

co-crystalized water molecules and ions, and zero the charges on the axial ligands, and the

hemoglobin itself. First, we develop and ML algorithms that operate on the point field at the

Fe, then – the 3-D field in a volume around the Fe without dynamics, and then extend this

study to include the dynamics and clustering of the field. The fields are computed classically

using the point charges of the protein, and thus excluding the Fe(IV)=O moiety, the heme,

and the axial ligand. The 3-D fields were constructed on the grid over a cubic box centered
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at the Fe atom in the CpdI intermediate [Fig. 5.2], the box (dimensions: 3 Å x 3 Å x 3 Å) is

visualized in Fig. 5.2. The grid spacing was 21 sampling points along each dimension for a

total of c. 9,200 points. In the context of molecular dynamics, the fields are compared to

each other using the global distribution of streamlines method.

In detail, our group previously adapted a distance metric from fluid dynamics to study

the differences between complex, heterogenous electric fields [127]. This method constructs a

global distribution of slipstreams within a vector field, yielding histograms that describe an

electric field. The formulation enjoys important mathematical properties such as rotational,

scalar, and translational invariance. Here, within the 3 x 3 x 3 Å cube, random points

are sampled to create linearizations, known as slipstreams. Random points along a given

slipstream are selected to compute mean curvature and distance of a line where curvature is

defined as

κ =

∣∣∣∣r′
(t) x r′′

(t)
∣∣∣∣

||r′ (t)||3
(5.1)

A histogram of L2 distance to curvature can thereby be compiled and the distance between

two discrete distributions can be computed via the χ2 distance:

χ2 : D (f, g) =
1

2

N∑
i=1

(f [i]− g [i])2

f [i] + g [i]
(5.2)

With a defined distance comparing electric fields, we can then create a graph where the

edge weights are the distances between two electric fields. This graph encoding is ripe for

graph compression algorithms, notably affinity propagation, to aid in the selection of a few

representative frames entirely on the basis of the 3-D heterogeneous electric field. Our group

has previously used this protocol to interpret the dynamic heterogeneous field differences

along a directed evolution pathway of catalytic protoglobin complexes [54]. We used these

compressed representations of the electric field along the entire MD trajectory to further

study the effects of the 3-D electric field on electronic populations within the active site.
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With this, we demonstrate the relationship between induced fields at the active site and the

overall protein activity.

Figure 5.2: (a) The cubic box centered on Fe, used for computing the electric field on the

grid. (b) An example of typical principal component computed on the dataset, plotted on

the exponential scale for clarity.

5.2.2 PCA

To determine the proper number of PCA components, we swept the number of PCA compo-

nents of the electric field in the model from 5 to 25 PCA components and used cross-fold

validation to select the optimal number of components. We found that 9 components were

optimal for performance on validation data. For validation and testing, we split our dataset

into an 80-20 train-test set and used k-folds (k=5) training-validation splits to tune model

parameters, PCA components were constructed entirely from the training split to avoid data

leakage into the test set.
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5.2.3 Molecular Dynamics

We parametrized the Fe-containing heme active site for MD simulation with the Metal Centre

Parameter Builder (MCPB.py [174]. We modeled the remainder of the protein using the

Amber FF19SB force field [277]. The leap module in AMBER 22 was utilized to introduce

Na+ counterions to neutralize protein systems [46]. These systems were then placed in a

rectangular box, surrounded by OPC water molecules [136] extending at least 10 Å beyond the

outermost boundary of the protein. We applied periodic boundary conditions throughout the

simulations. The particle mesh Ewald method was used to calculate long-range electrostatic

interactions, with both the direct space and the van der Waals interactions capped at a 10 Å

cutoff. The protein systems was minimizated, initially with 5,000 steps of steepest descent

followed by another 5,000 steps using the conjugate gradient method, all under a 100 kcal

mol-1 Å2 restraint on the solute molecules. This was succeeded by another round of full system

minimization employing the same descent and gradient steps. Subsequently, the systems were

gradually heated from 0 to 300 K in an NVT ensemble, controlled by a Langevin thermostat

with a collision frequency of 1 ps-1 over 250 ps, while the solute molecules were held under a 50

kcal mol-1 Å2 harmonic restraint. Bonds involving hydrogen were constrained by the SHAKE

algorithm [244]. Following this, a 1 ns lightly restrained MD simulation was conducted to

stabilize the density under periodic boundary conditions. All systems were equilibrated at

300 K for 3 ns in an NPT ensemble, using the Berendsen barostat to maintain pressure at 1

bar, without restraints. A 100 ns productive MD simulation was carried out for each system

in an NPT ensemble, maintaining a constant pressure of 1 bar with a 2 ps pressure coupling,

using the GPU-accelerated version of AMBER 22 [46]. The trajectories are subjected to

field topology calculation (using the CPET code) [127] via embedding the active

site in the point charges. The fields were then compared to each other along the

trajectory and clustered by the topology similarity. [54].
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5.2.4 Quantum Mechanics/Molecular Mechanics (QM/MM) calcu-

lations

Quantum mechanics/molecular mechanics (QM/MM) calculations were conducted using the

ChemShell [195] software suite, integrating Turbomole [8] for quantum mechanics calculations

and DL_POLY [264] for molecular mechanics. For these calculations, water molecules beyond

a 10 Å solvation layer surrounding the protein were removed using CPPTRAJ [238], leaving

the protein optimally hydrated. The QM region encompassed the heme iron center, the

intermediate oxo or hydroxo groups, and the axial ligand located at the active site, similar

to our earlier study [41]. The unrestricted B3LYP functional [26], as previously shown to

be reasonable for these systems [41], was employed for the QM calculations. The molecular

mechanics region was defined as the protein area within 8 Å of the QM zone, while the

remaining system components were held static. The Amber FF19SB force field was applied to

the molecular mechanics region. Hydrogen link atoms capped the QM/MM boundaries, and a

charge shift model was utilized. Electrostatic embedding accounted for the polarizing effects

of the protein environment on the QM region. Geometry optimization and frequency analyses

utilized the def2-TZVP basis set, with the exception that hydrogens were treated using the

def2-SVP basis set. The CpdI Fe(IV)=O (Por+•) complex was modelled as a doublet while

the CpdII Fe(IV)-OH was modelled as a triplet for all systems.

5.3 Results and Discussion

Single point fields

We used a host of traditional machine learning models due to the relatively middling amount

of data, including, XGBoost, Random Forests, Ridge Regression, and K-nearest Neighbors

[Fig. 5.2]. To tackle imbalanced data, present by the underrepresentation of catalases (21

proteins in training vs. roughly triple the number of monooxygenases, peroxidases) — we
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trained Balanced Random Forests algorithms [56]. For hyperparameter tuning, we employed

a 5-fold cross-validation method combined with an 80-20 train-test split for both single point

and complete, heterogeneous training. To optimize parameter selection further, we used

Bayesian optimization techniques in WanDB [33]. The detailed model parameter dictionaries

can be found in the supplementary information.

Model F1 Score Accuracy

XGBoost (Single Point, 3-Comp) 0.42 0.44

Balanced Random Forest (3-D Fields, PCA) 0.75 0.82

XGBoost (3-D Fields, PCA) 0.84 0.84

Table 5.1: Performance of the two top performing ML

models benchmarked against the top model to predict

on a single point (x,y,z components at the Fe in Heme).

This is a proxy for the previous mapping of Fz at the

Fe to axial ligand. Note the dramatic improvement in

performance with a richer set of electric field features.
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Figure 5.3: (A) Workflow for predicting protein function using Machine Learning models

(B) Surrogate model to test ML machinery with applied fields. (C) Principal components

selected by permutation importance and Boruta. Visualized structures (PC7, PC3, PC6, and

PC4) were also flagged by Boruta as important.

Performance evaluations were conducted using accuracy and F1-scores, providing a holistic
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view of model effectiveness [Tab. 5.1]. Considering our dataset’s label ratio of roughly 4:3:1, we

prioritized the F1-score as a fairer performance metric. All the above-mentioned models were

applied to single-point electric field data, with XGBoost emerging as the best performer among

them. Focusing on the three components: Fx, Fy, and Fz at the Fe atom, XGBoost achieved

an underwhelming F1-score of 0.42 and an accuracy of 0.44, illustrating the limitations when

relying solely on point electric fields for predicting protein functions. The results indicate

that while point electric fields offer a straightforward interpretation, they are insufficient for

capturing the comprehensive detail required for accurate model predictions.

5.3.1 3-D fields

In stark contrast, incorporating a full 3-D heterogeneous electric field representation, through

PCA, significantly enhances model performance, achieving accuracy and F1 scores of up to

84% and 0.84 respectively. This contrasting difference underlines the inadequacy of point

electric fields as simplistic, whereas 3-D heterogeneous electric fields offer more representative

depictions of the enzymatic environment [Fig. 5.3]. Moreover, the ability of a machine

learning model to predict functions from electric field data of a protein scaffold suggests that

the scaffold is evolutionarily optimized to provide the specific fields necessary for efficient

catalysis.

5.3.2 Applied Uniform Fields.

Given a machine-learning model trained on compressed electric field representations, we aim

to identify which components from the heterogeneous electric field are critical for the model

predictions. For this, we utilized the trained, heterogeneous electric field models to predict

changes in predicted heme activity with externally applied fields. We aimed to test a crucial

hypothesis: whether the magnitude of the applied Fz electric field is decisive in determining

their catalytic function. Specifically, we sought to understand if changes along the Fz direction

alone could flip the predicted activity of the enzyme. To explore this, we positioned positive
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and negative charges 20 Å away from the Fe center of the active site, aligned along the Fz

axis on each side of the heme plane [Fig. 5.3]. Here we selected a Tyr-ligated complex (PDB

code 2j2m) as a test subject, allowing us to determine if the model could be biased to predict

Cys-ligated/oxygenases for positive fields of large magnitudes and His-ligated/peroxidases

for significant negative electric fields. This choice of protein, an unseen test example, also

belongs to the category of Tyr-ligated proteins that exhibit intermediate, near-zero Fz values.

We tested four distinct electric field strengths: +50, +10, -10, and -50 MV/cm along the

iron-oxy bond, with the direction of the field indicated by the black arrow in Fig. 5.3. These

field intensities were informed by our prior research [41], which categorized Cys, Tyr, and

His-ligated heme Fe proteins, under average vertical fields of 28.5 MV/cm, 3 MV/cm, and

-8.7 MV/cm, respectively.

Applied Field (MV/cm) Predicted Ligand/Activity

+50 Cys-ligated Oxygenases

+10 Tyr-ligated Catalases

0 (Original) Tyr-ligated Catalases

-10 His-ligated Peroxidases

-50 Cys-ligated Oxygenases

Table 5.2: Inducing an electric field along the oxy-iron

bond modifies the predicted activity of the protein. No-

tably, large negative fields along the bond led to cate-

gorization as C/oxygenases—an outcome that seems un-

likely based on our previous studies and thus suggesting

a limitation of the low-dimensional, uniform electric field

applied.

Our most effective model seemingly shows mixed success in predicting enzyme activity
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with applied electric fields, as illustrated by the results presented in [Tab. 5.2]. The model

correctly altered its predictions for most cases: a large (+50 MV/cm) positive field switched

the accurate prediction from a Tyr-ligated catalase to a Cys-ligated oxygenase, while a

moderate (-10 MV/cm) negative field led to a prediction of a His-ligated peroxidase. However,

the model’s limitations became apparent in certain cases; notably, a strong negative field

along the Fe(IV)=O bond incorrectly predicted a Cys-ligated oxygenase—an outcome that

seems unlikely considering the typically moderate Fz component magnitudes observed in this

family of proteins. These discrepancies suggest that the model might be utilizing more than

just the Fz electric field component from the heterogeneous 3-D electric field of the protein in

making its predictions.

5.3.3 Feature Importance

Therefore, we conducted a feature importance analysis to identify all the crucial features

(i.e., the key principal components) involved in the model’s accurate decision-making process.

A naive approach would be to consider the % explained variance of each PCA component

and assert that the most variable components impact activity more. This is imperfect for

several reasons. First, correlation is not causation and this signifies that components with

a large variance determine ligand specificity. Looking at the correlation or variance in a

single component also ignores the effects that multiple vector field components might have

in conjunction. Finally, PCA does not intake labels in a supervised manner, thus these

components have no mapping to function directly. To address this, we utilized Boruta [162]

and permutation importance [37] feature selection. Boruta is built on top of permutation

feature importance, where individual variables are shuffled between examples and the resulting

change in performance gives a quantitative measure of how important that feature was to

a model’s prediction. Boruta extends this idea by constructing “shadow features” that are

Gaussian noise with the same mean and variance as true variables in the input of a model.

These features, which by construction are random, serve as a benchmark of importance for
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other variables; if a variable is more important in permutation importance than a shadow

feature it is more likely to be of importance in predicting a target label. This process

is repeated a fixed number of times and these trials, in conjunction, creating a binomial

distribution where features eventually fall into the tails of the distribution - important or

not important. The resulting components from this feature selection step were studied by

backtracking PCA components to their original electric field motifs.

Between Boruta and permutation importance, PC0, PC3, PC4, PC6, and PC7 were the

most informative to the model. Visualizing these features [Fig. 5.3], we can summarize that

a rich host of electric field features inform model predictions. Important components such as

the field along the iron-oxy bond emerge, corroborating previous findings and supporting the

notion that fields will shift electron distribution along this bond to promote the activation

of substrates and control the selectivity. Combined, PC0 and PC3 have strong components

along the Fe(IV)=O bonds, but opposite lateral components - suggesting that they together

could explain the strong “vertical” component also previously proposed. PC4 is an entirely

lateral field component - not previously established as an important motif in Heme selectivity.

PC4 might contribute to the placement and delocalization of the radical on the porphyrin

(versus on the nearby Trp residue), particularly in the His-ligated proteins. Components PC6

and PC7 are harder to decipher visually - they have strong compressive/expansive features

that shift electric fields into or out of the heme center and might control the access to the

active site. These components are undoubtedly complex and underscore the difficulty of fully

interpreting the effect of electric field processes a priori without a statistical, high-throughput

approach. It is also noteworthy that the most variable field components, as indicated by

percentage explained variability, were not necessarily the most informative for the models.

Thus, our findings demonstrate that features of the 3-D electric field, extending beyond just

the Fz component, are crucial for enhancing the accuracy of model predictions related to

enzyme activity. This underscores that enzymes utilize these diverse directionalities within

the 3-D field at the active site to drive their catalytic functions.
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5.3.4 Dynamic 3-D fields.

To build upon our static, single-frame analysis, we expanded our approach to incorporate

temporal information via molecular dynamics (MD) trajectories of known proteins from

each class. The premise here is that the field, as much as the protein producing it, is not

static and that particularly functional fields may emerge dynamically. We selected a training

set consisting of the proteins 1dgh and 1gwf (Tyr-ligated), 1ebe and 1hch (His-ligated),

and 4g3j(Cys-ligated), and designated one protein from each class for the test set: 1u5u

(Tyr-ligated), 3xvi (His-ligated), and 1jio (Cys-ligated) – again, ligation being linked to

catalase, peroxidases, and monoxygenase activity, respectively. Employing the same suite of

models, we optimized parameters using subsets of the electric fields from the training set and

implemented a simple majority voting system to determine the protein class/activity. The

results reveal that while the models performed well in the static single-frame analysis with a

high F1-score of 0.84 using 3-D fields, their performance declined in the dynamic setting, as

evidenced by the XGBoost model achieving an F1-score of 0.35 and an accuracy of 0.43 [Tab.

5.3], signifying a drop in the ability of the models to generalize to the dynamic regime. We

do note that taking a majority-vote approach to predicting activity from MD trajectories, we

are able to predict the activity of 2 out of 3 protein classes correctly.

MD Trials Test F1 Test Acc

XGBoost, MD 0.35 0.43

XGBoost, MD (Combined PCAs) 0.59 0.59

Table 5.3: The data illustrates the performance outcomes

for XGBoost models tailored to molecular dynamics sim-

ulations.
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Protein
Ground
Value

Majority
Prediction

Majority Prediction
(Combined PCAs)

1u5u Y/catalase Y/catalase Y/catalase

3abb C/oxygenase Y/catalase C/oxygenases

1apx H/peroxidase H/peroxidase H/peroxidase

Table 5.4: Predicted activities for proteins in our test

set, utilizing two distinct approaches: predictions made

with PCA components just from the training set and

those using combined PCA components constructed from

the training and testing set. The comparative analysis

highlights that employing combined PCA components

leads to improved prediction accuracy. This improvement

suggests that the previously observed poor performance

was likely due to the dynamics introducing a broader

variety of components.

To better understand why models extended on 3-D electric fields from MD simulations

did not perform as expected, we examined the differences between electric fields derived

from crystal structures and those obtained from MD simulations [Fig. 5.4]. presents the

PCA explained variability, which measures the amount of variance each principal component

captures from the dataset. This metric is commonly used to assess dataset dimensionality and

complexity. Our analysis revealed significant differences in the cumulative variance between

PCA results from crystal structures and those from dynamic simulations. This suggests that

dynamic electric fields encapsulate more complex patterns and interactions, which are not as

prevalent in the static fields derived from crystal structures. The increased complexity in

dynamic fields likely reflects the continual conformational changes and interactions within

the protein environment.
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Further complicating our model training, there was a noticeable difference in the explained

variance between the PCA components derived from our training set (MD simulations) and

our test set. Specifically, the training set demonstrated a higher explained variance, with fewer

PCA components, compared to the test set. This indicates that the PCA components from the

training set may be over fit to a small set of dynamical degrees-of-freedom. Consequently, when

these PCA components used to reduce dimensionality in the test set, they may not adequately

capture the essential features needed for accurate predictions, leading to a mismatch in the

model’s ability to generalize. The model trained on less variable and comparatively simpler

data from the MD training set struggles to accurately interpret and predict the behavior of

complex test data. This issue highlights the need for developing strategies that can better

account for and adapt to the variations in electric field complexity between different sets of

molecular dynamics data.

To enhance the interpretability of our MD based 3-D electric field analysis and reduce

its complexity, we have recently developed a protocol that captures dynamic information

regarding the electric fields experienced by the active site of a protein [54], as illustrated

in Fig. 5.4, followed by mapping these clusters onto the principal components identified as

critical. By capturing the complex dynamic fluctuations within the enzyme’s active site, we

aim to elucidate how these variations complicate the model’s ability to accurately predict

enzyme activity.
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Figure 5.4: (A) Cumulative explained variance between PCAs constructed from crystal

structure fields show these fields require fewer components to explain dataset variability. (B)

An outline of our method for selecting representative frames based on electric field topologies.

Here we focused on the components that Boruta and permutation importance determined

to be critical: PC0, PC3, PC4, PC6, and PC7. PC0, recognized as the most vertical

component along the Fe-O bond, exhibited clustering trends that align with our previous

studies. The ordering of His < Tyr < Cys within these clusters suggests that cysteine-binding

proteins tend to exhibit the most positive electric field components along this direction [Fig.

C.1]. However, the presence of both Tyr and His-ligated complexes in the most positive

clusters of this component might affect model’s accuracy. PC4 exhibits a strong vertical

orientation. Notably, clusters representing 1jio are among the most positively positioned

on PC4 [Fig. C.6]. While the overall trend of His < Tyr < Cys is maintained, there is

significant overlap among the data points of the three protein classes in the projection onto

this principal component. In the case of PC7, which introduces a vertical component with

some compressive characteristics toward the active site, 1jio is distinctly the most positive,

suggesting preorganization of the electric field to enhance activity at the active site [Fig.
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C.6]. Contrarily, 1u5u and 3vxi show mixed projections on this component, aligning with

prior observations of comparable Fz components between these protein categories. Our

analysis on PC6 revealed a lack of clear separation between protein types, indicating that

this component is less interpretable compared to others [Fig. C.8]. PC3, characterized by

its predominantly horizontal orientation orthogonal to many other significant components,

uniquely identified the most positive cluster associated with 1jio(C) [Fig. C.5]. This specificity

did not extend to 1u5u and 3vxi, which did not separate distinctly along this component.

This structured approach of clustering and principal component mapping has revealed that

among the most important principal components for the model, certain components, such

as PC0, can distinctly separate the three protein systems within dynamic data, while other

components like PC6 and PC3 complicate the clarity of these separations.

System Description Eo
H (kcal/mol)

1jio (Cys/Oxygenase – 2 Clusters) 68.5 – 92.3

1u5u (Tyr/Catalase – 3 Clusters) 64.7 – 68.5

3vxi (His/Peroxidase – 4 Clusters) 27.6 – 83.7

Table 5.5: Proton-coupled electron transfer potential

(Eo
H) ranges for enzyme systems analyzed using QM/MM

methods, highlighting variations across different clusters

within each enzyme category.

Finally, we aim to explore whether the dynamic complexity, identified through PCA, truly

influences factors critical to enzyme activity. To this end, we decipher how the dynamic 3-D

heterogeneous electric field affects the electronic structure of the CpdI Fe(IV)=O (Por+•)

and CpdII Fe(IV)-OH complex by employing quantum mechanics/molecular mechanics

(QM/MM) calculations. For these calculations, we have chosen specific model systems that

are representative of the enzyme classes under study: 1jio for monoxygenases, 3vxi for
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peroxidases, and 1u5u for catalases. The selection of structures such that they represent

unique electric field configurations, is vital. Random or field-agnostic selection methods

may fail to capture variations caused by heterogeneous electric fields, potentially overlooking

critical dynamic interactions that influence enzyme activity. Therefore, we used above

identified cluster centers, via electric field clustering, for these calculations. For each major

cluster (>10% representation), we computed the free energies of the CpdI Fe(IV)=O and

CpdII Fe(IV)-OH variants to assess the relative activity of each cluster along the putative

reaction pathway. The computed proton-coupled electron transfer potential (Eo
H) ranges for

these clusters are as follows: 68.5 – 92.3 kcal/mol for the Cys-ligated oxygenase system 1jio,

64.7 – 68.5 kcal/mol for 1u5u, and 27.6 – 83.7 kcal/mol for 3vxi [Tab. 5.5]. These values align

with the expected trend where Cys-ligated oxygenases exhibit higher reactivity compared to

Tyr-ligated catalases and His-ligated peroxidases. Thus, the results indicate that the range of

Eo
H values becomes less distinct between the three systems, suggesting that the introduction

of dynamics extends the ranges of catalytically relevant properties and diminishes the clear

segregation between them. This blurring effect might help explain why dynamics affects the

machine learning model’s ability to accurately classify the different systems using 3-D electric

fields.

In response to these findings, we hypothesized that a model constructed with combined

principal components from both the test and training datasets, providing a broader spectrum

of variability for the model to learn from, might enhance classification accuracy. Indeed, this

approach resulted in improved performance, where our F1 and test accuracy improved to 0.59

and majority vote approach correctly predicts all three test protein categories [Tab. 5.4, 5.3].

Here, we note that mixing train and test components between the sets is neither completely

valid nor entirely invalid. On one hand, it introduces bias that can obscure the evaluation of

the model’s generalization. Therefore, our initial approach avoided this combination. On the

other hand, in practical applications, combining electric fields to construct PCAs does not

require prior knowledge of protein activity. Consequently, this approach remains a valuable
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tool for protein analysis via electric fields.

For future improvements in handling dynamic electric field data, the implementation of

highly efficient, sparse neural network architectures and advanced signal processing techniques

could be beneficial. Equivariant neural networks, which have rapidly gained traction in

scientific fields, are particularly promising due to their efficiency in learning with less data.

When integrated with robust data augmentation schemes, these networks can directly process

raw electric fields, minimizing data demands while ensuring that key physical symmetries are

preserved. Additionally, embracing methods that intrinsically manage structured, temporal

data will be essential for extending the analysis to include dynamics natively. Architectures

borrowed from natural language processing, such as Long Short-Term Memory (LSTM)

networks, or those that incorporate geometric learning, like message-passing graph neural

networks, are well-suited for this purpose. These techniques can effectively interpret the

temporal variations observed in MD trajectories, potentially enhancing the ability to predict

protein behavior based on dynamic electric fields.

5.4 Conclusions

In this study, we have developed a machine-learning pipeline that ingests electric fields,

reduces dimensionality via PCA, and applies these fields in a supervised learning task. Our

tests on a well-studied family of Fe heme enzymes demonstrated that traditional lower-

dimensional analyses of electric fields along the Fe(IV)=O bond are insufficient for accurate

activity prediction. This underscores the necessity for analytical techniques capable of parsing

the more complex, heterogeneous fields that are actually present at protein active sites.

Our findings reveal that point electric field calculations, despite their simplicity and ease

of interpretation, do not accurately reflect the true nature of electric fields within these

sites. Additionally, when we applied a uniform electric field using our trained model, it

failed to induce the predicted changes in a test protein, highlighting the importance of
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multidirectional fields in enzyme function. Importantly, our trained machine learning model

demonstrated that the enzyme’s 3-D heterogeneous electric field alone can predict its function

without any other protein-specific information. Through feature selection techniques such

as Boruta and permutation importance, we identified key electric field components that

not only corroborated previous studies but also emphasized the critical influence of several

components alongside the Fz value along the Fe-O bond. Expanding our analysis to include

MD trajectories and employing PCA, clustering, and QM/MM calculations, we observed that

the inherent complexity in protein dynamics can complicate model predictions. However,

we show that if the model is exposed to sufficient dynamic variability, its performance can

improve significantly.

This research marks a significant advancement in our understanding of electrostatics

in proteins. We have shown that natural enzyme scaffolds have evolved to optimize the

electric field at the active site, tailored to their function. This insight offers a powerful tool

for predicting potential enzyme functions based solely on their electric fields. Although

our analysis focused on heme Fe proteins, the methodology is broadly applicable to any

study involving electric fields at largely conserved active sites, even where there is no prior

knowledge of crucial field components. Overall, the approach presented here provides a robust

framework for not only understanding but also predicting enzyme functions across diverse

biological systems based solely on electric field analysis.
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Appendix A

Supporting Information for Machine

Learning to Predict Diels–Alder

Reaction Barriers from the Reactant

State Electron Density
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A.1 Dataset Statistics and References

Article N̄ ∆E‡ ± σ

Barrier

[kJ/mol]

Range

Transition State Distortion Energies

Correlate with Activation Energies

of 1,4-Dihydrogenations and Diels-Alder

Cycloadditions of Aromatic Molecules [118].

36 172.3± 54 60.0−274.1

Computational Investigation of the Competition

between the Concerted Diels-Alder

Reaction and Formation of Diradicals

in Reactions of Acrylonitrile with Nonpolar

Dienes [138].

16 86.0± 10.7 74.9−106.8

Diels-Alder Reactivities of Strained

and Unstrained Cycloalkenes with

Normal and Inverse-Electron-Demand Dienes:

Activation Barriers and Distortion/Interaction

Analysis [178].

30 94.5± 30.9 24.5−139.3

Theoretical Elucidation of the Origins of

Substituent and Strain Effects on the Rates

of Diels-Alder Reactions of

1,2,4,5-Tetrazines [177].

28 78.4± 30.5 28.8−128.8

Origins of Stereoselectivity in Diels-Alder

Cycloadditions Catalyzed by

Chiral Imidazolidinones [106].

18 63.7± 33.2 6.3− 107.8
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Experimental Diels-Alder Reactivities of

Cycloalkenones and Cyclic Dienes Explained

through Transition-State Distortion Energies [214].

10 92.0± 15.2 65.9−107.9

Hydrogen Bonding Catalysis Operates

by Charge Stabilization in

Highly Polar Diels-Alder Reactions [105].

9 37.1± 20.9 11.2− 81.4

Diels-Alder Reactions of Cyclopentadiene

and 9,10-Dimethylanthracene with Cyanoalkenes:

The Performance of Density Functional Theory

and Hartree-Fock Calculations for the

Prediction of Substituent Effects [143].

6 69.9± 14.2 47.4− 91.8

Origins of Stereoselectivity in the trans

Diels-Alder Paradigm [215] .
12 97.7± 8.8 76.8−115.0

Diels-Alder Exo Selectivity in Terminal-

Substituted Dienes and Dienophiles: Experimental

Discoveries and Computational Explanations [167].

18 29.1± 24.2 5.6− 89.2

Hyperconjugative, Secondary Orbital,

Electrostatic, and Steric Effects on the

Reactivities and Endo and Exo

Stereoselectivities of Cyclopropene

Diels-Alder Reactions [172].

46 63.6± 10.9 38.0− 83.9

Hyperconjugative, Secondary Orbital,

Electrostatic, and Steric Effects on the

Reactivities and Endo and Exo Stereoselectivities

of Cyclopropene Diels-Alder Reactions [173]

17 87.0± 11.0 63.0−118.4
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Lewis Acid Catalysis Alters the Shapes and

Produces of Bis-Pericyclic Diels-Alder Transition

States [329].

2 63.4± 10.3 56.1− 70.7

The Origin of the Halogen Effect on Reactivity

and Reversibility of Diels-Alder Cycloadditions

Involving Furan [219].

27 95.3± 10.6 80.5−114.2

All Papers 296 87.5± 45.0 5.6 - 274.1

Table A.1: Table Containing Different Datasets Used.
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A.2 Model Performance

Model
Test MAE

(kJ/mol)
Test R2

Test MAE (kJ/mol)

w/o Outlier

Test R2

w/o Outliers

Baseline (Mean) 7.7 0 - -

Pooled, Feature Set

LASSO 5.7 0.3 5.1 0.44

Bayes 5.3 0.36 4.7 0.59

Kernel Ridge 5.9 0.29 5.6 0.275

Extra Trees 2.9 0.74 2.0 0.93

Gradient Boost 3.0 0.74 2.0 0.93

Random Forest 3.3 0.69 2.4 0.91

XGBoost 3.3 0.73 2.4 0.92

Pooled, Uncorrelated Feature Set(Top Algorithms)

Gradient Boost 2.9 0.73 2.0 0.92

Extra Trees 2.8 0.75 1.9 0.93

Random Forest 3.0 0.72 2.1 0.92

XGBoost 3.1 0.78 2.4 0.90

Physical Feature Set (Top Algorithms)

Gradient Boost 2.9 0.76 2.1 0.92

Extra Trees 3.0 0.74 2.1 0.92

Random Forest 3.4 0.69 2.5 0.88

XGBoost 3.4 0.77 2.7 0.86

Table A.2: Performance for Different Model Types
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A.3 Variable Definitions

Φnuc − Nuclear Electrostatic
Potential Energy q - Charge

λ - Localization
Index

Φ - Electrostatic
Potential ϵ - Bond Ellipticity

δ - Delocalization
Index

Φe - Electronic Electrostatic
Potential

δbond− Bond
Delocalization Index

Ee− Contribution
to electronic

energy

x/y/z - atomic positions T - Kinetic energy

Table A.3: table of feature definitions
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A.4 Feature Sets

Algorithm Selected Features

Boruta

q2

d7, d7, dsum
7

δ1, δ2, δ6, δ
bond
4

λ3, λ5, λ6

Φ1,Φ2,Φ4

Φ5,Φ6,Φ10,Φ
nuc
5

LASSO

q4, q5

d7, d′
7, d

sum
7

λ1, δ1

Φ1,Φ4

Φnuc
5 ,Φe

10

Recursive Feature

Elimination

q2

d7, d′
7

δ1, δ2, δ6

Φ1,Φ2,Φ4,Φ5,Φ6,Φ9

Φe
10,Φ

nuc
5

PCA0

q1,

δbond
1 , δbond

2 , δbond
4

δ1, δ2, δ4

Φ1,Φ3,Φ4

T1, T3, T4

Ee
1,E

e
3,E

e
4

λ1, λ3

Table A.4: Features Selected by Different Feature Selection Algorithms.
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Feature Set Selected Features
q1, q2, q4, q5, d7, d′

7, d
sum
7 ,

δ1, δ3, δ5, δ6, δ
bond
1 , δbond

2 , δbond
4 , δbond

6 ,
Pooled (37 Features) λ1, λ3, λ5, λ6,

Ee
1,E

e
3,E

e
4

Φ1,Φ2,Φ3,Φ4,Φ5,Φ6,Φ10,Φ
nuc
5 ,Φe

10

T1, T3, T4,
ϵ7, ϵ8, ϵ9

Uncorrelated (24 Features) Φ1,Φ2,Φ3,Φ4,Φ5,Φ6,Φ10,Φ
nuc
5 ,Φe

10

ϵ7, ϵ8, ϵ9
E1, q2, q4, q5, dsum

7 ,
δ1, δ3, δ5, δ6,

q1, q2, q3, q4, q5, q6,
δ1, δ2, δ3, δ4, δ5, δ6,

Physical (28 Features) Ee
1,E

e
2,E

e
3,E

e
4

Φ1,Φ2,Φ3,Φ4,Φ5,Φ6,Φ10,Φ
nuc
5 ,

ϵ7, ϵ8, ϵ9, ϵ10

Table A.5: Different feature sets used.

A.5 Top Model Parameter Sets

Models were tuned using Sklearn’s built-in Bayesian parameter optimization package. For

each algorithm we performed a 4-fold cross validation for each algorithm trial and 5 times

the number of parameters number of algorithms were tested in to tune the algorithms. The

best performing models in cross validation performance are shown below. Dictionaries of

these values and all corresponding code is available at the project github repository.

1. Extra Trees: maxdepth=49, minsamplesleaf=2, nestimators=477

2. GradientBoosting: learningrate=0.005, minsamplessplit=2, minsamplesleaf=1, maxdepth=8,

nestima tors=1500, subsample=0.5

3. XGBRegressor: alpha=0.2, colsamplebynode=1, colsamplebytree=0.5, eta=0.0, gamma=0.0,

lambda=0.0, learningrate=0.055, maxdepth=25, nestimators=777, regalpha=0.2, reglambda=0,

scaleposweight=1, subsample= 1

4. Bayesian Ridge: alpha1=10.0, lambda1=10.0, lambda2=10.0, niter=9023, tol=0.0006
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5. Lasso: alpha=0.001

6. HuberRegressor: alpha=1.8687e-06, epsilon=1.0589, maxiter=1000, tol=0.0094174

7. SGD: epsilon=0.001, eta0=0.011343, l1=0.3, tol=0.1

8. Ridge: alpha=0.010883, tol=0.1

A.6 Permutation Importance

Figure A.1: Permuation Importance for the Physical Feature Set.
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Figure A.2: Permuation Importance for the Pooled Feature Set.

Figure A.3: Permuation Importance for the Filtered, Uncorrelated Feature Set.
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A.7 Parity Plots

Figure A.4: Parity, XGB w/ Physical Feature Set.

Figure A.5: Parity, XGB w/ Pooled Feature Set.
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Figure A.6: Parity, XGB w/ Filtered, Uncorrelated Feature Set.

Figure A.7: Parity, Extra Trees w/ Pooled Feature Set.
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Figure A.8: Parity, Extra Trees w/ Filtered, Uncorrelated Feature Set.

Figure A.9: Parity, Extra Trees w/ Physical Feature Set.
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A.8 Variable Correlation Matrices

Figure A.10: Physical Feature Set Correlation With Barriers
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Figure A.11: Pooled Feature Set Correlation With Barriers
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Figure A.12: Filtered, Uncorrelated Feature Set Correlation With Barriers
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A.9 Barrier Correlations

Figure A.13: Pooled Feature Set Correlation With Barriers
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Figure A.14: Filtered, Uncorrelated Feature Set Correlation With Barriers

Figure A.15: Physical Feature Set Correlation With Barriers
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Appendix B

Supporting Information for

High-throughput Quantum Theory of

Atoms in Molecules (QTAIM) for

Geometric Deep Learning of Molecular

and Reaction Properties

B.1 Full set of QTAIM descriptors

Atom Descriptors Bond Descriptors

Total Electrostatic Potential Φtot Total Electrostatic Potential Φtot

Nuclear Electrostatic Potential Φnuc Nuclear Electrostatic Potential Φnuc

Electronic Electrostatic Potential Φe Electronic Electrostatic Potential Φe

Lagrangrian (∇2ρ) Lagrangrian (∇2ρ)

Kinetic Energy Hamiltonian Kinetic Energy Hamiltonian
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Atom Descriptors Bond Descriptors

Gradient Norm Gradient Norm

∆g promolecular ∆g promolecular

∆g Hirshfield ∆g Hirshfield

Electron Density Electron Density$)

Laplacian Electron Density Laplacian Electron Density

Hessian Determinant Hessian Determinant

Electron Localization Function(ELF) Electron Localization Function(ELF)

Laplacian Norm Laplacian Norm

Hessian eigenvalue (1st) Hessian eigenvalue (1st)

Electronc Ellipticity Electronic Ellipticity

Average Location Ion E Average Location Ion E

Eta Eta

Localized Orbital Locator Localized Orbital Locator

energy density energy density

α spin α spin

β spin β spin

spin density spin density

Table B.1: Full set of QTAIM Descriptors
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B.2 Dataset Visualizations

B.2.1 Corrected Energies - LIBE

Figure B.1: LIBE corrected energies
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B.2.2 Correction Values

Atomic Number Correction Value

1 -16.77537562

3 -206.45292515

6 -1034.69861041

7 -1488.80081496

8 -2048.19270236

9 -2717.83725543

15 -9286.36995521

16 -10831.57826394

Table B.2: Correction values used from raw LIBE energies
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B.3 Parity Plots

Figure B.2: QM8 QTAIM test Partity.

Figure B.3: QM8 non-QTAIM test Partity.
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Figure B.4: QM9 QTAIM test Partity.

Figure B.5: QM9 non-QTAIM test Partity.
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Figure B.6: LIBE QTAIM test Partity, charge-partitioned.
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Figure B.7: LIBE non-QTAIM test Partity, charge-partitioned.
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Figure B.8: Green QTAIM test Partity.
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Figure B.9: Green non-QTAIM test Partity.
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B.4 OOD True vs. Predicted Plots

Figure B.10: LIBE OOD QTAIM charge-stratified test Partity.

Figure B.11: LIBE OOD non-QTAIM charge-stratified test Partity.

141



Figure B.12: QM9 OOD non-QTAIM test Partity.

Figure B.13: QM9 OOD QTAIM test Partity.
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B.5 Tox21 Results

Our Model (QTAIM) Our Model (No QTAIM)

NR-AR 0.9722 0.9644

NR-AR-LBD 0.9797 0.9734

NR-AhR 0.8899 0.8824

NR-Aromatase 0.9584 0.9502

NR-ER 0.8988 0.8942

NR-ER-LBD 0.9613 0.9567

NR-PPAR-gamma 0.9779 0.9786

SR-ARE 0.8567 0.8413

SR-ATAD5 0.9775 0.9748

SR-HSE 0.9506 0.9467

SR-MMP 0.8552 0.8405

SR-p53 0.9477 0.9458

Average AUROC 0.9355 0.9291

Table B.3: Tox21 Test Performance

143



B.6 Full Learning Curves

Figure B.14: LIBE Learning Curve on MAE
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Figure B.15: QM8 Learning Curve on MAE
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Figure B.16: QM9 Learning Curve on MAE

B.7 Hyperparameter Selection

For ChemProp hyperparameter optimizations we used their inbuilt hyperopt functionality [122].

Here we used the following set of parameters as sweep values:

Schnet/PaiNN - Here we used their default values [251,252] a select set of values:

Hyperparameter Values Swept

N_atom_basis 10, 20, 50

Shared interaction T F

LR 0.01, 0.001, 0.0001

Table B.4: Hyperparameters Swept for SchNet and PaiNN

QTAIM-embed - for our own in-house algorithms, we leveraged Wandb’s parameter
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selection tool. [33] We used the same hyperparameter sweep configs for each model set.

Finalized trained models for LIBE used the complete set of QTAIM descriptors above, other

models removed α and β spin descriptors.

Hyperparameter Values Swept

weight_decay 0.0, 0.00001

Embedding_size 16, 20, 24

Gated_dropout 0.0, 0.1, 0.2

Gated_hidden_size 64, 128

Gated_batch_norm T, f

Gated_graph_norm T, f

Num_lstm_iters 9, 11, 13, 15

Num_lstm_layers 1, 2

Fc_dropout 0.1, 0.2

Fc_hidden_size_1 256, 128

Fc_hidden_shape flat, cone

Precision bf16, 32

Gradient_clip_val 10, 100

Accumulated_grad_batches 1, 3, 5

Table B.5: QTAIM-embed (our) model hyperparameter sweeps

147



B.8 Scatterplots of competing models

Figure B.17: Parity Plot QM9 chemprop no QTAIM

Figure B.18: Parity Plot QM9 chemprop QTAIM
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Figure B.19: Parity Plot QM9 PaiNN

Figure B.20: Parity Plot QM9 Schnet
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Figure B.21: Parity Plot QM8 chemprop, no QTAIM

Figure B.22: Parity Plot QM8 chemprop, QTAIM
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Figure B.23: Parity Plot QM8 PaiNN

Figure B.24: Parity Plot QM8 Schnet
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B.9 Correlation of QTAIM Values to Targets

B.9.1 QM8

Figure B.25: Correlation of NCP values with QM8 target values
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Figure B.26: Correlation of BCP values with QM8 target values
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B.9.2 QM9

Figure B.27: Correlation of NCP values with QM9 target values
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Figure B.28: Correlation of BCP values with QM9 target values
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B.9.3 LIBE

Figure B.29: Correlation of NCP values with LIBE target values
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Figure B.30: Correlation of BCP values with LIBE target values
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Appendix C

Supporting Information for

Machine-Learning Prediction of Protein

Function from the Portrait of its

Intramolecular Electric Field

C.1 Dataset Description

Component Fx Fy Fz

Overall 0.098 -0.074 0.144

Center (Fe) 0.160 -0.022 0.216

Table C.1: Average Electric Field Components (V/Ang).
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Figure C.1: Magnitude of Fields at Sampled Points Along the dataset. Average: 1.14, StD:

2.94.

C.2 Hyperparameter Tuning Information on Crystal Struc-

ture Prediction

Hyperparameter Values

Model Xgboost, RF, BalancedRandomForest

N_estimators Min: 50, Max: 600

max_depth Min: 2, Max: 8

Min_samples_leaf 2, 4

Bootstrap T/F

Augmentation T/F

Scaling Log(Magnitude + 1), standard scaling, None

Table C.2: Hyperparameters used in bayesian optimiza-

tion.
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C.3 Crystal Structure PCAs Visualized

Figure C.2: Crystal Structure Training Set PC0.

Figure C.3: Crystal Structure Training Set PC1.
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Figure C.4: Crystal Structure Training Set PC2.

Figure C.5: Crystal Structure Training Set PC3.
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Figure C.6: Crystal Structure Training Set PC4.

Figure C.7: Crystal Structure Training Set PC5.
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Figure C.8: Crystal Structure Training Set PC6.

Figure C.9: Crystal Structure Training Set PC7.
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Figure C.10: Crystal Structure Training Set PC8.

Figure C.11: Crystal Structure Training Set PC9.

C.4 MD Prediction Distribution
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Train PCA

Protein Correct %

1U5U 47.9% (Plurality)

1APX 97.4%

3ABB 5.5%

Train-Test Combined PCA

Protein Correct %

1U5U 60.7%

1APX 38.3% (Plurality)

3ABB 70%

Table C.3: Table of pooled test predictions, by % of

frames correctly labels, for model trained on fields along

MD trajectories.

C.5 Cluster Center Breakdown

Cluster Ind % # Frame

1U5U

0 10.9% 404

1 10% 473

2 79.1% 983

1JIO
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0 52.7% 122

1 47.3% 840

3VXI

0 80.5% 004

2 12.2% 489

Table C.4: Distribution of Major Clusters used in

QM/MM simulations.

C.6 Compressed Frames along PCA components

Figure C.12: Cluster Centers Projected Along PC3.
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Figure C.13: Cluster Centers Projected Along PC4.

Figure C.14: Cluster Centers Projected Along PC6.

Figure C.15: Cluster Centers Projected Along PC0.
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Figure C.16: Cluster Centers Projected Along PC7.

C.7 MD combined PCAs

Figure C.17: Combined Train/Test PC0.
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Figure C.18: Combined Train/Test PC1.

Figure C.19: Combined Train/Test PC2.
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Figure C.20: Combined Train/Test PC3.

Figure C.21: Combined Train/Test PC4.
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C.8 MD train only PCAs

Figure C.22: Train PC0.

Figure C.23: Train PC1.
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Figure C.24: Train PC2.

Figure C.25: Train PC3.
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Figure C.26: Train PC4.
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Appendix D

Supporting Information for Directed

Evolution of Protoglobin Optimizes the

Enzyme Electric Field

D.1 MD RMSD

Figure D.1: RMSD Analysis of the Alpha Carbon Atoms of the Wild-Type Protoglobin and

the Four Directed Evolved Variants.
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D.2 Traditional Analysis

Figure D.2: Mean distances and standard deviations between the benzyl acrylate substrate

and the carbene across each replica run for all analyzed systems.
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Figure D.3: Correlation between the mean distance from the benzyl acrylate substrate to

carbene and the binding free energy of the benzyl acrylate substrate in LVRQ.
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D.3 Spin State Benchmarking

Figure D.4: Comparison of the free energy of the cyclopropanation reaction at the triplet

(blue), open-shell singlet (red) and closed shell-singlet (green) spin state at the most reactive

GLAVRSQLL cluster [10.3%]. Note several attempts to optimize the missing open-shell

structures were not successful. The QM/MM calculations are at TPSSh functional with

def2-TZVP basis set for all atoms.
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D.4 PCA Data

Figure D.5: Distribution of structures from replica molecular dynamics of all systems across

the top Principal Components.
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Figure D.6: Visualization of the Principal Component 9 directions plotted on the TS-

GLAVRSQLL-EF2 structure.
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D.5 QM Region

Figure D.7: QM region selected for all the QM/MM calculations.
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D.6 Topology Data

Figure D.8: Distribution of CPET distances for WT trajectories. The vertical denotes the

cutoff distance we used prior to compression.

D.6.1 Box Distance Benchmarking

Index Name Count %

Box size: 1.5 Å

WT

1 WT-run4-892.top 2879 57.58
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Index Name Count %

2 WT-run1-539.top 985 19.70

3 WT-run3-147.top 449 8.98

4 WT-run2-266.top 423 8.46

5 WT-run5-221.top 155 3.10

6 WT-run3-079.top 69 1.38

7 WT-run3-192.top 40 0.80

LVRQ

1 LVRQ-run4-589.top 3526 70.52

2 LVRQ-run2-191.top 1474 29.48

LVRQL

1 LVRQL-run4-334.top 3928 78.56

2 LVRQL-run3-017.top 462 9.24

3 LVRQL-run4-154.top 403 8.06

4 LVRQL-run5-886.top 207 4.14

GLVRSQL

1 GLVRSQL-run2-048.top 2796 55.92

2 GLVRSQL-run5-573.top 1924 38.48

3 GLVRSQL-run5-337.top 230 4.60

4 GLVRSQL-run3-716.top 50 1.00
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Index Name Count %

GLAVRSQLL

1 GLAVRSQLL-run5-846.top 1693 33.86

2 GLAVRSQLL-run5-238.top 1296 25.92

3 GLAVRSQLL-run5-464.top 824 16.48

4 GLAVRSQLL-run1-040.top 709 14.18

5 GLAVRSQLL-run1-196.top 478 9.56

Box size: 2.0 Å

WT

1 WT-run4-892.top 2254 45.07

2 WT-run1-539.top 1599 31.97

3 WT-run5-221.top 391 7.82

4 WT-run3-147.top 369 7.38

5 WT-run5-065.top 272 5.44

6 WT-run2-266.top 92 1.84

7 WT-run1-120.top 24 0.48

LVRQ

1 LVRQ-run4-589.top 3416 68.32

2 LVRQ-run1-716.top 556 11.12
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Index Name Count %

3 LVRQ-run2-239.top 408 8.16

4 LVRQ-run5-619.top 350 7.00

5 LVRQ-run2-191.top 270 5.40

LVRQL

1 LVRQL-run4-334.top 4078 81.56

2 LVRQL-run4-998.top 465 9.30

3 LVRQL-run3-017.top 457 9.14

GLVRSQL

1 GLVRSQL-run2-048.top 2123 42.46

2 GLVRSQL-run3-931.top 1397 27.94

3 GLVRSQL-run1-845.top 1018 20.36

4 GLVRSQL-run3-453.top 249 4.98

5 GLVRSQL-run4-268.top 213 4.26

GLAVRSQLL

1 GLAVRSQLL-run5-464.top 2287 45.74

2 GLAVRSQLL-run5-846.top 1290 25.80

3 GLAVRSQLL-run5-238.top 670 13.40

4 GLAVRSQLL-run1-040.top 532 10.64

5 GLAVRSQLL-run5-605.top 148 2.96
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Index Name Count %

6 GLAVRSQLL-run5-009.top 73 1.46

Box size: 2.5 Å

WT

1 WT-run1-539.top 2455 49.10

2 WT-run5-065.top 1346 26.92

3 WT-run4-892.top 1117 22.34

4 WT-run1-127.top 82 1.64

LVRQ

1 LVRQ-run5-972.top 1441 28.82

2 LVRQ-run5-701.top 956 19.12

3 LVRQ-run5-914.top 624 12.48

4 LVRQ-run4-170.top 541 10.82

5 LVRQ-run2-695.top 536 10.72

6 LVRQ-run1-590.top 322 6.44

7 LVRQ-run5-496.top 273 5.46

8 LVRQ-run5-915.top 212 4.24

9 LVRQ-run1-716.top 95 1.90

LVRQL
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Index Name Count %

1 LVRQL-run4-334.top 4019 80.38

2 LVRQL-run4-688.top 737 14.74

3 LVRQL-run3-017.top 244 4.88

GLVRSQL

1 GLVRSQL-run1-845.top 3503 70.06

2 GLVRSQL-run3-931.top 715 14.30

3 GLVRSQL-run1-361.top 399 7.98

4 GLVRSQL-run3-936.top 333 6.66

5 GLVRSQL-run4-268.top 50 1.00

GLAVRSQLL

1 GLAVRSQLL-run5-464.top 3497 69.94

2 GLAVRSQLL-run5-605.top 747 14.94

3 GLAVRSQLL-run5-846.top 385 7.70

4 GLAVRSQLL-run5-446.top 241 4.82

5 GLAVRSQLL-run5-217.top 130 2.60

Box size: 3.0 Å

WT

1 WT-run1-539.top 3226 64.52
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Index Name Count %

2 WT-run5-065.top 1729 34.58

3 WT-run1-127.top 24 0.48

4 WT-run2-855.top 21 0.42

LVRQ

1 LVRQ-run5-972.top 2916 58.32

2 LVRQ-run4-258.top 968 19.36

3 LVRQ-run4-675.top 430 8.60

4 LVRQ-run1-635.top 284 5.68

5 LVRQ-run3-699.top 196 3.92

6 LVRQ-run1-590.top 154 3.08

7 LVRQ-run5-915.top 52 1.04

LVRQL

1 LVRQL-run4-334.top 3802 76.04

2 LVRQL-run3-017.top 1068 21.36

3 LVRQL-run1-168.top 130 2.60

GLVRSQL

1 GLVRSQL-run1-845.top 3299 65.98

2 GLVRSQL-run1-361.top 1217 24.34

3 GLVRSQL-run3-936.top 484 9.68
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Index Name Count %

GLAVRSQLL

1 GLAVRSQLL-run5-464.top 3991 79.82

2 GLAVRSQLL-run5-605.top 517 10.34

3 GLAVRSQLL-run5-300.top 323 6.46

4 GLAVRSQLL-run5-446.top 119 2.38

5 GLAVRSQLL-run5-217.top 50 1.00

Table D.1: Box size parameter sweep for electric field

clustering. The box with the largest size of 3.0 A provides

the most space for sampling without getting too close

to other nearby charge residues, as indicated by similar

cluster centers as the 2.5 A box.

Distances Fe-CC (Å) CC-C1 (Å) CC-C2 (Å)

WT

1-01-WT-1RC 1.80 13.52 13.42

1-02-WT-1RC 1.78 15.40 14.63

LVRQ
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Distances Fe-CC (Å) CC-C1 (Å) CC-C2 (Å)

2-01-LVRQ-1RC 1.78 8.00 9.10

2-02-LVRQ-1RC 1.78 6.01 5.58

2-03-LVRQ-1RC 1.78 3.69 4.47

2-03-LVRQ-2TS 1.97 1.71 2.68

2-03-LVRQ-3PD 4.48 1.48 1.52

2-04-LVRQ-1RC 1.78 9.42 8.21

LVRQLL

3-01-LVRQL-1RC 1.79 3.15 4.13

3-01-LVRQL-2TS 1.95 1.87 2.68

3-01-LVRQL-3PD 4.03 1.49 1.54

3-02-LVRQL-1RC 1.78 3.39 4.41

3-02-LVRQL-2TS 1.92 1.89 2.76

3-02-LVRQL-3PD 3.17 1.48 1.54

GLVRSQL

4-01-GLVRSQL-1RC 1.78 3.14 3.79

4-01-GLVRSQL-2TS 2.00 1.71 2.60

4-01-GLVRSQL-3PD 3.53 1.49 1.53
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Distances Fe-CC (Å) CC-C1 (Å) CC-C2 (Å)

4-02-GLVRSQL-1RC 1.78 3.56 3.92

4-02-GLVRSQL-2TS 1.97 1.80 2.57

4-02-GLVRSQL-3PD 3.87 1.49 1.55

4-03-GLVRSQL-1RC 1.97 1.80 2.57

4-03-GLVRSQL-2TS 2.22 1.60 2.37

4-03-GLVRSQL-3PD 4.68 1.49 1.54

GLAVRSQLL

5-01-GLAVRSQLL-1RC 1.78 5.67 4.91

5-01-GLAVRSQLL-2TS 2.02 1.72 2.45

5-01-GLAVRSQLL-3PD 3.21 1.49 1.52

5-02-GLAVRSQLL-1RC 1.77 3.72 4.03

5-02-GLAVRSQLL-2TS 1.95 1.88 2.45

5-02-GLAVRSQLL-3PD 2.97 1.48 1.53

5-03-GLAVRSQLL-1RC 1.78 3.92 5.24

5-03-GLAVRSQLL-2TS 1.95 1.87 2.67

5-03-GLAVRSQLL-3PD 3.64 1.48 1.54

Table D.2: Summary of key distances in QM/MM opti-

mized reactants, transition states, and products across all

systems for the cyclopropanation reaction.
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D.6.2 Cluster Center Energetics

Cluster[MD%]
∆G‡

(B3LYP)
∆G‡

(TPSSh)
∆Grxn

(B3LYP)
∆Grxn

(TPSSh)

LVRQ1(8.6%) 27.07 21.18 -23.17 -13.61

LVRQL1(76.0%) 22.80 19.66 -35.31 -33.51

LVRQL2(21.4%) 29.09 22.62 -25.39 -20.83

GLVRSQL1(66.0%) 30.67 25.99 -24.17 -15.73

GLVRSQL2(24.3%) 34.92 31.83 -24.52 -19.44

GLVRSQL3(9.7%) 27.11 22.25 -23.28 -16.24

GLAVRSQLL1(79.8%) 35.06 35.96 -27.37 -20.67

GLAVRSQLL2(10.3%) 15.42 18.18 -31.15 -31.03

GLAVRSQLL3(6.5%) 24.90 19.40 -38.51 -37.40

Table D.3: Transition state and reaction free energies for

reactive clusters from each variant at B3-LYP and TPSSh

functionals (in kcal/mol).

System[MD%]
ZPE

(kcal/mol)
Svib

(kcal/mol/K)
Imaginary
Frequency

LVRQ1(8.6%) - RC 366.43 0.13 N/A

LVRQ1(8.6%) - TS 365.73 0.12 -127.3

LVRQ1(8.6%) - PC 369.76 0.12 N/A
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System[MD%]
ZPE

(kcal/mol)
Svib

(kcal/mol/K)
Imaginary
Frequency

LVRQL1(76.0%) - RC 366.12 0.13 N/A

LVRQL1(76.0%) - TS 365.44 0.12 -346.8

LVRQL1(76.0%)- PC 369.77 0.12 N/A

LVRQL2(21.4%) - RC 366.22 0.13 N/A

LVRQL2(21.4%) - TS 365.59 0.12 -390.3

LVRQL2(21.4%) - PC 369.20 0.12 N/A

GLVRSQL1(66.0%) - RC 366.13 0.13 N/A

GLVRSQL1(66.0%) - TS 366.37 0.12 -179.0

GLVRSQL1(66.0%) - PC 369.18 0.12 N/A

GLVRSQL2(24.3%) - RC 366.74 0.13 N/A

GLVRSQL2(24.3%)- TS 365.05 0.12 -279.6

GLVRSQL2(24.3%) - PC 369.34 0.12 N/A

GLVRSQL3(9.7%) - RC 365.21 0.13 N/A

GLVRSQL3(9.7%) - TS 365.30 0.13 -236.9

GLVRSQL3(9.7%) - PC 369.61 0.12 N/A

GLAVRSQLL1(79.8%) - RC 366.57 0.13 N/A

GLAVRSQLL1(79.8%) - TS 365.42 0.12 -85.7

GLAVRSQLL1(79.8%) - PC 370.18 0.12 N/A

GLAVRSQLL2(10.3%)- RC 366.59 0.13 N/A
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System[MD%]
ZPE

(kcal/mol)
Svib

(kcal/mol/K)
Imaginary
Frequency

GLAVRSQLL2(10.3%) - TS 366.29 0.13 -418.9

GLAVRSQLL2(10.3%) - PC 369.53 0.12 N/A

GLAVRSQLL3(6.5%)- RC 366.65 0.13 N/A

GLAVRSQLL3(6.5%) - TS 365.80 0.12 -397.5

GLAVRSQLL3(6.5%) - PC 369.22 0.12 N/A

Table D.4: Thermodynamics corrections and transition

state frequencies for the reactive clusters from each vari-

ant.

D.7 Mulliken Charges of Cluster Centers

Charges Fe CC C1 C2

WT

1-01-WT-1RC -0.14164 -0.13955 0.01580 -0.09994

1-02-WT-1RC 0.00286 -0.16927 0.01008 -0.09707

LVRQ

2-01-LVRQ-1RC -0.02758 -0.16726 -0.00602 -0.08271

2-02-LVRQ-1RC -0.00785 -0.14163 0.01284 -0.08780
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Charges Fe CC C1 C2

2-03-LVRQ-1RC 0.01003 -0.23359 -0.02879 -0.11094

2-03-LVRQ-2TS -0.04858 -0.44006 0.34295 -0.15394

2-03-LVRQ-3PD -0.18849 -0.45495 0.19898 0.02425

2-04-LVRQ-1RC -0.04754 -0.16185 -0.00256 -0.08949

LVRQLL

3-01-LVRQL-1RC -0.12884 -0.29870 0.01422 -0.09565

3-01-LVRQL-2TS -0.21566 -0.62815 0.35124 -0.08816

3-01-LVRQL-3PD -0.06324 -0.58806 0.24895 0.02414

3-02-LVRQL-1RC -0.06794 -0.26950 -0.02176 -0.10175

3-02-LVRQL-2TS -0.11214 -0.46187 0.28051 -0.05757

3-02-LVRQL-3PD -0.12255 -0.57562 0.27153 0.02784

GLVRSQL

4-01-GLVRSQL-1RC 0.03082 -0.34774 0.01833 -0.12559

4-01-GLVRSQL-2TS -0.03006 -0.47951 0.36358 -0.14595

4-01-GLVRSQL-3PD -0.02063 -0.54774 0.28930 -0.00963

4-02-GLVRSQL-1RC 0.03090 -0.25857 -0.00520 -0.12825

4-02-GLVRSQL-2TS -0.02515 -0.54564 0.33862 -0.13077

4-02-GLVRSQL-3PD -0.00293 -0.45000 0.27096 -0.02807
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Charges Fe CC C1 C2

4-03-GLVRSQL-1RC -0.01020 -0.22215 -0.00707 -0.10875

4-03-GLVRSQL-2TS -0.11771 -0.56735 0.48559 -0.10915

4-03-GLVRSQL-3PD -0.00509 -0.51902 0.25709 0.00180

GLAVRSQLL

5-01-GLAVRSQLL-1RC 0.01745 -0.16811 0.01632 -0.10940

5-01-GLAVRSQLL-2TS -0.05329 -0.41845 0.39818 -0.16977

5-01-GLAVRSQLL-3PD -0.13911 -0.61906 0.27256 -0.01745

5-02-GLAVRSQLL-1RC 0.01512 -0.25447 0.03834 -0.13135

5-02-GLAVRSQLL-2TS -0.03592 -0.50015 0.33124 -0.16915

5-02-GLAVRSQLL-3PD -0.22741 -0.71862 0.30531 0.01956

5-03-GLAVRSQLL-1RC -0.00191 -0.20706 -0.04438 -0.09098

5-03-GLAVRSQLL-2TS -0.10740 -0.59598 0.29873 -0.10723

5-03-GLAVRSQLL-3PD -0.05270 -0.51187 0.24003 -0.00137

Table D.5: Summary of Mulliken charges at key atoms

in QM/MM optimized reactants, transition states, and

products across all systems for the cyclopropanation reac-

tion.
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