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Revisiting the Edge of Chaos:Evolving Cellular Automata to PerformComputationsMelanie Mitchell1, Peter T. Hraber1, and James P. Crutch�eld2Santa Fe Institute Working Paper 93-03-014(Submitted to Complex Systems)AbstractWe present results from an experiment similar to one performed by Packard [23], inwhich a genetic algorithm is used to evolve cellular automata (CA) to perform a particularcomputational task. Packard examined the frequency of evolved CA rules as a function ofLangton's � parameter [16], and interpreted the results of his experiment as giving evidencefor the following two hypotheses: (1) CA rules able to perform complex computations aremost likely to be found near \critical" � values, which have been claimed to correlate witha phase transition between ordered and chaotic behavioral regimes for CA; (2) When CArules are evolved to perform a complex computation, evolution will tend to select rules with� values close to the critical values. Our experiment produced very di�erent results, andwe suggest that the interpretation of the original results is not correct. We also review anddiscuss issues related to �, dynamical-behavior classes, and computation in CA.The main constructive results of our study are identifying the emergence and competitionof computational strategies and analyzing the central role of symmetries in an evolutionarysystem. In particular, we demonstrate how symmetry breaking can impede the evolutiontoward higher computational capability.
1Santa Fe Institute, 1660 Old Pecos Trail, Suite A, Santa Fe, New Mexico, U.S.A. 87501.Email: mm@santafe.edu, pth@santafe.edu2Physics Department, University of California, Berkeley, CA, U.S.A. 94720.Email: chaos@gojira.berkeley.edu 1



1. IntroductionThe notion of \computation at the edge of chaos" has gained considerable attention in thestudy of complex systems and arti�cial life (e.g., [3, 4, 14, 16, 23, 30]). This notion is relatedto the broad question, What is the relation between a computational system's ability forcomplex information processing and other measures of the system's behavior? In particular,does the ability for nontrivial computation require a system's dynamical behavior to be \neara transition to chaos"? There has also been considerable attention given to the notion of\the edge of chaos" in the context of evolution. In particular, it has been hypothesized thatwhen biological systems must perform complex computation in order to survive, the processof evolution under natural selection tends to select such systems near a phase transition fromordered to chaotic behavior [13, 14, 23].This paper describes a re-examination of one study that addressed these questions inthe context of cellular automata [23]. The results of the original study were interpretedas evidence that an evolutionary process in which cellular-automata rules are selected toperform a nontrivial computation preferentially selected rules near the transition to chaos.We show that this conclusion is neither supported by our experimental results nor consistentwith basic mathematical properties of the computation being evolved. In the process ofthis demonstration, we review and clarify notions relating to terms such as \computation",\dynamical behavior", and \edge of chaos" in the context of cellular automata.2. Cellular Automata and DynamicsCellular automata (CA) are discrete spatially-extended dynamical systems that have beenstudied extensively as models of physical processes and as computational devices [6, 10, 25,29, 31]. In its simplest form, a CA consists of a spatial lattice of cells, each of which, at timet, can be in one of K states. We denote the lattice size or number of cells as L. A CA has asingle �xed rule used to update each cell; the rule maps from the states in a neighborhoodof cells|e.g., the states of a cell and its nearest neighbors|to a single state, which is theupdate value for the cell in question. The lattice starts out with some initial con�gurationof local states and, at each time step, the states of all cells in the lattice are synchronouslyupdated. In the following we will use the term \state" to refer to the value of a singlecell|e.g., 0 or 1|and \con�guration" to mean the pattern of states over the entire lattice.The CA we will discuss in this paper are all one-dimensional with two possible states percell (0 and 1). In a one-dimensional CA, the neighborhood of a cell includes the cell itselfand some number of neighbors on either side of the cell. The number of neighbors on eitherside of the center cell is referred to as the CA's radius r. All of the simulations will be of CAwith spatially periodic boundary conditions (i.e., the one-dimensional lattice is viewed as acircle, with the right neighbor of the rightmost cell being the leftmost cell, and vice versa).The equations of motion for a CA are often expressed in the form of a rule table. This isa look-up table listing each of the neighborhood patterns and the state to which the centralcell in that neighborhood is mapped. For example, Figure 1 displays one possible rule tablefor an \elementary" one-dimensional two-state CA with radius r = 1. The left-hand columngives the 8 possible neighborhood con�gurations, and the states in the right-hand column2



000 0001 0010 0011 1100 0101 1110 1111 1Figure 1: Rule table for the \elementary"|binary-state, nearest-neighbor|CA with rule number 232. The 8 = 23 neighborhoodpatterns are given in the left-hand column. For each of these theright-hand column gives the \output bit", the center cell's value atthe next time step.are referred to as the \output bits" of the rule table. To run the CA, this look-up table isapplied to each neighborhood in the current lattice con�guration, respecting the choice ofboundary conditions, to produce the con�guration at the next time step.A common method for examining the behavior of a two-state one-dimensional CA is todisplay its space-time diagram, a two-dimensional picture that vertically strings together theone-dimensional CA lattice con�gurations at each successive time step, with white squarescorresponding to cells in state 0, and black squares corresponding to cells in state 1. Twosuch space-time diagrams are displayed in Figure 2. These show the actions of the Gacs-Kurdyumov-Levin (GKL) binary-state CA on two random initial con�gurations of di�erentdensities of 1's [5, 7]. In both cases, over time the CA relaxes to a �xed pattern|in onecase, all 0's, and in the other case, all 1's. These patterns are, in fact, �xed points of theGKL CA. That is, once reached, further applications of the CA do not change the pattern.The GKL CA will be discussed further below.CA are of interest as models of physical processes because, like many physical systems,they consist of a large number of simple components (cells) which are modi�ed only bylocal interactions, but which acting together can produce global complex behavior. Likethe class of dissipative dynamical systems, even the class of elementary one-dimensional CAexhibit the full spectrum of dynamical behavior: from �xed points, as seen in Figure 2, tolimit cycles (periodic behavior) to unpredictable (\chaotic") behavior. Wolfram considereda coarse classi�cation of CA behavior in terms of these categories. He proposed the followingfour classes with the intention of capturing all possible CA behavior [30]:Class 1: All initial con�gurations relax after a transient period to the same �xedcon�guration (e.g., all 1's).Class 2: All initial con�gurations relax after a transient period to some �xed point orsome temporally periodic cycle of con�gurations, but which one depends on the initialcon�guration.Class 3: Some initial con�gurations relax after a transient period to chaotic behavior.3



0

t

148
0 i 148

0

t

148
0 i 148

(a) (b)

Figure 2: Two space-time diagrams for the binary-state Gacs-Kurdyumov-Levin CA. L = 149 sites are shown evolving, with timeincreasing down the page, from two di�erent initial con�gurations over149 time steps. In (a) the initial con�guration has a density of 1's ofapproximately 0.48; in (b) a density of approximately 0.52. Noticethat by the last time step the CA has converged to a �xed pattern of(a) all 0's and (b) all 1's. In this way the CA has classi�ed the initialcon�gurations according to their density.(The term \chaotic" here and in the rest of this paper refers to apparently unpredictablespace-time behavior.)Class 4: Some initial con�gurations result in complex localized structures, sometimeslong-lived.Wolfram does not state the requirements for membership in Class 4 any more precisely thanis given above. Thus, unlike the categories derived from dynamical systems theory, Class 4is not rigorously de�ned.It should be pointed out that on �nite lattices, there is only a �nite number (2L) ofpossible con�gurations, so all rules ultimately lead to periodic behavior. Class 2 refers notto this type of periodic behavior but rather to cycles with periods much shorter than 2L.3. Cellular Automata and ComputationCA are also of interest as computational devices, both as theoretical tools and as practicalhighly e�cient parallel machines [25, 26, 29, 31].\Computation" in the context of CA has several possible meanings. The most commonmeaning is that the CA does some \useful" computational task. Here, the rule is interpretedas the \program", the initial con�guration is interpreted as the \input", and the CA runsfor some speci�ed number of time steps or until it reaches some \goal" pattern|possibly a4



�xed point pattern. The �nal pattern is interpreted as the \output". An example of this isusing CA to perform image-processing tasks [26].A second meaning of computation in CA is for a CA, given certain special initial con-�gurations, to be capable of universal computation. That is, the CA can, given the rightinitial con�guration, simulate a programmable computer, complete with logical gates, timingdevices, and so on. Conway's Game of Life [1] is such a CA; one construction for univer-sal computation in the Game of Life is given in [1]. Similar constructions have been madefor one-dimensional CA [20]. Wolfram speculated that all Class 4 rules have the capacityfor universal computation [30]. However, given the informality of the de�nition of Class 4,not to mention the di�culty of proving that a given rule is or is not capable of universalcomputation, this hypothesis is impossible to verify.A third meaning of computation in CA involves interpreting the behavior of a given CA onan ensemble of initial con�gurations as a kind of \intrinsic" computation. Here computationis not interpreted as the performance of a \useful" transformation of the input to producethe output. Rather, it is measured in terms of generic, structural computational elementssuch as memory, information production, information transfer, logical operations, and so on.It is important to emphasize that the measurement of such intrinsic computational elementsdoes not rely on a semantics of utility as do the preceding computation types. That is,these elements can be detected and quanti�ed without reference to any speci�c \useful"computation performed by the CA|such as enhancing edges in an image or computingthe digits of �. This notion of intrinsic computation is central to the work of Crutch�eld,Hanson, and Young [3, 11].Generally, CA have both the capacity for all kinds of dynamical behaviors and the ca-pacity for all kinds of computational behaviors. For these reasons, in addition to the compu-tational ease of simulating them, CA have been considered a good class of models to use instudying how dynamical behavior and computational ability are related. Similar questionshave also been addressed in the context of other dynamical systems, including continuous-state dynamical systems such as iterated maps and di�erential equations [3, 4], Booleannetworks [13], and recurrent neural networks [24]. Here we will con�ne our discussion to CA.With this background, we can now rephrase the broad questions presented in Section 1in the context of CA:� What properties must a CA have for nontrivial computation?� In particular, does a capacity for nontrivial computation, in any of the three sensesdescribed above, require a CA to be near a transition from ordered to chaotic behavior?� When CA rules are evolved to perform a nontrivial computation, will evolution tendto select rules near such a transition to chaos?4. Structure of CA Rule SpaceOver the last decade there have been a number of studies addressing the �rst question above.Here we focus on Langton's empirical investigations of the second question in terms of the5



structure of the space of CA rules [16]. The relationship of the �rst two questions to thethird|evolving CA|will be described subsequently.One of the major di�culties in understanding the structure of the space of CA rulesand its relation to computational capability is its discrete nature. In contrast to the well-developed theory of bifurcations for continuous-state dynamical systems[9], there appears tobe little or no geometry in CA space and there is no notion of smoothly changing one CA toget another \nearby in behavior". In an attempt to emulate this, however, Langton de�neda parameter � that varies incrementally as single output bits are turned on or o� in a givenrule table. For a given CA rule table, � is computed as follows. For a K-state CA, one stateq is chosen arbitrarily to be \quiescent".3 The � of a given CA rule is then the fraction ofnon-quiescent output states in the rule table. For a binary-state CA, if 0 is chosen to be thequiescent state, then � is simply the fraction of output 1 bits in the rule table. Typicallythere are many CA rules with a given � value. For a binary CA, the number is stronglypeaked at � = 1=2, due to the combinatorial dependence on the radius r and the number ofstates K. It is also symmetric about � = 1=2, due to the symmetry of exchanging 0's and1's. Generally, as � is increased from 0 to [1 � 1=K], the CA move from having the mosthomogeneous rule tables to having the most heterogeneous.Langton performed a range of Monte Carlo samples of two-dimensional CA in an attemptto characterize their average behavior as a function of � [16]. The notion of \average be-havior" was intended to capture the most likely behavior observed with a randomly choseninitial con�guration for CA randomly selected in a �xed-� subspace. The observation wasthat as � is incremented from 0 to [1 � 1=K] the average behavior of rules passes throughthe following regimes:�xed point ) periodic ) \complex") chaotic.That is, according to Figure 16 in [16], for example, the average behavior at low � is for arule to relax to a �xed point after a relatively short transient phase. As � is increased, rulestend to relax to periodic patterns, again after a relatively short transient phase. As � reachesa \critical value" �c, rules tend to have longer and longer transient phases. Additionally,the behavior in this regime exhibits long-lived, \complex"|non-periodic, but non-random|patterns. As � is increased further, the average transient length decreases, and rules tendto relax to apparently random space-time patterns. The actual value of �c depends on r, Kand the actual path of CA found as � is incremented.These four behavioral regimes roughly correspond to Wolfram's four classes. Langton'sclaim is that, as � is increased from 0 to [1 � 1=K], the classes are passed through in theorder 1, 2, 4, 3. He notes that as � is increased, \...one observes a phase transition betweenhighly ordered and highly disordered dynamics, analogous to the phase transition betweenthe solid and 
uid states of matter." ([16], p. 13.)According to Langton, as � is increased from [1�1=K] to 1, the four regimes occur in thereverse order, subject to some constraints for K > 2 [16]. For two-state CA, since behavioris necessarily symmetric about � = 1=2, there are two values of �c at which the complexregime occurs.3In [16] all states obeyed a \strong quiescence" requirement. For any state s 2 f0; :::;K � 1g, theneighborhood consisting entirely of state s must map to s.6
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Figure 3: A graph of the average di�erence-pattern spreading rate 
of a large number of randomly chosen r = 3; K = 2 CA, as a functionof �. Adapted from [23], with permission of the author. No verticalscale was provided there.How is �c determined? Following standard practice Langton used various statistics suchas single-site entropy, two-site mutual information, and transient length to classify CA be-havior. The additional step was to correlate behavior with � via these statistics. Langton'sMonte Carlo samples showed there was some correlation between the statistics and �. Butthe averaged statistics did not reveal a sharp transition in average behavior, a basic prop-erty of a phase transition in which macroscopic highly-averaged quantities do make markedchanges. We note that Wootters and Langton gave evidence that in the limit of an increasingnumber of states the transition region narrows [32]. The main result indicates that in oneclass of two-dimensional in�nite-state stochastic cellular automata there is a sharp transitionin single-site entropy at �c � 0:27.The existence of a critical � and the dependence of the critical region's width on r andK is less clear for �nite-state CA. Nonetheless, Packard empirically determined rough valuesof �c for r = 3;K = 2 CA by looking at the di�erence-pattern spreading rate 
 as a functionof � [23]. The spreading rate 
 is a measure of unpredictability in spatio-temporal patternsand so is one possible measure of chaotic behavior [21, 30]. It is analogous to, but not thesame as, the Lyapunov exponent for continuous-state dynamical systems. In the case of CAit indicates the average propagation speed of information through space-time, though notthe rate of production of local information.At each � a large number of rules was sampled and for each CA 
 was estimated. Theaverage 
 over the selected CA was taken as the average spreading rate at the given �. Theresults are reproduced in Figure 3. As can be seen, at low and high �'s, 
 vanishes; atintermediate � it is maximal, and in the \critical" � regions|centered about � � 0:25 and� � 0:80|it rises or falls gradually.While not shown in Figure 3, for most � values 
's variance is high. The same is truefor single-site entropy and two-site mutual information as a function of � [16]. That is, thebehavior of any particular rule at a given � might be very di�erent from the average behavior7



at that value. Thus, the interpretations of these averages is somewhat problematic. Thisrecounting of the behavioral structure of CA rule space as parameterized by � is based onstatistics taken from Langton's and Packard's Monte Carlo simulations. Various problemsin correlating � with behavior will be discussed in Section 8. A detailed analysis of some ofthese problems can be found in [2]. Other work on investigating the structure of CA rulespace is reported in [18, 19].The claim in [16] is that � predicts dynamical behavior well only when the space of rulesis large enough. Apparently, � is not intended to be a good behavioral predictor for thespace of elementary CA rules|r = 1, K = 2|and possibly r = 3;K = 2 rules as well.5. CA Rule Space and ComputationLangton hypothesizes that a CA's computational capability is related to its average dynam-ical behavior, which � is claimed to predict [16]. In particular, he hypothesizes that CAcapable of performing nontrivial computation|including universal computation|are mostlikely to be found in the vicinity of \phase transitions" between order and chaos, that is, near�c values. The hypothesis relies on a basic observation of computation theory, that any formof computation requires memory|information storage|and communication|informationtransmission and interaction between stored and transmitted information. Above and be-yond these properties, though, universal computation requires memory and communicationover arbitrary distances in time and space. Thus complex computation requires signi�cantlylong transients and space-time correlation lengths; in the case of universal computation,arbitrarily long transients and correlations are required. Langton's claim is that these phe-nomena are most likely to be seen near �c values|near \phase transitions" between orderand chaos. This intuition is behind Langton's notion of \computation at the edge of chaos"for CA.46. Evolving CAThe empirical studies described above addressed only the relationship between � and thedynamical behavior of CA|as revealed by several statistics. Those studies did not correlate� or behavior with an independent measure of computation. Packard [23] addressed thisissue by using a genetic algorithm (GA) [8, 12] to evolve CA rules to perform a particularcomputation. This experiment was meant to test two hypotheses: (1) CA rules able toperform complex computations are most likely to be found near �c values; and (2) WhenCA rules are evolved to perform a complex computation, evolution will tend to select rulesnear �c values.6.1 The Computational Task and an Example CAThe original experiment consisted of evolving two-state|s 2 f0; 1g|one-dimensional CAwith r = 3. That is, the neighborhood of a cell consists of itself and its three neighbors4This should be contrasted with the analysis of computation at the onset of chaos in [3, 4] and, inparticular, with the discussion of the structure of CA space there.8



on each side. The computational task for the CA is to decide whether or not the initialcon�guration contains more than half 1's. If the initial con�guration contains more thanhalf 1's, the desired behavior is for the CA, after some number of time steps, to relax toa �xed-point pattern of all 1's. If the initial con�guration contains less than half 1's, thedesired behavior is for the CA, after some number of time steps, to relax to a �xed-pointpattern of all 0's. If the initial con�guration contains exactly half 1's, then the desiredbehavior is unde�ned. This can be avoided in practice by requiring the CA lattice to be ofodd length. Thus the desired CA has only two invariant patterns, either all 1's or all 0's. Inthe following we will denote the density of 1's in a lattice con�guration by �, the density of1's in the con�guration at time t by �(t), and the threshold density for classi�cation by �c.Does the �c = 1=2 classi�cation task count as a \nontrivial" computation for a small-radius (r � L) CA? Though this term was not rigorously de�ned in [16] or [23], one possiblede�nition might be any computation for which the memory requirement increases with L(i.e., any computation which corresponds to the recognition of a non-regular language) andin which information must be transmitted over signi�cant space-time distances (on the orderof L). Under this de�nition the �c = 1=2 classi�cation task can be thought of as a nontrivialcomputation for a small radius CA. The e�ectiveminimumamount of memory is proportionalto log(L) since the equivalent of a counter register is required to track the excess of 1's in aserial scan of the initial pattern. And since the 1's can be distributed throughout the lattice,information transfer over long space-time distances must occur. This is supported in a CAby the non-local interactions among many di�erent neighborhoods after some period of time.Packard cited a K = 2; r = 3 rule constructed by Gacs, Kurdyumov, and Levin [5, 7],which purportedly performs this task. The Gacs-Kurdyumov-Levin (GKL) CA is de�ned bythe following rule:If si(t) = 0, then si(t+ 1) = majority [si(t), si�1(t), si�3(t)];If si(t) = 1, then si(t+ 1) = majority [si(t), si+1(t), si+3(t)];where si(t) is the state of site i at time t.In words, this rule says that for each neighborhood of seven adjacent cells, if the stateof the central cell is 0, then its new state is decided by a majority vote among itself, its leftneighbor, and the cell two cells to the left away. Likewise, if the state of the central cell is1, then its new state is decided by a majority vote among itself, its right neighbor, and thecell two cells to the right away.Figure 2 gives space-time diagrams for the action of the GKL rule on an initial con�gu-ration with � < �c and on an initial con�guration with � > �c. It can be seen that, althoughthe CA eventually converges to a �xed point, there is a transient phase during which a spa-tial and temporal transfer of information about local neighborhoods takes place, and thislocal information interacts with other local information to produce the desired �nal state.Very crudely, the GKL CA successively classi�es \local" densities with the locality rangeincreasing with time. In regions where there is some ambiguity, a \signal" is propagated.This is seen either as a checkerboard pattern propagated in both spatial directions or asa vertical white-to-black boundary. These signals indicate that the classi�cation is to bemade at a larger scale. Note that both signals locally have � = �c; the result is that the9



signal patterns can propagate, since the density of patterns with � = �c is not increased ordecreased under the rule. In a simple sense, this is the CA's \strategy" for performing thecomputational task.It has been claimed that the GKL CA performs the �c = 1=2 task [17], but actually this istrue only to an approximation. The GKL rule was invented not for the purpose of performingany particular computational task, but rather as part of studies of reliable computation andphase transitions in one spatial dimension. The goal in the former, for example, was to�nd a CA whose behavior is robust to small errors in the rule's update of the con�guration.It has been proved that the GKL rule has only two attracting patterns, either all 1's orall 0's [5]. Attracting patterns here are those invariant patterns which, when perturbeda small amount, return to the same pattern. It turns out that the basins of attractionfor the all-1 and all-0 patterns are not precisely the initial con�gurations with � > 1=2 or� < 1=2, respectively.5 On �nite lattices the GKL rule does classify most initial con�gurationsaccording to this criterion, but on a signi�cant number the \incorrect" attractor is reached.One set of experimental measures of the GKL CA's classi�cation performance is displayedin Figure 4. To make this plot, we ran the GKL CA on 500 randomly generated initialcon�gurations at each of 19 densities � 2 [0:0; 1:0]. The fraction of correct classi�cationswas then plotted at each �. The rule was run either until a �xed point was reached or for amaximum number of time steps equal to 10� L. This was done for CA with three di�erentlattice sizes: L 2 f149; 599; 999g.Note that approximately 20% of the initial con�gurations with � = �c were misclassi�ed.All the incorrect classi�cations are made for initial con�gurations with � � �c. In fact, theworst performances occur at � = �c. Interestingly, although the error region narrows withincreasing lattice size, the performance at � = �c decreases when the lattice size is increasedfrom 149 to 599.The GKL rule table has � = 1=2, not � = �c. Since it appears to perform a computationaltask of some complexity, at a minimum it is a deviation from the \edge of chaos" hypothesisfor CA computation. The GKL rule's � = 1=2 puts it right at the center of the \chaotic"region in Figure 3. This may be puzzling, since clearly the GKL rule does not produce chaoticbehavior during either its transient or asymptotic epochs|far from it, in fact. However, the� parameter was intended to correlate with \average" behavior of CA rules at a given �value. Recall that 
 in Figure 3 represent an average over a large number of randomlychosen CA rules and, while not shown in that plot, for most � values the variance in 
 ishigh. Thus, it can be claimed that the behavior of any particular rule at its � value mightbe very di�erent from the average behavior at that value.More to the point, though, we expect a � value close to 0.5 for a rule that performs well onthe �c = 1=2 task. This is largely because the task is symmetric with respect to the exchangeof 1's and 0's. Suppose, for example, a rule that carries out the �c = 1=2 task has � < 1=2.This implies that there are more neighborhoods in the rule table that map to output bit0 than to output bit 1. This, in turn, means that there will be some initial con�gurationswith � > �c on which the action of the rule will decrease the number of 1's. And this is the5The terms \attractor" and \basin of attraction" are being used here in the sense of [5] and [11]. Thisdi�ers substantially from the notion used in [33], for example. There \attractor" refers to any invariant ortime-periodic pattern, and \basin of attraction" means that set of �nite lattice con�gurations relaxing to it.10
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6.2 The Original ExperimentPackard used a GA to evolve CA rules to perform the �c = 1=2 task. His GA started outwith a randomly generated initial population of CA rules. Each rule was represented as a bitstring containing the output bits of the rule table. That is, the bit at position 0 in the stringis the state to which the neighborhood 0000000 is mapped, the bit at position 1 in the stringis the state to which the neighborhood 0000001 is mapped, and so on. The initial populationwas randomly generated but it was constrained to be uniformly distributed across � valuesbetween 0.0 and 1.0.A given rule in the population was evaluated for ability to perform the classi�cation taskby choosing an initial con�guration at random, running the CA on that initial con�gurationfor some speci�ed number of time steps, and at the �nal time step measuring the fractionof cells in the lattice that have the correct state. For initial con�gurations with � > �c, thecorrect �nal state for each cell is 1, and for initial con�gurations with � < �c, the correct�nal state for each cell is 0. For example, if the CA were run on an initial con�guration with� > �c and at the �nal time step the lattice contained 90% 1's, the CA's score on that initialcon�guration would be 0.9.6 The �tness of a rule was simply the rule's average score over alarge number of initial con�gurations. For each rule in the population, Packard generated alarge set of initial con�gurations that were uniformly distributed across � values from 0 to1. Packard's GA worked as follows. At each generation:1. The �tness of each rule in the population is calculated.2. The population is ranked by �tness.3. Some fraction of the lowest �tness rules are removed.4. The removed rules are replaced by new rules formed by crossover and mutation fromthe remaining rules.Crossover between two strings involves randomly selecting a position in the strings at randomand exchanging parts of the strings before and after that position. Mutation involves 
ippingone or more bits in a string, with some low probability.A diversity-enforcement scheme was also used to prevent the population from convergingtoo early and losing diversity [22]. If a rule is formed that is too close in Hamming distance(i.e., the number of matching bits) to existing rules in the population, its �tness is decreased.The results from Packard's experiment are displayed in Figure 5. The two histogramsdisplay the observed frequency of rules in the GA population as a function of �, with rulesmerged from a number of di�erent runs. The top graph gives this data for the initial6A slight variation on this method was used in [23]. Instead of measuring the fraction of correct states inthe �nal lattice, the GA measured the fraction of correct states over con�gurations from a small number nof �nal time steps [22]. This prevented the GA from evolving rules that were temporally periodic; viz. thosewith patterns that alternated between all 0's and all 1's. Such rules obtained higher than average �tness atearly generations by often landing at the \correct" phase of the oscillation for a given initial con�guration.That is, on the next time step the classi�cation would have been incorrect. In our experiments we used aslightly di�erent method to address this problem. This is explained in subsection 7.1.12
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generation. As can be seen, the rules are uniformly distributed over � values. The middlegraph gives the same data for the �nal generation|in this case, after the GA has run for 100generations. The rules now cluster around the two �c regions, as can be seen by comparisonwith the di�erence-pattern spreading rate plot, reprinted here at the bottom of the �gure.Note that each individual run produced rules at one or the other peak in the middle graph,so when the runs were merged together, both peaks appear [22]. Packard interpreted theseresults as evidence for the hypothesis that, when an ability for complex computation isrequired, evolution tends to select rules near the transition to chaos. He argues, like Langton,that this result intuitively makes sense because \rules near the transition to chaos have thecapability to selectively communicate information with complex structures in space-time,thus enabling computation." ([23], p. 8).7. New ExperimentsAs the �rst step in a study of how well these general conclusions hold up, we carried out a setof experiments similar to that just described. We were unable to obtain some of the exactdetails of the original experiment's parameters, such as the exact population size for theGA, the mutation rate, and so on. As a result, we used what we felt were reasonable valuesfor these various parameters. We carried out a number of parameter sensitivity tests whichindicated that varying the parameters within small bounds did not change our qualitativeresults.7.1 Details of Our ExperimentsIn our experiments, as in the original, the CA rules in the population all have r = 3 andK = 2. Thus the bit strings representing the rules are of length 22r+1 = 128 and thesize of the search space is huge|the number of possible CA rules is = 2128. The testsfor each CA rule are carried out on lattices of length L = 149 with periodic boundaryconditions. The population size is 100, which was roughly the population size used in theoriginal experiment [22]. The initial population is generated at random, but constrained tobe uniformly distributed among di�erent � values. A rule's �tness is estimated by runningthe rule on 300 randomly generated initial con�gurations that are uniformly distributed over� 2 [0:0; 1:0]. Exactly half the initial con�gurations have � < �c and exactly half have� > �c.7We allow each rule to run for a maximum number M of iterations, where a new Mis selected for each rule from a Poisson distribution with mean 320. This is the measuredmaximumamount of time for the GKL CA to reach an invariant pattern over a large number7It was necessary to have this exact symmetry in the initial con�gurations at each generation to avoidearly biases in the � of selected rules. If, say, 49% of the initial con�gurations have � < �c and 51% of initialcon�gurations have � > �c, high � rules would obtain slightly higher �tness than low � rules since high �rules will map most initial con�gurations to all 1's. A rule with, say, � � 1 would in this case classify 51%of the initial con�gurations correctly whereas a rule with � � 0 would classify only 49% correctly. But suchslight di�erences in �tness have a large e�ect in the initial generation, when all rules have �tness close to0.5, since the GA selects the 50 best rules, even if they are only very slightly better than the 50 worst rules.This biases the representative rules in the early population. And this bias can persist well into the latergenerations. 14



of initial con�gurations on lattice size 149.8 A rule's �tness is its average score|the fractionof cell states correct at the last iteration|over the 300 initial con�gurations. We term this�tness function proportional �tness to contrast with a second �tness function|performance�tness|which will be described below. A new set of 300 initial con�gurations is generatedevery generation. At each generation, all the rules in the population are tested on this set.Notice that this �tness function is stochastic|the �tness of a given rule may vary fromgeneration to generation depending on the set of 300 initial con�gurations used in testing it.Our GA is similar to Packard's. In our GA, the fraction of new strings in the nextgeneration|the \generation gap"|is 0.5. That is, once the population is ordered accordingto �tness, the top half of the population, the set of \elite" strings, is copied without modi-�cation into the next generation. For GA practitioners more familiar with nonoverlappinggenerations, this may sound like a small generation gap. However, since testing a rule on300 \training cases" does not necessarily provide a very reliable gauge of what the �tnesswould be over a larger set of training cases, our selected gap is a good way of making a \�rstcut" and allowing rules that survive to be tested over more initial con�gurations. Since anew set of initial con�gurations is produced every generation, rules that are copied withoutmodi�cation are always retested on this new set. If a rule performs well and thus survivesover a large number of generations, then it is likely to be a genuinely better rule than thosethat are not selected, since it has been tested with a large set of initial con�gurations. Analternative method would be to test every rule in every generation on a much larger set ofinitial con�gurations, but given the amount of compute time involved, that method seemsunnecessarily wasteful. Much too much e�ort, for example, would go into testing very weakrules, which can safely be weeded out early using our method.The remaining half of the population for each new generation is created by crossoverand mutation from the previous generation's population.9 Fifty pairs of parent rules arechosen at random with replacement from the entire previous population. For each pair, asingle crossover point is selected at random, and two o�spring are created by exchanging thesubparts of each parent before and after the crossover point. The two o�spring then undergomutation. A mutation consists of 
ipping a randomly chosen bit in the string. The numberof mutations for a given string is chosen from a Poisson distribution with a mean of 3.8 (thisis equivalent to a per-bit mutation rate of 0.03). Again, to GA practitioners this may seemto be a high mutation rate, but one must take into account that at every generation, halfthe population is being copied without modi�cation.7.2 Results of Proportional-Fitness Experiment8It may not be necessary to allow the maximumnumber of iterations M to vary. In some early tests withsmaller sets of �xed initial con�gurations, though, we found the same problem Packard reported [22]: thatif M is �xed, then period-2 rules evolve that alternate between all 0's and all 1's. These rules adapted tothe small set of initial con�gurations and the �xed M by landing at the \correct" pattern for a given initialcon�guration at time step M , only to move to the opposite pattern and so wrong classi�cation at time stepM + 1. These rules did very poorly when tested on a di�erent set of initial con�gurations|evidence for\over-�tting".9This method of producing the non-elite strings di�ers from that in [23], where the non-elite strings wereformed from crossover and mutation among the elite strings only rather than from the entire population. Weobserved no statistically signi�cant di�erences in our tests using the latter mechanism other than a modestdi�erence in time scale. 15
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Figure 6: Results from our experiment with proportional �tness. Thetop histogram (a) plots as a function of � the frequencies of rulesmerged from the initial generations of 30 runs. The bottom histogram(b) plots the frequencies of rules merged from the �nal generations(generation 100) of these 30 runs. Following [23] the x-axis is dividedinto 15 bins of length 0.0667 each. The rules with � = 1:0 are includedin the rightmost bin. In each histogram the best (cross) and mean(circle) �tnesses are plotted for each bin. (The y-axis interval for�tnesses is also [0,1]). 16



We performed 30 di�erent runs of the GA with the parameters described above, each witha di�erent random-number seed. On each run the GA was iterated for 100 generations. Wefound that running the GA for longer than this, up to 300 generations, did not result inimproved �tness. The results of this set of runs are displayed in Figure 6. Figure 6(a) isa histogram of the frequency of rules in the initial populations as a function of �, mergingtogether the rules from all 30 initial populations; thus the total number of rules representedin this histogram is 3000. The � bins in this histogram are the same ones that were used byPackard, each of width 0.0667. Packard's highest bin contained only rules with � = 1, thatis, rules that consist of all 1's. We have merged this bin with the immediately lower bin.As was said earlier, the initial population consists of randomly generated rules uniformlyspread over the � values between 0.0 and 1.0. Also plotted are the mean and best �tnessvalues for each bin. These are all around 0.5, which is expected for a set of randomlygenerated rules under this �tness function. The best �tnesses are slightly higher in the verylow and very high � bins. This is because rules with output bits that are almost all 0's (or1's) correctly classify all low density (or all high density) initial con�gurations. In additionthese CA obtain small partial credit on some high density (low density) initial con�gurations.Such rules thus have �tness sightly higher than 0.5.Figure 6(b) shows the histogram for the �nal generation (100), merging together rulesfrom the �nal generations of all 30 runs. Again the mean and best �tness values for eachbin are plotted.In the �nal generation the mean �tnesses in each bin are all around 0.8. The exceptionsare the central bin with a mean �tness of 0.72 and the leftmost bin with a mean �tness of0.75. The leftmost bin contains only �ve rules|each at � � 0:33, right next to the the bin'supper � limit. The standard deviations of �tness for each bin, not shown in the �gure, areall approximately 0.15, except the leftmost bin, which has a standard deviation of 0.20. Thebest �tnesses for each bin are all between 0.93 and 0.95, except the leftmost bin which hasa best �tness of 0.90. Under this �tness function the GKL rule has �tness � 0.98; the GAnever found a rule with �tness above 0.95.As was mentioned above, the �tness function is stochastic: a given rule might be assigneda di�erent �tness each time the �tness function is evaluated. The standard deviation underthe present �tness scheme on a given rule is approximately 0.015. This indicates that thedi�erences among the best �tnesses plotted in the histogram are not signi�cant, except forthat in the leftmost bin.The lower mean �tness in the central bin is due to the fact that the rules in that binlargely come from non-elite rules generated by crossover and mutation in the �nal generation.This is a combinatorial e�ect: the density of CA rules as a function of � is very highly peakedabout � = 1=2, as already noted. We will return to this \combinatorial drift" e�ect shortly.Many of the rules in the middle bin have not yet undergone selection and thus tend to havelower �tnesses than rules that have been selected in the elite. This e�ect disappears inFigure 7, which includes only the elite rules at generation 100 for the 30 runs. As can beseen, the di�erence in mean �tness disappears and the height of the central bin is decreasedby half.The results presented in Figure 6(b) are strikingly di�erent from the results of the originalexperiment. In the �nal generation histogram in Figure 5, most of the rules clustered around17
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Figure 7: Histogram including only the elite rules from the �nal gen-erations of the 30 runs (cf. Figure 6(b)) with the proportional-�tnessfunction.either � � 0:24 or � � 0:83. Here, though, there are no rules in these �c regions. Rather, therules cluster much closer|with a ratio of variances of 4 between the two distributions|to� � 0:5. Recall this clustering is what we expect from the basic 0-1 exchange symmetry ofthe �c = 1=2 task.One rough similarity is the presence of two peaks centered around a dip at � � 0:5|aphenomenon which we will explain shortly and which is a key to understanding how the GAis working. But there are signi�cant di�erences, even within this similarity. In the originalexperiments the peaks are in bins centered about � � 0:24 and � � 0:83. In Figure 6(b),though, the peaks are very close to � = 1=2, being centered in the neighboring bins|thosewith � � 0:43 and � � 0:57. Thus, the ratio of original to current peak spread is roughly afactor of 4. Additionally, in the �nal-generation histogram of Figure 5 the two highest binpopulations are roughly �ve times as high as the central bin, whereas in the �nal-generationhistogram of Figure 6(b) the two highest bins are roughly three times as high as the centralbin. Finally, the �nal-generation histogram in Figure 5 shows the presence of rules in everybin, but in the new �nal-generation histogram, there are only rules in six of the central bins.Similar to the original experiment, we found that on any given run the population wasclustered about one or the other peak but not both. Thus, in the histograms that mergeall runs, two peaks appear. This is illustrated in Figure 8, which displays histograms fromthe �nal generation of two individual runs. In one of these runs the population clustered tothe left of the central bin, in the other run it clustered to the right of the center. The factthat di�erent runs result in di�erent clustering locations is why we performed many runsand merged the results rather than performing a single run with a much larger population.The latter method might have yielded only one peak. Said a di�erent way, independent ofthe population size a given run will be driven by and the population organized around the�t individuals that appear earliest. Thus, examining an ensemble of individual runs revealsmore details of the evolutionary dynamics. 18



The asymmetry in the heights of the two peaks in Figure 6(b) results from a smallstatistical asymmetry in the results of the 30 runs. There were 14 out of 30 runs in whichthe rules clustered at the lower � bin and 16 out of 30 runs in which the rules clustered atthe higher � bin. This di�erence is not signi�cant, but explains the small asymmetry in thepeaks' heights.We extended 16 of the 30 runs to 300 generations, and found that not only do the �tnessesnot increase further, but the basic shape of the histogram does not change signi�cantly.7.3 E�ects of DriftThe results of our experiments suggest that, for the �c = 1=2 task, an evolutionary processmodeled by a genetic algorithm tends to select rules with � � 1=2. This is what we expectfrom the theoretical discussion given above concerning this task and its symmetries. Wewill delay until the next section a discussion of the curious feature near � = 1=2, viz. thedip surrounded by two peaks. Instead, here we focus on the larger-scale clustering in that �region.To understand this clustering we need to understand the degree to which the selection ofrules close to � = 1=2 is due to an intrinsic selection pressure and the degree to which it isdue to \drift". By \drift" we refer to the force that derives from the combinatorial aspects ofCA space as explored by random selection (\genetic drift") along with the e�ects of crossoverand mutation. The intrinsic e�ects of random selection with crossover and mutation are tomove the population, irrespective of any selection pressure, to � = 1=2. This is illustrated bythe histogram mosaic in Figure 9. These histograms show the frequencies of the rules in thepopulation as a function of � every 5 generations, from 30 runs on which selection accordingto �tness was turned o�. That is, on these runs, the �tness of the rules in the populationwas never calculated, and at each generation the selection of the elite group of strings wasperformed at random. Everything else about the runs remains the same as before. Sincethere is no selection, drift is the only force at work here. As can be seen, under the e�ectsof random selection, crossover, and mutation, by generation 10 the population has largelydrifted to the region of � = 1=2 and this clustering becomes increasingly pronounced as therun continues.This drift to � = 1=2 is related to the combinatorics of the space of bit strings. Forbinary CA rules with neighborhood size N (= 2r + 1), the space consists of all 22N binarystrings of length 2N . Denoting the subspace of CA with a �xed � and N as CA(�;N), wesee that the size of the subspace is binomially distributed with respect to �:jCA(�;N)j = � 2N�2N � :The distribution is symmetric in � and tightly peaked about � = 1=2 with variance / 2�N .Thus, the vast majority of rules is found at � = 1=2. The steepness of the binomial distribu-tion near its maximum gives an indication of the magnitude of the drift \force". Note thatthe last histogram in Figure 9 gives the GA's rough approximation of this distribution.Drift is thus a powerful force moving the population to cluster around � = 1=2. Forcomparison, Figure 10 gives the rule-frequency-versus-� histograms for the 30 runs of our19
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Figure 8: Histograms from the �nal generations of two individual runsof the GA employing proportional �tness. Each run had a populationof 100 rules. The �nal distribution of rules in each of the 30 runs weperformed resembled one or the other of these two histograms.20
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proportional-�tness experiment every �ve generations. The last histogram in this �gure isthe same one that was displayed in Figure 6(b). (Figure 10 gives the merged data from theentire population of each run every �ve generations. A similar mosaic plotting only the elitestrings at each generation looks qualitatively similar.)Figure 10 looks very similar to Figure 9 up to generation 35. The main di�erence ingenerations 0{30 is that Figure 10 indicates a more rapid peaking about � = 1=2. The in-creased speed of movement to the center over that seen in Figure 9 is presumably due to theadditional evolutionary pressure of proportional �tness. At generation 35, something newappears. The peak in the center has begun to shrink signi�cantly and the two surroundingbins are beginning to rival it in magnitude. By generation 40 the right-of-center bin hasexceeded the central bin, and by generation 65 the histogram has developed two peaks sur-rounding a dip in the center. The dip becomes increasingly pronounced as the run continues,but stabilizes by generation 85 or so.The di�erences between Figure 10 and Figure 9 over all 100 generations shows that thepopulation's structure in each generation is not entirely due to drift. Indeed, after generation35 the distinctive features of the population indicates new, qualitatively di�erent, and uniqueproperties due to the selection mechanism. The two peaks represent a symmetry breakingin the evolutionary process|the rules in each individual run initially are clustered around� = 1=2 but move to one side or the other of the central bin by around generation 35. Thecauses of this symmetry breaking will be discussed in the next subsection.7.4 Evolutionary Mechanisms: Symmetry Breaking and the Dip at � = 1=2At this point we move away from questions related to the original experiment and insteadconcentrate on the mechanisms involved in producing our results. Two major questions needto be answered: Why in the �nal generation are there signi�cantly fewer rules in the centralbin than in the two surrounding bins? And what causes the symmetry breaking that beginsnear generation 35 seen in Figure 10?In the briefest terms, the answer, obtained by detailed analysis of the 30 GA runs, isthe following. The course of CA evolution under our GA roughly falls into four \strategy"epochs. Each epoch is associated with an innovation discovered by the GA for solving theproblem. Though the absolute time at which these innovations appear in each run variessomewhat, each run basically passes through each of these four epochs in succession. Theepochs are shown in Figure 11, which plots the best �tness, the mean �tness of the elitestrings, and the mean �tness of the population versus generation for one typical run of theGA. The beginnings of epochs 2 through 4 are pointed out on the best-�tness plot. Epoch1 begins at generation 0.Epoch 1: Randomly generated rulesThe �rst epoch starts at generation 0, when the best �tness in the initial generation isapproximately 0.5, and the � values are uniformly distributed between 0.0 and 1.0. No ruleis much �tter than any other rule, though as was seen in Figure 6(a), rules with very lowand very high � tend to have slightly higher �tness. The strategy here|if it can be called22
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0 20 40 60 80 100Fitness Generationepoch 2epoch 3epoch 4} o K best �tnesselite mean �tnesspopulation mean �tnessFigure 11: Best �tness, elite mean �tness, and population mean �tnessversus generation for one typical run. The beginnings of epochs 2{4are pointed out on the best-�tness plot. Epoch 1 begins at generation0.this at all|derives from only the most elementary aspect of the task. Rules either specializefor � > �c con�gurations by mapping high-density neighborhoods in the CA rule table to 1or specialize for � < �c con�gurations by mapping low-density neighborhoods to 0.Epoch 2: Discovery of two halves of the rule tableThe second epoch begins when a rule is discovered in which most neighborhood patterns inthe rule table that have � < �c map to 0 and most neighborhood patterns in the rule tablethat have � > �c map to 1. This is roughly correlated with the left and right halves of therule table: namely, neighborhoods 0000000 to 0111111 and 1000000 to 1111111, respectively.Such a strategy is presumably easy for the GA to discover due to single-point crossover's ten-dency to preserve contiguous sections of the rule table. It di�ers from the accidental strategyof epoch 0 in that there is now an organization to the rule table: output bits are roughlyassociated with densities of neighborhood patterns. It is the �rst signi�cant attempt at dis-tinguishing initial con�gurations with more 1's than 0's and vice versa. Under our �tnessfunction, the �tness of such rules is approximately between 0.6 and 0.7, which is signi�cantlyhigher than the �tness of the initial random rules. This innovation typically occurs betweengenerations 1 and 10; in the run displayed in Figure 11 it occurred in generation 2, and canbe seen as the steep rise in the best-�tness plot at that generation. All such rules tend tohave � close to 0.5. There are many possible variations on these rules with similar �tness, sosuch rules|all close to � = 1=2|begin to dominate in the population. This, along with thenatural tendency for the population to drift to � = 1=2, is the cause of the clustering around� = 1=2 seen by generation 10 in Figure 10. For the next several generations the populationtends to explore small variations on this broad strategy. This can be seen in Figure 11 asthe leveling o� in the best-�tness plot between generations 2 and 10.23
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Figure 12: Space-time diagrams of one epoch-3 rule with � � 0:41that increases su�ciently large blocks of adjacent or nearly adjacent1's. Both diagrams have L = 149 and are iterated for 149 time steps(the time displayed here is shorter than the actual time allotted underthe GA). In (a) �(0) � 0:40 and �(148)� 0:17. In (b) �(0) � 0:54 and�(148) = 1:0. Thus, in (a) the classi�cation is incorrect, but partialcredit is given; in (b) it is correct.Epoch 3: Growing blocks of 1's or 0'sThe next epoch begins when the GA discovers one of two new strategies. The �rst strategy isto increase the size of a su�ciently large block of adjacent or nearly adjacent 0's; the secondstrategy is to increase the size of a su�ciently large block of adjacent or nearly adjacent 1's.Examples of these two strategies are illustrated in Figures 12 and 13. These �gures givespace-time diagrams from two rules that marked the beginning of this epoch in two di�erentruns of the GA. Figure 12 illustrates the action of a rule discovered at generation 9 of onerun. This rule has � � 0:41, which means that the rule maps most neighborhoods to 0. Itsstrategy is to map initial con�gurations to mostly 0's|the con�gurations it produces have� < �c, unless the initial con�guration contains a su�ciently large block of 1's, in whichcase it increases the size of that block. The left space-time diagram Figure 12(a) shows howthe rule evolves an initial con�guration with � < �c, to a �nal lattice with mostly 0's. Thisproduces a fairly good score. The right space-time diagram Figure 12(b) shows how therule evolves an initial con�guration with � > �c. The initial con�guration contains a fewsu�ciently large blocks of adjacent or nearly adjacent 1's, and the size of these blocks isquickly increased to yield a �nal lattice with all 1's for a perfect score. The �tness of thisrule at generation 9 was � 0.80.Figure 13 illustrates the action of a second rule, discovered at generation 20 in anotherrun. This rule has � � 0:58, which means that the rule maps most neighborhoods to 1. Itsstrategy is the inverse of the previous rule. It maps initial con�gurations to mostly 1's unlessthe initial con�guration contains a su�ciently large block of 0's, in which case it increases the24
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Figure 13: Space-time diagrams of one epoch-3 rule with � � 0:58that increases su�ciently large blocks of adjacent or nearly adjacent0's. In (a) the initial con�guration with � � 0:42 maps to a correctclassi�cation pattern of all 0's. In (b) the initial con�guration with� � 0:56 is not correctly classi�ed (�(148) � 0:75) but partial creditis given.size of that block. The left space-time diagram (a) illustrates this for an initial con�gurationwith � < �c; here a su�ciently large block of 0's appears in the initial con�guration and isincreased in size, yielding a perfect score. The right space-time diagram (b) shows the actionof the same rule on an initial con�guration with � > �c. Most neighborhoods are mappedto 1 so the �nal con�guration contains mostly 1's, yielding a fairly high score. The �tnessof this rule at generation 20 was � 0.87.The general idea behind these two strategies is to rely on statistical 
uctuations in theinitial con�gurations. An initial con�guration with � > �c is likely to contain a su�cientlylarge block of adjacent or nearly adjacent 1's. The rule then increases this region's size toyield the correct classi�cation. Similarly, this holds for the CA in Figure 13 with respect toblocks of 0's in initial con�gurations with � < �c. In short, these strategies are assumingthat the presence of a su�ciently large block of 1's or 0's is a good predictor of �(0).Similar strategies were discovered in every run. They typically emerge by generation20. A given strategy either increased blocks of 0's or blocks of 1's, but not both. Thesestrategies result in a signi�cant jump in �tness: typical �tnesses for the �rst instances ofsuch strategies range from 0.75 to 0.85. This jump in �tness can be seen in the run ofFigure 11 at approximately generation 10, and is marked as the beginning of epoch 3. Thisis the �rst epoch in which a substantial increase in �tness is associated with a symmetrybreaking in the population, which will be explained below.The �rst instances of epoch-3 strategies typically have a number of problems. As canbe seen in Figures 12 and 13, the rules often rely on partial credit to achieve fairly high�tness on structurally incorrect classi�cation. They typically do not get perfect scores on25
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Figure 14: Space-time diagrams illustrating three types of classi�ca-tion errors committed by epoch-3 rules: (a) growing a block of 1s ina sea of � < �c, (b) growing a block of 1's for an initial con�gurationwith � > �c too slowly (the correct �xed point of all 1's does not occuruntil iteration 480), and (c) generating a block of 1's from a sea of� < �c and growing it so that � > �c (the incorrect �xed point of all1's occurs at iteration 180). The initial con�guration densities are (a)�(0) � 0:39, (b) �(0) � 0:59, and (c) �(0) � 0:45.26
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Figure 15: Space-time diagrams of one epoch-4 rule with � � 0:38that increases su�ciently large blocks of adjacent or nearly adjacent1's. In (a) �(0) � 0:44; in (b) �(0) � 0:52. Both initial con�gurationsare correctly classi�ed.many initial con�gurations. The rules also often make mistakes in classi�cation. Threecommon types of classi�cation errors are illustrated in Figure 14. Figure 14(a) illustrates arule increasing a too-small block of 1's and thus misclassifying an initial con�guration with� < �c. Figure 14(b) illustrates a rule that does not increase blocks of 1's fast enough on aninitial con�guration with � > �c, leaving many incorrect bits in the �nal lattice. Figure 14(c)illustrates the creation of a block of 1's that did not appear in an initial con�guration with� < �c, ultimately leading to a misclassi�cation. The rules that produced these diagramscome from epoch 3 in various GA runs.The increase in �tness seen in Figure 11 between generation 10 and 20 or so is due tofurther re�nements of the basic strategies that correct these problems to some extent.Epoch 4: Reaching and staying at a maximal �tnessIn most runs, the best �tness is typically at its maximum value of 0.90 to 0.95 by generation40 or so. In Figure 11 this occurs at approximately generation 20, and is marked as thebeginning of epoch 4. The best �tness does not increase signi�cantly after this; the GAsimply �nds a number of variations of the best strategies that all have roughly the same�tness. When we extended 16 of the 30 runs to 300 generations, we did not see any signi�cantincrease in the best �tness.The actions of the best rules from generation 100 of two separate runs are shown in Fig-ures 15 and 16. The leftmost space-time diagrams in each �gure are for initial con�gurationswith � < �c, and the rightmost diagrams are for initial con�gurations with � > �c. Therule illustrated in Figure 15 has � = 0:38; its strategy is to map initial con�gurations to 0'sunless there is a su�ciently large block of adjacent or nearly adjacent 1's, which if present27
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Figure 16: Space-time diagrams of one epoch-4 rule with � � 0:59that increases su�ciently large blocks of adjacent or nearly adjacent0's. In (a) �(0) � 0:40; in (b) �(0) � 0:56. Both initial con�gurationsare correctly classi�ed.is increased. The rule shown in Figure 16 has � = 0:59 and has the opposite strategy. Eachof these rules has �tness � 0.93. They are better tuned versions of the rules in Figures 12and 13.Symmetry breaking in epoch 3Notice that the � values of the rules that have been described are in the bins centered around0.43 and 0.57 rather than 0.5. In fact, it seems to be much easier for the GA to discoverversions of the successful strategies close to � = 0:43 and � = 0:57 than to discover themclose to � = 1=2, though some instances of the latter rules were found. Why is this? Onereason is that rules with high or low � work well by specializing. The rules with low �map most neighborhoods to 0's and then increase su�ciently large blocks of 1's when theyappear. Rules with high � specialize in the opposite direction. A rule at � = 1=2 cannoteasily specialize in this way. Another reason is that a successful rule that grows su�cientlylarge blocks of (say) 1's must avoid creating a su�ciently large block of 1's from an initialcon�guration with less than half 1's. Doing so will lead it to increase the block of 1's andproduce an incorrect answer, as was seen in Figure 14. An easy way for a rule to avoidcreating a su�ciently large block of 1's is to have a low �. This ensures that low-densityinitial con�gurations will quickly map to all 0's, as was seen in Figure 15. Likewise, if a ruleincreases su�ciently large blocks of 0's, it is safer for the rule to have a high � value so it willavoid creating su�ciently large blocks of 0's where none existed. A rule close to � = 1=2 willnot have this safety margin, and may be more likely to inadvertently create a block of 0's or1's that will lead it to a wrong answer. A �nal element that contributes to the di�culty of�nding good rules with � = 1=2 is the combinatorially large number of rules there. In e�ect,the search space is much larger, which makes the global search more di�cult. Locally, about28



a given adequate rule at � = 1=2, there are many more rules close in Hamming distance andthus reachable via mutation that are not markedly better.Once the more successful versions of the epoch-3 strategies are discovered in epoch 4,their variants spread in the population, and the most successful rules have � on the low orhigh side of � = 1=2. This explains the shift from the clustering around � = 1=2 as seenin generations 10{30 in Figure 10 to a two-peaked distribution that becomes clear aroundgeneration 65. The rules in each run cluster around one or the other peak, specializingin one or the other way. We believe this type of symmetry breaking is a key mechanismthat determines much of the population dynamics and the GA's success|or lack thereof|inoptimization.How does this analysis of the symmetry breaking jibe with the argument given earlierthat the best rules for the �c = 1=2 task must be close to � = 1=2? None of the rules foundby the GA had a �tness as high as 0.98|the �tness of the GKL rule, whose � is exactly 1/2.That is, the evolved rules make signi�cantly more classi�cation errors than the GKL rule.To obtain the �tness of the GKL rule a number of careful balances in the rule table must beachieved. This is evidently very hard for the GA to do, especially in light of the symmetriesin the task and their suboptimal breaking by the GA.7.5 Performance of the Evolved RulesRecall that the proportional �tness of a rule is the fraction of correct cell states at the �naltime step, averaged over 300 initial con�gurations. This �tness gives a rule partial creditfor getting some �nal cell states correct. However, the actual task is to relax to eitherall 1's or all 0's, depending on the initial con�guration. In order to measure how well theevolved rules actually perform the task, we de�ne the performance of a rule to be the fractionof times the rule correctly classi�es initial con�gurations, averaged over a large number ofinitial con�gurations. Here, credit is given only if the initial con�guration relaxes to exactlythe correct �xed point after some number of time steps. We measured the performance ofeach of the elite rules in the �nal generations of the 30 runs by testing it on 300 randomlygenerated initial con�gurations that were uniformly distributed in the interval 0 � � � 1,letting the rule iterate on each initial condition for 1000 time steps. Figure 17 displays themean performance (diamonds) and best performance (squares) in each � bin. This �gureshows that while the mean performances in each bin are much lower than the mean �tnessesfor the elite rules shown in Figure 7, the best performance in each bin is roughly the same asthe best �tness in that bin. (In some cases the best performance in a bin is slightly higherthan the best �tness shown in Figure 7. This is because di�erent sets of 300 initial conditionswere used to calculate �tness and performance. This di�erence can produce small variationsin the �tness or performance values.) The best performance we measured was � 0.95. Underthis measure the performance of the GKL rule is � 0.98. Thus the GA never discovereda rule that performed as well as the GKL rule, even up to 300 generations. In addition,when we measure the performance of the �ttest evolved rules on larger lattice sizes, theirperformances decrease signi�cantly, while that of the GKL rule remains roughly the same.29
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Figure 17: Performances of the rules evolved with the proportional-�tness function. Only the elite rules from generation 100 are includedin this histogram. The mean performance in each bin (open dia-monds), and the best performance in each bin (black squares) is plot-ted.7.6 Using Performance as the Fitness CriterionCan the GA evolve better-performing rules on this task? To test this, we carried out anadditional experiment in which performance as de�ned in the previous section is the �tnesscriterion. As before, at each generation each rule is tested on 300 initial con�gurations thatare uniformly distributed over density values. However, in this experiment, a rule's �tnessis the fraction of initial con�gurations that are correctly classi�ed. An initial con�gurationis considered to be incorrectly classi�ed if any bits in the �nal lattice are incorrect. Asidefrom this modi�ed �tness function, everything about the GA remained the same as in theproportional-�tness experiments. We performed 30 runs of the GA for 100 generations each.The results are given in Figure 18, which gives a histogram plotting the frequencies of theelite rules from generation 100 of all 30 runs as a function of �. As can be seen, the shapeof the histogram again has two peaks centered around a dip at � = 1=2. This shape resultsfrom the same symmetry-breaking e�ect that occurred in the proportional-�tness case: theseruns also evolved essentially the same strategies as the epoch-3 strategies described earlier.The best and mean performances here are comparable to the best performances in theproportional-�tness case; the best performances found here are � 0.95. The performance asa function of �(0) for one of the best rules is plotted in Figure 19, for lattice sizes of 149(the lattice size used for testing the rules in the GA runs), 599, and 999. We used the sameprocedure to make these plots as was described earlier for Figure 4. As can be seen, theperformance according to this measure is signi�cantly worse than that of the GKL rule (cf.Figure 4), especially on larger lattice sizes. The worst performances for all lattice sizes arecentered close to the rule's � value of � 0.42.30
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Figure 18: Results from our experiment with performance as the�tness criterion. The histogram plots the frequencies of elite rulesmerged from the �nal generations (generation 100) of 30 runs in whichthe performance-�tness function was used.
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Figure 20: Results from our experiment in which a diversity-enforcement mechanism was added to the GA. The histogram plotsthe frequencies of rules merged from the entire population at gener-ation 100 of 20 runs in which our diversity-enforcement scheme wasused.7.7 Adding A Diversity-Enforcement MechanismThe description given above of the four epochs in the GA's search explains the results ofour experiment, but it does not explain the di�erence between our results and those of theoriginal experiment reported in [23]. One di�erence between our GA and the original wasthe inclusion in the original of a diversity-enforcement scheme that penalized newly formedrules that were too similar in Hamming distance to existing rules in the population. Totest the e�ect of this scheme on our results, in one set of experiments we included a similarscheme. In our scheme, every time a new string is created through crossover and mutation,the average Hamming distance between the new string and the elite strings|the 50 stringsthat are copied unchanged|is measured. If this average distance is less than 30% of thestring length (here 38 bits), then the new string is not allowed in the new population. Newstrings continue to be created through crossover and mutation until 50 new strings have metthis diversity criterion. We note that many other diversity-enforcement schemes have beendeveloped in the GA literature; e.g., \crowding" [8].The results of this experiment are given in Figure 20. The histogram in that �gurerepresents the merged rules from the entire population at generation 100 of 20 runs of theGA, using the proportional-�tness function and our diversity-enforcement scheme. As canbe seen, the histogram in this �gure is very similar to that in Figure 6(b). The only majordi�erence is the signi�cantly lower mean �tness in the middle and leftmost bins, which resultsfrom the increased requirement for diversity in the �nal non-elite population. We concludethat the use of this diversity-enforcement scheme was not responsible for the di�erencebetween the results from [23] and our results.32



7.8 Di�erences Between Our Results and the Original ExperimentAs was seen in Figure 6(b), our results are strikingly di�erent from those reported in [23].These experimental results, along with the theoretical argument that the most successfulrules for this task should have � close to 1=2, lead us to conclude that the interpretation ofthe original results as giving evidence for the hypotheses concerning evolution, computation,and � is not correct. However, we do not know what accounted for the di�erences betweenour results and those obtained in the original experiment. We speculate that the di�erencesare due to additional mechanisms in the GA used in the original experiment that were notreported in [23].Although the results were very di�erent, there is one qualitative similarity: the rule-frequency-versus-� histograms in both cases contained two peaks separated by a dip in thecenter. As already noted, in our histogram the two peaks were closer to � = 1=2 by afactor of 4, but it is possible that the original results were due to a mechanism similar to(i) the epoch-0 sensitivity to initial con�guration and population asymmetry about � = 1=2or (ii) the symmetry breaking we observed in epoch 3, as described above. Perhaps thesewere combined with some additional force in the original GA that kept rules far away from� = 1=2. Unfortunately, the best and mean �tnesses for the � bins were not reported forthe original experiment. As a consequence we do not know whether or not the peaks inthe original histogram contained high-�tness rules, or even if they contained rules that weremore �t than rules in other bins. Our results and the basic symmetry in the problem suggestotherwise.8. General Discussion8.1 What We Have ShownThe results reported in this paper have demonstrated that the results from Packard's originalexperiment do not hold up under our experiments. We conclude that the original experimentdoes not give �rm evidence for the hypotheses it was meant to test: �rst, that rules capable ofperforming complex computation are most likely to be found close to �c values and, second,that when CA rules are evolved by a GA to perform a nontrivial computation, evolution willtend to select rules close to �c values.As we argued theoretically and as our experimental results suggest, the most successfulrules for performing a given �-classi�cation task will be close to a particular value of � thatdepends on the particular �c of the task. Thus for this class of computational tasks, the�c values associated with an \edge of chaos" are not correlated with the ability of rules toperform the task.In the remainder of this section, we step back from these particular experiments anddiscuss in more general terms the ideas that motivated these studies.33



8.2 �, Dynamical Behavior, and ComputationAs was noted earlier, Langton presented evidence that, given certain caveats regarding theradius r and number of states K, there is some correlation between � and the behaviorof an \average" CA on an \average" initial con�guration [16]. Behavior was characterizedin terms of quantities such as single-site entropy, two-site mutual information, di�erence-pattern spreading rate, and average transient length. The correlation is quite good for verylow and very high � values, which predict �xed-point or short-period behavior. However,for intermediate � values, there is a large degree of variation in behavior. Moreover, thereis no precise correlation between these � values and the location of a behavioral \phasetransition", other than that described by Wootters and Langton in the limit of in�nite K.The remarks above and all the experimental results in [16] are concerned with the re-lationship between � and the dynamical behavior of CA. They do not directly address therelationship between � and computational capability of CA. The basic hypothesis was that �correlates with computational capability in that rules capable of complex, and in particular,universal, computation must be, or at least are most likely to be, found near �c values. Asfar as CA are concerned,10 the hypothesis was based on the intuition that complex compu-tation cannot be supported in the short-period or chaotic regimes because the phenomenathat apparently occur only in the \complex" (non-periodic, non-chaotic) regimes, such aslong transients and long space-time correlation, are necessary to support complex computa-tion. There has thus far been no experimental evidence correlating � with an independentmeasure of computation. Packard's experiments were intended to address this issue sincethey involved an independent measure of computation|performance on a particular complexcomputational task|but as we have shown, these experiments do not provide evidence forthe hypothesis linking �c values with computational ability. In order to test this hypothesis,more general measures of computation need to be used.The argument that complex computation cannot occur in the short-period or chaoticregimes may seem intuitively correct, but there is actually a theoretical framework andstrong experimental evidence to the contrary. Hanson and Crutch�eld [2, 11] have devel-oped a method for �ltering out chaotic \domains" in the space-time diagram of a CA, some-times revealing \particles" that have the non-periodic, non-chaotic properties of structuresin Wolfram's Class 4 CA. That is, with the appropriate �lter applied, complex structurescan be uncovered in a space-time diagram that, to the human eye and to the statistics usedin [16], appears to be completely random. As an extreme example, it is conceivable thatsuch �lters could be applied to a seemingly chaotic CA and reveal that the CA is actuallyimplementing a universal computer (with glider guns implementing AND, OR, and NOTgates, etc.). Hanson and Crutch�eld's results strikingly illustrate that apparent complexityof behavior|and apparent computational capability|can depend on the implicit \�lter"imposed by one's chosen statistics.10In the context of continuous-state dynamical systems, it has been shown that there is a direct relationshipbetween intrinsic computational capability of a process and the degree of randomness of that process at thephase transition from order to chaos. Computational capability was quanti�ed with the statistical complexity,a measure of the amount of memory of a process, and via the detection of an embedded computationalmechanism equivalent to a stack automaton.[3] 34



8.3 What Kind of Computation in CA Do We Care About?In the section above, the phrases \complex computation" and \computational capability"were used somewhat loosely. As was discussed in Section 3, there are at least three di�erentinterpretations of the notion of computation in CA. The notion of a CA being able toperform a \complex computation" such as the �c = 1=2 task, where the CA performs thesame computation on all initial con�gurations, is very di�erent from the notion of a CAbeing capable, under some special set of initial con�gurations, of simulating a universalcomputer. Langton's speculations regarding the relationship between dynamical behaviorand computational capability seemed to be more concerned with the latter than the former,though the implication is that the capability to sustain long transients, long correlationlengths, and so on are necessary for both notions of computation.If \computationally capable" is taken to mean \capable, under some initial con�gura-tion(s), of universal computation", then one might ask why this is a particularly importantproperty of CA on which to focus. In [16] CA were used merely as a vehicle to studythe relationship between phase transitions and computation, with an emphasis on universalcomputation. But for those who want to use CA as scienti�c models or as practical compu-tational tools, a focus on the capacity for universal computation may be misguided. If a CAis being used as a model of a natural process (e.g., turbulence), then it is currently of limitedinterest to know whether or not the process is in principle capable of universal computationif universal computation will arise only under some specially engineered initial con�gurationthat the natural process is extremely unlikely to ever encounter. Instead, if one wants tounderstand emergent computation in natural phenomena as modeled by CA, then one shouldtry to understand what computation the CA \intrinsically" does [2, 11] rather than what itis \in principle capable" of doing only under some very special initial con�gurations. Thus,understanding the conditions under which a capacity for universal computation is possiblewill not be of much value in understanding the natural systems modeled by CA.This general point is neither new nor deep. Analogous arguments have been put forthin the context of neural networks, for example. While many constructions have been madeof universal computation in neural networks (e.g., [28]), some psychologists (e.g., [27]) haveargued that this has little to do with understanding how brains or minds work in the naturalworld.Similarly, if one wants to use a CA as a parallel computer for solving a real problem|such as face recognition|it would be very ine�cient, if not practically impossible, to solvethe problem by (say) programming Conway's Game of Life CA to be a universal computerthat simulates the action of the desired face recognizer. Thus understanding the conditionsunder which universal computation is possible in CA is not of much practical value either.In addition, it is not clear that anything like a drive toward universal-computationalcapabilities is an important force in the evolution of biological organisms. It seems likelythat substantially less computationally-capable properties play a more frequent and robustrole. Thus asking under what the conditions evolution will create entities (including CA)capable of universal computation may not be of great importance in understanding naturalevolutionary mechanisms.In short, it is mathematically important to know that some CA are in principle capable35



of universal computation. But we argue that this is by no means the most scienti�callyinteresting property of CA. More to the point, this property does not help scientists muchin understanding the emergence of complexity in nature or in harnessing the computationalcapabilities of CA to solve real problems.9. ConclusionThe main purpose of this study was to examine and clarify the evidence for various hypothe-ses related to evolution, dynamics, computation, and cellular automata. We hope this studyhas shed some new and constructive light on these issues. As a result of our study we haveidenti�ed a number of evolutionary mechanisms, such as the role of combinatorial drift, andthe role of symmetry and the impediments to emerging computational strategies caused bysymmetry breaking. For example, we have found that the breaking of the goal task's sym-metries in the early generations can be an impediment to further optimization of individualsin the population. The symmetry breaking results is a kind of suboptimal speciation in thepopulation that is stable or, at least, meta-stable over long times. The symmetry-breakinge�ects we described here may be similar to symmetry-breaking phenomena such as bilateralsymmetry and handedness that emerge in biological evolution. It is our goal to develop amore rigorous framework for understanding these mechanisms in the context of evolving CA.We believe that a deep understanding of these mechanisms in this relatively simple contextcan yield insights for understanding evolutionary processes in general and for successfullyapplying evolutionary-computation methods to complex problems.Though our experiments did not reproduce the results reported in [23], we believe thatthe original conception of using GAs to evolve computation in CA is an important idea.Aside from its potential for studying various theoretical issues, it also has a potential prac-tical side that could be signi�cant. As was mentioned earlier, CA are increasingly beingstudied as a class of e�cient parallel computers; the main bottleneck in applying CA morewidely to parallel computation is programming|in general it is very di�cult to program CAto perform complex tasks. Our results suggest that the GA has promise as a method for ac-complishing such programming automatically. In order to further test the GA's e�ectivenessas compared with other search methods, we performed an additional experiment, comparingthe performance of our GA on the �c = 1=2 task with the performance of a simple steepest-ascent hill-climbing method. We found that the GA signi�cantly outperformed hill-climbing,reaching much higher �tnesses for an equivalent number of �tness evaluations. This givessome evidence for the relative e�ectiveness of GAs as compared with simple gradient ascentmethods for programming CA. Koza [15] has also evolved CA rules using a very di�erenttype of representation scheme; it is a topic of substantial practical interest to study therelationship of representation and GA success on such tasks.AcknowlegmentsThis research was supported by the Santa Fe Institute, under the Adaptive Computation andExternal Faculty Programs, and by the University of California, Berkeley, under contractAFOSR 91-0293. Thanks to Doyne Farmer, Jim Hanson, Erica Jen, Chris Langton, WentianLi, Cris Moore, and Norman Packard for many helpful discussions and suggestions concerningthis project. Thanks also to Emily Dickinson and Terry Jones for technical advice.36
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