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Abstract

Gaussian Models: Regularization, Imputation, and Emulation

by

Yuanbo Wang

Recent years have seen great advances in using Gaussian graphical models to char-

acterize the conditional relationship among variables in many domains of study. In

particular, many methods have been proposed for estimating the inverse covariance ma-

trix. Along this line of research, glasso (graphical lasso, proposed by Friedman et al.

(2008)) provides an l1-regularized maximum likelihood estimator. One challenge in such

regularization-based methods is determining the scalar tuning parameter that balances

the model complexity and fit to the data, the latter frequently based on the likelihood.

When working in high dimensions, traditional model selection methods such as k-fold

cross-validation, Bayesian information criterion, and Akaike’s information criterion can

be challenging to apply for several reasons. First, the computation can be prohibitively

expensive when estimating high-dimensional inverse covariances multiple times. In ad-

dition, reasonable search grids for candidate penalty parameter values can vary consid-

erably across applications. Substantial effort is required to find reasonable search ranges

for different applications. Furthermore, using homogeneous regularization for all entries

in the inverse covariance matrices can be limiting.

To address these challenges, we first propose block-wise robust selection (BRS), a

tuning method based on distributionally robust optimization for selecting block-wise

regularization parameters in the glasso estimator. This method finds adaptive penalty

parameters for different blocks in the inverse covariance matrix, where the blocks are

determined based on data dispersion. In this formulation, the previous penalty parameter
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search in an arbitrary range now becomes a search of significance level within the fixed

interval of [0, 1], regardless of the application of interest. Our method is computationally

efficient and does not require data normalization prior to estimating the inverse covariance

matrix.

Next, we demonstrate the application of BRS to the problem of climate field recon-

struction, which aims to reconstruct the past temperature evolution by making use of the

measurements in the post-instrumental period and partial records in the pre-instrumental

times. The reconstruction can be viewed as a missing value imputation task. In these

applications, we first use a Gaussian graphical model tuned via BRS to characterize the

spatial field over the globe and then perform the imputation. In addition, we explore

different clustering methods for grouping the variables in BRS. The reconstruction re-

sults confirm that our method is computationally attractive and provides similar imputed

values when compared to using a graph tuned by environmental scientists. Furthermore,

BRS can be used flexibly with different variable grouping methods.

Finally, we consider the emulation of physics-based simulators for environmental pro-

cesses, leveraging Gaussian Processes. Our goal is to develop a computationally efficient

surrogate model to closely approximate the outputs of the physics-based environmental

simulator, which is expensive to run. Specifically, we develop an emulator for the Re-

gional Hydro-Ecologic Simulation System (RHESSys) simulator. Our emulator leverages

Gaussian Processes with embedded seasonality within the mean and a separable covari-

ance. The emulator provides an efficient way to approximate the output that would be

obtained by running the physics-based simulator at a substantially lower computational

cost than running the simulator. Our emulator approximates environmental time series

that would be generated by the physics-based model, e.g., streamflow, under different hy-

drological and ecological scenarios, e.g., different soil properties. In addition, the degree

of approximation and computation efficiency of our built emulator enables us to conduct
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a global sensitivity analysis on the input-output relationship of the environmental process

of interest and identify the key influential environmental factors. Without our emulator,

such an analysis would be intractable (or very expensive), as one would need to run the

physics-based simulator multiple times for various input settings, which is very costly.

xi



Contents

Curriculum Vitae vii

Abstract ix

List of Figures xiv

List of Tables xx

1 Introduction and Preliminaries 1
1.1 Block-wise Robust Selection . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Paleo-Climate Reconstruction Using Block-wise Robust Selection . . . . . 12

1.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Emulation of RHESSys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Block-wise Robust Selection 20
2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Choosing Regularization Parameters When Variable Grouping is
Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Determining Variable Grouping . . . . . . . . . . . . . . . . . . . 26
2.1.3 Choosing the Number of Variable Groups . . . . . . . . . . . . . . 28
2.1.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.5 Alternative Way of Choosing Regularization Parameters . . . . . 29

2.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Simulation Settings and Data . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Power-Law I Simulation . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Power-Law II Simulation . . . . . . . . . . . . . . . . . . . . . . 36
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Rényi graph (right). Their respective edge densities are 5.85% and 3.22%. 32

2.3 Adjacency matrices (from left to right) of the true graph, BRS graph,
BRS∗ graph, RS1 graph, and RS2 graph in the power-law I simulation,
with α = 0.05 and n/p = 5. The graphs are estimated based on the same
Gaussian dataset. The colorbar indicates the magnitudes of the actual
partial variances. The grids in BRS and BRS∗ show the variable grouping
with the number of blocks being four. Regularization parameters are tuned
by BRS, BRS∗ and RS. Un-normalized data is used for BRS, BRS∗, and
RS1, and normalized data is used for RS2. The inverse covariance matrix
is estimated using QUIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 MCC boxplots of graph structure estimation in the power-law I simula-
tion, when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In
all sub-figures, the top row shows the MCC of block-wise robust selection
results with un-normalized data, the second row shows the MCC of alter-
native block-wise selection results with un-normalized data, the third row
shows the MCC of robust selection results with un-normalized data, and
the bottom row shows the MCC of robust selection results with normal-
ized data. The different colors indicate different n/p ratios. The number
of variables is p = 200. Each box is computed over m = 100 Gaussian
datasets. The inverse covariance is estimated using QUIC. . . . . . . . . 36

xiv



2.5 F1 boxplots of graph structure estimation in the power-law I simulation,
when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In all
sub-figures, the top row shows the F1 of block-wise robust selection results
with un-normalized data, the second row shows the F1 of alternative block-
wise selection results with un-normalized data, the third row shows the
F1 of robust selection results with un-normalized data, and the bottom
row shows the F1 of robust selection results with normalized data. The
different colors indicate different n/p ratios. The number of variables is
p = 200. Each box is computed over m = 100 Gaussian datasets. The
inverse covariance is estimated using QUIC. . . . . . . . . . . . . . . . . 37

2.6 Adjacency matrices (from left to right) of the true graph, BRS graph,
BRS∗ graph, RS1 graph, and RS2 graph in the power-law II simulation,
with α = 0.05 and n/p = 5. The graphs are estimated based on the same
Gaussian dataset. The colorbar indicates the magnitudes of the actual
partial variances. The grids in BRS and BRS∗ show the variable grouping
with the number of blocks being four. Regularization parameters are tuned
by BRS, BRS∗ and RS. Un-normalized data is used for BRS, BRS∗, and
RS1, and normalized data is used for RS2. The inverse covariance matrix
is estimated using QUIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 MCC boxplots of graph structure estimation in the power-law II simula-
tion, when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In
all sub-figures, the top row shows the MCC of block-wise robust selection
results with un-normalized data, the second row shows the MCC of alter-
native block-wise selection results with un-normalized data, the third row
shows the MCC of robust selection results with un-normalized data, and
the bottom row shows the MCC of robust selection results with normal-
ized data. The different colors indicate different n/p ratios. The number
of variables is p = 200. Each box is computed over m = 100 Gaussian
datasets. The inverse covariance is estimated using QUIC. . . . . . . . . 39

2.8 F1 boxplots of graph structure estimation in the power-law II simulation,
when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In all
sub-figures, the top row shows the F1 of block-wise robust selection results
with un-normalized data, the second row shows the F1 of alternative block-
wise selection results with un-normalized data, the third row shows the
F1 of robust selection results with un-normalized data, and the bottom
row shows the F1 of robust selection results with normalized data. The
different colors indicate different n/p ratios. The number of variables is
p = 200. Each box is computed over m = 100 Gaussian datasets. The
inverse covariance is estimated using QUIC. . . . . . . . . . . . . . . . . 40

xv



2.9 Adjacency matrices (from left to right) of the true graph, BRS graph,
BRS∗ graph, RS1 graph, and RS2 graph in the Erdős-Rényi simulation,
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Chapter 1

Introduction and Preliminaries

Understanding the underlying structure and information in data is of great importance

for a wide variety of domains, such as finance, genetics, and environmental science.

Gaussianity plays a fundamental role in these problems for characterizing the distribution

of data. Specifically, one key approach to describe the variation in data is through the

covariance or the inverse covariance matrix. In this dissertation, we explore different

aspects of Gaussian models, including how to estimate the inverse covariance matrix

with proper regularization as well as applying Gaussian models to different environmental

science applications.

We first consider Gaussian graphical models and the regularization of them via our

proposed method, block-wise robust selection. While the estimation of the inverse co-

variance matrix is straightforward in data-sufficient cases, it becomes challenging when

data is deficient. One intuitive way to obtain the inverse covariance matrix is to invert

the sample covariance matrix. However, this is not feasible when the number of variables

greatly exceeds the sample size of the data. This causes the sample covariance to be

rank deficient, thus resulting in an ill-posed problem. To work around this difficulty,

one approach is to estimate the undirected graphical model that encodes the conditional

correlations among the variables under the Gaussian assumption. Central to this ap-

proach is the estimation of the inverse covariance matrix through regularization-based
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optimization, where the regularization maintains a balance between model complexity

and data likelihood. When doing this, it is critical to select a regularization parameter

that results in a proper level of sparsity in the Gaussian graphical model. Although

classical approaches such as cross-validation can be used for this purpose, they can be

computationally expensive, and it can be difficult to find a set of good candidate val-

ues. Moreover, a scalar regularization parameter may not be sufficient to cope with the

different levels of variability in the variables. This calls for a new and efficient way of

determining such regularization parameters.

The estimated Gaussian graphical model and inverse covariance matrix can be very

useful for data analysis and statistical inference in various real-world problems. For in-

stance, in environmental science, the estimated graphical model can be used for climate

field reconstruction (Guillot et al. (2015); Neukom et al. (2019); Vaccaro et al. (2021)),

i.e., imputing the missing fields in pre-instrumental years. In this problem, the Gaus-

sianity is assumed for the spatial grids over the globe, and one can estimate a Gaussian

graphical model for them, based on the complete observations in recent years. The esti-

mated model can then be used to infer the missing temperature values in the early years

when temperature records were incomplete.

Lastly, we consider the emulation of a physics-based simulator that describes envi-

ronmental processes through Gaussian Processes. The covariance is used to measure

how the features (inputs) affect the outcomes (outputs) of the simulator. The Gaussian

Processes-based method is applied to the emulation of complex environmental models,

which involves building computational efficient surrogate models to approximate/emulate

the input-output behavior of highly complex environmental simulators. In our study, we

consider the emulation of the hydro-ecological model, Regional Hydro-Ecologic Simula-

tion System (RHESSys). Our goal is to discover how the soil parameter inputs influence

the time series outputs such as streamflow at experimental sites under different climatic
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conditions. Furthermore, we study the sensitivity of the outputs to the input soil condi-

tions and how this varies across experimental sites.

In this dissertation, we explore the aforementioned problems through the following

topics.

• Block-wise Robust Selection: We propose a novel way of tuning the Gaussian graph-

ical model, which finds regularization parameters for different blocks of entries in

the inverse covariance matrix. By doing this, we allow the regularization to adapt

to different levels of data dispersion in the variables and avoid data normalization

in the estimation process, thus preserving the original scales of data. Our method

requires lower computational costs as compared to k-fold cross-validation and is

shown to perform well in simulation studies.

• Paleo-Climate Reconstruction Using Block-wise Robust Selection: We incorporate

our tuning method, block-wise robust selection, into the GraphEM (Guillot et al.

(2015)) algorithm for reconstructing the paleo-climate temperature field. Our tun-

ing method is computationally more attractive as compared to prior work. The

reconstruction results are reasonable when compared to other published results.

• Emulation of RHESSys : We emulate RHESSys using a Gaussian Process-based

model and provide a sensitivity analysis of the RHESSys simulator. The emula-

tor embeds seasonality in the mean and uses separable covariance that combines

the temporal covariance and soil covariance. We conduct variance-based sensitiv-

ity measures of first-order, second-order, and total-order to understand the soil-

streamflow relationship and provide insights for calibrating RHESSys.
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1.1 Block-wise Robust Selection

In Chapter 2, we work on the Gaussian graphical model and consider tuning the

hyper-parameter, which balances the model complexity and the data likelihood. Undi-

rected graphical models have been extensively used to characterize the conditional re-

lationship among variables, which have been seen in a diverse range of scientific areas

such as genetics, social sciences, and finance. Under the Gaussian assumption, the condi-

tional independence relationship can be captured by the inverse covariance matrix of the

variables. Inferring this matrix and learning the corresponding model structure in high

dimensions have been extensively studied in the context of various real-world problems.

Along this line of research, researchers have proposed estimating the graphical model

through regularization. In other words, they formulate this problem as a constrained op-

timization, where the objective function balances the goodness-of-fit and the complexity

of the model. Common choices of measuring the goodness-of-fit include the likelihood

or pseudo-likelihood of the data under proper distributional assumptions. In terms of

the regularization term, lasso is one of the most researched methods for constraining the

complexity, which performs variable selection and regularization at the same time.

One important challenge for these regularization-based methods is to select the proper

amount of regularization when solving the aforementioned optimization. Specifically, the

learned model should capture as much variability in the data as possible while still being

generalizable. Towards this end, the commonly adopted solution is to employ standard

statistical methods for model selection such as cross-validation and forward and backward

selection. However, these methods can require prohibitively expensive computation to

produce a model. Moreover, these methods also require a proper search strategy to cover

a range of hyper-parameters, which may not be straightforward to design.

More recently, the robust selection (RS) algorithm has been proposed in Cisneros-
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Velarde et al. (2020), which can do away with the expensive hyper-parameter search and

directly derive the regularization parameter through a Distributionally Robust Optimiza-

tion. As such, its practical implementation is less complex and the required computation

time is much smaller. In this chapter, we further propose a method for fine-tuning the

regularization for different blocks of entries in the inverse covariance matrix based on the

RS algorithm. More specifically, rather than imposing the same amount of regularization

on the entire model as in the original RS algorithm, we design penalty parameters for

different sub-matrices in the inverse covariance matrix, which we refer to as the block-

wise robust selection (BRS) algorithm. By doing this, we allow more flexible penalties

for variables with different levels of variance.

In this part, we provide the necessary background and discuss the related work on

undirected graphical model selection and inverse covariance estimation. The conditional

independence relationship of a set of variables can be represented by an undirected graph

G = (V,E), where V is the set of vertices corresponding to the variables and E is the set

of edges connecting any pair of the vertices. In particular, two variables are connected by

an edge if they are conditionally dependent, given the remaining variables. Suppose that

independent and identically distributed (i.i.d.) samples (X1, . . . , Xn) are drawn from a

p-dimensional Gaussian distribution with mean zero and covariance Σ. Let K = Σ−1

denote the precision matrix and let A denote the sample covariance matrix. Under the

normality assumption, variable i and j are conditionally independent of each other given

the rest if and only if Kij = 0 (1 ≤ i 6= j ≤ p) (Lauritzen (1996)). Thus, the sparsity

pattern presented in the precision matrix dictates the edge structure of the conditional

independence graph G. Consequently, the objective of the undirected graphical model

selection problem is equivalent to identifying the nonzero entries in K.

A straightforward way to obtain K is to take the inverse of the sample covariance

matrix A, which is the maximum likelihood estimator (MLE), when p < n. However,
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A becomes rank deficient when p > n, making inverting A ill-posed and infeasible. To

address this issue, a series of optimization-based approaches have been proposed, which

introduce a penalty term to regularize the problem. We summarize these methods by a

general formulation:

argmax
K

L(K)− P (K),

where L(·) denotes the likelihood function and P (·) denotes the non-negative penalty

term.

Several candidates for L(·) have been studied in the literature. For instance, Fried-

man et al. (2008); Yuan and Lin (2007); Yuan (2008); Rothman et al. (2008) have used

Gaussian likelihood function assuming the data distribution is multivariate normal. On

the other hand, Peng et al. (2009); Meinshausen and Bühlmann (2006); Khare et al.

(2015) have proposed a variety of pseudo-likelihood functions for cases where the nor-

mality assumption does not hold, which is common in practice. More specifically, the

pseudo-likelihood function can be the regression residual-based loss function from node-

wise regression (see Peng et al. (2009); Meinshausen and Bühlmann (2006); Khare et al.

(2015)). These methods then aim to solve for the maximum pseudo-likelihood estimator.

In these cases, while maximizing L(·) is straightforward in low dimensional problems,

it becomes much more challenging in high dimensions. Specifically, the rank deficient

problem, i.e., p > n, makes the estimation problem ill-conditioned.

A common way to remedy the aforementioned rank-deficient problem is to add a

regularizer P (·) to the original likelihood-based objective function. The penalty term

serves to constrain the model complexity, which leads to sparse, better-conditioned in-

verse covariance estimators. Various sparsity-promoting penalties have been proposed

in the literature, including l0 penalty (Edwards (2012)), l1 penalty (Meinshausen and

Bühlmann (2006); Peng et al. (2009); Khare et al. (2015); Friedman et al. (2008); Yuan
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and Lin (2007); Yuan (2008)), and SCAD penalty (Fan et al. (2009)). Although the l0

penalty naturally induces sparsity, it is non-convex and thus computationally infeasible

to use in high dimensional settings. The convex l1 penalty is a natural relaxation of the l0

penalty and thus becomes the prevalent choice in inverse covariance estimation problems.

The non-concave SCAD penalty, as well as adaptive Lasso (Zou (2006)), are proposed to

reduce the enlarged bias that can be caused by the l1 penalty.

In this paragraph, we discuss one prominent method for Gaussian graphical model se-

lection, graphical lasso (glasso), which sets the prerequisite for introducing our proposed

methodology. In glasso, it is assumed that the observations come from a multivari-

ate normal distribution with mean zero and positive definite covariance matrix Σ. The

goodness-of-fit of the graphical model is measured by the Gaussian log-likelihood func-

tion, which can be written as L(K) = log |K|− tr (AK), where K = Σ−1. Regularization

is through lasso penalty which takes the form P (K) = λ‖K‖1. The explicit form of the

problem is as follows:

argmax
K�0

log |K| − tr (AK)− λ‖K‖1. (1.1)

To solve this optimization problem, Banerjee et al. (2008) has proposed a block co-

ordinate descent algorithm using interior point methods. Friedman et al. (2008) has

proposed a fast coordinate descent algorithm. There are many other speed-up variants

for solving this problem, e.g., Mazumder and Hastie (2012); Hsieh et al. (2013). To

solve the optimization, we need to specify λ in advance, which requires either domain

knowledge or parameter tuning, as we shall discuss next.

It is critical to determine the proper penalty parameter λ in these optimization prob-

lems in order to generate well-conditioned estimators.1 More specifically, all of the afore-

1Note that a penalty parameter is present in the general constrained optimization formulation and
not just in the graphical lasso.
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mentioned penalty schemes P (K) have a hyper-parameter λ that needs to be fixed or

tuned prior to solving the optimization. In general, higher values of λ lead to more reg-

ularization and thus sparser models, whereas lower values impose less penalty and thus

more complex models. One way to select λ is to leverage the existing domain knowledge

for the problem at hand. However, this requires deep domain expertise and extensive

empirical studies, which may not be available for any given problem. Furthermore, such

hand-tuned values can be vulnerable to subtle disturbances, such as the shift of data

distribution, violation of model assumptions, and anomalies in the data.

Standard statistical methods for model selection are often used as data-driven alter-

natives for choosing the regularization parameter, such as k-fold cross-validation (here-

inafter k-fold CV), Bayesian information criterion (BIC), and Akaike’s information cri-

terion (AIC). These procedures work by iterating over different values of λ and selecting

the best one according to a certain criterion. One practical challenge while using these

methods is to come up with a proper range/set of candidate λ values to perform the

search, in which the optimal value should be included. However, finding such a search

range is not trivial; it requires a deep understanding of the model selection mechanism as

well as trials and errors. In addition, applying these methods is computationally expen-

sive, especially in the high-dimensional setting, as the optimization needs to be solved

for every possible value of λ. For instance, the computation for k-fold CV can be pro-

hibitively expensive when the set of candidate values is large, as the high-dimensional

inverse covariance matrix needs to be estimated multiple times. Furthermore, the qual-

ity of the obtained model using the selected λ depends heavily on how well the selection

criterion aligns with the problem of interest.

Researchers have proposed computationally faster and model stability-based approaches

to address this parameter tuning and model selection problem (Meinshausen and Bühlmann

(2010); Liu et al. (2010)). Stability Selection proposed by Meinshausen and Bühlmann

8



Introduction and Preliminaries Chapter 1

(2010) is a general approach that combines sub-sampling with high dimensional model

selection mechanics. In the context of graphical model selection, this approach uses sub-

samples and finds the edges with high selection probabilities in the undirected graph.

StARS is another sub-sampling-based method for Gaussian graphical model selection,

which selects the penalty by having the total edge instability not exceeding a certain

threshold.

More recently, Cisneros-Velarde et al. (2020) have formulated the p-norm regular-

ized Gaussian graphical model selection problem via distributionally robust optimization

(DRO). When ρ = 1, the size of the ambiguity set in DRO corresponds to the penalty

parameter λ in glasso. The algorithm for finding such a λ is referred to as the robust

selection (RS) algorithm. Central to the RS algorithm is the robust Wasserstein profile

(RWP) function, which is computed based on bootstrap samples. The definition of the

RWP function is given as follows:2

Theorem 1.1 (RWP function, Theorem 3.2 in Cisneros-Velarde et al. (2020)). Con-

sider the cost function c(U, V ) = ‖vec (U −V )‖∞ for symmetric matrices U and V . For

a positive definite K, the RWP function is defined as: Rn(K) = ‖vec (A − K−1)‖∞,

where vec(·) denotes matrix vectorization and A is the sample covariance matrix.

The RS algorithm works by computing the RWP function on bootstrapped datasets,

which is obtained by sampling the original data with replacement. The sample covariance

matrices are then computed on each bootstrapped dataset, as well as on the original data.

Next, the regularization parameter λ is set to the b(B + 1)(1− α)cth order statistic of the

RWP function. As a result, RS only requires estimating the inverse covariance matrix

once after the penalty parameter is determined and therefore reduces computation, as

compared to conventional methods like k-fold CV.

2See the original paper for more details on the RWP function, including its convergence properties
and related concepts such as ambiguity set.
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While RS provides a theoretically rigorous and computationally undemanding solu-

tion for penalty parameter tuning, it assumes a single scalar parameter, i.e., the same

amount of regularization is applied to all variables and edges via

P (K) = λ‖K‖1.

This is also the case for most existing l1-penalized methods for inverse covariance estima-

tion, e.g., Friedman et al. (2008); Peng et al. (2009); Rothman et al. (2008); Yuan (2008);

Yuan and Lin (2007). When applying a single scalar penalty parameter, all edges are

equally penalized in the optimization problem, regardless of the different scales, units,

noise levels, and physical meanings of the node variables. As a result, small-variance

variables and their edges are likely to be overly suppressed under this uniform penalty.

One possible method to mitigate this problem is to perform data normalization. More

specifically, the raw data can be transformed by removing certain measures of central

tendency and dispersion. However, this inevitably changes the underlying distribution

and signal strengths of the variables, thus removing or distorting information contained

in the original data.

In principle, one can apply an individual scalar penalty parameter for each variable

and each edge. This makes it possible to exhaustively accommodate variables of different

scales. More formally, such a penalty function can be written as follows:

P (K) = ‖Λ ◦K‖1,

where Λ = (λij)1≤i,j≤p is a symmetric p× p penalty matrix. In this matrix, each upper-

triangular element can be different and ◦ denotes the Hadamard product. While this

provides the maximum level of modeling flexibility, tuning this matrix of penalty param-
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eters may become computationally expensive or even intractable. For example, consider

using k-fold CV to select the penalty parameter for each of the p(p−1)/2 upper-triangular

entries in Λ. Suppose the search grid is of length L, then the computation complexity is

approximately O(kLp3).

In this work, we propose a block-wise approach which allow a more flexible penalty

scheme to adapt to different variable scales while avoiding the expensive way of treating

each variable and edge individually. More specifically, we group variables that share simi-

lar characteristics (e.g., variance magnitudes). This grouping then results in a block-wise

structure of the inverse covariance matrix and thus the penalty matrix. As a result, we

can use different penalty parameters for different blocks in the inverse covariance matrix.

Entries within the same block are assigned the same amount of penalty. More precisely,

entries within a diagonal block capture interactions of variables in the same group, i.e.,

those that share similar characteristics, while entries in an off-diagonal block capture

interactions of variables from two different groups. Different amounts of regularization

are applied to different blocks. Then, in order to efficiently tune these parameters, we

leverage the robust selection (RS) algorithm and combine it with our block-wise penalty

scheme. We refer to our novel, integrated approach as the block-wise robust selection.

1.1.1 Contributions

The main contributions of this chapter are summarized as follows:

1. We propose a block-wise robust selection algorithm (BRS) for regularization selec-

tion in the Gaussian graphical models. The method enables adaptive penalty on

different blocks of variables and edges based on the levels of data dispersion.

2. Our numerical studies validate the performance of our proposed BRS method in

terms of edge recovery.
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1.2 Paleo-Climate Reconstruction Using Block-wise

Robust Selection

In Chapter 3, we embed our proposed graphical model tuning method, BRS, into

the GraphEM algorithm (Guillot et al. (2015)) for reconstructing the paleo-climate field

for the pre-instrumental period. Climate field reconstruction in environmental science

has long been treated as a missing value imputation problem (Gomez-Navarro et al.

(2015); Mann et al. (2007); Smerdon et al. (2011); Schneider (2001)). The goal is to

reconstruct the paleo-climate where the temperatures are largely missing due to the

lack of instrumental measurements. Towards this end, researchers have proposed many

statistical methods for imputation, utilizing the few available data in the pre-instrumental

period, temperatures measured in more recent years, as well as other physical variables

which are often referred to as proxies, such as tree rings, corals, ice cores, and ocean

and lake sediments (Mann et al. (2007); Smerdon et al. (2011); Schneider (2001); Guillot

et al. (2015); Neukom et al. (2019); Vaccaro et al. (2021)).

The GraphEM algorithm proposed by Guillot et al. (2015) is a commonly used method

for this paleo-climate imputation problem by embedding a Gaussian graphical model

into the expectation-maximization (EM) algorithm. Considering the spatial coordinates

as random variables, GraphEM first estimates a graph that captures the conditional

dependence relationship among them. When estimating the Gaussian graphical model,

the algorithm optimizes the Gaussian likelihood along with a regularization term. The

regularization term is a key factor to the estimation quality and thus, it is crucial to use a

proper amount of regularization. Based on this estimated graph structure, the algorithm

then performs imputation via a modified EM algorithm.

In this chapter, we apply our proposed BRS method as an alternative way to derive

the amount of regularization for tuning the Gaussian graphical model for paleo-climate
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reconstruction. We also compare with other alternative tuning methods, e.g., based

on searching for the target sparsity determined from domain knowledge. In addition,

we explore variants of our BRS algorithm by using different ways to group the vari-

ables. Specifically, in addition to binary segmentation, we experiment with two other

methods, i.e., k-means and Gaussian mixture model. Our study is conducted on two

high-dimensional spatio-temporal datasets from environmental science for paleo-climate

reconstruction.

1.2.1 Contributions

1. Our proposed tuning method, block-wise robust selection, is applied in learning

the Gaussian graphical model for imputing the two environmental datasets. It is

shown that our method performs well and is computationally attractive in terms

of finding the graph structure for down-streaming imputation.

2. A few variants of the method to determine the variable blocks in block-wise robust

selection are explored and their effects to the imputation results are discussed.

1.3 Emulation of RHESSys

With the rapid developments of computer hardware and software in the past decades,

mathematical models that characterize complex physical processes have been extensively

implemented in computer codes, as described in Kennedy and O’Hagan (2001); O’Hagan

(2006); Mohammadi et al. (2019). These implemented models are commonly referred to

as simulators. Simulators enable researchers to gain more in-depth and comprehensive

understanding of real-world processes in a more feasible way as compared to observing

the actual natural processes. In order to closely capture the reality, simulators are often
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based on highly complicated mathematical models and require significantly computation

power and time to run. In particular, such high computation costs become a critical issue

for conducting Monte Carlo experiments with the simulator.

To address this challenge, researchers have proposed surrogate models for the simula-

tors, which are significantly faster to run and closely approximate important components

of the simulator output; see Liu et al. (2009); Gladish et al. (2018); Mohammadi et al.

(2019); Oyebamiji et al. (2019). These surrogate models are known as emulators or

meta-models in the literature (Kennedy and O’Hagan (2001); O’Hagan (2006); Liu et al.

(2009); Saltelli et al. (2008); Conti and O’Hagan (2010)). In addition, emulators can be

used to provide statistical pathways for calibrating the simulator and for conducting sen-

sitivity analysis, as discussed in Kennedy and O’Hagan (2001); O’Hagan (2006); Saltelli

et al. (2008).

In Chapter 4, we consider the Regional Hydro-Ecologic Simulation System (RHESSys)

simulator and develop an emulator to efficiently approximate its output. In particu-

lar, we study how variations in soil properties affect RHESSys streamflow output at

the watershed level. Soil descriptors for different soil properties are “soil inputs” when

running RHESSys, and also used as inputs into our emulator (referred throughout as

soil inputs/factors/properties). We further utilize the constructed emulator to conduct

sensitivity analysis to study how the variation in RHESSys streamflow output can be

attributed to different soil inputs, enabling us to identify the most influential soil factors

(soil inputs/properties) amongst those in our study.

To build such an emulator, we need to first obtain reference or training runs of the

RHESSys simulator. “Training data” from each RHESSys training run consists of a soil

property setting (i.e., a vector containing a value for each of the soil inputs) that was

input into RHESSys and the corresponding streamflow output resulting from running

RHESSys. A collection of these training runs for a variety of soil input settings (the
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input design for the RHESSys runs) enables us to estimate the parameters in the pro-

posed statistics-based emulator. More specifically, we develop a Gaussian Process-based

emulator, which provides modeling flexibility and straightforward inference procedures

thanks to the favorable statistical properties of Gaussian Processes and the multivariate

Gaussian distribution (Owen and Liuzzo (2019); Gu et al. (2016); Yang et al. (2018);

Conti et al. (2009); Rajabi and Ketabchi (2017)).

For fast emulation of univariate time series computer model output using Gaussian

Processes (GP), we follow the work proposed by Olson et al. (2018). In Chapter 4, we

define Gaussian Processes and the stilt model in the context of our problem, including

the mean and space-time separable covariance functions of the GP, and also extend the

original stilt code to emulate seasonality in streamflow. The stilt method is fast in com-

putation since it constructs the maximum likelihood estimates of emulator parameters,

instead of utilizing a full Bayesian approach that simulates full posterior distributions

through sampling algorithms such as Markov Chain Monte Carlo. Due to this benefit,

emulating long time series is made possible in practice without much concern in com-

putational power and running time. Using our application as an instance, the ten-year

daily time series outputs are emulated and predicted within a reasonable amount of time,

as illustrated in Section 4.4.

In addition to “Training Data” from training runs of RHESSys used to develop our

emulator, we have “Testing Data” from additional runs of RHESSys (under collections

of different values of the soil inputs) that we use to assess the approximation of our

emulator output to that of RHESSys, described further in Section 4.3. For our devel-

opment, the Tague Team Lab3 provided us training and testing RHESSys runs for two

watersheds with different meteorological and ecosystem dynamics: Sagehen Creek in the

Sierra Nevada (Godsey et al. (2014); Tague and Peng (2013)) and Rattlesnake Canyon

3The Tague Team Lab: https://tagueteamlab.org/
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near Santa Barbara (Hanan et al. (2017)). Both are dominated by Winter precipitation,

but the former receives much of this in the form of snow, whereas Rattlesnake Canyon’s

precipitation is rain-dominated.

Due to the importance of emulation of complex mechanistic models, multiple types of

emulators have been developed for time series output beyond the class we consider here.

Notably there is a series of work based on neural networks that also builds on prosperous

development of machine learning and artificial intelligence. For example, Scher (2018)

builds a surrogate model of a general circulation model (GCM) for weather forecasting

based on a deep convolutional neural network (CNN); and Kratzert et al. (2018) emu-

lates the hydrological rainfall-runoff relationship with a long short-term memory (LSTM)

network that is skilled at capturing long-term dependencies of the output. However, as

argued by Reichstein et al. (2019), such neural network models remain hard to interpret

and to conduct uncertainty and sensitivity analyses, although the modeling assumptions

are rather flexible. We do not elaborate on this series of work and refer the interested

readers to the referenced papers in that the statistical modeling and inference are our

primary purposes.

Once an emulator is constructed, one can conduct sensitivity analysis, using emulator

runs to approximate how components of variation in the simulator model output is asso-

ciated with different input components/sources, as pointed out in Saltelli et al. (2008).

Sensitivity analysis provides valuable insights in a number of settings as described in

Saltelli et al. (2004). In particular, we are concerned with a combination of Factor Pri-

oritisation (FP) setting and Factor Fixing (FF) setting. FP describes a setting where the

identification of one or more input factors can reduce the variance of output to the largest

extent. FF depicts a scenario where identification of one or more input factors, when

varied over their ranges of distribution, does not influence the variance of the output.

Combining both settings, we want to the identify the most-influential and non-influential
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input components (in our case, amongst the input soil descriptors) in terms of reduc-

ing the variance in the output. We do not pursue two remaining settings here, namely

the Variance Cutting (VC) and Factor Mapping (FM) settings, and refer the interested

readers to Saltelli et al. (2004, 2008) for explanation.

Depending on the purpose of conducting sensitivity analysis, various approaches are

available and can be performed for statistical inquiries. In our work, we are concerned

with studying the sensitivity in the simulator (RHESSys) output, associated with multi-

ple inputs and their interactions over their particular uncertain ranges (in our case over

potential soil descriptor ranges), and identifying factors that contribute the most and the

least to variation in the simulator results (i.e., in RHESSys output). This intention over-

laps with the subject of global sensitivity analysis. In particular, variance-based methods

which utilize variance to describe the uncertainty in the simulator output best match our

purposes. Variance-based approaches are firstly employed by Cukier et al. (1973) in

their method named Fourier Amplitude Sensitivity Test (FAST), where they proposed to

compute the first-order indices based on conditional variances. Sobol (1993) proposed to

decompose the uncertainty in the model output into first-order and higher-order terms

of uncertainty in the model inputs, which enables the computation of sensitivity in-

dices to be completed based on Quasi-Monte-Carlo experiments. Quasi-Monte-Carlo

methods greatly reduce the computational difficulty, by using simulation to approximate

the variance-based sensitivity measures. In practice, commonly computed indices using

variance-based methods include first-order (or main effects) indices, total-order indices,

and second-order indices, as discussed in Saltelli et al. (2008, 2004); Puy et al. (2021);

Homma and Saltelli (1996); Pianosi et al. (2016); Razavi et al. (2021); Saltelli et al. (2010,

2004). The first-order and second-order indices measure the amount of uncertainty in the

model output that can be attributed to each model input and its two-way interactions.

The total-order indices quantify the proportion of variation in the model output that can
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be explained by terms involving each input at any order. Sobol (1993, 2001) provide a

fundamental way of computing each sensitivity measure and the indices are often referred

as Sobol’s indices. Throughout the years, researchers have also developed variants for

performing the calculation of the above-mentioned indices, for example, Saltelli et al.

(2008, 2010); Jansen (1999); Azzini et al. (2020); Homma and Saltelli (1996).

Many readers may be familiar with another statistical term “Uncertainty Quantifica-

tion” (UQ). However, we emphasize that the distinction between sensitivity analysis and

uncertainty quantification is crucial. According to Saltelli et al. (2008), the aim of uncer-

tainty quantification is to provide a probabilistic view of model output if certain inputs

are unknown, whereas sensitivity analysis quantifies how variation in model output can

be apportioned to different sources of the model inputs. The intention of our study is

the latter as we are interested in how the different input values influence the time series

output.

1.3.1 Contributions

The main contributions of this chapter are summarized in the following.

1. We present a Gaussian Process-based emulator for fast approximation of the time

series output from a simulator which exhibits seasonality based on the method

proposed in Olson et al. (2018).

2. In our global sensitivity analyses, we propose to compute the first-order, second-

order, and total-order sensitivity indices for each time step, extending the conven-

tional definition to have an additional time domain. This enables us to study how

the variation in the model output can be explained by each input factor and their

interactions at different times.
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3. The comparison of emulating the same hydrological outputs at two experimental

watersheds are provided and the results are discussed to assist the understanding of

RHESSys behavior, thus aiding sampling design and calibration of the simulator.

4. The global sensitivity analysis based on the emulators are provided. The sensitivity

of individual soil attributes, second-order interactions, and total-order effects are

studied. Based on the analysis, the influential and non-influential soil properties

for the variation in streamflow are identified for both experimental sites.
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Chapter 2

Block-wise Robust Selection

This chapter presents our proposed method on using block-wise penalty parameters to

tune Gaussian graphical models. We start with graphical lasso (glasso) for estimating

inverse covariance matrix, whose objective function combines the Gaussian log-likelihood

and an l1 regularization term. Rather than having a scalar penalty parameter for the

entire inverse covariance matrix, we propose to use block-wise regularization parameters

that can adapt to different levels of data dispersion in the variables, while avoiding

performing data normalization.

In this approach, we first group the variables in the dataset based on their variabil-

ities. Then, we select a baseline block in the inverse covariance matrix for which we

find the scalar regularization parameter using a modified version of the robust selection

(RS) algorithm (Cisneros-Velarde et al. (2020)). Lastly, the penalty parameters for other

blocks are computed by properly scaling the baseline-block penalty parameter, with co-

efficients derived in a data-dependent way. Using our proposed method, different penalty

amounts can be assigned to different blocks of entries in the inverse covariance matrix. In

addition, it is no longer needed to find a search range for candidate penalty parameters.

This is converted to searching for a significance level within [0, 1], making it easier to

tune a Gaussian graphical model across different applications. Furthermore, since our

method incorporates the RS algorithm, it inherits the computational efficiency.
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The organization of this chapter is as follows. In Section 2.1, we elaborate on our

block-wise robust selection method. First, we describe the construction of the block-

wise penalty parameters when the variable grouping is given. Second, a method based

on change point detection is discussed for determining the variable grouping. A crite-

rion proposed in change point detection literature selects the number of variable groups.

Lastly, this section provides an alternative approach for choosing the block-wise regu-

larization parameters. In Section 2.2, we provide the numerical experiments using our

methods based on three simulated scenarios. The comparison with two robust selection

variants is included in this numerical study. Two paleo-climate reconstruction applica-

tions using our tuning method are deferred until the next chapter.

2.1 Methodology

In this section, we describe our proposed block-wise robust selection (BRS). First, we

discuss how to choose the regularization parameters given a grouping of the variables.

Then, we discuss one way of obtaining the variable groups via binary segmentation.

Lastly, we explain how to decide on the number of variable groups.

When identifying the zeros and nonzeros in the inverse covariance matrix (model

selection), a scalar penalty parameter is used in most methods (e.g., Friedman et al.

(2008); Peng et al. (2009); Khare et al. (2015)) and the variables are normalized. As

a result, the same amount of regularization is applied to all elements in the inverse

covariance matrix. However, estimating the inverse covariance matrix after normalization

distorts the parameter values and renders the inferred parameter estimates unusable

in downstream analysis. On the other hand, our method aims to find regularization

parameters adaptively for different blocks of edges with different variance levels, avoiding

data normalization.
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In order to take the data dispersion into account and avoid data normalization, we

propose to regularize the partial correlations with the same parameter λ̃. This resulting

penalty term can be expressed as λ̃|ρij|. Given the definition of partial correlations, i.e.,

ρij = − Kij√
KiiKjj

, the penalty term can be rewritten as λ̃√
KiiKjj

|Kij|. In graphical lasso,

|Kij| is penalized with λij which can be expressed in terms of λ̃ as

λij =
λ̃√

KiiKjj

.

As such, we can construct a penalty matrix whose entries are λij for i, j ∈ {1, . . . , p},

as follows:

Λ = λ̃



1
K11

1√
K11K22

· · · 1√
K11Kpp

1√
K22K11

1
K22

· · · 1√
K22Kpp

...
...

. . .
...

1√
KppK11

1√
KppK22

· · · 1
Kpp


,

where λ̃ is the baseline regularization parameter and Kii is the partial variance of the ith

variable, for i ∈ {1, . . . , p}. This matrix can be formulated using an outer product as

Λ = λ̃vv>, (2.1)

where v = ( 1√
K11

, . . . , 1√
Kpp

)>. Such a formulation of the regularization is useful for

understanding inverse covariance estimation but the quantities can not be decided prior

to the estimation procedure, as K is the unknown matrix that we are estimating.

Nevertheless, following such an idea of formulating the penalty parameter(s), we

explain how we can obtain a block-wise penalty matrix. Specifically, the same penalty

parameter is shared among entries corresponding to variables with a similar level of

variances.
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2.1.1 Choosing Regularization Parameters When Variable Group-

ing is Given

This part explains the block-wise regularization, assuming the variable grouping is

given. The discussion on obtaining such a grouping is deferred in the later sections.

Suppose that all variables can be partitioned into N groups, where N ∈ {1, . . . , p}.

Consequently, the inverse covariance matrix K and the penalty parameter matrix Λ will

have N diagonal blocks and (N − 1)N/2 upper off-diagonal blocks. In addition, we use

I and J to denote the I th and J th variable group, where I, J ∈ {1, . . . , N}. The number

of variables in the J th group is represented by pJ and p =
∑

J pJ . We then use a pair

of upper-case letters (I, J) to index a block in a matrix, where the rows correspond to

variables from group I and the columns from group J . The dimension of the sub-matrix

indexed by (I, J) is thus pI × pJ . Consider a running example where all variables can be

partitioned into N = 2 groups. In this example, the two diagonal blocks are indicated

by (1, 1) and (2, 2), and the one off-diagonal block is indexed by (1, 2).

Given a variable grouping, our goal is to find the penalty parameter matrix Λ that

exhibits an adaptive amount of regularization for each block of edges. This is made

possible by finding the scalar penalty parameters for each block of entries in the inverse

covariance matrix and combining them appropriately. The scalar penalty parameter is

the same for entries within each block, based on the assumption that the data dispersion

of the variables being grouped together is similar. On the other hand, the regulariza-

tion parameters are different for different blocks. Embedding this block-wise idea into

Equation (2.1), we construct the block-wise penalty matrix as follows

Λ = λ̃vv>, (2.2)
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Figure 2.1: RWP functions for the running example where the variables are grouped
into two blocks. In this case, there are two diagonal blocks and one off-diagonal block
in the precision matrix.

where vv> can be treated as a weight matrix scaling the baseline parameter λ̃ differently

according to different blocks. Specifically, v is a p-dimensional vector with repeated

entries for each group J , that is

v = (γ1, . . . , γ1︸ ︷︷ ︸
p1

, . . . , γJ , . . . , γJ︸ ︷︷ ︸
pJ

, . . . , γN , . . . , γN︸ ︷︷ ︸
pN

)> ∈ Rp.

We use γJ to represent the median of {1/
√
Kii} across all variable i in group J .

Moreover, γJ can be approximated by the median of {
√

Σii} across all variable i in group

J , since Σ is the inverse of K if it is a diagonal matrix. Now the problem boils down to

finding λ̃.

The selection of λ̃ is completed by the robust selection algorithm for a baseline block

which needs to be decided before obtaining λ̃. In our implementation, we first obtain the
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robust Wasserstein profile (RWP) functions for all the blocks and use the diagonal block

whose median value of the RWP function is maximal as the baseline.1 Suppose block

(J, J) is selected as the baseline. We write its RWP function as Rn,(J,J). Then, λ̃ is set

to be the b(B + 1)(1− α)cth order statistic of Rn,(J,J) divided by γ2
J , i.e.,

λ̃ = R
b(B+1)(1−α)c
n,(J,J) /γ2

J .

While calculating the RWP functions for any diagonal block, we discard the diagonal

elements from the corresponding sub-matrix of A and K−1.

With the proposed method, the arbitrary searching space of the regularization pa-

rameter λ̃ is restricted to a fixed range of the significance level parameter α, which spans

from zero to one. Specifying the searching grid for the regularization parameter in meth-

ods like cross-validation requires expert knowledge to include an optimizer of certain

out-of-sample metric, which is challenging and computationally inefficient. In contrast,

adjusting α from the most conservative (zero) to the most flexible (one) makes it easy

for practitioners to tune a Gaussian graphical model. This range is unchanged regardless

of the magnitude and unit of the data. We refer the interested readers to the original

RS paper for an exact definition of α and how it is used as a tolerance level in the

distributionally robust optimization.

We illustrate the block-wise RWP functions computed for our running example. Fig-

ure 2.1 shows the respective RWP functions of the three blocks. The RWP functions

for the two diagonal blocks are shown in blue and orange, and the RWP function for

the off-diagonal block is shown in green. It can be seen that these RWP functions have

different scales. In this case, we choose block (2, 2) as the baseline block as its median

value of the RWP function is the largest. The block-wise penalty matrix is computed by

1See Theorem 1.1 in Chapter 1 for the definition of robust Wasserstein profile (RWP) function based
on A and K−1.
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Equation (2.2) with λ̃ = R
b(B+1)(1−α)c
n,(2,2) /γ2

2 .

2.1.2 Determining Variable Grouping

Given a set of variables, to apply block-wise robust selection, it is necessary to first

assign them into suitable groups, based on their statistical characteristics (e.g., variance

magnitudes). In this section, we use the binary segmentation algorithm from the change

point detection literature to group the variables. We first assume that the target number

of variable groups is provided in this section and will discuss how to determine this

number in the next section.

Grouping a set of variables can be treated as a clustering problem, where variables

in the same group should share similar characteristics. In contrast, variables from dif-

ferent groups should be more different. As BRS avoids normalization to preserve the

original characteristics of the data, the desired clustering method should take the differ-

ent variances of the variables into account to facilitate the selection of suitable penalty

parameters. Since the data are assumed to be zero-mean throughout this chapter, we

defer the handling of the heterogeneous means of variables until the next chapter.

One possible way to achieve this is to detect the abrupt changes in the sorted standard

deviations of the variables. In other words, variables with similar variabilities should be

assigned to the same group while those with different variabilities should be in different

groups. This is similar to the multiple change-point detection problems in the literature

(Scott and Knott (1974); Truong et al. (2020); Killick et al. (2012); Killick and Eckley

(2014)).

Suppose the ordered sequence of sample standard deviations of the variables is de-

noted as s(1), ..., s(p). Given the target number of variable groups N , the required number

of change points is N − 1. Let τi ∈ {1, 2, . . . , p − 1}, where i ∈ {0, ..., N − 1}, denote
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the location of the ith change point to be found. We further denote the location of the

sequence starting point as τ0 = 0 and that of the ending point as τN = p. Given the

change points, the sequence is segmented into N chunks, with the change points at lo-

cations τ1, . . . , τN−1. Note that the change points are ordered, which means that τi < τj

if and only if i < j. The multiple change-point detection for grouping the variables can

then be formulated as the following optimization problem:

argmin
τ1,...τN−1

N∑
i=1

`(s(
(τi−1+1):τi

)), (2.3)

where `(·) is a loss function that measures the quadratic differences between consecutive

points in a sub-sequence and s(
(τi−1+1):τi

) denotes the sample standard deviations from

location τi−1 + 1 to location τi.

To solve this optimization, we use the binary segmentation algorithm (Scott and

Knott (1974)) from the change point detection literature. This is a conceptually simple

yet effective method to detect one or multiple change points in the input sequence (Killick

et al. (2012); Killick and Eckley (2014); Truong et al. (2020)). The sequence is greedily

split by finding a new breaking point that maximally lowers the loss function and the

procedure is performed until N − 1 change points are found. This is an approximate

minimization process of Problem (2.3) as the detection of any new change location is

conditional on the previously identified change points (Scott and Knott (1974); Truong

et al. (2020); Killick and Eckley (2014)). The computation complexity for determining

the variable grouping is O(p log p) when using binary segmentation. We use the Python

package ruptures (Truong et al. (2020)) for running the binary segmentation with a

quadratic loss function.
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2.1.3 Choosing the Number of Variable Groups

In this part, we discuss how to choose the number of groups, N , for the change

point detection problem described previously. Multiple metrics have been proposed in

the literature (e.g., Truong et al. (2020)) and widely used in practice (e.g., Killick and

Eckley (2014)) to facilitate choosing the number of change points. Following the general

guidelines of model selection, these metrics aim to balance between model flexibility and

generalizability. With a fixed metric, the procedure for selecting N is given as follows. We

first compute the segmentation for a sequence of values. Then, the segmentation quality

is measured by this given metric as a function of N . Lastly, the N value that optimizes

the metric is chosen as the the final decision. In our work, we utilize the Modified Bayes

Information Criterion (MBIC) proposed by Zhang and Siegmund (2007) for deciding N ,

which maximizes the asymptotic approximation of Bayes factor.

When using MBIC, the data to be segmented is assumed to be Gaussian. In our

context, we have

s(j) ∼ N (µi, 1), for j ∈ {τi + 1, . . . , τi+1}, and i ∈ {0, ..., N − 1},

where µi, ∀i ∈ {0, ..., N − 1} reflects the different mean-levels of the signal. Next, we

provide the definition of MBIC in the following theorem.

Theorem 2.1 (Theorem 1 in Zhang and Siegmund (2007)) Suppose N−1 change points

are to be detected and the quadratic loss is used. Then, given that other assumptions are
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satisfied,

MBIC =
1

2

N∑
i=1

(τi − τi−1)
( 1

τi − τi−1

τi−1∑
j=τi−1

s(j) −
1

p

p∑
j=1

s(j)

)2

− 1

2

(
3(N − 1) log(p) +

N∑
i=1

log(
τi − τi−1

p
)
)
,

where the terms in the first row specify the log-likelihood of the data and those in the

second are the penalty terms.

MBIC is similar to the traditional BIC metric because it contains a data likelihood

term and a penalty term. However, the penalty term in MBIC uses a more complicated

way to regularize the model complexity. As we can see, the penalty term reaches the

maximum when τi’s are evenly spaced. Thus, one characteristic of MBIC is that it favors

evenly spaced change points. For more information regarding MBIC and its applications

to genomic data, we refer readers to Zhang and Siegmund (2007).

2.1.4 Algorithm

The procedure of our proposed method, BRS, is summarized in Algorithm 1.

2.1.5 Alternative Way of Choosing Regularization Parameters

In this part, we describe an alternative approach for obtaining the block-wise regu-

larization matrix by utilizing the RS algorithm, to which we refer as BRS∗. In our main

BRS algorithm discussed previously, we run RS once for the baseline block, and use the

order statistic as well as γJ ’s for constructing the block-wise penalty matrix. Unlike this

way, in BRS∗, we treat the blocks of edges independently and run the RS algorithm for

2An,(I,J) stands for the sub-matrix of A where the rows consist of variables from the Ith group and

the columns represent variables from the J th group.
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Algorithm 1: Block-wise regularization selection for Gaussian graphical model

Data: Xn×p
Require: N groups of variables, B, α
Result: Λ
for b in {1,. . . , B} do

Obtain Xb by sampling rows of X with replacement;
Compute the covariance matrix Abn for Xb;
for block (I, I) where I ∈ {1, . . . , N} do

Compute bootstrap RWP function Rb
n,(I,I) = ‖vec (Abn,(I,I) − A(I,I))‖∞;2

end

end

Determine a baseline block (J, J) and obtain the order statistic R
b(B+1)(1−α)c
n,(J,J) ;

Set λ̃ to be R
b(B+1)(1−α)c
n,(J,J) /γ2

J ;

Construct the block-wise penalty matrix Λ by Equation (2.2).

each block in order to get their respective penalty parameters. More precisely, the block-

wise RWP function Rn,(I,J) is constructed for any given block (I, J) (I, J ∈ {1, . . . , N}).

Then, the b(B + 1)(1− α)cth order statistic of the RWP function is returned as the reg-

ularization parameter for this block. Lastly, we construct the entire penalty matrix by

applying the obtained scalar penalty parameter for all entries in each block (I, J).

2.2 Numerical Experiments

In this section, we conduct simulation experiments to evaluate the performance of the

proposed method BRS. We compare BRS with the alternative block-wise approach BRS∗,

and with two variants of robust selection, RS1 and RS2, in terms of graph recovery. The

difference between the two variants of robust selection is whether the data is normalized

before parameter tuning and inverse covariance estimation. More specifically, no data

normalization is performed in BRS, BRS∗ and RS1, whereas the column mean and variance

of the data are removed in RS2. We summarize these four approaches in Table 2.1. Once

the penalty parameter is determined, we use the QUIC algorithm (Hsieh et al. (2013))
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Table 2.1: Simulation setups

Abbreviation Tuning Method Data Normalization
BRS block-wise robust selection no
BRS∗ alternative way of BRS no
RS1 robust selection no
RS2 robust selection yes

for estimating the inverse covariance matrix.3

2.2.1 Simulation Settings and Data

We conduct three simulation experiments with two kinds of underlying random graphs,

i.e., a power-law graph and an Erdős-Rényi graph. The power-law graph is often consid-

ered as the underlying structure for many real-world graphs, such as social and genetic

networks. The Erdős-Rényi graph is a commonly used random graph for simulation stud-

ies on inverse covariance estimation. The first and second simulation use the power-law

graph and the third one uses the Erdős-Rényi graph. We refer to these three simulations

as the power-law I, the power-law II, and the Erdős-Rényi simulations, respectively. The

power-law graph has a varying distribution for the degree of each node, where the degree

of a node is defined as the number of edges connected to it. In particular, the degree

distribution follows a power law. The Erdős-Rényi graph is constructed by randomly

including edges to connect the nodes. The probability for any edge inclusion is set to be

3%. Figure 2.2 shows the generated power-law graph and Erdős-Rényi graph with edge

densities 5.85% and 3.22%, respectively.

Given a graph structure, the edge weights are sampled following the method in Peng

et al. (2009) and consequently, we obtain a p × p correlation matrix Σinit, the inverse

of which Kinit obeys the given graph structure. Next, we pre- and post-multiply Kinit

by a diagonal matrix D and denote the resulting matrix as K. In the Erdős-Rényi

3QUIC stands for QUadratic approximation of Inverse Covariance matrices.
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and power-law I simulations, the non-zero entries in D ranges from 0.2 to 1.4 in an

increasing order, while in the power-law II simulation, these entries follow a decreasing

order. Finally, for each sample size n ∈ {0.5, 1, 2, 5}×p, we sample m = 100 i.i.d. datasets

following the multivariate normal distribution with mean zero and covariance Σ = K−1,

i.e., Np (0, K−1). In all three simulations, the number of variables is p = 200 and the

number of bootstrapped replicates is B = 200. Four significance levels are considered:

α ∈ {0.05, 0.35, 0.65, 0.95}.

Figure 2.2: Graphs used in our simulation study: power-law graph (left) and
Erdős-Rényi graph (right). Their respective edge densities are 5.85% and 3.22%.

2.2.2 Performance Metrics

The model selection performance of BRS, BRS∗, RS1, and RS2 is assessed based on

the correctness of the recovered graph structures. Since the underlying graphs are sparse,

we adopt F1 and Matthews correlation coefficient (MCC) as the evaluation metrics, both

of which are informative measures for summarizing imbalanced classification results (see

Chicco and Jurman (2020); Boughorbel et al. (2017)). Next, we provide formal definitions

of F1 and MCC. First, we denote the four entries of a confusion matrix as follows: true

positive (TP ), true negative (TN), false positive (FP ) and false negative (FN). In graph
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estimation, we consider the presence of an edge as a “positive” instance and the absence

of an edge as a “negative” case.

• Matthews correlation coefficient (MCC) is defined as

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

and ranges from −1 to 1. It uses the four quantities from the confusion matrix, and

essentially is Pearson correlation between the true and estimated binary classifica-

tions of the edge presence. The highest value 1 indicates that the graph estimation

is perfect. The lowest value −1 suggests a total disagreement between the actual

and estimated structures, and 0 means that the estimation is no better than flip-

ping a coin. MCC becomes undefined if the estimated graph is empty, namely,

when TP and FP are zero.

• F1 score is defined as

F1 =
TP

TP + 1/2(FP + FN)

and ranges from 0 to 1. It is the harmonic mean of precision and recall when they

are considered to be equally important. F1 score reaches the its best value at 1

when the estimation of graph structure is perfect and the worst value at 0 when

either precision or recall is zero. One criticism of the score is that it ignores TN ,

but in cases where the actual and estimated edges are of greater importance, F1

still provides useful information in addition to MCC.

2.2.3 Power-Law I Simulation

We discuss the results of power-law I simulation in this part. First, we compare the

true and the estimated adjacency matrices in Figure 2.3, when α = 0.05 and n/p = 5.
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Figure 2.3: Adjacency matrices (from left to right) of the true graph, BRS graph, BRS∗

graph, RS1 graph, and RS2 graph in the power-law I simulation, with α = 0.05 and
n/p = 5. The graphs are estimated based on the same Gaussian dataset. The colorbar
indicates the magnitudes of the actual partial variances. The grids in BRS and BRS∗

show the variable grouping with the number of blocks being four. Regularization
parameters are tuned by BRS, BRS∗ and RS. Un-normalized data is used for BRS,
BRS∗, and RS1, and normalized data is used for RS2. The inverse covariance matrix
is estimated using QUIC.

The true adjacency matrix is provided in the left-most figure, whose diagonal line is

colored by the magnitude of the true partial variances. A lighter (darker) red color

indicates a lower (higher) magnitude. The top-left corner in the true adjacency matrix

shows higher node degrees than the bottom-right. The second, third, fourth, and fifth

sub-figures (from left to right) show the four adjacency matrices estimated by BRS, BRS∗,

RS1, and RS2, respectively. The blue grids in the second and third sub-figures show the

edge blocks in BRS and BRS∗, respectively. These four graphs are estimated based on

one of the i.i.d. datasets generated for power-law I simulation.

We see that the adjacency graph estimated by BRS is visually the most similar to the

true graph, in terms of the quantity and locations of the edges. This is followed by BRS∗,

where the number of edges is less than that of BRS. In contrast, RS1 graph does not

contain any edge and RS2 graph contains a relatively small number of edges and misses

those in the top-left area where the true node degrees are high. The relative comparison

of the four methods is consistently observed across the i.i.d. datasets as well as in other

cases where α and n/p take different values.
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Second, the four methods are compared quantitatively using MCC and F1. Figure 2.4

and 2.5 show the boxplots of MCC and F1 for power-law I simulation. Four α values

are considered and the corresponding results shown in the sub-figures are (a) α = 0.05,

(b) α = 0.35, (c) α = 0.65, and (d) α = 0.95. For each α value, four n/p ratios are used,

as indicated by the colors in the sub-figures. In each sub-figure, the top row shows the

boxplots for BRS, the second row for BRS∗, the third row for RS1, and the bottom row

for RS2. Boxes towards the right indicate higher F1 and MCC scores.

In terms of both metrics, we see that BRS attains higher F1 and MCC scores than

the other methods, for all values of α and n/p. For example, when α = 0.95 and n/p = 5,

the median MCC of BRS is 0.59, and those of BRS∗, RS1, and RS2 are 0.53, 0.13, and

0.49, respectively. The higher MCC and F1 scores attained by BRS and BRS∗ result from

that both methods allow more flexible regularization that is adaptive to different levels

of variance of the variables. In contrast, the heterogeneous variances of the variables

can not be taken care of by RS1, which in turn results in empty graphs. For instance,

when α = 0.05 and n/p ≤ 2, no edges can be recovered by RS1 since the tuned penalty

parameter is too large. The MCC and F1 scores are undefined for such cases and thus

the corresponding boxes are missing in Figure 2.4 (a) and 2.5 (a). In these two figures,

the squeezed boxes for n/p = 5 are due to that only a small portion of datasets have non-

empty graphs with very few edges. While RS2 can handle the heterogeneous variances,

this process requires normalization which distorts data distribution, e.g., when the sample

variances are not accurate. As such, RS2 has higher scores than RS1 but performs worse

than BRS, as can be seen in the four sub-figures for each metric.
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Figure 2.4: MCC boxplots of graph structure estimation in the power-law I simula-
tion, when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In all sub-figures,
the top row shows the MCC of block-wise robust selection results with un-normalized
data, the second row shows the MCC of alternative block-wise selection results with
un-normalized data, the third row shows the MCC of robust selection results with
un-normalized data, and the bottom row shows the MCC of robust selection results
with normalized data. The different colors indicate different n/p ratios. The number
of variables is p = 200. Each box is computed over m = 100 Gaussian datasets. The
inverse covariance is estimated using QUIC.

2.2.4 Power-Law II Simulation

The results of power-law II simulation is provided in this part. The difference between

this and power-law I simulation is the way to obtain K, as described in Section 2.2.1.

Consequently, the magnitudes of the true partial variances in this case are in a decreasing
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Figure 2.5: F1 boxplots of graph structure estimation in the power-law I simulation,
when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In all sub-figures, the
top row shows the F1 of block-wise robust selection results with un-normalized data,
the second row shows the F1 of alternative block-wise selection results with un-normal-
ized data, the third row shows the F1 of robust selection results with un-normalized
data, and the bottom row shows the F1 of robust selection results with normalized
data. The different colors indicate different n/p ratios. The number of variables
is p = 200. Each box is computed over m = 100 Gaussian datasets. The inverse
covariance is estimated using QUIC.

order, unlike in power-law I. This distinction can be directly seen in Figure 2.6, where we

compare the true and the estimated adjacency matrices when α = 0.05 and n/p = 5. The

true adjacency matrix is presented in the left-most panel, whose diagonal line is colored

by the magnitude of the true partial variances. A darker (lighter) red color shows a
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higher (lower) magnitude. The remaining panels successively show the four estimated

adjacency matrices by BRS, BRS∗, RS1, and RS2. The blue grids in the second and third

sub-figures indicate the edge blocks in BRS and BRS∗, respectively. These four estimated

graphs are obtained based on one of the i.i.d. datasets generated for the power-law II

simulation. Visually, the number and locations of edges obtained via BRS are the most

similar to the ground truth. Those for the BRS∗ are less similar to the ground truth.

The RS1 graph only contains a very small number of edges in the bottom-right corner

and the RS2 graph shows fewer edges than BRS. The patterns of the graph recovery of

the four methods are similar across the i.i.d. datasets and in other cases where α and

n/p are varied.

Figure 2.6: Adjacency matrices (from left to right) of the true graph, BRS graph, BRS∗

graph, RS1 graph, and RS2 graph in the power-law II simulation, with α = 0.05 and
n/p = 5. The graphs are estimated based on the same Gaussian dataset. The colorbar
indicates the magnitudes of the actual partial variances. The grids in BRS and BRS∗

show the variable grouping with the number of blocks being four. Regularization
parameters are tuned by BRS, BRS∗ and RS. Un-normalized data is used for BRS,
BRS∗, and RS1, and normalized data is used for RS2. The inverse covariance matrix
is estimated using QUIC.

In addition to the visual inspection of edge recovery, we provide quantitative compar-

ison of the three methods using MCC and F1 in Figure 2.7 and 2.8. The two figures show

the boxplots of MCC and F1 for power-law II simulation, respectively. Four α values

are considered and the corresponding results shown in the sub-figures are (a) α = 0.05,

(b) α = 0.35, (c) α = 0.65, and (d) α = 0.95. Four n/p ratios are considered for each
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α value, which is indicated by the colors in the sub-figures. In each sub-figure, the top

row shows the boxplots for BRS, the second row from the top for BRS∗, the third row for

RS1, and the bottom row for RS2. Boxes towards the right indicate higher F1 and MCC

scores.

Figure 2.7: MCC boxplots of graph structure estimation in the power-law II simula-
tion, when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In all sub-figures,
the top row shows the MCC of block-wise robust selection results with un-normalized
data, the second row shows the MCC of alternative block-wise selection results with
un-normalized data, the third row shows the MCC of robust selection results with
un-normalized data, and the bottom row shows the MCC of robust selection results
with normalized data. The different colors indicate different n/p ratios. The number
of variables is p = 200. Each box is computed over m = 100 Gaussian datasets. The
inverse covariance is estimated using QUIC.
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Figure 2.8: F1 boxplots of graph structure estimation in the power-law II simulation,
when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In all sub-figures, the
top row shows the F1 of block-wise robust selection results with un-normalized data,
the second row shows the F1 of alternative block-wise selection results with un-normal-
ized data, the third row shows the F1 of robust selection results with un-normalized
data, and the bottom row shows the F1 of robust selection results with normalized
data. The different colors indicate different n/p ratios. The number of variables
is p = 200. Each box is computed over m = 100 Gaussian datasets. The inverse
covariance is estimated using QUIC.

It is observed that BRS reaches larger MCC and F1 scores than the other three

methods, for all values of α and n/p. When α is controlled at 0.35 and n/p is 5, we

report the median F1 score for BRS, BRS∗, RS1 and RS2, which are 0.45, 0.29, 0.02

and 0.25, respectively. Since the penalty parameters tuned by BRS can adapt to different
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levels of variances present in the data, the estimated edges are more accurate. In contrast,

RS1 does not take account of the heterogeneous variances, thus the obtained graphs are

empty in several cases due to overly heavy regularization. Such graphs have undefined

MCC and F1 scores, which causes the absence of the corresponding boxes in Figure

2.7 and 2.8. For example, when α = 0.05 and n/p ≤ 2, no edges can be recovered by

RS1. Thus, the corresponding boxes are missing in Figure 2.4 (a) and 2.5 (a). RS2 deals

with the heterogeneous variances of data by column-wisely removing them and thus,

consistently reaches higher MCC and F1 scores than RS1. However, this normalization

procedure changes the original distribution of data and is sensitive to the accuracy of

the sample variances. It is thus not as robust as BRS. Consequently, the MCC and F1

scores are lower than those of BRS.

2.2.5 Erdős-Rényi Simulation

In this part, we discuss the results of the Erdős-Rényi simulation. First, we compare

the true and the estimated adjacency matrices in Figure 2.9, when α is controlled at 0.05

and n/p is 5. The left-most sub-figure is the true adjacency matrix where the brightness

of the diagonal line varies based on the magnitude of the true partial variances. A darker

(lighter) red color indicates a higher (lower) magnitude. The second, third, fourth, and

fifth sub-figures (from left to right) show the four estimated adjacency matrices by BRS,

BRS∗, RS1, and RS2, respectively. In the second and third sub-figures, the blue grids

indicate the edge blocks in BRS and BRS∗, respectively. These four graphs are estimated

based on one of the i.i.d. datasets generated for the Erdős-Rényi simulation. In terms

of the quantity and locations of the estimated edges, BRS and BRS∗ are visually the

most similar to the true graph. In contrast, the RS2 graph contains fewer edges whose

locations match the true graph while the RS1 graph only contains a very small number
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Figure 2.9: Adjacency matrices (from left to right) of the true graph, BRS graph, BRS∗

graph, RS1 graph, and RS2 graph in the Erdős-Rényi simulation, with α = 0.05 and
n/p = 5. The graphs are estimated based on the same Gaussian dataset. The colorbar
indicates the magnitudes of the actual partial variances. The grids in BRS and BRS∗

show the variable grouping with the number of blocks being four. Regularization
parameters are tuned by BRS, BRS∗ and RS. Un-normalized data is used for BRS,
BRS∗, and RS1, and normalized data is used for RS2. The inverse covariance matrix
is estimated using QUIC.

of edges. These observations are consistent across the i.i.d. datasets as well as in other

cases where α and n/p take different values.

Next, we provide quantitative comparisons of the four methods using MCC and F1.

Figure 2.10 and 2.11 show the boxplots of MCC and F1 for the Erdős-Rényi simulation.

Four α values are considered and the corresponding results shown in the sub-figures: (a)

α = 0.05, (b) α = 0.35, (c) α = 0.65, and (d) α = 0.95. Four n/p ratios are used for each

α level, as indicated by the colors in the sub-figures. In each sub-figure, the top two rows

show the boxplots for BRS and BRS∗, the bottom two rows are for RS1 and RS2. Boxes

towards the right indicate higher F1 and MCC scores.

We see that when α = 0.05 and 0.35, BRS achieves higher F1 and MCC scores than

the other three methods, for all values of n/p, as shown in Figure 2.10 (a), 2.10 (b), 2.11

(a), and 2.11 (b). The more accurate edge recovery performance of BRS and BRS∗ as

compared to to the two variants of RS is due to that they allow adaptive regularization

that incorporates different levels of variance of the data. In contrast, RS1 cannot handle

the heterogeneous variance of the original data, and thus imposes a large scalar penalty
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Figure 2.10: MCC boxplots of graph structure estimation in the Erdős-Rényi simula-
tion, when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In all sub-figures,
the top row shows the MCC of block-wise robust selection results with un-normalized
data, the second row shows the MCC of alternative block-wise selection results with
un-normalized data, the third row shows the MCC of robust selection results with
un-normalized data, and the bottom row shows the MCC of robust selection results
with normalized data. The different colors indicate different n/p ratios. The number
of variables is p = 200. Each box is computed over m = 100 Gaussian datasets. The
inverse covariance is estimated using QUIC.

parameter, which leads to nearly edge-less graphs. For example, when n/p = 0.5 and

α = 0.05, no edges can be recovered by RS1 since the selected penalty parameter is too

large. Such cases leave the MCC undefined and thus the corresponding box is missing

in Figure 2.10 (a).
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Figure 2.11: F1 boxplots of graph structure estimation in the Erdős-Rényi simulation,
when α is controlled at (a) 0.05, (b) 0.35, (c) 0.65, and (d) 0.95. In all sub-figures, the
top row shows the F1 of block-wise robust selection results with un-normalized data,
the second row shows the F1 of alternative block-wise selection results with un-normal-
ized data, the third row shows the F1 of robust selection results with un-normalized
data, and the bottom row shows the F1 of robust selection results with normalized
data. The different colors indicate different n/p ratios. The number of variables
is p = 200. Each box is computed over m = 100 Gaussian datasets. The inverse
covariance is estimated using QUIC.

In addition, when data is deficient, i.e., n/p ≤ 1, BRS outperforms BRS∗, RS1, and

RS2, in terms of both metrics, across all the α values, as can be seen in all sub-figures

in Figure 2.10 and 2.11. While the tuning of penalty parameters can be challenging

for Gaussian graphical models when data is deficient, BRS can still robustly recover the
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true edges and achieve high F1 and MCC scores in these cases. For instance, when

α = 0.05 and n/p = 0.5, RS1 and RS2 finds overly large penalty parameters for most

of the 100 datasets, resulting in most of the graphs having no or very few edges. This

causes the corresponding boxes to be missing or squeezed into a line in the figures. On

the other hand, BRS still provides reasonable, non-empty graphs for all the datasets and

achieve considerably higher F1 and MCC scores as compared to these two methods.

Furthermore, the accuracy of edge recovery in BRS benefits from the handling of the

data dispersion via both variable grouping and the weight matrix when the sample is

scarce. This explains the larger scores of MCC and F1 attained by BRS when compared

to BRS∗.

The effect of data normalization can be seen by comparing RS1 and RS2. After

normalization, the magnitudes of the variables become more comparable as the variances

are homogenized. As such, the learned scalar penalty parameter can be applied to all the

entries of the inverse covariance matrix. This is confirmed by observing that RS2 always

achieves higher F1 and MCC scores than RS1 in Figure 2.10 and 2.11, across all cases

of n/p and α. However, as discussed earlier, the normalization procedure changes the

data distribution. Moreover, when data is deficient, i.e., n/p ≤ 1, the sample mean and

variance can be unreliable for performing standardization in RS2, leading to less accurate

graph estimation, as can be seen by comparing the blue and orange boxes in Figure 2.10

and 2.11.

When data is very sufficient and the significance level is low, i.e., n/p = 5 and

α = 0.65 or 0.95, the performance of RS2 improves and it achieves slightly higher F1

and MCC scores than BRS. This is because, in this case, the sample mean and variance

for each variable can more accurately reflect the true mean and variance, which allows

RS2 to generate more accurate results. Note that in this case, while having slightly lower

scores than RS2, our BRS still achieves reasonable F1 and MCC scores and significantly
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outperforms RS1.

2.3 Summary

We proposed block-wise robust selection for tuning the Gaussian graphical model in

this chapter. The method finds the regularization parameters adaptively for different

blocks of entries in the inverse covariance matrix. Our simulation results demonstrates

that our proposed approach performs reasonably well in terms of edge recovery in different

scenarios. This tuning method is also computationally efficient. We can utilize it for

a wide range of applications that use Gaussian graphical models to characterize the

relationship among variables. The next chapter studies environmental applications that

utilize the tuned Gaussian graphical models for statistical inference.

46



Chapter 3

Paleo-Climate Reconstruction Using
Block-wise Robust Selection

In this chapter, we take a comprehensive look into utilizing our proposed block-wise

robust selection (BRS) to tune Gaussian graphical models for climate field reconstruc-

tion. The reconstruction problems can be viewed as imputing the missing values in the

pre-instrumental period, based on the information learned from the post-instrumental

years or another related reconstruction. We consider performing inference on the missing

entries in two applications where the data comes from the HadCRUT4 model (Morice

et al. (2012)) and the PAGES2k database (Consortium et al. (2017)). We use GraphEM

(Guillot et al. (2015)) as the imputation framework, which embeds a Gaussian graphi-

cal model within a modified expectation-maximization (EM) algorithm. The Gaussian

graphical model characterizes the spatial correlation structure over the global temper-

ature field, which needs to be specified before the imputation. Towards this end, we

apply our proposed BRS method discussed in the previous chapter to tune the graphical

models. We further compare the BRS-based reconstruction results with those produced

by other tuning methods.

The organization of this chapter is summarized as follows. In Section 3.1, we provide

preliminaries of the datasets to be used. We use the ensemble and median data of
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HadCRUT4.6 for the first application, and the aggregated yearly data of HadCRUT4.3

coupled with proxies in the PAGES2k database for the second application. In Section 3.2,

we describe the imputation algorithm based on the Gaussian graphical models and show

how we incorporate BRS in it. In Section 3.3, we present our first application where the

missing values in HadCRUT4.6 ensemble data are imputed using two Gaussian graphical

models, one is tuned by our proposed BRS algorithm and the other is manually tuned

by domain knowledge. We compare the two tuning methods and the respective resulting

reconstructed values. The second application of imputing the HadCRUT4.3 datasets

leveraging the proxies is provided in Section 3.4, where we explore two variants of the BRS

algorithm that use k-means and Gaussian mixture models for grouping the variables. The

resulting reconstructions are compared with those obtained using the vanilla BRS with

binary segmentation as the grouping method and using manually-selected regularization

parameters, respectively.

3.1 Datasets

In this section, we introduce the two HadCRUT4 datasets (Morice et al. (2012)) to be

imputed and one proxy dataset (Consortium et al. (2017); Neukom et al. (2019)) that is

used to aid the reconstruction. The HadCRUT4 datasets provide monthly near-surface

temperature anomalies over the globe from 1850 to the present with the reference period

from 1961 to 1990. There are approximately 60% values missing in the dataset, which

scatter in different spatial locations and time points. Our goal is to reconstruct these

missing entries. The PAGES2k dataset (Consortium et al. (2017); Neukom et al. (2019))

provides the proxy records over some locations for the second application of yearly climate

field reconstruction. The preserved proxy records are direct reflections of the climatic

conditions in the past. Therefore, using them in the reconstruction enables the scientists
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to study the climate changes over a longer historical period.

3.1.1 HadCRUT4 Datasets

HadCRUT4 data (Morice et al. (2012)) is the joint work of the Met Office Hadley

Centre and the Climatic Research Unit at the University of East Anglia, which contains

monthly time series temperature anomalies at a spatial resolution of 5◦×5◦ over the globe.

The temperature data spans from 1850 to the present, with the reference period from 1961

to 1990. Global coverage of temperatures is achieved by merging the land temperatures

from CRUTEM4 (Jones et al. (2012)) and ocean temperatures from HadSST3 (Kennedy

et al. (2011)). HadCRUT4 is constructed as an ensemble dataset which reflects the

uncertainty in the temperature anomalies. In addition, a median dataset is constructed

by computing the median temperature anomalies over the ensemble data at each spatial

location. In our work, we use both the median and ensemble data while conducting

the HadCRUT4.6 reconstructions, and use the aggregated yearly data for HadCRUT4.3

reconstructions with the aide of proxy data. Different versions in HadCRUT4 indicate

different versions of the land-surface temperatures. HadCRUT4.3 uses the land-surface

temperatures obtained from CRUTEM4.3 and HadCRUT4.6 uses CRUTEM4.6.

3.1.2 PAGES2k Database

It is known that the widespread availability of instrumental records for global surface

temperatures began in 1850 (Brohan et al. (2006)). Due to the lack of climatic records,

scientists use imprints created by past climate to interpret and study the paleo-climate.

These imprints are known as proxies. Examples of climate proxies include tree rings, ice

cores, corals, pollen grains, and ocean sediments. The proxies serve as an essential tool

for temperature field reconstruction. They are the direct indicators of the paleo-climate,
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which can provide insights into the climate history when instrumental observations are

not available. Proxies have been used extensively for providing additional information

about the trends of climate changes in the literature of climate field reconstruction (Guil-

lot et al. (2015); Mann et al. (2007)), which facilitate the estimation and calibration of

climate models.

PAGES2k database, which is provided by the PAGES2k consortium (Consortium

et al. (2017); Ahmed et al. (2013); Neukom et al. (2019)), is a community-based record

for temperature-sensitive proxies. In our second application that incorporates proxies

in the reconstruction, we use proxy data originally obtained from PAGES2k database

version 2.0.0 and later screened by a procedure guided by regional false discovery rate, as

described in Neukom et al. (2019). The procedure also filters out records with temporal

resolution lower than annual. Consequently, the resulting proxies are at annual or higher

resolutions and cover 210 locations, including the ocean basins and all continental areas

over the globe. In Figure 3.1, we show the availability of the proxy records and their

types used in our second application. It can be seen that the proxies spread more in

the northern hemisphere than in the southern. The majority of the proxies are trees (as

indicated in brown) and corals (orange). As pointed out in Consortium et al. (2017),

nearly half of the time series of the proxy data is significantly correlated with surface

temperatures in HadCRUT4 version 4.2. This indicates that the PAGES2k proxy data

can be helpful for temperature reconstruction in HadCRUT4 data.

3.2 Imputation via GraphEM

In this section, we provide a primer on using GraphEM (Guillot et al. (2015)) for

missing value imputation based on Gaussian graphical models. The method uses graphi-

cal lasso (glasso) to estimate the inverse covariance matrix and a modified EM algorithm
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Figure 3.1: Available proxies in the PAGES2k database (Consortium et al. (2017)).
Different colors indicate different types of proxy data. Trees are shown in brown,
glacier ice is shown in green, coral is shown in orange, lake sediment is shown in
purple, bivalve is shown in blue, and hybrid of tree and borehole is shown in red.

for imputation. We will use this algorithm for reconstructing the paleo-climate with

the regularization parameters tuned by BRS. Specifically, the sparsity structure in the

Gaussian graphical model indicates how the temperature at any location conditionally

correlates with other locations. Our proposed BRS provides an efficient way to find the

proper regularization in order to derive the proper sparsity pattern, which balances data

likelihood and model complexity. Once the Gaussian graphical model is obtained, its

adjacency graph is kept in the EM algorithm while estimating the missing entries. The

procedure is formalized in the following discussion.

Suppose we have a p-dimensional random vector from the Gaussian distribution,

denoted as (X1, . . . , Xp)
> ∼ Np(µ,Σ), where µ = (µ1, . . . , µp)

> is the mean vector and Σ

is the positive definite covariance matrix. Additionally, we assume that n i.i.d samples

from this distribution are collected and parts of the samples contain missing values. We

denote the resulting data matrix as X. We provide an intuitive visualization of the

missing and available data in Figure 3.2. Let us further denote a sample containing
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missing values as x = (xm, xa), consisting of the missing observations xm for several

variables and the available observations xa for the rest. In our context of climate field

reconstruction, the spatial grids over the globe are modeled by this Gaussian distribution.

Each sample consists of observed global temperatures for a subset of the locations. We

treat the temperatures at different times as i.i.d in this study.

Figure 3.2: Data matrix with missing values. The missing values are indicated in gray
and the available entries are in blue.

3.2.1 Sparse Graph Estimation

The first step of the algorithm is estimating a Gaussian graphical model and acquiring

the adjacency graph. Based on the Gaussian assumption of the data, we use glasso

(Friedman et al. (2008)) to obtain the inverse covariance matrix; see Chapter 1.1 for a

detailed description of the estimator. We provide the formula for obtaining the estimate

using the regularization parameter selected via BRS as follows:

KΛ = argmax
K�0

log |K| − tr (AK)− ‖Λ ◦K‖1, (3.1)

where Λ is the block-wise penalty matrix tuned by BRS and A denotes the sample

covariance matrix estimated from fully observed data from the reference period. The
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graph G is then set to be the adjacency matrix of KΛ, which is constructed by

Gij =


1, if KΛ

ij 6= 0

0, if KΛ
ij = 0

.

This estimated graph G will be kept in the modified EM algorithm for finding the relevant

predictors while calculating estimates of the missing entries, as we shall discuss next.

3.2.2 EM Algorithm

In this part, we describe the modified EM algorithm used for imputation as proposed

in Guillot et al. (2015). The discussion of a variant of this algorithm proposed by Vaccaro

et al. (2021) will be deferred until Section 3.3. The modified EM algorithm works by 1)

regressing the missing data to the available ones adjacent in the graph G, and 2) updating

the mean and covariance estimates. These two steps are repeated until convergence. We

provide a more accurate description of the procedure as follows.

Recall that we use x = (xm, xa) to denote a sample that is partially observed, where

the subscript m stands for “missing” and a for “available”. Accordingly, we decompose

the mean vector and the covariance matrix as µ = (µm, µa)> and

ΣG =

ΣG,mm ΣG,ma

ΣG,am ΣG,aa

 .

For the covariance matrix, we use the notation ΣG to indicate that it will be estimated

based on the graph G, which distinguishes the algorithm from the classical EM algorithm

in missing value imputation literature (Little and Rubin (2019)). The sub-matrix ΣG,ma

stands for the covariance matrix computed between xm and xa. Note that the EM
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procedure described below imputes the missing values of each sample separately at every

iteration h, for h ≥ 0. Then µ(h) and ΣG
(h) are computed once all samples containing

missing values are imputed.

Initialization: The initialization of the EM algorithm requires an initial guess of the

missing values that completes the data matrix for computing µ(0) and ΣG
(0). This can be

done by replacing the missing values with the mean over the available records. As such,

µ(0) is set to be the average of all samples and ΣG
(0) is taken to be the sample covariance

matrix.

E-step: Given the current estimates of µ(h) and ΣG
(h), the missing values xm are computed

by

(xm − µm(h)) = B(h)(x
a − µa(h)), (3.2)

where B(h) is the regression coefficient matrix that is calculated by

B(h) =
(

ΣG,ma
(h)

)(
ΣG,aa

(h)

)−1

.

The imputed matrix is denoted as X(h+1), after performing the E-step for each sample

with missing values.

M-step: With the imputed data matrix X(h+1) and the graph G, we obtain the updated

mean µ(h+1) and covariance ΣG
(h+1). The mean for the jth variable is updated by

(
µ(h+1)

)
j

=
1

n

n∑
k=1

(
X(h+1)

)
kj
, (3.3)

where
(
X(h+1)

)
kj

means the entry at the kth row and jth column in X(h+1). The covari-
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ance matrix ΣG
(h+1) is updated by

ΣG
(h+1) = argmax

Σ=K−1; Kij=0 if Gij=0

log |K| − tr
(
A(h+1)K

)
, (3.4)

where A(h+1) is the sum of the sample covariance matrix of X(h+1) and the covariance of

residuals, R(h+1), i.e.,

A(h+1) =
1

n

(
X>(h+1) − µ(h+1) ⊗ 1>n

)(
X(h+1) − 1n ⊗ µ>(h+1)

)
+R(h+1), (3.5)

where 1n = (1, . . . , 1)> is the n-vector whose entries are all one’s and

R(h+1) =

0 0

0 ΣG,mm
(h) − ΣG,ma

(h)

(
ΣG,aa

(h)

)−1

ΣG,am
(h)

 .

3.3 Climate Reconstruction Using BRS

In this section, we reconstruct the HadCRUT4.6 ensemble anomalies by incorporating

BRS into the GraphEM algorithm. We follow the workflow of GraphEM proposed in

Vaccaro et al. (2021) for this application. First, the sparse Gaussian graphical model

is estimated based on the short hybrid reconstruction (version 2.0) of HadCRUT4 by

Cowtan and Way (2014), using data spanning from 1979 to 2019. Once the graph is

obtained, the covariance matrix used for initializing the EM algorithm is obtained by

Algorithm 17.1 in Friedman et al. (2001). Next, the initial guess of the missing values

is provided by a long reconstructed dataset from Cowtan and Way (2014). The short

and long reconstructed datasets provided by Cowtan and Way (2014) help rectify the

bias in the computed global temperature trends from HadCRUT4.6, which is due to the

handling of the unobserved regions at the poles and in Africa; we refer interested readers
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to the original paper for more details on the discovered reconstruction bias caused by the

uneven sampling of high-latitude regions. The workflow diagram of GraphEM is available

in Section 2(d) and Figure 3 of Vaccaro et al. (2021).

In this GraphEM workflow, we apply our block-wise robust selection (BRS) described

in Chapter 2 to tune the regularization parameters in the sparse graph estimation. In

the original paper of Vaccaro et al. (2021), this tuning was conducted on a scalar penalty

parameter to achieve a set of target densities.

3.3.1 Results

This part shows the reconstruction results by utilizing graphs obtained via BRS. First,

we determine the number of variable groups by using the modified Bayes information

criterion (MBIC) (discussed in Section 2.1.3). After evaluating a sequence of values from

1 to 30, we select 4 as it minimizes the MBIC. We then use four groups of variables when

running the binary segmentation algorithm.

We show the resulting grouping of all temperature anomalies and their standard

deviations in Figure 3.3. Each grid cell is colored by the standard deviation and numbered

by the group’s index. In terms of the numbering of the groups (zero, one, two, and

three), groups zero and three correspond to the lowest and highest levels of dispersion,

respectively. When two cells have the same number, their corresponding temperatures are

assigned to the same group in BRS; two cells with different numbers have their respective

temperatures in two different groups. This map shows that the grid cells belonging to

the same group are most likely to be spatially nearby. For instance, the temperature

anomalies in the southern Atlantic Ocean near the equator and southern America belong

to the same group. In addition, most group transitions across neighboring grids are

incremental, i.e., the transition happens between two consecutive groups. For instance,
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group zero usually transitions to group one and rarely to group three. This is because

the physical behavior of temperatures is locally smooth.

Figure 3.3: Grid map of standard deviations and group indices of temperature anoma-
lies. The color bar indicates the magnitude of standard deviations. The number in
each grid indicates the group index. Cells with the same number have their tempera-
tures within the same group and different numbers indicate that the temperatures of
the corresponding grids fall into different groups.

Next, we construct graphs using BRS with different significance levels, namely, α ∈

{0.01, 0.05, 0.1, 0.4}. The final α value is determined based on the kernel density estimates

of the anomaly probabilities, following a technique proposed by Vaccaro et al. (2021).

More specifically, we draw the kernel density of the reconstructed anomalies for each α

and that of the raw HadCRUT4.6 median. The significance level is set to be the one

that results in the most similar kernel density (from imputed values) to that of the raw

HadCRUT4.6 median. Moreover, since we follow the workflow of Vaccaro et al. (2021),

we also compare the graph obtained with their method. Their best graph is the one with

the most similar kernel density to the raw HadCRUT4.6 median, selected from several

candidates obtained based on the target density criterion. In particular, this best graph
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has a target density of 0.6%.

Figure 3.4 shows the kernel densities (log scale) for the raw HadCRUT4.6 median,

the best graph obtained by Vaccaro et al. (2021), and graphs obtained with BRS using

different α values. We see that BRS with α = 0.05 (green) has the most similar kernel

density to that of the raw HadCRUT4.6 median (brown). The kernel density of BRS

with α = 0.01 (orange) almost overlaps with that of BRS with α = 0.05 (green) but

deviates from the raw HadCRUT4.6 (brown) more than BRS with α = 0.05 (green) near

the two tails. In addition, the kernel density from the graph obtained in Vaccaro et al.

(2021) (blue) almost overlaps with the BRS density with α = 0.4 (purple) for the negative

anomalies. Even though BRS density with α = 0.4 (purple) has the smallest difference

from the density of the HadCRUT4.6 median for the negative anomalies, the difference

becomes large for the positive anomalies. Therefore, We pick the graph obtained by

setting α = 0.05 in BRS. The actual edge density is 0.47% in the BRS graph and 0.61%

in the graph from Vaccaro et al. (2021).

We first compare the respective reconstructions for the median anomalies data when

using the BRS graph and the graph from Vaccaro et al. (2021), based on the mean

temperatures over the globe. To better illustrate the deviation of the two reconstructions

to the raw HadCRUT4.6 median, we compute the difference between each reconstruction

to the raw HadCRUT4.6 median. We show the respective difference time series in Figure

3.5, where orange stands for the BRS-based reconstruction and blue for the graph from

Vaccaro et al. (2021). We see that the two reconstructions are similar to each other.

The variabilities over time of the two time series closely match as the fluctuations are

of similar magnitudes and occur at around the same time instances. In addition, the

standard deviation of the difference time series is 0.15 for Vaccaro’s reconstruction and

0.17 for our BRS-based reconstruction. This further indicates the similarity between

these two reconstructions.
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Figure 3.4: Kernel density estimates of temperature anomalies in different Had-
CRUT4.6 reconstructions. The extreme anomalies that exceed ±20 are excluded.
The brown curve shows the kernel density of the raw HadCRUT4.6 median. The
orange, green, red, and purple curves show the kernel densities of BRS-based recon-
structions with α = 0.01, 0.05, 0.1, and 0.4, respectively. The blue curve shows the
kernel density of the HadCRUT4.6 reconstruction based on the graph from Vaccaro
et al. (2021) with a target density of 0.61%. The curves are shown in log scale.

Figure 3.5: Difference of global mean temperatures to the raw HadCRUT4.6 median.
The orange curve shows the difference based on reconstruction using BRS graph with
α = 0.05. The blue curve shows the difference based on reconstruction using Vaccaro’s
graph (Vaccaro et al. (2021)).
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Figure 3.6: Median and 95% confidence interval (CI) of global mean temperatures
based on ensemble HadCRUT4.6 reconstructions. The graph used for the top-panel
reconstructions is BRS with α = 0.05. The bottom-panel reconstructions use Vac-
caro’s graph (Vaccaro et al. (2021)). The solid black line in both figures indicates the
raw HadCRUT4.6 median.

Next, we use the BRS graph with α = 0.05 and Vaccaro’s graph for reconstructing

the 100-ensemble of HadCRUT4.6. We compute the median and 95% confidence inter-

val (CI) for the global mean temperature for both sets of reconstructions. Figure 3.6

shows a comparison between the result of each set of the reconstructions and the raw

HadCRUT4.6 median. Both figures show that the secular warming trend as of 1920 is

consistent with the raw HadCRUT4.6 median. Seasonal trends that match with the raw

HadCRUT4.6 median can also be seen in both time series.

In order to have a more direct comparison between our BRS-based reconstruction and

the reconstruction using Vaccaro’s graph, we draw scatter plots between their medians
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Figure 3.7: Left: per-time-point median of global mean temperatures from Had-
CRUT4.6 ensemble reconstructions by using the graph obtained via BRS with
α = 0.05 (x-axis) and Vaccaro’s graph (y-axis). Right: per-time-point width of 95%
confidence interval of global mean temperatures from HadCRUT4.6 ensemble recon-
structions by using the graph obtained via BRS with α = 0.05 (x-axis) and Vaccaro’s
graph (y-axis).

and 95% CIs, respectively. The left panel in Figure 3.7 shows the median comparison

based on Vaccaro’s graph (y-axis) and BRS graph (x-axis), and the right panel shows

the comparison of the widths of the two CIs. We see that our reconstructions are similar

to those based on Vaccaro’s graph from both figures. In addition, 64% of our CI widths

are smaller than Vaccaro’s as the points are above the diagonal line.

In summary, we find these results encouraging, as the reconstruction obtained by

using our BRS-tuned graph closely matches with a reconstruction based on a graph

selected by climate scientists using a complex procedure. Our graph requires nearly 1/4

fewer edges to achieve a similar reconstruction. In addition, our BRS-based tuning of the

graphical model is computationally efficient. For instance, in the case where α = 0.05,

it takes 80 seconds for the entire BRS procedure to complete on a Linux machine with

four CPUs running at 2 GHz. As a comparison, it takes 27 minutes and 51 seconds for

obtaining the target density graph, and the timing highly depends on how fine-grained
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the search range is.

3.4 Climate Reconstruction Using Variants of BRS

This section explores different methods for determining the grouping of variables in

BRS and evaluates their effects by examining the reconstructed temperature fields. The

dataset used for this application is a hybrid dataset that combines the aggregated yearly

anomalies in HadCRUT4.3 and the proxy records in the PAGES2k database.

First, we apply the original BRS described in Chapter 2, where we utilize the binary

segmentation algorithm to group the temperatures and proxies based on their sample

standard deviations. Then, since the temperature anomalies and proxy records have

different means, we further consider incorporating this information to obtain the variable

groups. We apply k-means clustering and Gaussian mixture model to the means and

standard deviations of the temperature anomalies and proxies. Once we obtain the

grouping by using each method, we compute the block-wise regularization parameters in

the BRS algorithm. The Gaussian graphical model is then estimated and the imputation

is performed based on the GraphEM algorithm. In addition, we provide two baseline

reconstructions that use the target density criterion for tuning the Gaussian graphical

model. Note that the regularization parameter tuning by any of our BRS variants is

computationally efficient.

3.4.1 Grouping Using K-Means and Gaussian Mixture Model

In the original BRS discussed in the previous chapter, binary segmentation is used to

group the variables based on their ordered sample standard deviations. This is based on

the assumption that the central tendency of the variables is homogeneous. For example,

zero-mean is assumed for the variables without loss of generality in the previous chapter.
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However, the homogeneous central tendency is often not the case in paleo-climate recon-

struction, as temperature anomalies and proxies represent different physical quantities

and thus, have different means levels. Therefore, it is important to consider the means

when finding the variable groups.

We construct a two-dimensional feature array that combines the sample means and

sample standard deviations of the temperature anomalies and proxies to cluster the

variables. The array is then fed into the clustering algorithm. Each record in this feature

array is a pair of the sample mean and standard deviation of a temperature anomaly

or a proxy. Figure 3.8 shows this feature array in a scatter plot. We can see that the

proxy means range from -43 to 20, while the means of the temperature anomalies are

around zero. In order to group the variables based on these two features, we apply two

commonly used clustering methods, k-means clustering and Gaussian mixture model

(Friedman et al. (2001); Murphy (2012)).

First, we describe how we use the k-means algorithm for determining the grouping for

temperature anomalies and proxies. In Figure 3.8, we see that the means and standard

deviations of proxies show a much larger variation as compared to those of the tem-

perature anomalies. As such, directly applying k-means to the 2D feature array would

cause the clustering result to be dominated by the characteristics of the proxies. As such,

we use a two-step approach to group the temperature anomalies and proxies separately.

More specifically, we first group the temperature anomalies using k-means. Next, we

assign each proxy to the nearest cluster center of temperature anomalies. We use the

Euclidean distance as the metric for measuring the distance.

The second method we use for grouping the temperature anomalies and proxies is the

Gaussian mixture model. The temperature anomaly and proxy data points are assumed

to be generated from a mixture of Gaussian distributions with unknown parameters.

Compared to k-means, which returns hard-decision grouping of temperature anomalies,
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Figure 3.8: Scatter plot of the mean (y-axis) and standard deviation (x-axis) of tem-
perature anomalies (blue) and proxies (orange) in HadCRUT4.6 application.

the Gaussian mixture model can return overlapping “soft” clusters containing a mixture

of temperature anomalies and proxies.

We follow the standard ways of selecting the number of clusters for both k-means

and the Gaussian mixture model. We use the Calinski-Harabasz score and the Silhouette

coefficient for determining the number of clusters for both clustering methods. We also

use the within-cluster sum of squares for k-means and BIC for Gaussian mixture model.

For each metric except for the within-cluster sum of squares, the best number of clusters

is the one that optimizes the corresponding metric. When using the within-cluster sum

of squares as a metric for k-means, the best number of clusters corresponds to the elbow

of the within-cluster sum of squares as this metric monotonically decreases as k increases.
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3.4.2 Experiments

We present the reconstruction results of HadCRUT4.3 based on the hybrid data using

different clustering methods for variable grouping in BRS. We utilize the target field

provided by Neukom et al. (2019), which consists of 2592 temperature anomalies over the

globe and 210 proxy records, spanning from 1881 AD to 1995 AD. There are no missing

values in this target field; the missing values in the proxy records are filled using DINEOF

(Neukom et al. (2019); Taylor et al. (2013)) and the missing temperature anomalies are

filled using GraphEM. The temperature anomalies in this target field are the annual

aggregated values over the April-to-March season window, based on the HadCRUT4.3

dataset. We use this target field to obtain the graph and assess the reconstruction

performance. Specifically, 1911 AD to 1995 AD and 1881 AD to 1910 AD are used as

the calibration and validation periods, respectively, as suggested by the authors.

In our experiments, the graphs are estimated based on the calibration-period data.

The temperature anomalies of the validation period is treated as unknowns and recon-

structed using GraphEM. For each variable grouping method, we consider three signif-

icance levels α = {0.1, 0.4, 0.7} and four numbers of groups N = {5, 8, 10, 12}. The

reconstruction performance is evaluated based on three metrics, MSE, RE, and CE

following Guillot et al. (2015). These metrics are computed over the validation period.

Let Xt,l denote the temperature anomaly for the tth year at the lth location and X̂t,l

denote its reconstructed value. The evaluation metrics for each location are described as

follows:

• Mean squared error (MSE) at a specific location l is defined as

(MSE)l =
1

T

∑
t

(
Xt,l − X̂t,l

)2

,
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where T is the number of validation years. The metric quantifies the average of the

squared errors per location. When it equals zero, the reconstructed value equals

the true value.

• Reduction of error (RE) compares the quality of the reconstruction to a mean

reconstruction obtained via the calibration-period data. Formally, it is

(RE)l = 1− (MSE)l
(MSE)calibl

,

where (MSE)calibl is the MSE of a constant reconstruction which replaces the

missing values with the mean from the calibration period. RE has a maximum of

one and is not bounded from below. When RE = 1, the reconstruction is 100%

better than the calibration-mean reconstruction, which happens when (MSE)l =

0. When RE = 0, the assessed reconstruction has the same performance as the

calibration-mean reconstruction in terms of MSE.

• Coefficient of error (CE) compares the quality of the reconstruction to a mean

reconstruction that is obtained via the validation-period data. The metric is given

by

(CE)l = 1− (MSE)l
(MSE)validl

,

where (MSE)validl is the MSE of the mean reconstruction that replaces the missing

values by the average of the validation-period data. CE has a maximum of one

and is not bounded from below. When CE = 1, the reconstruction is 100% better

than the validation-mean reconstruction, which happens when (MSE)l = 0. When

CE = 0, the assessed reconstruction has the same performance as the validation-

mean reconstruction in terms of MSE.
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Table 3.1: Median of MSE, RE and CE over the globe for reconstructions with different
N and α values in the BRS graphs. The variable grouping is obtained by binary
segmentation (BS), k-means clustering (KM), and Gaussian mixture model (GMM),
respectively. The best number for each metric is highlighted in bold.

Metric α Grouping N = 5 N = 8 N = 10 N = 12

MSE

0.1
BS 0.29 0.29 0.29 0.34
KM 0.31 0.31 0.31 0.33

GMM 0.34 0.33 0.31 0.28

0.4
BS 0.30 0.31 0.30 0.34
KM 0.29 0.29 0.31 0.34

GMM 0.35 0.31 0.29 0.31

0.7
BS 0.30 0.32 0.32 0.2
KM 0.29 0.30 0.34 0.36

GMM 0.33 0.29 0.32 0.33

RE

0.1
BS 0.21 0.19 0.24 0.00
KM 0.12 0.11 0.11 0.00

GMM 0.00 0.08 0.16 0.14

0.4
BS 0.16 0.16 0.19 0.00
KM 0.21 0.19 0.17 0.00

GMM 0.01 0.16 0.25 0.09

0.7
BS 0.19 0.12 0.10 0.49
KM 0.11 0.19 0.08 0.00

GMM 0.08 0.22 0.13 0.03

CE

0.1
BS -0.46 -0.48 -0.74 -0.78
KM -0.54 -0.58 -0.55 -0.70

GMM -0.79 -0.64 -0.55 -0.56

0.4
BS -0.53 -0.54 -0.46 -0.81
KM -0.47 -0.51 -0.54 -0.75

GMM -0.74 -0.52 -0.50 -0.64

0.7
BS -0.56 -0.64 -0.54 0.24
KM -0.58 -0.58 -0.83 -0.88

GMM -0.67 -0.51 -0.69 -0.75

Table 3.1 shows the median for each evaluation metric, when each grouping method

is used for BRS under different α and N settings. The best performance numbers (lowest

MSE, highest RE and CE) are highlighted in bold. The number of edges in each graph

is summarized in Table 3.2, where the bold number corresponds to the best number

in Table 3.1. Across all tested scenarios, the reconstruction using binary segmentation
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Table 3.2: Number of estimated edges in each BRS graph with different N and α
values. The variable grouping is obtained by binary segmentation (BS), k-means
clustering (KM), and Gaussian mixture model (GMM), respectively. The highlighted
quantity corresponds to the best performance in Table 3.1 across all α, N , and group-
ing methods.

α Grouping N = 5 N = 8 N = 10 N = 12

0.1
BS 25,652 28,110 30,771 462,201
KM 21,128 24,394 24,940 136,473

GMM 4,036 18,618 18,701 246,192

0.4
BS 28,110 28,901 34,292 568,368
KM 25,553 27,590 28,224 262,056

GMM 5,943 25,841 25,984 611,001

0.7
BS 32,551 40,369 44,216 889,550
KM 30,188 31,694 32,381 428,982

GMM 9,058 32,953 34,444 1,065,440

with N = 12 and α = 0.7 achieves the lowest MSE and the highest RE and CE. The

majority of the combinations of (α, N , Grouping) produce similar performance values.

This indicates that it is flexible to use different variable grouping methods in BRS.

In Table 3.1, we observe that among all the cases using k-means, the median MSE

gets higher, and median RE and CE get lower as N increases. The best performance

is achieved when α = 0.4 and N = 5. When using Gaussian mixture model as the

grouping method, the best performance is achieved when α = 0.4 and N = 10. When

N = 5, the median RE and CE are low and MSE is high across all α levels. This

is because the reconstruction quality at any location depends on the neighboring sites.

When the number of neighbors (i.e., the estimated edges) are too few (see Table 3.2), the

reconstruction cannot leverage correlation and provides results similar to the constant

reconstruction based on the calibration-period mean; thus RE is close to zero.

Figure 3.9 shows the RE maps of the respective reconstructions when using the three

different variable grouping methods in BRS. The top row shows the results of our main

BRS approach with binary segmentation (BS), the middle shows the results of the variant
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with k-means (KM), and the bottom shows the results of the variant using Gaussian

mixture model (GMM). The α and N setting for each variant is selected based on the

lowest MSE and highest RE and CE in Table 3.1.

Table 3.3: Median of MSE, RE and CE over the globe for reconstructions with target
density graphs of 0.9% and 2% edge densities.

Metric 0.9% 2%
MSE 0.27 0.36
RE 0.28 0.02
CE -0.3 -0.89

In Table 3.3, we provide the same set of performance evaluations for reconstructions

obtained using graphs selected via domain expertise. This is done by first searching over

a wide range of penalty parameter values and then determining the parameter that leads

to a graph with the closest edge density to a given desired value. We follow Neukom et al.

(2019) where the scientists use 2% as the target edge density for the graph estimation. In

addition, we also experiment with a graph with 0.9% edge density. The resulting numbers

of edges for the 0.9% and 2% graphs are 35,995 and 67,016, respectively. The 2% graph

shows a higher median MSE and a lower CE when compared to the best performance of

BRS and its variants. The 0.9% graph shows better performance with smaller MSE and

higher RE and CE. However, this approach has the drawback of requiring an expensive

search for the penalty parameter, as we elaborate next.

Table 3.4: Timing comparison for graphical model tuning using BRS and domain
expertise. For BRS, we use binary segmentation for variable grouping.

Tuning Method Wall Time
BRS (α = 0.7, N = 12) 78 seconds

Target density 2% 11 hours and 15 minutes 3 seconds
Target density 0.9% 41 minutes 12 seconds

While the manually-tuned graph (target density 0.9%) achieves similar performance

values as BRS and its variants under most α and N settings, our proposed BRS is more
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Figure 3.9: RE map of the reconstructions obtained by our main BRS approach
with binary segmentation (top) and the variants with k-means (middle) and Gaussian
mixture model (bottom). The α and N values for each case are as follows: for BRS
with binary segmentation, α = 0.7 and N = 12, for the k-means variant, α = 0.4
and N = 5, and for the Gaussian mixture variant, α = 0.7 and N = 10. The color
indicates magnitude of the RE score for each grid. The number in each cell indicates
the block assignment.
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computationally efficient. Table 3.4 shows a wall-time comparison for BRS with binary

segmentation and the target-density-based approach, which tunes graphs with domain

expertise. It can be seen that computation times for tuning the target density graphs

are significantly higher than that of BRS. The timing experiments are run on a Linux

machine with four CPUs running at 2 GHz.

3.5 Summary

In this chapter, we provided two real-life climate field reconstruction applications us-

ing block-wise robust selection. Both applications utilized the tuned graphical models

for down-stream tasks of imputing missing temperature values. We discussed the recon-

struction results based on our tuning method and compared them with others obtained

by tuning methods that require domain knowledge. We also explored using different clus-

tering techniques for grouping the variables in our block-wise robust selection approach.
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Chapter 4

Emulation of RHESSys

In a wide range of scientific areas, simulators have been extensively utilized to describe

complex physical systems. A simulator is a mathematical model implemented in com-

puter codes that captures the underlying physics (e.g., via partial differential equations)

of the process to be simulated. In this chapter, we consider a watershed-level mechanis-

tic model, Regional Hydro-Ecologic Simulation System (RHESSys); see Tague and Band

(2004) for more details. RHESSys is a simulator that takes specific environmental pa-

rameters as input and generates the resulting environmental phenomena (Kennedy et al.

(2017); Tague and Grant (2004); Tague and Peng (2013)). This allows researchers to

generate different environment scenarios and study the sensitivity of the environment to

certain factors (Zierl et al. (2007)). In the field of hydrology, researchers run RHESSys

with different soil inputs in order to understand how soil affects streamflow (Tague et al.

(2004)). In this chapter, we study how subsurface drainage and storage parameters of

soil, as described in Table 4.1, impact streamflow. For efficiency, we will refer to them

as “soil” in the remaining discussion of the chapter.

While RHESSys enables researchers to explore different scenarios and understand

the associations between environmental factors, including under diverse scenarios where

real-world measurements are not available, it is computationally expensive to run. For

instance, a single 37-year simulation on a high-performance computing cluster with 1200
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Table 4.1: Input soil conditions in RHESSys simulator

Input Explanation
m controlling decay of hydraulic conductivity with depth
K hydraulic conductivity at the surface

po, pa controlling soil storage capacity
gw1, gw2 controlling bypass flow to and from deeper aquifers

processors (20 nodes) and 3.06 TB of RAM took 137 hours for a 565 km2 watershed, com-

posed of 189,872 patches. In order to address such computational challenges, efficient

surrogate models have been proposed to approximate the results of these physics-based

simulators, which are referred to as statistics-based emulators. An emulator is designed

to replicate the input-output behavior of a simulator of interest while being much faster

to run. In addition, the emulator provides an uncertainty quantification of the output,

thus capturing the sensitivity of the results, which would have only been obtained by

running the simulator multiple times. Researchers can perform large-scale numerical ex-

periments to understand complex environmental relationships with significantly reduced

computation time and resources by employing such an emulator.

We propose to use a Gaussian Process (GP)-based model with temporal seasonality

to emulate RHESSys. We first define a Gaussian Process.
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Notation: For a random process Y over region D ⊂ Rp, let Y (w) represent this process

considered at the single location w within the support of this random process; i.e., Y (w)

is the corresponding random variable at p-dimensional point w within region D.

Gaussian Process Definition: A random process Y over region D ⊂ Rp, is a Gaussian

process (GP)

if and only if the following holds:

for each finite M ∈ {1, 2, . . .}, and every set of M points {w1, . . . ,wM : wι ∈ D ∀ ι =

1, . . . ,M}, if Y ∗
.
= [ Y (w1), . . . , Y (wM) ]T , then Y ∗ ∼ NM (µ∗,Σ∗). †

† i.e., random vector Y ∗ follows M -dimensional multivariate normal distribution, with mean

µ∗ a column vector of length M having ith element E [Y (wi)], and M ×M - dimensional

covariance matrix Σ∗ having (i, j)th element Cov (Y (wi), Y (wj)).

GP Notation: If Y is a Gaussian Process over region D ⊂ Rp then we write Y ∼

GP (µ(.), C(., .)), where µ(.) is the mean function, with µ(w) = E(Y (w)), and C(., .) is

the covariance function with C(w,w′) = Cov(Y (w), Y (w′)), for each w and w′ ∈ D.
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In this work, our goal is to emulate the hydrological behavior of RHESSys under

different values of soil inputs (representing different soil property scenarios) under each of

two contrasting climates. For the latter, we study two watersheds: Rattlesnake Canyon

and Sagehen Creek described later. To build this statistics-based emulator for each

watershed, we need a training set that contains several sample simulator runs. More

specifically, each element in our training set consists of the values of soil input variables

for one simulator run (one value for each soil input variable) and the resulting time series

output for this simulator run. We denote the input as xi = (xi1, ..., xid), for the ith

simulator run with i ∈ {1, ..., n}, where n is the total number of simulator runs in the

training set and d is the dimension of the soil input. Soil inputs do not change over time

within a simulator run. In particular, xiq denotes a scalar for the qth input in the ith

simulator run. We denote the design matrix of the training input settings as X ∈ Rn×d,

namely the matrix with ith row xi, and qth column Xq. We use t = (t1, . . . , tj, . . . , tl)

to denote a regular grid of time points where tj is the jth time point for j ∈ {1, . . . , l}.

We use yi = (y1
i , . . . , y

l
i)
> ∈ Rl to denote the resulting time series output for xi and

yj = (yj1, . . . , y
j
n) denotes the outputs at time tj across the n simulator runs, for each

j ∈ {1, . . . , l}. Let Y = (y1, . . . ,yl)> ∈ R(ln) denote the stacked time series outputs

over yj. RHESSys was also run to construct a test set to assess the performance of our

emulator for each watershed. We use ∗ to denote the inputs and outputs in the test set,

i.e., x∗i and y∗i are the input and output of the ith test simulator run. In addition, we

use ŷ∗i to denote the predicted simulator output by the emulator for the ith run (i.e., the

prediction from the emulator when we provide the ith test simulator run’s input, x∗i , to

the emulator). These notations are summarized in Table 4.2.

GP models inherit rich theory from well-established studies of Gaussian Processes

and of the multivariate normal distribution (see for example Rasmussen (2003)). This

provides rigorous theoretical support for building GP-based emulators and using them
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for statistical inference. In addition, as the number of training samples increases, one

can enhance the flexibility of GP-based models. Therefore GP-based models form a rich

class within which we develop emulators for RHESSys. Furthermore, to capture the sea-

sonality of the environmental behavior in the RHESSys output, we embed a time-varying

mean function in the GP-based emulator that can characterize such seasonal trends. By

applying our GP with seasonality emulator to the simulator runs for each of the two

watersheds, we show that our proposed emulator can realistically predict/approximate

many desirable features of the simulator output. Moreover, by leveraging the proposed

emulator, we conduct a global sensitivity analysis, which reveals relationships between

the input and output, e.g., how sensitive the hydrological output is to a variety of soil

conditions (i.e., to different soil scenarios). Based on this analysis, we further identify the

most important input variables (amongst RHESSys soil inputs), to which the RHESSys

output variables exhibit sensitivity.

The remainder of this chapter is organized as follows. In Section 4.1, we describe the

Gaussian Process-based methodology used to efficiently emulate time series computer-

model (simulator) output given scalar-type inputs. The global sensitivity analysis using

quasi-random sampling and variance-based indices are presented in Section 4.2. The

analysis provides insights into how the variation in the model output at each time step

can be factored into components of variation associated with different inputs. Section 4.3

describes the RHESSys simulator and challenges in evaluating it for various experiments,

followed by a detailed description of the two datasets used in our numerical analysis.

We then provide two sets of emulation results in Section 4.4 using our proposed method.

Every output variable is studied at two experimental watersheds dominated by winter

precipitation. One is Rattlesnake Canyon, where the climate is usually dry for most of

each year (winter rainfall area). The other is Sagehen Creek in the Sierra Nevada, where

the climate is wet, cold in winters with snow accumulation. The comparison of the two
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Table 4.2: List of variables pertaining to the training and testing simulator runs. For
simplicity, we use the same notation for both watersheds.

Symbol Meaning
xiq The qth input in the ith training simulator run

xi = (xi1, . . . , xid) Vector of soil inputs for the ith simulator run
Xn×d Training design matrix
n Number of simulator runs for training the emulator
d Dimension of soil input space for the simulator
Xq The qth input
X−q All inputs except for the qth input

t = (t1, . . . , tl) A regular grid of time points of length l
l Number of time points
tj The jth time point, with j ∈ {1, ..., l}

yi = (y1
i , . . . , y

l
i)
> Observed time series simulator output for xi over t, yi ∈ Rl

yj = (yj1, . . . , y
j
n) Time-series output at tj across n simulator runs, j ∈ {1, . . . , l}

Y = (y1, . . . ,yl)> Stacked time series outputs over yj, Y ∈ R(ln)

x∗iq The qth input of the ith testing simulator run
x∗i Vector of soil inputs for the ith testing simulator run
n∗ Number of simulator runs for testing the emulator
y∗i Observed time series output from the simulator for x∗i
ŷ∗i Predicted time series output from the emulator for x∗i

watershed sites is also discussed in this section.

4.1 Gaussian Process Emulator with Seasonality

This section presents our proposed emulator that utilizes Gaussian Process (GP) with

embedded seasonality modeling. We first discuss how we specify the mean function cap-

turing seasonality and the covariance function for the GP. We then describe the estima-

tion of the parameters in the emulator model and the efficient prediction/approximation

of the simulator output using the derived emulator. Table 4.3 summarizes the notation

used here.
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Table 4.3: List of variables pertaining to model specification. Here “spatial” refers
to d-dimensional soil input space; each soil input vector represents a d-dimensional
coordinate within this d-dimensional soil inputs space.

Symbol Meaning

µ = (µ1, . . . ,µl)> Mean vector for stacked outputs Y, µ ∈ R(ln)

µi = (µ1
i , . . . , µ

l
i)
> Mean vector for yi, where µji = E(yji )

µ∗i =
(
(µ1

i )
∗, . . . , (µli)

∗)> Mean vector for y∗i
s = (s1, . . . , sj, . . . , sl)> Seasonal process, sj is the seasonal component at tj ∈ t

k Index of the periodic process, k ∈ {1, . . . , r}
r Total number of periodic processes
ωk Frequency of the kth trigonometric functions

Uk, Vk Coefficient of the kth cosine and sine function, respectively
βq Regression coefficient of the qth input
Σ “Spatio”-temporal covariance matrix of Y

Σt = (σij)i,j Temporal covariance matrix of the process over t
ΣX = (ζij)i,j “Spatial” covariance matrix of the process over inputs X

Σ∗i “Spatio”-temporal covariance matrix of y∗i
Σx∗

iX
Covariance matrix between the process at inputs x∗i and X

ρ First-order temporal auto-correlation (lag 1 unit)
v Partial sill
φq Range parameter for the qth input
τ Nugget
δ Dirac function

4.1.1 Gaussian Process

We model the stacked emulator outputs of the training runs as being generated from

a Gaussian process, analogously to the emulator in Olson et al. (2018), referred to as

the stilt emulator. Our emulator will interpolate the simulator training set output at the

design matrix of training set input values. For simplicity, we, therefore, use notation Y

also for the emulator output at the training set inputs. The simulator is deterministic,

but in order to predict/approximate the simulator output using a statistical emulator,

we assume the corresponding emulator values Y are random. We assume the random

emulator process Y across space and time is a Gaussian Process (mean and covariance

functions defined later). This implies that to develop the emulator, we assume the finite
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set of emulator output at the training time points and soil inputs follow a multivariate

normal distribution:

Y ∼ N (µ,Σ), (4.1)

where µ is the mean vector and Σ is the covariance matrix that characterizes the input-

output relationship. For example, when using a distance-based covariance matrix, the

outputs should be correlated when the soil input vectors are similar (i.e., relatively close

together in soil input space). Each GP can be fully specified by its mean and covariance

function.

Within this GP-based emulation framework, we propose a novel way to characterize

the seasonality in the mean function, which was not considered in the previously cited

stilt work where the mean function is modeled as the linear combination of the simulator

inputs. Next, we provide detailed descriptions of the model specification.

In practice, we may transform the original simulator runs and develop our emulator

using a GP on the transformed scale in order to make the GP assumptions more reason-

able. For simplicity, Y represents transformed simulator output and emulator values on

the transformed scale in such cases, unless otherwise specified.

4.1.2 Mean Function

Time series data often exhibit periodic or seasonal patterns that reflect the underlying

physical process. For instance, the streamflow in a hydrological system shows seasonal

patterns, wherever seasonal weather patterns highly influence the flow of water.

A motivating time series example is provided here. Figure 4.1 shows one randomly

selected time series of streamflow obtained from the RHESSys simulator (top panel) and

an additive decomposition of this simulator output with three components: trend (second

row), seasonal component (third row), and a remaining portion (fourth row) that cannot
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be explained by the first two terms. The decomposition was performed after applying a

variance-stabilizing transformation to the raw time series. The transformed daily data

are plotted day-to-day for ten consecutive years. The decomposition includes a seasonal

pattern repeating every year (365 days) with two local maxima, the first a low peak with

a maximum of approximately 0 and the second dominant peak reaching approximately

1.5. This pattern summarizes streamflow variation across different seasons in a year.

Figure 4.1: An example time series of transformed streamflow output from RHESSys
for a single vector of soil input values (top), and an additive decomposition consisting
of the trend (second row), the seasonal component (third row), and the remaining
part (fourth row). The experimental site is Sagehen Creek and the data is a randomly
selected realization of the hydrological simulator RHESSys. The decomposition is
performed by using stl in R (R Core Team (2021))

In our modeling, we assume that the dominant temporal variability is a seasonal
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pattern for all RHESSys time series outputs (e.g., due to seasonal weather changes). We

model this seasonal behavior sj for tj ∈ t using a mixture of periodic processes with

different amplitudes and frequencies, as follows:

sj =
r∑

k=1

(
Uk cos (2πωktj) + Vk sin (2πωktj)

)
, (4.2)

where Uk and Vk are independent random variables that have mean zero and variance σ2
k,

and ωk denotes the frequency of the kth process. r is the number of periodic components

in this model, which can be determined using standard model selection methods.

It is further assumed that the d-dimensional input vector contains a value for each

soil input dimension (variable) that was selected separately from the values of the other

soil input dimensions. As such, for the ith model run and the time instance tj, the mean

function for yji is expressed as follows:

µji = sj +
d∑
q=1

βqxiq, (4.3)

where sj is defined in Equation (4.2) and the second term is a linear combination of the

d-dimensional input with coefficient βq for the qth input xiq in the ith training simulator

run. Note that since sj characterizes a seasonal pattern shared by all the time series

outputs, it does not carry the index of a specific simulator run. In addition, the second

term does not depend on time. Therefore, it is not indexed by tj.

Based on Equation (4.3), we can now specify the mean function as µ = (µ1, . . . ,µl)>,

which is the expectation of the stacked outputs Y.
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4.1.3 Covariance Function

To define the covariance function, we follow the specification of the stilt emulator from

Olson et al. (2018), which is built upon the separability assumption from Rougier (2008).

Specifically, for Gaussian Process Y , we assume the covariance function is separable, in

the sense that the GP covariance function C(., .) evaluated for any two d-dimensional

soil input vectors (i.e., for any two points in soil parameter input space; here denoted

x and x′) and for any two time points (here denoted t and t′ ) can be separated into

the product of a spatial component and a temporal component. Specifically, we assume

the covariance between GP Y at any domain value (x, t) and at any other domain value

(x′, t′ ) can be decomposed as the product of a temporal covariance function and a spatial

covariance function evaluated at these domain values, i.e.,

C
(
(x, t), (x′, t′)

)
= Ct

(
t, t′
)
CX
(
x,x′

)
.

This separability implies that, when the GP covariance function is evaluated at every

pair of RHESSys time points and every pair of soil parameter training set input vectors,

the resulting covariance matrix can be written as the Kronecker product of two matrices;

the first represents the covariance component across time points and the second the

covariance across simulator inputs in d-dimensional soil parameter space. Specifically,

we write the spatio-temporal covariance matrix Σ as follows:

Σ = Σt ⊗ΣX , (4.4)

where Σt is the temporal covariance matrix computed between all pairs of time points

and ΣX contains the covariances between every pair of input settings in the training set.
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The covariance across time is assumed to follow an AR(1) structure. As such, the

(i, j)th element in Σt is given by

σij =
ρ|ti−tj |

1− ρ2
, (4.5)

where ρ > 0 is the first-order auto-correlation (i.e., the auto-correlation between the

process at adjacent time points), and |ti − tj| is the absolute difference (i.e., number of

time units) between any two discrete time points ti and tj, for i, j ∈ {1, . . . , l}. In our

study, the units of time are days, so a time-lag of 1 corresponds to consecutive days;

therefore for each i 6= j, |ti − tj| is a strictly positive integer number of days. Since ρ is

less than one, σij decays rapidly if ti and tj are far from each other.

The covariance function of the process across the input domain (i.e., across d-dimensional

input space) is modeled as a squared exponential and captures the output correlation

as a function of input similarity. Specifically, when evaluated at the finite set of input

values, the (i, j)th element in ΣX is given by

ζij = v exp

(
−

d∑
q=1

(xiq − xjq)2

φq

)
+ τδ(i, j), (4.6)

where v denotes the partial sill, φq is the range parameter for the qth input, τ is the nugget;

we refer readers to the original paper of the stilt emulator (Olson et al. (2018)) for detailed

descriptions of these parameters. (xiq − xjq)2 is the squared Euclidean distance between

the values of the qth input variable in the ith and jth training runs. δ(i, j) is the Dirac

delta function defined as follows:

δ(i, j) =


1, if i = j

0, if i 6= j

.
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In summary, our model is an extension of the stilt emulator that additionally takes

the seasonality of the physical process into account. Our emulator is characterized by

parameters that describe the mean and the covariance functions, which are listed as

follows:

Π = {ωk, for 1 ≤ k ≤ r; Uk, for 1 ≤ k ≤ r; Vk, for 1 ≤ k ≤ r;

βq, for 1 ≤ q ≤ d; φq, for 1 ≤ q ≤ d; ρ; v; τ}.
(4.7)

In the next part, we describe how to estimate these model parameters based on the

training simulator runs.

4.1.4 Emulator Parameter Estimation

Constructing our proposed emulator requires estimating the model parameters in

Equation (4.7). First, we estimate the seasonal term in the mean function, as described

in Equation (4.2). More specifically, we take the frequencies as multiples of 1/365, i.e.,

wk = k/365. We then determine the number of such frequencies, r, using the Akaike’s

information criterion (AIC).

Given the frequencies ω′ks, we continue to estimate the remaining parameters by

following a Maximum Likelihood Estimation procedure that was used for estimating the

stilt emulator (Olson et al. (2018)). The log-likelihood function of the parameters can be

written as follows:

lnL(Π | Y) ∝ (Y − µ)T Σ−1 (Y − µ) + ln |Σ| (4.8)

with the same uniform prior imposed on all the parameters. Recall that Y is the stacked

outputs of the training simulator runs, µ is a function of the input variables, and Σ is a

function of the pairwise distances of input variables and the pairwise time intervals.
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Note that it is computationally challenging to directly evaluate this likelihood due to

the inversion of the covariance matrix, i.e., Σ−1, the complexity of which is O((ln)3). As

such, we utilize the work-around method proposed in Olson et al. (2018), which converts

the inversion of the nl×nl matrix to the inversion of two smaller matrices, i.e., inverting

a l × l matrix and a n× n matrix. This significantly reduces the computational cost.

4.1.5 Emulator Prediction Given New Input

In this part, we describe how to utilize our built emulator to predict the simulator

output when a new, unseen test input is given. Suppose that the test input is x∗i .

The corresponding l-dimensional simulator output y∗i is approximated by a multivariate

Gaussian distribution:

y∗i ∼ N (µ∗i ,Σ
∗
i ), (4.9)

where µ∗i ∈ Rl is the GP mean function evaluated at this test input, with the jth element

(µji )
∗ standing for the mean at tj (j ∈ {1, . . . , l}) and computed by

(µji )
∗ = sj +

d∑
q=1

βqx
∗
iq +

[ (
Il×l ⊗ Σx∗

iX
Σ−1
X

)
(Y − µ)

]j
. (4.10)

It can be seen that the mean at tj of the test output consists of the seasonal com-

ponent, the linear combination of the input variables, and a third term that utilizes the

training outputs whose inputs are similar to this test input.

The covariance matrix Σ∗i is given by

Σ∗i = (v + τ)Σt −Σt ⊗ Σx∗
iX

Σ−1
X Σ>x∗

iX
. (4.11)

Once the mean and covariance functions are obtained according to the above equa-
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tions, the predicted simulator output for the given test input is then fully specified by the

Gaussian random variable in Equation (4.9). Note that when computing the inverse of

Σ−1
X , the same linear algebra technique used in Equation (4.8) is again utilized to reduce

computation costs.

4.2 Variance-based Sensitivity Analysis

We conduct sensitivity analysis to understand how the variability in the simulator

output can be attributed to the different inputs. Specifically, we would like to quantify

the individual contribution of each simulator input to the uncertainty in the output,

as well as the contribution of higher-order interactions among the inputs. This can be

achieved by varying all the input factors over their respective ranges and computing the

sensitivity indices. This procedure is known as the global sensitivity analysis (GSA).

Since it is computationally prohibitive to directly run a simulator for GSA, one can

utilize the emulated outputs which are computationally efficient to obtain and closely ap-

proximate the simulator outputs; see Saltelli et al. (2008); Pianosi et al. (2016); Razavi

et al. (2021). In our work, we study the global sensitivity of RHESSys inputs by com-

puting the variance-based sensitivity measures based on the predicted outputs given by

the emulator.

The procedure for conducting the sensitivity analysis is as follows:

• Draw quasi-random samples for each input using Sobol’s method (Sobol, 1967);

• Obtain the predictions for the sampled inputs by running the emulator;

• Compute the first-order, second-order, and total-order sensitivity indices.
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4.2.1 Quasi-random Sampling

For the quasi-random sampling used in the first step of our GSA, we use Sobol’s

low-discrepancy sequence, which is one type of quasi-random sequences (Sobol (1967)).1

Low-discrepancy sequences are able to fill the space more rapidly with an even spread

of the samples without creating clusters or un-sampled regions. In contrast, classical

pseudo-random sampling can result in clusters and empty regions since each point is

sampled independently. Sobol’s sequences can be obtained easily and efficiently using

standard computer software. In this work, we use the R package sensobol (Puy et al.

(2021)) for generating the quasi-random samples.

4.2.2 Variance-based Sensitivity Measures

Variance-based sensitivity analysis utilizes variance to describe the uncertainty of the

model output given the input. However, the existing variance-based sensitivity measures

are proposed for models with scalar outcomes; see Saltelli et al. (2008, 2010); Puy et al.

(2021); Sobol (1967). This cannot be directly applied to the time series outputs unless

summary statistics are extracted. For example, one can obtain the quantiles of a time

series and compute how the inputs contribute to the variation to the quantiles. In

our work, we compute the standard sensitivity indices for each time step. Namely, the

contribution of each soil input to the streamflow at the same time step is measured by

the computed indices. We note that all sensitivity indices described below are completed

with the R package (Puy et al. (2021)). In the following part, we provide a detailed

derivation of the sensitivity measures.

First, we write the total variance of the model output at tj as V (yj) and decompose

1Other sampling strategies are also possible, e.g., random sampling, Latin hypercube sampling (Stein
(1987); McKay et al. (2000); Saltelli et al. (2008)). Comparisons of these sampling methods can be found
in Puy et al. (2021); Kucherenko et al. (2015).
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it following Sobol’s functional decomposition (Sobol (1993)):

V (yj) =
d∑
q=1

V j
q +

d∑
q=1

d∑
h>q

V j
qh + · · ·+ V j

12...d, (4.12)

where V j
q is the first-order effect of the qth model input at tj, V

j
qh is the second-order

interaction between the qth and hth model inputs, and V j
12...d is the interaction of all the

inputs.

In Equation (4.12), the first-order effect Vq is defined by

V j
q = VXq [E(yj|Xq)],

which measures the mean effect of the qth input Xq to the variation in the output when

the remaining inputs are fixed.

The second-order effect is defined as

V j
qh = VXq ,Xh

[E(yj|Xq, Xh)]− VXq [E(yj|Xq)]− VXh
[E(yj|Xh)],

which quantifies the joint effect of the pair of inputs Xq and Xh on yj. It can be seen

that the last two terms in the second-order effect are indeed V j
q and V j

h . Note that all

the expectations are taken over the explanatory variables that are not conditioned upon.

The variance-based measures use ratios to quantify the contribution of each term

to the total variance. Based on the decomposition provided by Equation (4.12), we

further define the first-order, second-order, and total-order indices at each time step.

More specifically, we divide Equation (4.12) by V (yj) on both sides. As a result, the
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first-order sensitivity index Sjq for tj ∈ t is given by

Sjq =
V j
q

V (yj)
=

VXq [E(yj|Xq)]

V (yj)
. (4.13)

The second-order sensitivity index Sjqh for tj ∈ t is given by

Sjqh =
V j
qh

V (yj)
=

VXq ,Xh
[E(yj|Xq, Xh)]− Vq − Vh

V (yj)
. (4.14)

Furthermore, after division by the total variance, Equation (4.12) becomes

1 =
d∑
q=1

Sjq +
d∑
q=1

d∑
h>q

Sjqh + · · ·+ Sj12...d. (4.15)

When
∑d

q=1 S
j
q = 1, the model is additive at tj since the total variation in yj can be fully

explained by the first-order terms.

To quantify the contribution of an input to the output variance at all the orders,

Homma and Saltelli (1996) proposed the total-order index. Extending this to the time

series output, the index at time tj is given by

T jq = 1−
VX−q [E (yj | X−q)]

V (yj)
, (4.16)

which is the sum of the first-order effect and all high-order effects related to input Xq.

X−q represents all inputs except for the qth input. Note that the expectation is taken

over the variables that are not conditioned upon. The sum of total-order effects over the

inputs are greater than or equal to one, i.e.,
∑d

q=1 T
j
q ≥ 1.
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4.3 RHESSys Simulation Data

This section describes the RHESSys simulation runs that we use to build and assess

our proposed emulator for two sites of interest, Sagehen Creek and Rattlesnake Canyon,

which exhibit different climate characteristics. Sagehen Creek is located in the Sierra

Nevada in Northern California. It is dominated by winter precipitation, with much of

this falling as snow, and is almost blanketed in snow during the winter months (Meyers

et al. (2010)). Rattlesnake Canyon is located in Southern California, also dominated by

a winter precipitation pattern; it is usually dry throughout the year except for a few

months where precipitation falls as rain.

The Tague Team Lab ran RHESSys to simulate the streamflows at the two sites and

provided inputs and outputs for each site’s training and testing sets for emulator devel-

opment. In each run, the simulator takes six soil property inputs and time series forcing

factors like carbon dioxide and generates a corresponding time series output, the stream-

flow at the site. The soil property inputs are summarized in Table 4.1. Note that the soil

attributes are scalars. Figure 4.2 and 4.3 show the pairwise scatter plots of soil inputs

at the two sites, respectively, which capture the pairwise correlation patterns between

the soil inputs. The numerical correlation values are also shown in the figures. For each

site, we obtain n = 500 simulation runs from RHESSys. When running RHESSys for

the Rattlesnake Canyon site, the soil inputs are randomly sampled from their respective

ranges, except for m for which 200 runs are randomly obtained from [0, 1] and the other

300 from [1, 20]. When running the simulations for the Sagehen Creek site, the soil inputs

are sampled based on a Sobol design (Sobol (1967)).

We show sample simulated time series streamflow outputs in Figure 4.4. For Sagehen

Creek, the daily time series covers from 10/01/2008 to 09/30/2018 (10 years). For the

Rattlesnake Canyon, the daily time series covers from 10/01/2003 to 09/30/2013 (10
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Figure 4.2: Pair-wise scatter plot of soil inputs used for running RHESSys for Sagehen Creek.

years). It can be seen that the streamflows present different patterns at the two sites.

For instance, the flow level at Sagehen is overall higher than that at Rattlesnake since

the Rattlesnake Canyon has a drier climate as compared to the Sagehen Creek. We also

observe greater low streamflows at Sagehen Creek, partially due to the seasonal snowpacks

that store winter precipitation and release meltwater into the early summer/dry season.
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Figure 4.3: Pair-wise scatter plot of soil inputs used for running RHESSys for Rat-
tlesnake Canyon.

For both sites, we can see that there exist clear seasonal patterns.
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Figure 4.4: Sample streamflows simulated by RHESSys for Sagehen Creek (left) and
Rattlesnake Canyon (right).

4.4 Emulation Results and Analysis

We apply our proposed emulator, which leverages the Gaussian Process with season-

ality, in order to emulate/approximate RHESSys simulation results at each of Sagehen

Creek and Rattlesnake Canyon. Using test RHESSys runs, we assess the accuracy of our

emulators’ predictions of RHESSys outputs and conduct sensitivity analysis to study the

relative importance of each of the soil inputs.

4.4.1 Data Pre-Processing and Train-Test Split

We apply data pre-processing to the data of each site. First, we pre-process the

input values. As shown in Figure 4.2 and 4.3, the soil inputs have different ranges. For

instance, the input K has a range of [0, 1000] while gw1 has a range of [0, 0.7]. As such,

we scale each input into the [0, 1] range. Next, we apply a site-specific transformation

to the stacked simulation outputs for each of the sites, in order to improve the Gaussian

Process approximation. Specifically, we estimate (and apply) a Box-Cox transformation

(Box and Cox (1964)) to the stacked streamflow outputs, separately for each of the two
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sites. The Box-Cox transformation is formalized as follows:

ỹji (λ) =


(yji )

λ − 1

λ
if λ 6= 0,

ln yji if λ = 0.

(4.17)

For each location, the same λ value is applied to yji for every simulator run i and each

time instance tj. The λ value is determined by maximizing the Gaussian likelihood.

Figure 4.5 shows the normal Quantile-Quantile plot of stacked Sagehen Creek stream-

flow outputs before and after performing the Box-Cox transformation. It can be seen

that after the transformation, the streamflow output data has better normality.

Figure 4.5: Normal Quantile-Quantile plot of stacked streamflow outputs of Sagehen
Creek, for the raw data (left) and for the Box-Cox transformed version (right).

For each watershed, the RHESSys simulator runs are randomly partitioned into 80%

training and 20% testing. We construct the emulator by estimating parameters using the

training set and evaluate the emulator accuracy using the testing set of RHESSys runs

for each site.
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4.4.2 Performance Metrics

We evaluate the accuracy of emulation approximations using two metrics. Specifically,

given any new test design x∗i for i ∈ {1, . . . , n∗}, we compute

• Mean absolute error (MAE):

MAEi =
1

l
‖ŷ∗i − y∗i ‖1,

where ‖·‖ is the vector norm, and l is the length of the time series output. MAE is

the average of the absolute distance between the simulator output and the emulator

prediction.

• Nash–Sutcliffe model efficiency coefficient (NSE):

NSEi = 1− ‖ŷ
∗
i − y∗i ‖2

2

‖y∗i − ȳ∗i ‖2
2

, (4.18)

where ȳ∗i is the mean of the simulator output over time: ȳ∗i = 1
l

∑l
j=1 y

j
i . The second

term is the ratio of the squared error to the variance of the simulator output. A

positive NSE value indicates that the emulator prediction can more accurately

capture the simulator output as compared to the mean of the output.

4.4.3 Streamflow Emulation and Sensitivity Analysis

In this section, we present the results of emulating the streamflow simulated by

RHESSys at Sagehen creek and Rattlesnake canyon, using our proposed emulation method.

By utilizing the emulation outputs, which are efficient to obtain, we further conduct

variance-based global sensitivity analysis to study how the soil conditions affect the

streamflow.
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Sagehen Creek: Emulation Results

The estimated parameters for the Sagehen streamflow emulator are summarized in

Equation (4.19) and Table 4.4. Specifically, mean-related parameters ωk, Uk, Vk for k ∈

{1, . . . , 4} and βq for q ∈ {1, . . . , 6} are shown in the following equation:

µ̂ji =− 1.41 + 0.28xi1 − 0.13xi2 − 0.15xi3 + 0.01xi4 + 1.76xi5 − 0.58xi6

− 0.36sin(
2π

365
tj)− 0.65cos(

2π

365
tj) + 0.54sin(

4π

365
tj)− 0.12cos(

4π

365
tj)

− 0.16sin(
6π

365
tj)− 0.05cos(

6π

365
tj)− 0.02sin(

8π

365
tj)− 0.14cos(

8π

365
tj),

(4.19)

for tj ∈ {1, 2, . . . , 3653} and i ∈ {1, . . . , 500}.

Table 4.4: Covariance-related parameter estimates of Sagehen streamflow emulator

Site φ1 φ2 φ3 φ4 φ5 φ6 ρ v τ
Sagehen 0.37 10 3.60 3.25 0.99 1.19 0.94 0.01 0.02

The seasonal patterns present in the streamflow outputs are captured by the periodic

trigonometric functions in Equation (4.19). Figure 4.6 compares our estimated periodic

components of Equation (4.19) and the seasonal component of a randomly selected test

streamflow output. The red curve shows the sum of the trigonometric components in

Equation (4.19), and the black curve shows the seasonal component of the streamflow

extracted via additive decomposition. It can be seen that the two match closely.

We evaluate the prediction performance of the Sagehen streamflow emulator with

MAE and NSE. Figure 4.7 show the boxplots of MAE and NSE. It can be seen that

our constructed emulator is able to accurately predict the simulator output in most cases,

as indicated by the small MSE and the large NSE.

There are two test cases showing negative NSE values and large MAE values. For

analysis, we compare the emulated and simulated streamflow for one of such test cases,

as shown in Figure 4.8 (bottom). We see that the simulated streamflow is flat between
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Figure 4.6: Our estimated seasonality term s (red) and the seasonal component in a
randomly selected Sagehen streamflow simulation output.

October 1, 2008, and August 1, 2016, and the fluctuation occurs only during a short

period of time towards the end of the time series. The simulated streamflow of the other

test case with a negative NSE also exhibits a similar pattern. In fact, such a pattern is

only present in these two test samples and not in the training set. Due to the absence of

training data with similar characteristics, the constructed emulator is unable to explain

such output patterns.

In order to further understand the prediction performance of the emulator, we exam-

ine a few more test cases that have positive but small NSE values. These cases exhibit a

high fluctuating pattern, an example of which is shown in Figure 4.8 (top). We construct

the empirical cumulative distribution function for each soil input based on the training

set to determine what soil inputs may contribute to such flat or highly fluctuating stream-

flow outputs. We then find the quantile of every soil input for the test cases that display
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Figure 4.7: Boxplots of MAE (left) and NSE (right) from evaluating the Sagehen
streamflow emulator on 100 unseen test simulation runs.

the aforementioned patterns. We discover that in all these test cases, the gw1 value is

of low-quantile in the empirical function. Table 4.5 shows the un-normalized soil input

values for these cases. It can be seen that all the gw1 values are very small, considering

that this input ranges from 0 to 0.7. Therefore, a small gw1 can result in flat or highly

fluctuating streamflows, challenging for the emulator to predict.

Table 4.5: Soil inputs in the raw scale (no normalization) for Sagehen streamflows
that exhibit low-variation or high-fluctuation patterns

Site m K pa po gw1 gw2 Pattern
Sagehen x∗371 0.10 717.66 1.43 0.90 0.00 0.63 highly fluctuating
Sagehen x∗461 16.70 776.04 0.74 1.19 0.01 0.48 highly fluctuating
Sagehen x∗261 12.61 265.05 1.88 0.59 0.01 0.07 little variation
Sagehen x∗79 18.07 844.25 1.06 1.43 0.02 0.11 little variation
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Figure 4.8: Challenging streamflow patterns in test simulation cases (black) and the
corresponding emulator predictions (red). The top figure shows the highly fluctuating
pattern, which the emulator cannot capture properly. The bottom figure shows nearly
flat streamflow, for which the emulator prediction is off approximately by a constant.

Sagehen Creek: Sensitivity Analysis

In order to more systematically understand how soil inputs impact the streamflow,

we conduct sensitivity analysis by utilizing the emulator’s predictions and computing the

variance-based measures as described in Section 4.2.

First, we assess the first-order effects of the soil inputs. Figure 4.9 shows Saltelli’s

first-order indices computed for each soil input throughout the ten-year time frame and

the associated 95% confidence intervals. It can be seen that the mean effect of gw1 is the

largest as Saltelli’s first-order indices are close to 1 and considerably higher than those

of the other soil inputs. In other words, the first-order effect of gw1 can explain away
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the most variance of the streamflow. This finding reinforces our previous discussion that

identifies gw1 as an important soil input at Sagehen creek. As for the other soil inputs,

we see that m gives the second largest first-order effect and gw2 has a small first-order

effect, while the remaining inputs have a near-zero first-order effect.

Next, we conduct a total-order sensitivity analysis. Figure 4.10 shows the total-order

contribution due to each soil input. It can be seen that the indices of gw1 and m are

the highest among all the soil inputs throughout the ten-year period. This indicates that

streamflow variation can be mostly accounted for by gw1 and m through their first-order

effects as well as all the higher-order effects. This again confirms that gw1 and m are

key soil inputs contributing to the streamflow variations. In addition, we see that the

total-order indices of gw2 are also large. On the other hand, we can identify K, pa, and

po as non-influential soil factors to the uncertainty in streamflow, since the total-order

measures are very close to zero and the confidence intervals are very tight throughout

the entire time frame.

Finally, we compute Sobol’s second-order indices for interactions between every pair

of the soil inputs, which are shown in Figure 4.11. It can be seen that for the important

soil inputs gw1, m, and gw2, the second-order effects are not very obvious as the indices

are close to zero most of the time. In addition, the second-order indices for K, pa, and

po are zero and the corresponding confidence intervals are narrow.

Overall, the uncertainty in Sagehen streamflow can be mostly explained by the first-

order and higher-order effects due to gw1, m, and gw2, whereas the second-order effects

do not contribute significantly to explaining the variations.

Rattlesnake Canyon: Emulation Results

We provide the estimated parameters for the Rattlesnake streamflow emulator in

Equation (4.20) and Table 4.6. Specifically, the mean-related parameters ωk, Uk, Vk for
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Figure 4.9: Saltelli’s first-order sensitivity index and 95% confidence interval com-
puted for the soil inputs (gw1, gw2, K, m, pa, po) based on the emulated Sagehen
streamflow, for the ten-year period. Solid lines indicate the sensitivity measure and
the shaded areas indicate the 95% confidence interval.
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Figure 4.10: Jansen’s total-order sensitivity index and 95% confidence interval com-
puted for the soil inputs (gw1, gw2, K, m, pa, po) based on the emulated Sagehen
streamflow. Solid lines indicate the sensitivity measure and the shaded areas indicate
the 95% confidence interval.
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Figure 4.11: Sobol’s second-order sensitivity index and 95% confidence interval com-
puted for soil inputs (gw1, gw2, K, m, pa, po) based on emulated Sagehen streamflow
emulator. Solid lines indicate the sensitivity measure and the shaded areas represent
the 95% confidence interval.
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k ∈ {1, . . . , 4} and βq for q ∈ {1, . . . , 6} are shown in the following equation:

µ̂ji =− 2.16− 0.97xi1 − 0.59xi2 − 0.41xi3 + 0.45xi4 + 1.12xi5 − 1.63xi6

+ 1.39sin(
2π

365
tj)− 2.12cos(

2π

365
tj) + 0.04sin(

4π

365
tj)− 0.06cos(

4π

365
tj)

+ 0.03sin(
6π

365
tj)− 0.06cos(

6π

365
tj) + 0.12sin(

8π

365
tj)− 0.06cos(

8π

365
tj)

(4.20)

for tj ∈ {1, 2, . . . , 3653} and i ∈ {1, . . . , 505}.

Table 4.6: Covariance-related parameter estimates of Rattlesnake streamflow emulator

Site φ1 φ2 φ3 φ4 φ5 φ6 ρ v τ
Rattlesnake 0.13 1.89 4.30 2.88 2.04 1.00 0.97 0.20 0.03

The sum of the trigonometric functions in Equation 4.20 captures the seasonal pattern

in the Rattlesnake streamflow, which is extracted by additive decomposition. Figure 4.12

compares our estimated seasonal term (red) with the seasonal component of a randomly

selected Rattlesnake streamflow (black). It can be seen that the two match closely,

except for the fast fluctuations around the peaks. Such fast fluctuations can be captured

by including trigonometric functions with higher frequencies, which, however, increases

the complexity of the model.

We evaluate the prediction performance of the Rattlesnake streamflow emulator with

MAE and NSE. Figure 4.13 shows the boxplots of the MAE and NSE values over the

test cases. It can be seen that our emulator is accurate since the MAE values are small

and the NSE values are close to one for most of the test cases. We observe seven cases

where the NSE values are negative and the MAE values are large. This is because the

streamflows for these seven sets of soil inputs exhibit only slight variation or are almost

flat throughout the entire time period; an example is shown in Figure 4.14. In order to

find the most relevant soil input contributing to such patterns, we construct the empirical

cumulative distribution function and compute the quantiles of each soil input. We find
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Figure 4.12: Our estimated seasonality term s (red) and the seasonal component in a
randomly selected Rattlesnake streamflow simulation output.

that these cases all have small K values. The un-normalized soil inputs corresponding

to the three test cases with the most negative NSE values are listed in Table 4.7. It can

be seen that they all have very large K values.

Table 4.7: Soil inputs in the raw scale (no normalization) for Rattlesnake streamflows
that exhibit low-variation patterns

Site m K pa po gw1 gw2 Pattern
Rattlesnake x∗169 7.04 21.38 1.66 1.27 0.23 0.63 little variation
Rattlesnake x∗270 115.17 9.86 1.20 1.07 0.62 0.93 little variation
Rattlesnake x∗190 6.31 15.99 1.58 1.36 0.19 0.39 little variation

Rattlesnake Canyon: Sensitivity Analysis

In this part, we conduct sensitivity analysis to understand how the uncertainty in the

Rattlesnake streamflows is attributed to the soil factors.
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Figure 4.13: Boxplots ofMAE (left) andNSE (right) from evaluating the Rattlesnake
streamflow emulator on 100 unseen test simulation runs.

Figure 4.14: Challenging streamflow patterns in test simulation cases (black) and
the corresponding emulator predictions (red). The streamflow exhibits only slight
variations throughout the entire time period.

Figure 4.15 shows Saltelli’s first-order indices computed for each soil input throughout

the ten-year period and the corresponding 95% confidence intervals. Similar to Sagehen

streamflow, we find that gw1 and m have the largest first-order effects. The remaining

soil inputs do not exhibit a significant first-order influence on the Rattlesnake streamflow.

Next, we show the total contribution including the first-order and high-order effects
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Figure 4.15: Saltelli’s first-order sensitivity index and 95% confidence interval com-
puted for soil inputs (gw1, gw2, K, m, pa, po) based on the emulated Rattlesnake
streamflow. Solid lines indicate the sensitivity measure and the shaded areas indicate
the 95% confidence interval.

in Figure 4.16 for each soil input. We see that Jansen’s total-order indices are the largest

for m, followed by gw1 and gw2, and the indices are smaller for K, po, and pa but still
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have non-zero values. Since the respective mean effects of gw2, K, pa, and po are small

but their total-order indices are larger, the higher-order interactions involving these soil

inputs contribute to uncertainty in the streamflow.

Lastly, Figure 4.17 shows the Sobol’s second-order indices for all pairwise interactions

of the soil inputs. Since m has the largest total-order effect and the second-largest

first-order effect, we see non-zero variations in all the pairwise indices involving m. In

particular, the second-order indices for the interaction between m and gw2 are the largest,

followed by the one between m and gw1, among all the pairwise combinations of soil

inputs. The second-order indices are numerically zero and have tight confidence intervals

for interactions involving pa and po.

To summarize, pa and po are non-influential soil inputs for explaining the uncertainty

in the Rattlesnake streamflow. The variation in the outcome can be attributed to the

first-order effects of gw1 and m, the second-order effects of the interactions between m

and gw2 and between m and gw1, and higher-order interactions.

4.5 Summary

In this chapter, we used Gaussian Process-based emulators to approximate a hydro-

ecological simulator RHESSys. This study aims to understand the relationship between

the soil properties and the streamflow at two watersheds, Sagehen Creek and Rattlesnake

Canyon. We also provided global sensitivity analysis for identifying influential and non-

influential soil properties to explain the variation in streamflow at both watersheds.
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Figure 4.16: Jansen’s total-order sensitivity index and 95% confidence interval com-
puted for soil inputs (gw1, gw2, K, m, pa, po) based on the emulated Rattlesnake
streamflow. Solid lines indicate the sensitivity measure and the shaded areas indicate
the 95% confidence interval.
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Figure 4.17: Sobol’s second-order sensitivity index and 95% confidence interval com-
puted for soil inputs (gw1, gw2, K, m, pa, po) based on the emulated Rattlesnake
streamflow. Solid lines indicate the sensitivity measure and the shaded areas indicate
the 95% confidence interval.
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Chapter 5

Conclusions and Future Studies

5.1 Block-wise Robust Selection

In chapter 2, we proposed block-wise robust selection (BRS) for selecting the regular-

ization parameter in the Gaussian graphical model. BRS enables adaptive regularization

for different blocks of entries in the inverse covariance matrix. BRS first uses binary seg-

mentation to group the variables based on their sample standard deviations. Then, the

inverse covariance matrix and the penalty parameter matrix are divided into blocks ac-

cording to the obtained variable grouping. In order to find the regularization parameters

for the different blocks, BRS first determines a baseline block based on the block-wise

robust Wasserstein profile function and computes the regularization parameter for this

baseline block. The block-wise penalty matrix is then constructed based on this baseline

parameter and a weighing scheme capturing data dispersion. By doing this, BRS avoids

data normalization and only has one hyper-parameter with a range of [0, 1], making it

easy to tune. Furthermore, BRS is computationally efficient and specifically, the com-

putational cost of our proposed BRS tuning method is significantly lower than k-fold

cross-validation.

We conducted extensive simulation studies to validate the performance of our pro-

posed BRS method. In these simulation experiments, we considered three settings, with
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the ground-truth graphs being one power-law network and one Erdős-Rényi network. The

graph recovery performance of our method was evaluated with two metrics, F1 score and

Matthews correlation coefficient (MCC). The results demonstrated that our proposed

BRS approach could achieve higher MCC and F1 scores across different scenarios when

compared to two variants of the robust selection algorithm.

5.2 Paleo-Climate Reconstruction Using Block-wise

Robust Selection

In Chapter 3, we further utilized our proposed BRS tuning method for two envi-

ronmental applications related to paleo-climate field reconstruction. The HadCRUT4

datasets provide 100-ensemble members of historical surface temperature, containing

approximately 60% of missing values. We proposed reconstructing such paleo-climate

by treating it as a missing value imputation task. The temperature fields in the pre-

instrumental need to be estimated based on information provided in more recent years.

To this end, we modeled the spatial grid over the globe by a Gaussian graphical model

and discovered the conditional correlations among them by estimating the model param-

eters and obtaining the adjacency graph. In this step, the Gaussian graphical model

is tuned by BRS. Then, the past temperature fields are estimated based on a modi-

fied expectation-maximization algorithm that embeds the estimated Gaussian graphical

model. Our experimental results demonstrated that the reconstruction based on the

BRS graph is similar to the reconstruction based on a graph selected by environmental

scientists, while saving achieving significant computational efficiency.
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5.3 Emulation of RHESSys

In chapter 4, we emulated a mechanistic simulator, the Regional Hydro-Ecologic Sim-

ulation System (RHESSys), and provided a global sensitivity analysis (GSA) of it. This

study aims to explore the relationship between the soil properties (RHESSys inputs) and

streamflow (RHESSys output) at two watersheds with different climate conditions. Sage-

hen Creek, located in the Sierra Nevada in Northern California, is dominated by winter

precipitation (primarily as snow); Rattlesnake Canyon, located in Southern California,

is also dominated by winter precipitation (rain) but is usually dry for the majority of

each year. The Tague Team Lab provides the training and testing data for studying and

emulating the two watersheds.

First, we developed Gaussian Process (GP)-based emulators for RHESSys at the two

watersheds. Both emulators were trained using 80% of the provided RHESSys simula-

tor runs, with the remaining used for emulator assessment. To develop the emulator,

we assume the emulation time series (which interpolates RHESSys time series at the

training inputs) are generated by a Gaussian Process, where the mean is a linear combi-

nation of the soil properties and trigonometric functions, and the process has a separable

covariance function. When evaluated at a finite set of time points and any finite set

of soil input vectors, we modeled the covariance matrix of the process as a Kronecker

product of temporal and spatial covariance matrices. Here, the spatial domain is the

multi-dimensional space of soil parameter input values.

The parameter estimation we presented for the emulator was maximum likelihood,

providing reasonable computational efficiency for our goals. We then computed mean

absolute errors (MAE) and Nash–Sutcliffe model efficiency coefficients (NSE) for evalu-

ating test set predictions using the remaining 20% of RHESSys simulator results, to assess

how well our emulators perform in each watershed. The Sagehen Creek and Rattlesnake
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Canyon emulators showed close-to-zero MAE and close-to-one NSE boxplots, which indi-

cated that the test set predictions were “close” to the RHESSys simulated outputs based

on the number of training runs used. Further assessment is ongoing when training the

emulator using differing numbers of RHESSys training runs. We observed a few cases

where the predicted streamflow deviates substantially from the RHESSys output for each

emulator. We found that gw1 was close to zero in those cases at Sagehen Creek and K

was large in those cases at Rattlesnake Canyon. We did not expect the emulator to per-

form well under inputs far from those in the training set, motivating continued research

into efficient/effective design of training set inputs under various emulator assessment

criteria.

Second, we provided variance-based measures to quantify the sensitivity of stream-

flow to each soil property at both watersheds. We used Sobol’s low-discrepancy se-

quences (quasi-sampling) for conducting the analysis. Since our emulators provide rea-

sonable predictions/approximations to key properties of RHESSys streamflow based on

the training/testing sets used, we used the emulator predictions to compute sensitivity

measures. Table 5.1 summarizes the identified influential soil properties for each wa-

tershed, that may help inform input designs for future RHESSys studies, and foci for

evaluating RHESSys emulators.

Table 5.1: Influential soil properties identified by each sensitivity measure for Sagehen
Creek and Rattlesnake Canyon

Sensitivity Measure Sagehen Creek Rattlesnake Canyon
First-order gw1, m, gw2 gw1, m
Total-order gw1, m, gw2 m, gw1, gw2, K, pa, po

Second-order m ∗ gw1, m ∗ gw2, gw1 ∗ gw2 m-related pairwise interactions
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