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RESEARCH PAPER
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ABSTRACT
Fatty liver disease is the most common liver disease in the world. Its connection with the gut 
microbiome has been known for at least 80 y, but this association remains mostly unstudied in the 
general population because of underdiagnosis and small sample sizes. To address this knowledge 
gap, we studied the link between the Fatty Liver Index (FLI), a well-established proxy for fatty liver 
disease, and gut microbiome composition in a representative, ethnically homogeneous population 
sample of 6,269 Finnish participants. We based our models on biometric covariates and gut 
microbiome compositions from shallow metagenome sequencing. Our classification models 
could discriminate between individuals with a high FLI (≥60, indicates likely liver steatosis) and 
low FLI (<60) in internal cross-region validation, consisting of 30% of the data not used in model 
training, with an average AUC of 0.75 and AUPRC of 0.56 (baseline at 0.30). In addition to age and 
sex, our models included differences in 11 microbial groups from class Clostridia, mostly belonging 
to orders Lachnospirales and Oscillospirales. Our models were also predictive of the high FLI group in 
a different Finnish cohort, consisting of 258 participants, with an average AUC of 0.77 and AUPRC of 
0.51 (baseline at 0.21). Pathway analysis of representative genomes of the positively FLI-associated 
taxa in (NCBI) Clostridium subclusters IV and XIVa indicated the presence of, e.g., ethanol fermenta-
tion pathways. These results support several findings from smaller case–control studies, such as the 
role of endogenous ethanol producers in the development of the fatty liver.
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Introduction

Fatty liver disease affects roughly a quarter of the 
world’s population.1 It is characterized by the accu-
mulation of fat in the liver cells and is intimately 
linked with the pathophysiology of metabolic 
syndrome.2–4 Fatty liver disease can be broadly 
divided into two variants: nonalcoholic fatty liver 

disease (NAFLD), attributed to high caloric intake, 
and alcohol-associated fatty liver disease, attributed 
to high alcohol consumption. Even though the rate 
of progressions and underlying causes of both dis-
eases might be different, they can be broadly sub-
divided into those who have fat accumulation in the 
liver with no or minimal inflammation or those 
who have additional features of cellular injury and 
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active inflammation with or without fibrosis typi-
cally seen in the peri-sinusoidal area.5 Patients with 
steatohepatitis may progress to cirrhosis and hepa-
tocellular carcinoma and have an increased risk of 
liver-related morbidity and mortality, globally 
amounting to hundreds of thousands of deaths.6

The human gut harbors up to 1012 microbes per 
gram of content,7 and is intimately connected with the 
liver. Thus, it is no surprise that gut microbiome 
composition appears to have a strong connection 
with liver disease.8 Numerous studies over the past 
80 y have reported associations between gut microbial 
composition and liver disease.9 For example, gut per-
meability and overgrowth of bacteria in the 
small intestine,10 changes in Gammaproteobacteria 
and Erysipelotrichi abundance during choline 
deficiency,11 an elevated abundance of ethanol-produ-
cing bacteria,12,13 metagenomic signatures of specific 
bacterial species,14,15 have all been linked to NAFLD in 
small case–control patient samples. However, the 
microbial signatures often overlap between NAFLD 
and metabolic diseases, while those of more serious 
liver disease, such as steatohepatitis and cirrhosis are 
more clear.16 For example, oral taxa appear to invade 
the gut in liver cirrhosis,17 and this phenotype can 
accurately be detected by analyzing the fecal micro-
biome composition (AUC = 0.87 in a validation 
cohort).8 Furthermore, we recently demonstrated 
good prediction accuracy for incident liver disease 
diagnoses (AUC = 0.83 for nonalcoholic liver disease, 
AUC = 0.96 for alcoholic liver disease, during ~15 y),18 

showing that the signatures of serious future liver 
disease are easy to detect.

The mechanisms underlying the contribution of 
gut microbiome content with fatty liver disease are 
thought to be primarily linked to gut bacterial 
metabolism. Bacterial metabolites can indeed be 
translocated from the gut through the intestinal 
barrier into the portal vein and transported to the 
liver, where they interact with liver cells, and can 
lead to inflammation and steatosis.19 Short-chain 
fatty acid production, conversion of choline into 
methylamines, modification of bile acids (BA) into 
secondary BA, and ethanol production, all of which 
are mediated by gut bacteria, are also known to be 
aggravating factors for NAFLD.19 Recent studies 
have also suggested that endogenous ethanol pro-
duction by gut bacteria could lead to an increase in 
gut membrane permeability.13 This can facilitate 

the translocation of bacterial metabolites and cell 
components, such as lipopolysaccharides from the 
gut to the liver, leading to further inflammation and 
possible development of NAFLD.20

Liver biopsy assessment is the current gold stan-
dard for diagnosis of fatty liver disease and its 
severity,21 but it is also impractical and unethical 
in a population-based setting. Ultrasound and MRI 
based assessment can help detect the presence of 
fatty liver, however, this data is not available in our 
cohort. Regardless, recent studies have shown that 
indices based on anthropometric measurements 
and standard blood tests can be a reliable tool for 
noninvasive diagnosis of fatty liver, particularly in 
population-based epidemiologic studies.22,23

Here, we designed and conducted computational 
analyses to examine the links between fatty liver and 
gut microbiome composition in a representative 
population sample of 7,211 extensively phenotyped 
Finnish individuals.24 Because the fatty liver 
disease is generally underdiagnosed in the general 
population,25 we used population-wide measurements 
of BMI, waist circumference, blood triglycerides, and 
gamma-glutamyl transferase (GGT) to calculate 
a previously validated Fatty Liver Index (FLI) for 
each participant as a proxy for fatty liver.26 In parallel, 
we used shallow shotgun sequencing to analyze gut 
microbiome composition,27 which also enabled the 
use of phylogenetic and pathway prediction methods. 
In this work, we describe high-resolution associations 
between fatty liver and individual gut microbial taxa 
and clades, which are replicable in an external Finnish 
cohort, and thus generalizable in the Finnish 
population.

Results

Bacterial community structure is correlated with 
Fatty Liver Index in a population sample

In our main analyses, we classified our reads against 
the Genome Taxonomy Database (GTDB).28 This 
study mainly follows the GTDB taxonomy, unless 
otherwise noted. The Centrifuge/GTDB micro-
biome data used in our main analyses were based 
on archaeal and bacterial phylogenetic “balances”. 
This method was used to associate larger groups or 
clades of related organisms with fatty liver disease, 
and to avoid grouping of taxa on strict hierarchical 
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taxonomic ranks featuring varying ranges of evolu-
tionary divergence.28 Here, we used the PhILR 
transform, where each balance represents a single 
internal node in a phylogenetic tree, and its value is 
a log-ratio of the abundances of the two descending 
clades (for details, see methods and ref.29). Positive 
values of the balance signify that the clade in the 
numerator is more abundant, and negative values 
that the clade in the denominator is more abun-
dant. Thus, each association of a balance with the 
target variable necessarily includes both microbial 
clades descending from the node, one of them 
positively and the other negatively associated with 
the target variable. The clades in the numerator and 
denominator can be also freely switched by chan-
ging the sign of the balance value to retain the 
equivalence. Notably, we used this feature to show 
all balance-FLI associations in the positive direction 
to facilitate the comparison of their effect sizes (in 
Figures S4, S7, and S9).

Because the combined approach of using the 
GTDB taxonomy and the recently introduced 
PhILR phylogenetic transform complicates the 
comparison of our results in previous studies, we 
also conducted more traditional statistical analyses 

with NCBI-annotated data to anchor our results in 
previous findings on the associations between fatty 
liver disease and gut microbiome composition. 
Overall, the Centrifuge/GTDB classification 
assigned 5.3 billion reads in the 6,269 samples 
(after exclusions in FINRISK 2002) to 23,457 bac-
terial and 1,248 archaeal taxa, and the SHOGUN/ 
NCBI classification assigned 5.5 billion reads to 
5,024 bacterial and 261 archaeal taxa. Starting 
from high level descriptions of the microbial com-
munities in the high and low FLI groups (<60 or 
≥60 FLI; Figure 1a), the phylum-level distributions 
of bacterial and archaeal taxa appeared to be highly 
similar between the groups (Figures S1, S2). 
However, the proportion of taxa assigned to 
Firmicutes in Centrifuge/GTDB appeared to be 
slightly higher than in the SHOGUN/NCBI data. 
Furthermore, only 58% of the number of reads 
assigned in Centrifuge/GTDB to 6 main archaeal 
phyla were assigned to a single main archaeal phy-
lum in SHOGUN/NCBI. Alpha diversity (as 
Shannon diversity) was significantly lower in the 
high FLI group, in both the SHOGUN/NCBI data 
(14.7% lower; AIC = 6,685; all P < 1 × 10−6) and the 
Centrifuge/GTDB (13.4% lower; AIC = 6,607; all 

Figure 1. Distribution of FLI (a), its components (b), and FLI in quantiles of the first three PC components of the fecal bacterial 
composition of the participants (c). The cutoff at FLI = 60 used to divide the participants is indicated with a dashed line in panels a and 
c.
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P < 1 × 10−4) data while adjusting for age, sex, and 
self-reported alcohol use in both models.

To further examine the high-level associations 
between FLI (as a proxy of fatty liver disease) and 
microbial community composition in FINRISK 
2002, we fit a linear regression model on the three 
first principal component (PC) axes of the fecal 
bacterial beta diversity (between individuals), sex, 
age, and alcohol. Log10(FLI) significantly correlated 
with all three bacterial PC axes, sex, age, and alco-
hol use in Centrifuge/GTDB data (adjusted 
R2 = 0.29; all P < 1 × 10−6), and PC1, PC3, sex, 
age, and alcohol use in SHOGUN/NCBI data 
(adjusted R2 = 0.27; all P < 1 × 10−4). Correlations 
between FLI and archaeal PC axes were not signifi-
cant in Centrifuge/GTDB data (at the chosen sig-
nificance level, P > 0.001), and between FLI and 
bacterial PC2 in SHOGUN/NCBI data (P > 0.001). 
In Centrifuge/GTDB data, the effect size estimate 
on log10(FLI) was a magnitude larger for PC1 
(0.11 ± 0.008) than for PC2 (0.04 ± 0.008) and 
PC3 (−0.06 ± 0.008). The relationships between 
FLI and the bacterial PC components representing 
their beta diversity in Centrifuge/GTDB data are 
visualized for each of the three components in 
Figure 1c. A comparison of these relationships in 
Centrifuge/GTDB and SHOGUN/NCBI is included 
in the SI (Figure S3).

We also further assessed the phylogenetic balances 
contributing to the PC axes in the Centrifuge/GTDB 
data. Bacterial clades associated with higher 
FLI values, on the positive side of the balances con-
tributing to PC1, included members of orders 
Lachnospirales and Oscillospirales, class Bacilli, 
and the Ruminococcaceae, Bacteroidaceae, and 
Lachnospiraceae families (Figure S4). Several clades 
had a negative association with FLI, on the negative 
side of the balances contributing to PC1, such as 
order Christensenellales and genus Faecalibacterium. 
In addition, genus Bifidobacterium in PC2, and 
family Bifidobacteriaceae in PC3 had negative asso-
ciations with continuous FLI.

Several bacterial taxa are differently abundant 
between the low and high FLI groups

We also assessed significant differences in abun-
dances of individual taxa between the high and 
low FLI groups in FINRISK 2002. In Centrifuge/ 

GTDB data, we identified 244 taxa (1% of total) 
with an increased abundance and 437 taxa (1.9%) 
with a decreased abundance in the high FLI group 
(all Q values <0.001; Table S7). In SHOGUN/NCBI 
data, 80 taxa (1.6%) had an increased abundance, 
and 44 (0.9%) had a decreased abundance in the 
high FLI group (all Q values <0.001). While the 
number of associated taxa was higher in the 
Centrifuge/GTDB data than SHOGUN/NCBI 
data, the proportion of significantly associated 
taxa was similar between the two methods. In 
both data sets, family Lachnospiraceae comprised 
over 40% of taxa positively associated with the high 
FLI group and Bacterioidaceae were in the top 3 
most common families. The negatively associated 
taxa were much more diverse, but Ruminococcaceae 
and Oscillospiraceae were among the top three most 
common families in both data sets (at least >6% of 
all negatively associated taxa).

Bacterial lineages within the NCBI Clostridium 
subclusters IV and XIVa associate with FLI

Continuous FLI and differences between FLI 
groups in the FINRISK 2002 cohort (FLI < 60, 
N = 4,359 and FLI ≥ 60, N = 1,910; see Figure 1a, 
Figure 1b, Table S1) were modeled with gradient 
boosting regression or classification using Leave- 
One-Group-Out Cross-Validation (LOGOCV) 
between participants from different regions. Only 
the bacterial PhILR transformed Centrifuge/GTDB 
data were used here, to find robust associations 
between phylogenetically related bacterial clades 
and fatty liver disease (instead of single taxa).

After feature selection and Bayesian hyperpara-
meter optimization, the correlation between the 
predictions of the final regression models (age, 
sex, self-reported alcohol use, and 18 bacterial bal-
ances as features; each trained on the data from 5/6 
regions) and true values in unseen data from the 
omitted region averaged R2 = 0.30 (0.26–0.33). 
After feature selection and optimization, the main 
classification models (age, sex, and 11 bacterial 
balances as features; each trained on the data from 
5/6 regions) averaged AUC = 0.75 (Table S2) and 
AUPRC = 0.56 (baseline at 0.30; Table S3) on 
(unseen) test data from the omitted region. 
Models trained using only the covariates averaged 
AUC = 0.71 (AUPRC = 0.47) and using only the 11 
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bacterial balances they averaged AUC = 0.66 
(AUPRC = 0.47) on test data. Alternative models 
were constructed by excluding participants with 
FLI between 30 and 60 (N = 1,583) and discerning 
between groups of FLI < 30 (N = 2,776) and FLI ≥ 
60 (N = 1,910). These models averaged AUC = 0.80 
(AUPRC = 0.75, baseline at 0.41) on their respec-
tive test data (Tables S2, S3). They averaged 
AUC = 0.76 (AUPRC = 0.68) when using only the 
covariates, and AUC = 0.70 (AUPRC = 0.63) when 
using only the 20 bacterial balances.

Because training data from all six regions were 
used to prevent overfitting in the selection of core 
features for all of the models, and similarly in 
searching for common hyperparameters, partici-
pants from the validation region of each model (in 
the training partition) partly influenced these 
parameters. Thus, we also constructed classifica-
tion models discerning between the FLI < 60 and 
FLI ≥ 60 groups, where data of the validation 
region were completely excluded in the feature 
selection and hyperparameter optimization of 
each LOGOCV model. These models, using their 
individual feature sets and hyperparameters, aver-
aged AUC = 0.75 and AUPRC = 0.57 (baseline at 
0.30) on test data from their respective validation 
regions (Table S4). Using only covariates, they 
averaged AUC = 0.71 (AUPRC = 0.47), and 
AUC = 0.67 (AUPRC = 0.48) with only the bacter-
ial balances.

Our external validation data consisted of 258 
participants after exclusion of pregnant partici-
pants or those on antibiotics in the past 6 months, 
in the FINRISK 2007 population cohort (Table S1, 
Figure S5).30 The participants originate from 
North Karelia and Helsinki/Vantaa regions in 
Finland, and their samples were processed with 
the same methodology as was used for FINRISK 
2002 (with Centrifuge/GTDB approach and 
PhILR). In this external validation, the six full 
models trained with covariates and the 11 bacterial 
balances in FINRISK 2002 averaged AUC = 0.77 
(AUPRC = 0.51, baseline at 0.21; Table S5). The 
covariate-only models averaged AUC = 0.72 
(AUPRC = 0.40) and the balance-only models aver-
aged AUC = 0.69 (AUPRC = 0.44). The receiver 
operating characteristic and precision–recall curves 
based on the averaged predictions of the models, 
tested on these external validation data, also display 

good predictive ability (AUC = 0.78, AUPRC = 0.51 
with baseline at 0.51; Figure S6)

To facilitate the interpretability of the results, we 
continued examining the main classification mod-
els using a common set of core features. In these 
models, the median effect sizes of the features on 
the model predictions at their minimum and max-
imum values were highest for age, followed by sex, 
and the 11 balances in the phylogenetic tree 
(Figures S7, S8). All 11 associated balances were 
in phylum Firmicutes, class Clostridia, and largely 
in the NCBI Clostridium subclusters IV and XIVa 
(Figure 2). The specific taxa represented standar-
dized GTDB genera

(NCBI in brackets) Negativibacillus (Clostridium), 
Clostridium M (Lachnoclostridium/Clostridium), CAG- 
81 (Clostridium), Dorea (Merdimonas/Mordavella/ 
Dorea/Clostridium/Eubacterium), Faecalicatena (Blau- 
tia/Ruminococcus/Clostridium), Blautia (Blautia), 
Sellimonas (Sellimonas/Drancourtella), Clostridium 
Q (Lachnoclostridium [Clostridium]), and Tyzzerella 
(Tyzzerella/Coprococcus).

Notably, all but one of the features in the main 
classification models (n226) were identified in the 
feature selection for the alternative models (con-
structed otherwise identically, but FLI < 30 was 
compared against FLI ≥ 60 in different data parti-
tions), together with 10 additional balances (Figure 
S9). Only one of the balances in the alternative 
models was outside phylum Firmicutes (n1712 in 
Bacteroidota), and in addition, four balances were 
outside class Clostridia (n481 in Negativicutes; 
n826, n1009, and n918 in Bacilli).
Also, negative associations with the high FLI group 
were seen for An181 sp002160325 in the balance 
n266, where it is compared against the clade includ-
ing Dorea, Faecalicatena, Sellimonas,and Tyzzerella 
species (Figure 2, S8). A higher abundance of the 
clade including Angelakisella, D5, Anaerotruncus, 
and Phocea species (against Negativibacillus 
sp00435195 in balance n97) was also negatively 
associated with high FLI.

In addition to blood test results, FLI is based on 
two anthropometric markers linked to metabolic 
syndrome, waist circumference, and BMI. This 
prompted us to dissect the Fatty Liver Index and 
identify which of the covariates and associated 
microbial balances from the phylogenetic tree can 
be linked to blood GGT and triglyceride 
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measurements (see Figure 1b), and therefore would 
be most specific to hepatic steatosis and liver 
damage.31 To do so, we performed feature selection 
(similarly to continuous FLI) for GGT and triglycer-
ide measurements in subsets of participants grouped 
by age, sex, and BMI. The feature selection identified 
two balances within the NCBI Clostridia XIVa sub-
cluster (identified as n336 and n330) which were 

important for both GGT and triglyceride level pre-
diction, and thus likely specific to liver function 
(Figure 2). Bacterial taxa were positively linked to 
liver function in these balances and included (NCBI 
species) Clostridium clostridioforme, C. bolteae, 
C. citroniae, C. saccharolyticum, and C. symbiosum. 
On the opposite, negatively associated side of the 
balances was, among others (NCBI species) 

Faecalicatena torques
Faecalicatena sp002314255

Faecalicatena gnavus
Faecalicatena sp900066545
Faecalicatena fissicatena

Sellimonas intestinalis
Sellimonas sp002161525

Dorea longicatena
Dorea sp000433535

Dorea sp900240315

Dorea sp000509125
Dorea faecis
Dorea sp900312975

Dorea sp900086625
Dorea sp000765215

Tyzzerella nexilis
Tyzzerella sp000209385

Tyzzerella sp000411335
An181 sp002160325

Hungatella hathewayi
Hungatella effluvii

Hungatella A hathewayi
CAG-81 sp000435795

Clostridium M citroniae
Clostridium M sp000155435

Clostridium M clostridioforme
Clostridium M clostridioforme A

Clostridium M bolteae

Clostridium M sp000431375
Clostridium M sp001517625

Clostridium M asparagiforme
Clostridium M lavalense

Clostridium Q symbiosum
Clostridium Q saccharolyticum
Clostridium Q sp000435655

UC5-1-2E3 sp001304875

Oribacterium sp002431355
F0428 sp003043955

UBA1390 sp002305315

Anaerotruncus sp900199635
D5 sp900113995
Angelakisella sp003453215

Phocea massiliensis
Negativibacillus sp000435195

UBA644 sp002299265

Saccharofermentans sp900313405
KA00274 sp001552885

n9
7

n3
35

n3
36

n3
32

n2
66

n9
8

n2
70

n2
69

n3
30

n2
26

n1
9

n19

n97
n98

n226

n266

n269
n270

n330
n332

n335

n336

Christensenellales

4C28d-15

TANB77

Genera Blautia, Ruminococcus A

Genera Eisenbergiella, Roseburia

Genera Anaerostipes, Butyrivibrio A,
Coprococcus, Eubacterium E, Eubacterium G, 
Lachnospira

Genus Anaerotignum

Genera Acutalibacter, Eubacterium R, 
Ruminococcus E, 

Genera Ruminoccous C, Ruminococcus D,
Ruminiclostridium

Genera Faecalibacterium, Ruthenibacterium

Genus Butyricoccus

Unknown Oscillospirales bacteria

Order

Oscillospirales

4C28d-15

Christensenellales

TANB77

Saccharofermentanales

Lachnospirales

Relative
predicted score

0.25

0.35

0.45

0.55

0.65

0.75

0.15

0.05

0.85

Age

Sex

min (24)
max (74)

Male
Female

Figure 2. Relative effects of predictive balances and covariates on the FLI < 60 and FLI ≥ 60 classification model (AUC = 0.75) 
predictions. Nodes of the balances are indicated in the cladogram and the relative effect sizes of their clades (opposite sides of each 
balance) are shown in the associated heatmap. The relative effect sizes of the covariates (age and sex) are shown below the legend 
with a heatmap on the same scale as was used for the balances. The two liver-specific balances associated with triglyceride and GGT 
levels are indicated with bold font. Clades with redundant information have been collapsed but their major genera are indicated. The 
complete tree is included in Figure S8.
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Hungatella effluvii, H. hathewayi, and two new 
GTDB-defined species Clostridium M sp001517625 
and C. M sp000431375.

Ethanol and acetate production pathways are 
identified in representative bacterial genomes from 
taxa linked to high FLI

The values of predictive balances in the phylogenetic 
tree cannot be summarized for individual taxa, 
which means that only a qualitative investigation of 
the associations between their metabolism and fatty 
liver was possible in this study. We identified genetic 
pathways predicted to encode for SCFA (acetate, 
propanoate, butanoate) and ethanol production, 
BA metabolism, and choline degradation to tri-
methylamine (TMA) in representative genomes 
from the taxa we identified to be linked to liver 
function (Figure S8). These processes were chosen 
because they have been previously identified to have 
a mechanistic link to NAFLD (see, e.g., ref.19).

Acetate and ethanol production pathways 
appeared to be more common in the representative 
genomes of the taxa which had a positive associa-
tion with FLI. In the liver function-specific clades, 
n336 and n330, MetaCyc pathways for pyruvate 
fermentation to ethanol III (PWY-6587) and 
L-glutamate degradation V (via hydroxyglutarate; 
P162-PWY; produces acetate and butanoate) were 
present only in genomes positively associated with 
FLI. In balance n336, also heterolactic fermentation 
(P122-PWY; produces ethanol and lactate) was 
more often encoded in the clade positively asso-
ciated with the high FLI group (3/5) than the 
opposing negatively associated clade (1/2). In 
representative genomes from the liver-specific bal-
ance n336, potential ethanol producers (PWY- 
6587) were seen in the positively associated clade 
(Clostridum M clostridoforme A and Clostridum 
M sp000155435), and not in the negatively asso-
ciated clade (Clostridium M sp001517625 and 
Clostridium M sp000431375). However, for most 
balances, such trends were not clear in the qualita-
tive analysis. Furthermore, we did not detect any of 
these pathways in the representative genomes of 
two individual taxa positively associated with FLI, 
Negativibacillus sp000435195 and Phocea massilien-
sis (Figure S8).

Discussion

The pathophysiology of fatty liver disease in gen-
eral, and NAFLD in particular, is complex and its 
clinical diagnosis can be difficult.32 In this study, we 
utilized metagenomic data from a large population 
cohort (FINRISK 2002),30 to identify broad links 
between the overall gut microbiome composition 
and fatty liver disease, using FLI as a recognized 
proxy (Figure 1c), and identified specific microbial 
taxa and lineages positively and negatively asso-
ciated with the high FLI group (Figure 2). It should 
be noted that FLI used in our study as a proxy for 
liver disease also includes features such as BMI and 
waist circumference, which associate with meta-
bolic syndrome and diabetes.16 Links between 
these diseases and gut microbiome composition 
are well documented in previous studies.33 

However, fatty liver disease is increasingly thought 
to be a component of the metabolic syndrome,4,34 

and while diabetes prevalence is higher in the high 
FLI group in FINRISK 2002, affected participants 
still consist only 11% of this group (Table S1). 
Furthermore, we would like to emphasize that our 
results are not suitable for current clinical applica-
tion, and should be validated by further, preferably 
mechanistic studies. We also do not know if our 
results generalize outside the Finnish population, as 
all participants in this study were exclusively from 
Finnish cohorts.

Considering that the predictive ability of FLI for 
clinically diagnosed NAFLD ranges between 
AUC = 0.81–0.93, in populations of Caucasian eth-
nicity such as the Finnish population,23 our models 
were able to reasonably predict the FLI group with 
AUC = 0.75 (AUPRC = 0.56, baseline at 0.30), in our 
internal cross-region validation. Furthermore, the 
performance of our predictive models was highly 
similar in an external, Finnish validation cohort 
(AUC = 0.77, AUPRC = 0.51, baseline at 0.21).

Our additional analyses support these main 
results. While a thorough method comparison is 
beyond the scope of the current study, the results 
from the two taxa assignments were very similar 
despite their differences, such as the fourfold higher 
number of taxa in the Centrifuge/GTDB data. In the 
machine learning models (performed only with 
Centrifuge/GTDB data), excluding participants 
with intermediate FLI (between 30 and 60) increased 
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the accuracy slightly in the internal cross-validation 
(to AUC = 0.8 and AUPRC = 0.75, baseline at 0.41). 
However, discerning between participants with 
probable fatty liver disease (FLI ≥ 60) from others 
presents a clinically more relevant target for detect-
ing changes in microbiome composition associated 
with the development of the disease. In another set 
of models, we negated the influence of validation 
region data in the individual models also for feature 
selection and hyperparameter optimization during 
training. This led to individualized sets of features 
and parameters in the models, but the average per-
formance of the models was almost identical on 
validation region samples in the internal cross- 
validation (AUC = 0.75 and AUPRC 0.57, baseline 
at 0.30). The aim of our study was to find patterns in 
microbiome composition which would be general-
izable across the six sampled geographic regions in 
Finland and easy to interpret. Thus, we consider the 
use of all training data to define the common core 
feature set justified. This goal also guided our overall 
modeling architecture and likely led to a lower per-
formance than if we instead performed interpolation 
within a smaller scale (see, e.g., ref.35).

When interpreting our results, several levels of 
associations can be considered according to types 
of fatty liver disease and the gut microbiome com-
position. Because FLI has been mostly validated with 
simple steatosis and NAFLD,23,26 we can conserva-
tively contextualize our findings with previous asso-
ciative work that used these diagnoses or clinical 
manifestations, only. The cutoff used in our study 
at FLI ≥ 60 has been used to rule in liver steatosis in 
a Caucasian cohort comparable to ours,26 but also 
a cutoff at FLI ≥ 48 has been found appropriate for 
simple steatosis in a Portuguese cohort.36 Much 
lower cutoffs (FLI ≥ 20 to 30) have been used in 
Asian cohorts.37–39 Thus, it is likely that our high FLI 
groups include most participants with liver steatosis 
or fibrosis in both FINRISK cohorts, but the low FLI 
group also likely includes participants with low- 
grade steatosis.

Traditional statistical analyses replicate previous 
findings on gut microbiome composition and fatty 
liver disease when using FLI as a risk index

Among the significantly high level FLI-associated 
differences in the gut microbiomes of the 

participants in FINRISK 2002, we found a 14.7% 
lower Shannon alpha diversity in the high FLI 
group with SHOGUN/NCBI taxa assignments and 
13.4% lower diversity with Centrifuge/GTDB assign-
ments. These results are in good accordance with 
previous results of decreased gut bacterial diversity 
in patients with biopsy-proven nonalcoholic steato-
hepatitis (NASH), the most serious form of 
NAFLD.40 In this case–control study, the Shannon 
diversity of gut microbiomes in NASH patients 
without liver cirrhosis was on average 7% lower 
compared to controls, and in patients with cirrhosis, 
14% lower. A significantly decreased gut micro-
biome alpha diversity of similar magnitude was 
also seen in cohort participants with persistent 
NAFLD compared to controls.41

In both the SHOGUN/NCBI and Centrifuge/ 
GTDB data, we found significant linear correlations 
between FLI and beta diversity or two or three main 
bacterial PC-axes of the samples, respectively (Figure 
1c, S3). The model fit was slightly better with 
Centrifuge/GTDB data, which might be due to the 
higher number of identified taxa, and thus increased 
taxonomic resolution (although including putative 
species in GTDB). Our results support previous obser-
vations of differences in beta diversity in relation to 
persistent NAFLD,41 and along the NAFLD-cirrhosis 
spectrum.8 Through the loadings of the phylogenetic 
balances on the PC axes in the Centrifuge/GTDB data, 
we detected several previously known connections 
between microbial clades and FLI (Figure S4). 
Among others, we observed a positive association 
between high FLI and family Lachnospiraceae and 
negative associations for order Christensenellales, 
genus Faecalibacterium, and genus Bifidobacterium. 
The positive association is supported by previous find-
ings of their connection with obesity,42 and the nega-
tive associations by connections to lean individuals 
and healthy gut microbiome composition.43–45

Our differential abundance analysis also detected 
a high number of taxa with significantly increased or 
decreased abundance in the high FLI group. All fol-
lowing results were observed both in the Centrifuge/ 
GTDB and SHOGUN/NCBI data sets, unless other-
wise noted. The majority of the taxa with increased 
abundance in the high FLI group was from family 
Lachnospiraceae, which supports their positive asso-
ciation with NAFLD reported previously in a number 
of studies,46 but also with obesity (Table S7).42 The 
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increased abundance of genus Roseburia has also been 
highlighted as a characteristic change in the gut 
microbiome related to NAFLD.46,47 In the current 
study, two members of the genus Roseburia were in 
the top 10 taxa most strongly associated with high FLI. 
Furthermore, our results support previous findings on 
the positive associations of, for example, Collinsella,40 

Prevotella copri,48 Dorea,47 with NAFLD. We also 
detected increases in Sutterella and Streptococcus, pre-
viously associated with cirrhosis.49 However, we 
did not find increases in families Kiloniellaceae and 
Pasteurellaceae, previously associated with NAFLD.46 

Among the individual taxa negatively associated 
with high FLI, families Ruminococcaceae and 
Oscillospiraceae (such as genus Oscillibacter) were 
common, which supports previous findings on their 
connections with NAFLD.12,41,46 A high number of 
putative (GTDB) species were negatively associated 
with FLI in the Centrifuge/GTDB data, which were 
understandably not present in the SHOGUN/NCBI 
data. Many of these were classified in the recently 
described order Christensenellales,28 including 
families such as CAG-74, associated with healthy 
participants,50 and Christensenellaceae, which are 
widespread, highly heritable, and associated with 
health.44,51

While our results from common statistical 
experiments mainly supported previous findings, 
we chose to leverage the phylogenetic information 
included in the GTDB data to find robust associa-
tions between larger bacterial clades and fatty liver 
disease in the Finnish population. This was accom-
plished by constructing predictive models to clas-
sify participants in the FLI groups based on the 
phylogenetic balances and covariates, subjected to 
feature selection and geographical cross-validation.

Predictive modeling of FLI reveals consistent 
associations between gram-positive Clostridia and 
fatty liver disease

Strikingly, the strongest associations with FLI in our 
machine learning models were all inside the 
Firmicutes phylum. A possible reason for this 
might be the higher relative abundance of phylum 
Firmicutes at high latitudes,52 where Finland is. 
Among the associations we identified, Faecalicatena 
gnavus (NCBI: Ruminococcus gnavus) was positively 
linked with FLI as part of three predictive balances 

and associated in previous studies with liver 
cirrhosis.17 In their study, oral Firmicutes, such as 
Veillonella, were suggested to invade the gut. While 
our balance-based approach did not detect these 
taxa, Megasphaera elsdenii was positively associated 
with the high FLI group in our differential abun-
dance analyses (Table S7). This might be due to the 
strict feature selection employed before the predic-
tive modeling.

Two individual taxa, Negativibacillus sp000435195 
and Phocea massiliensis, both had strong positive 
associations with the high FLI group (Figure 2), but 
the balances including these species were not pre-
dictive of the liver function-specific components 
(triglycerides and GGT). Positive associations of 
these taxa with fatty liver disease have not been 
documented previously. However, a decreasing 
abundance of both bacteria, Negativibacillus 
sp000435195 (NCBI: Clostridium sp. CAG:169) and 
Phocea massiliensis (NCBI: Phocea massiliensis) were 
seen when the intake of meat and refined cereal was 
reduced isocalorically in favor of fruit, vegetables, 
wholegrain cereal, legumes, fish and nuts in over-
weight and obese subjects in Italy.53 While compar-
isons between these studies are difficult due to 
differences in taxa annotations, bacteria, such as 
Faecalicatena gnavus (NCBI: Ruminococcus gnavus) 
and Clostridium Q saccharolyticum (NCBI: 
Clostridium saccharolyticum), were also found to 
respond negatively to the Mediterranean diet. Thus, 
further study on the connections of these bacteria 
with gut health and diet is warranted.

Among the taxa negatively associated with high 
FLI, Hungatella (see balance n332, Figure 2) has 
been previously shown to correlate negatively with 
the obesity phenotype in mice,54 and H. hathewayi 
was found to be a common commensal in the gut of 
healthy volunteers.55 However, genus Hungatella has 
also been positively associated with concentrations 
of trimethylamine-N-oxide (TMAO),56 a metabolite 
associated with cardiovascular disease and NAFLD. 
In our study, on the positively associated side (of 
balance n332) opposite to genus Hungatella was 
a novel GTDB species, CAG-81 sp000435795, pre-
viously included in NCBI genus Clostridium. The 
CAG-81 genus was recently positively associated 
with TMAO levels in urine in a study using the 
GTDB classification.57 While we did not find the 
pathway for TMA (precursor to TMAO) production 
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in its genome, this would explain the positive asso-
ciation of the CAG-81 species with high FLI. 
Furthermore, the previous contradictive results 
among these taxa could be explained by grouping 
of putatively TMA producing taxa in CAG-81 
together with the closely related genus Hungatella.

Most taxa in our study with a positive association 
with FLI belonged to the broadly defined 
Clostridium NCBI genus, which supports several 
previous observations.14,46,58 However, taxonomic 
standardization according to GTDB has identified 
the Clostridium genus as the most phylogenetically 
inconsistent of all bacterial genera in the NCBI 
taxonomy and divides it into a total of 121 mono-
phyletic genera in 29 distinct families.28 The GTDB 
reassignment complicates comparisons to previous 
studies, but it is phylogenetically and biologically 
sensible, and can thus provide new insights into the 
microbiomes. Our results also strongly suggest that 
despite its higher cost compared to metabarcoding, 
the increased resolution of (shallow) shotgun meta-
genomic sequencing is highly useful in identifying 
specific taxon-disease associations (see, e.g., 
refs.27,59).

Bacterial taxa positively associated with high FLI 
have a genetic potential to exacerbate the 
development of fatty liver disease

We identified several plausible new associations 
between individual taxa and clades of bacteria and 
fatty liver. All taxa were from class Clostridia, which 
are obligate anaerobes. We observed that reference 
genomes from the bacterial taxa positively associated 
with high FLI in the liver-specific balances harbored 
several genetic pathways necessary for ethanol pro-
duction. Specifically, genes predicted to enable the 
fermentation of pyruvate to ethanol (MetaCyc PWY- 
6587) appeared to be common. Endogenous produc-
tion of ethanol has been known to both induce hepatic 
steatosis and increase intestinal permeability,60 and 
several of the taxa associated with the high FLI group 
have also been experimentally shown to produce etha-
nol, such as C. M asparagiforme, C. M bolteae, 
C. M clostridioforme/C. M clostridioforme A,61 and 
C. Q Saccharolyticum.62 The relative abundances of 
these putatively ethanol-producing taxa were also pre-
dictive of FLI groups in previously unseen data. 
However, the self-reported alcohol consumption 

from the participants was not among the best predic-
tors for the FLI groups, as it was excluded in the 
feature selection step.

All reference genomes from taxa positively asso-
ciated with FLI in balance n330 harbored genes 
predicted to encode for the L-glutamate fermenta-
tion V (P162-PWY; Figure S8) pathway, which 
results in the production of acetate and butanoate. 
Glutamate fermentation could lead to increased 
microbial protein fermentation in the gut, which 
has been previously been linked with obesity, dia-
betes, and NAFLD.63 Recently, the combined intake 
of fructose and microbial acetate production in the 
gut was experimentally observed to contribute to 
lipogenesis in the liver in a mouse model.64 

Interestingly, C. Q saccharolyticum (in our study, 
a taxon positively associated with high FLI deriving 
from balance n330) was experimentally shown to 
ferment various carbohydrates, including fructose, 
to acetate, hydrogen, carbon dioxide, and ethanol.62 

Furthermore, while our own pathway analysis did 
not detect BA modification pathways in the refer-
ence genome of C. Q saccharolyticum, a strain of 
this species has been highlighted as a probable con-
tributor to NAFLD development through the 
synthesis of secondary BA.15 The links between 
dietary intake and gene regulation, combined with 
microbial fermentation in the gut warrant further 
mechanistic experiments to elucidate their links 
with fatty liver and likely other metabolic diseases.

NAFLD-associated ethanol-producing bacteria 
in previous cohort studies have all been gram- 
negatives, such as (NCBI-defined) Klebsiella 
pneumoniae,13 and Escherichia coli.12 In our popu-
lation sample, instead of gram-negatives, bacteria 
from the C. M bolteae, C. M clostridioforme/ 
C. M clostridioforme A and C. M citroniae species 
(positively associated with high FLI in balance 
n336) have been described as opportunistic 
pathogens,65 and are hypothesized to exacerbate 
fatty liver development similarly through endo-
genous ethanol production. This result suggests 
that geographical,35 and ethnic variability,66 

might also strongly affect gut microbiome compo-
sition and its associations with disease. In addition 
to putative endogenous ethanol producers, we 
identified other taxa positively associated with 
high FLI in balance n330, for which reference 
genomes harbored a genetic pathway predicted 
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to encode for the ability to ferment L-lysine to 
acetate and butyrate. While the production of 
these SCFAs is often considered beneficial for gut 
health, other metabolism of proteolytic bacteria 
might negatively contribute to fatty liver disease.67

Through modeling a previously validated index 
for fatty liver, FLI, we found replicable associations 
with specific microbial taxa and likely liver disease of 
the participants. In addition, the sex and age of 
participants were also strongly predictive of the FLI 
group in our models (Figure 2, S7). Their similar 
positive associations with fatty liver disease are 
known from previous studies.68,69 The associated 
microbial balances could be used to improve the 
predictions above the baseline of these covariates 
on 5/6 regions in Finland in the main cohort. For 
example, in the model cross-validated with Lapland, 
the balances were more predictive of the FLI group 
than the covariates by themselves, and their combi-
nation increased the AUC further. Yet, when testing 
the model where Turku/Loimaa region was used for 
internal cross-validation, the microbial balances 
were slightly predictive of the FLI group but failed 
to improve the AUC over the covariates (Table S2). 
This pattern might stem from the cultural and 
genetic west-east division in Finland,70,71 with 
a closer proximity of the Helsinki/Vantaa region to 
eastern regions than Turku/Loimaa, in both terms. It 
is thus likely that further incorporation and investi-
gation on the use of spatial information in micro-
biome modeling would elucidate these geographical 
patterns in taxa-disease associations.

Our models were also able to accurately predict the 
FLI group of participants in the external validation 
cohort, which were from the North Karelia and 
Helsinki/Vantaa regions. The observed difficulty to 
geographically extrapolate taxa-disease 
associations,35 might mean that associations reported 
in our study are specific to Finland and nearby regions. 
Notably, many of the positive associations between 
specific taxa and fatty liver disease have not been 
reported previously, but the functional potential of 
these taxa inferred from genomic data is similar to 
taxa positively associated with NAFLD in previous 
studies. Thus, the geographical limits of taxa-disease 
associations reported in studies, such as ours warrant 
further study. Unfortunately, the generalization of our 
own results outside of Finland also remains to be 
addressed.

It is likely that not all associations in the current 
study are related solely to liver steatosis because FLI 
is based on measurements related to metabolic 
syndrome. However, our approach is supported 
by recent views of NAFLD as the integral liver 
component of the metabolic syndrome.34,72 

Indeed, the prevalences of diabetes and cardiovas-
cular disease in both FINRISK 2002 and 2007 
cohorts are elevated in the high FLI group, although 
the majority of the high FLI participants did not 
have either of these diagnoses at the time of sam-
pling (Table S1). We also dissected the FLI by 
dividing participants into age/sex/BMI groups and 
detected microbial groups specific to the blood 
work measurements of liver damage, triglycerides, 
and GGT. These associated taxa can thus be 
thought of as most closely associated with liver 
function, if such a division is deemed practical.

Conclusions

Modeling an established risk index for fatty liver 
enabled the detection of associations between the 
disease and gut microbiome composition, to the 
level of individual taxa. While utilizing FLI as 
a proxy, NCBI taxa identified with standard statis-
tical methods were supportive of previously 
reported differences between NAFLD cases and 
healthy controls. In our machine learning frame-
work, all clades robustly predictive of the FLI group 
were from the obligately anaerobic gram-positive 
class Clostridia, representing several redefined 
GTDB genera previously included in the NCBI 
genus Clostridium. Many of the representative gen-
omes of taxa positively associated with high FLI had 
the genomic potential for endogenous ethanol pro-
duction. Our results support previous findings on 
the likely contribution of ethanol and increased gut 
permeability on the induction of hepatic steatosis. 
Further support was also found for the involvement 
of TMA and SCFAs, especially acetate, in the likely 
pathophysiology of fatty liver disease. Our models 
were able to predict the FLI group of participants in 
Finland across geographical regions and in an 
external Finnish cohort, showing that the associa-
tions are robust and generalizable in this popula-
tion. Based on our results, mechanistic connections 
between specific microbes and fatty liver disease, 
and the geographical differences in such taxa- 
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disease associations should be addressed in further 
studies.

Materials and Methods

Survey details and sample collection

Cardiovascular disease risk factors have been mon-
itored in Finland since 1972 by conducting 
a representative population survey every 5 y.30 In 
the FINRISK 2002 survey, a stratified random 
population sample was conducted on six geogra-
phical regions in Finland. These are North Karelia 
and Northern Savo in eastern Finland, Turku and 
Loimaa regions in southwestern Finland, the cities 
of Helsinki and Vantaa in the capital region, the 
provinces of Northern Ostrobothnia and Kainuu in 
northwestern Finland, and the province of Lapland 
in northern Finland.

Briefly, at baseline examination, the participants 
filled out a questionnaire form, and trained nurses 
carried out a physical examination and blood sam-
pling in local health centers or other survey sites. 
Data were collected for physiological measures, 
biomarkers, and dietary, demographic, and lifestyle 
factors. Stool samples were collected by giving will-
ing participants a stool sampling kit with detailed 
instructions. These samples were mailed overnight 
between Monday and Thursday under Finnish win-
ter conditions to the laboratory of the Finnish 
Institute for Health and Welfare, where they were 
stored at −20°C. In 2017, the samples were shipped 
still unthawed to the University of California San 
Diego for microbiome sequencing.

Details of the FINRISK cohorts analyzed in this 
study are included in the supplementary files 
(Table S1). Further details and sampling have also 
been extensively covered in previous publications 
(see refs.24,73). The Coordinating Ethics Committee 
of the Helsinki University Hospital District 
approved the study protocol for FINRISK 2002 
(Ref. 558/E3/2001), and all participants have given 
their written informed consent.

Stool DNA extraction and shallow shotgun 
metagenome sequencing

DNA extraction was performed according to the 
Earth Microbiome Project protocols, with the 

MagAttract PowerSoil DNA kit (Qiagen), as pre-
viously described.74 A miniaturized version of the 
Kapa HyperPlus Illumina-compatible library prep 
kit (Kapa Biosystems) was used for library genera-
tion, following the previously published protocol.75 

DNA extracts were normalized to 5 ng total input 
per sample in an Echo 550 acoustic liquid handling 
robot (Labcyte Inc.). A Mosquito HV liquid- 
handling robot (TTP Labtech Inc.) was used for 1/ 
10 scale enzymatic fragmentation, end-repair, and 
adapter-ligation reactions. Sequencing adapters 
were based on the iTru protocol,76 in which short 
universal adapter stubs are ligated first and then 
sample-specific barcoded sequences added in 
a subsequent PCR step. Amplified and barcoded 
libraries were then quantified by the PicoGreen 
assay and pooled in approximately equimolar ratios 
before being sequenced on an Illumina HiSeq 4000 
instrument to an average read count of approxi-
mately 900,000 reads per sample.

Taxonomic matching and phylogenetic transforms

We quality trimmed the sequences and removed 
the sequencing adapters with Atropos.77 Host reads 
were removed by mapping the reads against the 
human genome assembly GRCh38 with Bowtie2.78 

To improve the taxonomic assignments of our 
reads, we used a custom index,79 based on the 
Genome Taxonomy Database (GTDB) release 89 
taxonomic redefinitions,28,80 for reading classifica-
tion with default parameters in Centrifuge 1.0.4.81 

Viral and eukaryotic sequences were removed in 
this step, as the database contains only bacterial and 
archaeal reference genomes. After read the classifi-
cation, all following steps were performed with 
R version 3.5.2,82 using phyloseq 1.30.0,83 to man-
age the data. To reduce the number of spurious 
read assignments, and to facilitate more accurate 
phylogenetic transformations, only reads classified 
at the species level, matching individual GTDB 
reference genomes, were retained. Samples with 
less than 50,000 reads, from pregnant participants 
or recorded antibiotic use in the past 6 months were 
removed, resulting in a final number of 6,269 sam-
ples. We first filtered taxa not seen with more than 3 
counts in at least 1% of the samples and those with 
a coefficient of variation ≤3 across all samples, 
following McMurdie and Holmes,83 with a slight 
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adaption from 20% of the samples to 1% of the 
samples, because of our larger sample size. The 
complete bacterial and archaeal phylogenetic trees 
of the GTDB release 89 reference genomes, con-
structed from an alignment of 120 bacterial or 122 
archaeal marker genes,28 were then combined with 
our taxa tables. The resulting trees were thus subset 
only to species that were observed in at least one 
sample in our data. The read counts were trans-
formed to phylogenetic node balances in both trees 
with PhILR.29 The default method for PhILR inputs 
a pseudocount of 1 for taxa absent in an individual 
sample before the transform.

In this study, we did not specifically and solely 
use relative abundances at various taxonomic 
levels, as is common practice for microbiome stu-
dies. Instead, we applied a PhILR transformation to 
our microbial composition data,29 introducing the 
concept of microbial “balances”. Indeed, evolution-
ary relationships of all species harbored in each 
microbiome sample can be represented on 
a phylogenetic tree, with species typically shown 
as external nodes that are related to each other by 
multiple branches connected by internal nodes. In 
this context, the value of a given microbial “bal-
ance” is defined as the log-ratio of the geometric 
mean abundance between two groups of microbes 
descending from the same corresponding internal 
node on a microbial phylogenetic tree. This phylo-
genetic transform was used because it (i) addresses 
the compositionality of the metagenomic read 
data,84 (ii) permits simultaneous comparison of all 
clades without merging the taxa by predefined 
taxonomic levels, and (iii) enables evolutionary 
insights into the microbial community. The links 
between microbes and their environment, such as 
the human gut, are mediated by their functions. 
Different functions are known to be conserved at 
different taxonomic resolutions, and most often at 
multiple different resolutions.85 Thus, associations 
between the microbes and the response variable are 
likely not best explained by predefined taxonomic 
levels. In the absence of functional data, concur-
rently analyzing all clades (partitioned by the nodes 
in the phylogenetic tree) would likely enable the 
detection of the associations at the appropriate 
resolution depending on the function and the 
local tree topography.

To further validate our approach, assess how 
the use of the GTDB taxonomic redefinitions and 
custom database affected our results, and to facil-
itate comparisons with previous results, we anno-
tated our raw reads in FINRISK 2002 samples also 
with NCBI taxonomy and performed several addi-
tional analyses. For these comparison data, after 
quality trimming the FINRISK 2002 reads and 
removing host sequences as described above, 
SHOGUN v1.0.5,59 was used for taxonomy 
assignments against the NCBI RefSeq version 82 
(May 8, 2017) database containing complete bac-
terial, archaeal, and viral genomes. To facilitate 
comparisons between different annotations, we 
subset the samples included in the SHOGUN/ 
NCBI annotated data to those included in the 
Centrifuge/GTDB data (for exclusion criteria, see 
above).

Covariates

Because the fatty liver disease is underdiagnosed at 
the population level,25 and our sampling did not 
have extensive coverage of liver fat measurements, 
we chose to use the Fatty Liver index as a proxy for 
fatty liver.26 Furthermore, the index performs well 
in cohorts of Caucasian ethnicity, such as ours, to 
diagnose the presence of NAFLD.23 We calculated 
FLI after Bedogni et al.26 (e0.953*log

e
(triglyceridesmg/ 

dL) + 0.139*BMI + 0.718*log
e
(GGT) + 0.053*waist 

circumference–15.745)/ (1 + e0.953*log
e
(triglyceridesmg/dL) 

+ 0.139*BMI + 0.718*log
e
(GGT) + 0.053*waist circumference– 

15.745) * 100. We chose the cutoff at FLI ≥ 60 to 
identify participants likely to be diagnosed with 
hepatic steatosis (positive likelihood ratio = 4.3 
and negative likelihood ratio = 0.5, after Bedogni 
et al.26). Triglycerides, gamma-glutamyl transfer-
ase (GGT), BMI, and waist circumference mea-
surements had near complete coverage for the 
participants in our data. Self-reported alcohol use 
was calculated as grams of pure ethanol per week. 
Cases with missing values were omitted in linear 
regression models. At least one feature used for 
FLI calculation was missing for 20 participants in 
FINRISK 2002 (0.3%) and the self-reported alco-
hol use was missing for 247 participants (3.9%). In 
the machine learning framework, missing values 
for FLI and self-reported alcohol use were mean 
imputed. However, for the feature selection to 
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identify liver function-specific balances, GGT, tri-
glycerides, and BMI were not imputed but obser-
vations where any of these were missing were 
simply removed.

Taxa composition and alpha diversity

The baseline compositions of the microbial com-
munities in the samples were summarized at phy-
lum level in the different FLI groups (<60 and ≥60 
FLI) with the Centrifuge/GTDB data in FINRISK 
2002 and 2007 (Figure S1), and with SHOGUN/ 
NCBI data in FINRISK 2002 (Figure S2) by total 
sum scaling and merging taxa at the phylum level, 
separately for bacteria and archaea.

Bacterial alpha diversity of each individual sam-
ple in FINRISK 2002 was estimated through 
Shannon diversity as the mean of 10 random rar-
efactions of raw annotated read counts (see ref.86), 
separately in both the Centrifuge/GTDB and 
SHOGUN/NCBI data sets. Associations between 
the FLI group (<60 or ≥60 FLI) and Shannon 
diversity in the data sets were modeled using bino-
mial regression and adjusted for age, sex, and self- 
reported alcohol use, using “glm” in base R.82

Beta diversity and linear modeling of FLI

In the Centrifuge/GTDB data, beta diversity was 
calculated as Euclidian distance of the PhILR bal-
ances through Principal Component Analysis (PCA) 
on bacterial and archaeal balances separately with 
“rda” in vegan 2.5.6.87 To calculate beta diversity 
with the SHOGUN/GTDB data, raw bacterial taxa 
counts were centered log-ratio (CLR) transformed 
with “transform” in microbiome 1.8.0,88 and their 
Euclidian distances were obtained similarly through 
PCA. Linear regression models were constructed for 
FLI with “lm” in base R,82 with Centrifuge/GTDB 
data, and separately with SHOGUN/NCBI. Log10 
(FLI) was used as the dependent variable and the 
first three bacterial PCs, sex, age, and self-reported 
alcohol were used as the independent variables. 
Archaeal PCs were not included in the models 
because none of them was significantly correlated 
with FLI in Centrifuge/GTDB data (all P > 0.001). 
To visualize the association between beta diversity 
and FLI, the FLI of each participant was plotted 
against its quantiles along the three bacterial PC 

axes in Centrifuge/GTDB data (Figure 1c). 
A comparison of the associations with the alternative 
SHOGUN/NCBI annotated data was also included 
in the SI (Figure S3).

Differential abundance of individual taxa between 
the FLI groups

To facilitate comparisons to previous studies, we 
assessed the associations between the FLI group 
(<60 or ≥60 FLI) of the participants and 
Centrifuge/GTDB and SHOGUN/NCBI annotated 
individual taxa present in the samples. With both 
data sets, the differential abundance of the bacterial 
taxa between the FLI groups was assessed with the 
ALDEx2 compositional data analysis tool.89 Briefly, 
the significance of the abundance differences 
between the groups was estimated with a Welch’s 
t-test, and only taxa with (Benjamini Hochberg) 
false discovery rate-adjusted P values (or 
Q values) <0.001 were retained. The associated 
taxa were then divided in each data set to those 
positively or negatively associated with the high FLI 
group and sorted based on effect sizes estimated 
from the median CLR differences between the 
groups.

FLI modeling within a machine learning framework

In the machine learning framework, both regression 
and categorical models were constructed for FLI, 
using only the Centrifuge/GTDB data. The feature 
selection, hyperparameter optimization, and internal 
cross-validation methods were identical for both 
approaches, unless otherwise stated. The continuous 
or categorical FLI (groups of FLI < 60 and FLI ≥ 60) 
were modeled with xgboost 0.90.0.2,90 by using both 
bacterial and archaeal balances, sex, age, and self- 
reported alcohol use as preliminary predictor fea-
tures. We used FLI 60 as the cutoff for ruling in 
fatty liver (steatosis) for the classification, after 
Bedogni et al.26 The data were first split into 70% 
train and 30% test sets while preserving sex and 
region balance. To take into account geographical 
differences (see, e.g., ref. 35) and to find robust pat-
terns across all six sampled regions in Finland 
between the features and FLI group, we used Leave- 
One-Group-Out Cross-Validation (LOGOCV) 
inside the 70% train set to construct 6 separate 
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models in each optimization step. Because of the 
high dimensionality of the data (3,423 predictor 
features), feature selection by filtering was first per-
formed inside the training data, based on random 
forest permutation as recommended by Bommert 
et al.91 Briefly, permutation importance is based on 
accuracy, or specifically, the difference in accuracy 
between real and permuted (random) values of the 
specific variable, averaged in all trees across the 
whole random forest. The permutation importance 
in models based on the six LOGOCV subsets of the 
training data was calculated with mlr 2.16.0,92 and 
the simple intersect between the top 50 features in all 
LOGOCV subsets was retained as the final set of 
features. Thus, the feature selection was influenced 
by the training data from all six geographical regions, 
but this only serves to limit the number of chosen 
features because of the required simple intersect. 
This approach was used to obtain a set of core pre-
dictive features that would have the potential for 
generalizability across the regions. The number of 
features included in the models by this approach was 
deemed appropriate, since the relative effect size of 
the last included predictor was very small (<0.1 
change in classification probability across its range).

Bayesian hyperparameter optimization of the 
xgboost models was then performed with only the 
selected features. An optimal set of parameters for 
the xgboost models was searched over all LOGOCV 
subsets with “mbo” in mlrMBO 1.1.3,93 using 30 
preliminary rounds with randomized parameters, 
followed by 100 optimization rounds. Parameters 
in the xgboost models and their considered ranges 
were learning rate (eta) [0.001, 0.3], gamma [0.1, 5], 
maximum depth of a tree [2, 8], minimum child 
weight [1, 10], fraction of data subsampled per each 
iteration [0.2, 0.8], fraction of columns subsampled 
per tree [0.2, 0.9], and maximum number of itera-
tions (nrounds) [50, 5000]. The parameters recom-
mended by these searchers were as following for 
regression: eta = 0.00889; gamma = 2.08; max_-
depth = 2; min_child_weight = 8; subsample = 0.783; 
colsample_bytree = 0.672; nrounds = 1,810, and for 
classification: eta = 0.00107; gamma = 0.137; max_-
depth = 5; min_child_weight = 9; subsample = 0.207; 
colsample_bytree = 0.793; nrounds = 4,328. We 
used Root-Mean-Square Error (RMSE) for the 
regression models and Area Under the ROC 
Curve (AUC) for the classification models to 

measure model fit on the left-out data (region) in 
each LOGOCV subset. Receiver operating charac-
teristic and precision–recall curves for these valida-
tion metrics were calculated with “evalmod” in 
precrec v0.11.2.94 The final models were trained 
on the LOGOCV subset training data, the data 
from one region thus omitted per model, and 
using the selected features and optimized hyper-
parameters. Internal validation of these models 
was conducted against participants only from the 
region omitted from each model, in the 30% test 
data which was not used in model training or 
optimization. Sensitivity analysis was conducted 
by using only the predictive covariates (sex and 
age) or balances separately, with the same hyper-
parameters, data partitions, and cross-region inter-
nal validation as for the full models.

Partial dependence interpretation of the FLI 
classification models

Because the classification models have a more clini-
cally relevant modeling target for the difference 
between FLI < 60 and FLI ≥ 60, the latter used to 
rule in fatty liver,26 we further interpreted the par-
tial dependence of their predictions. Partial depen-
dence of the classification model predictions on 
individual features was calculated with “partial” in 
pdp 0.7.0.95 The partial dependence of the features 
on the model predictions was also plotted, over-
laying the results from each of the six models. For 
each feature, its relative effect on the model predic-
tion was estimated as medians of the minimum and 
maximum that (output probability of the model for 
the FLI ≥ 60 class), calculated at the minimum and 
maximum values of the feature separately in each of 
the six models. The relative effects of the balances 
were then overlaid as a heatmap on a genome cla-
dogram which covers all balances in the model with 
ggtree 2.1.1.96

Construction of alternative classification models to 
discern between FLI < 30 and FLI ≥ 60 groups

To assess the robustness of the models and how 
removing the participants with intermediate FLI 
(between 30 and 60) affects model performance, we 
removed this group (N = 1,910) and constructed 
alternative classification models to discern between 

GUT MICROBES e1888673-15



the FLI < 30 and FLI ≥ 60 groups. Other than remov-
ing the intermediate FLI participants and resulting 
new random split to the train (70%) and test (30%) 
sets, these models were constructed identically to the 
main models, including LOGOCV design, feature 
selection, and hyperparameter optimization. The 
recommended parameters for this classification task 
were eta = 0.00102; gamma = 3.7; max_depth = 2; 
min_child_weight = 5; subsample = 0.49; colsample_-
bytree = 0.631; nrounds = 3,119. Interpretation of 
partial dependence was also performed identically, 
but only the relative effects of the model features 
were plotted without a cladogram.

Exclusion of validation region data from feature 
selection and hyperparameter optimization

Because training data from all six regions are used 
to inform the selection of optimal features and 
hyperparameters, the validation region data cannot 
be considered completely independent of the train-
ing of the LOGOCV models. Thus, we constructed 
a set of classification models for the FLI ≥ 60 and 
FLI < 60 groups, where all validation region sam-
ples also in the training data were excluded from 
the simple intercept of top 50 features in each 
LOGOCV set and from the subsequent hyperpara-
meter optimization. These models with individua-
lized features and hyperparameters were then 
tested on the validation region samples in the 
unseen test data to estimate how model perfor-
mance was affected. The main test (70%) and 
train (30%) sets were identical to the main models, 
but additionally, 6 randomized 70/30 splits nested 
inside the test set (excluding the validation region) 
were used in hyperparameter optimization to 
reduce overfitting. Average optimal hyperpara-
meters in the six models were eta = 0.00106; 
gamma = 4.3; max_depth = 2; min_child_-
weight = 7; subsample = 0.36; colsample_by-
tree = 0.613; nrounds = 1,772.

External validation of the models in a separate 
population cohort

To further validate our models and results, we lever-
aged the data from a more recent population cohort 
in Finland, FINRISK 2007 (see Table S1). In this 
cohort, the choice of participants, sample collection, 

and related methods for the data used in the current 
study were similar to FINRISK 2002 to facilitate inter- 
cohort comparisons, and are reported elsewhere.30 

The study protocol of FINRISK 2007 was approved 
by the Coordinating Ethical Committee of the 
Hospital District of Helsinki and Uusimaa (Ref. 229/ 
EO/2006). All participants have signed an informed 
consent.

Briefly, compared to FINRISK 2002, FINRISK 
2007 features a smaller number of participants who 
donated fecal samples (N = 258 after excluding 
pregnant individuals or antibiotic use in the last 
6 months), they were younger on average, and 
a smaller proportion of them were in the high FLI 
group. To produce data for the validation, methods 
and quality control related to DNA extraction, 
sequencing, taxonomic assignments, and calculation 
of FLI values were identical to FINRISK 2002 data, 
as described above. For the phylogenetic transform 
(performed otherwise identically), only taxa passing 
the filtering in FINRISK 2002 bacterial data set were 
retained in FINRISK 2007 and a pseudo-count of 1 
was used for taxa unobserved in the new data, to 
exactly match the node balance names. The 
FINRISK 2007 data were then subset to the model 
features of the main classification models (sex, age, 
and the 11 bacterial balances), and input in each of 
the 6 LOGOCV classification models. The results of 
these predictions were then compared against the 
true FLI groups (FLI ≥ 60 and FLI < 60) of the 
participants (Table S5). Receiver operating charac-
teristic and precision–recall curves for the external 
validation were calculated similarly to the main 
models for the AUC and AUPRC metrics and 
plotted after averaging the predictions of the six 
models to obtain single curves (Figure S6).

Identification of predictive features specific to liver 
function

Because the FLI also incorporates BMI and waist 
circumference, and they strongly contribute to the 
index,26 we deemed it necessary to further investi-
gate which of the identified balances were specific to 
liver function. The participants were first grouped by 
age (<40, 40–60, and 60<), sex (female or male) and 
BMI (<25, 25–30, and 30<) into 18 categories 
(N = 105–711 per category). We performed feature 
selection similarly to the FLI models by fitting 
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random forest regressors for GGT and triglycerides 
with mlr 2.16.0.92 This was done separately in each of 
the 18 categories, and in each category, we again 
used LOGOCV with the regions to obtain 6 runs 
per category. Finally, the features predictive of GGT 
or triglycerides in each category were selected as the 
intersect of top 50 features in the 6 LOGOCV itera-
tions by permutation importance. The intersect of 
features predictive of GGT or triglycerides in any of 
the categories and the features predictive of catego-
rical FLI were identified as specific to liver function.

Pathway inference for taxa associated with FLI

Our taxonomic matching of the reads is based on the 
genomes of GTDB (release 89),28 which are all complete 
or nearly complete and available in online databases. 
This enables us to estimate the likely genetic content, 
and thus, the metabolic potential of the microbes asso-
ciated with FLI. We use this approach because the 
sequencing depth of our samples does not allow assem-
bling contigs and (metagenome-assembled) genomes, 
required for pathway predictions. Because of the com-
positional phylogenetic transform, among other fea-
tures of our data, previously developed approaches 
such as PICRUSt,97 could not be used here.

The genomes of all 336 bacteria under at least one 
of the predictive balances were downloaded from 
NCBI. One hundred and nineteen of these genomes 
were originally not annotated, which is 
a requirement for pathway prediction. Therefore, 
Prokka v1.14.6,98 was used to annotate the 119 unan-
notated genomes as a preliminary step. Pathway 
predictions were then performed for all 336 genomes 
with mpwt v0.5.3 multiprocessing tool,99 for the 
PathoLogic pipeline of Pathway Tools 23.0.100 

Pathways for ethanol and short chain fatty acid 
(acetate, butyrate, propionate) production, bile acid 
metabolism, and choline degradation to trimethyla-
mine were identified from MetaCyc pathway classi-
fications (see ref.101 and Table S4). The prevalence of 
these processes was then assessed in the analyzed 
genomes and summarized per process to consider 
the possible links of the taxa with fatty liver patho-
physiology. Finally, the presence of individual path-
ways for acetate and ethanol production was also 
outlined for each genome.
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