
UC Berkeley
Energy Use in Buildings Enabling Technologies

Title
Service-Based Universal Application Interface for Demand Response Energy Systems

Permalink
https://escholarship.org/uc/item/15m4j9cb

Author
Jan Rabaey

Publication Date
2006

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/15m4j9cb
https://escholarship.org
http://www.cdlib.org/

1

Service-Based Universal Application
Interface for Demand Response Energy

Systems
(UC Berkeley Project)

Goal: Develop and demonstrate an application development environment
for a scalable and extendible demand response system
Funding: $250 K
Period of Performance: 4/15/2005 – 4/14/2006
Multi-disciplinary Collaboration Team:

Jan Rabaey: EECS
Paul Wright: Mech. Eng. Dept.
Ed Arens: Architecture
David Auslander: Mech. Eng.
David Culler: EECS
5 Graduate Student Researchers

2

The Demand Response Scenario
and the Energy-Cost Aware Home

Real-
time
Meter

Utility

Pr
ice El

ec
tri

cit
y

us
ed

Occupancy
sensors

Power
sensor

Temperature
sensors

Power
actuators

Price
Indicator

• enable deployment of DR in
residential settings
• lead to substantial reduction in
energy cost

Distributed network of
wireless sensors,
actuators and
controllers:

3

The Big Picture

Major Challenge:
Proliferation of hardware and software options
Ease of application development
Ease of deployment
Ease of maintenance

Our Proposed Solution: A Universal Application
Interface for ad-hoc wireless sensor and actuator
networks

Based on library of universal services
Called SNSP (sensor network service platform)

Project Goal: Demonstrate
Portability of DR application over range of implementation
platforms
Ad-hoc extensibility of functionality

4

Execution Plan

#1. DR Requirement Analysis
#2. DR on MICA Nodes using SNSP abstraction.
#3. Port DR on Telos Nodes using SNSP

abstraction
#4. Extended DR application on Mica, Telos and

Infineon nodes

5

A Crucial Challenge
Ensuring portability, scalability and true ad-hoc deployment

A plethora of implementation strategies emerging, some of them
being translated into standards

SELECT temp
FROM sensors
WHERE temp > thresh
TRIGGER ACTION SndPkt
EPOCH DURATION 5 s

TinyOS/TinyDB

• BottomBottom--up definition without perspective on interoperability and portabup definition without perspective on interoperability and portabilityility
•• Little reflection on how this translates into applicationsLittle reflection on how this translates into applications

6

How sensor networks are currently
programmed

NesC

Platform
specific

Cross-compiler

NesC middleware lib

… (node per node)

Operation-system dependent
Network aware
Hardware aware
Node aware
Hard-coded

7

Mote Processor
Handles 3-sets
of Data

1. TempNode Data
2. Slider Bar Position
3. 15-min Price update
(note: for demo 1-min price signal)

Note: Mote also controls
LED traffic lights
For user interface

Fan Control
Algorithm:

TAVE > TSET: Fan On
TAVE < TSET: Fan On Flashing red

For system
failure

PG&E
Station

802.11b XML
terminal

Daily Price Data
(Emergency Data Upload)

15 min
Price

Update PG&E
Power
Meter

CAL
ISO

Sends & Receives
Control signals

With PG&E station

802.11b Mote
RadioPC104

Processor

Thermostat

Mote
Radio

Mote
Radio

Mote
Processor

Fan

Mote
Radio

Send
control signal

Price
Signal

Ack
Signal

1 2 3 4 5

TempNodes send temp
data to thermostat

Reset
Signal

Temp
Signal

Tiny
TempNode
Vibration
powered

Operational, but …
• fixed scenario
• dedicated map of functions to nodes
• hard to extend
• inter-networking hard and hardwired

Example: The DR Scenario

8

App 2 App 1 …
Application Application Application Application

SNSP

PicoRadio ?

Dust?
Telos ?

Platform-Independent Programming

Service
layer

• Service layer abstracts hardware and networking from application programmer
• Currently made available as set of TinyServices on top of TinyOS

9

A Functional View of DR

Traffic lights

Fans and AC

Displays

Pricing

ActuatorsActuators

Two controllers:Two controllers:
Thermostat + price monitorThermostat + price monitor

Determine what and when to turn on/off
based on readings from sensors
and do this using actuators

CAL
ISO

CAL
ISOCould be anywhere

WWW

Virtual sensors Virtual actuators

Energy sensorsEnergy sensors
Temp SensorsTemp Sensors

Price Sensor(s)Price Sensor(s)

Weather Predicting Sensor(s)Weather Predicting Sensor(s)

SensorsSensors

User inputsUser inputs
(sliders, …)(sliders, …)

10

The Sensor Network as a Distributed Database

QS allows a controller to
obtain the state of a
group of components

Controller

Query Service (QS)

S1

S2

Application

Application
Interface SNSP

The query as the basic access mechanism
“Get the temperature in the kitchen”

Controller

Command Service
(CS)

A1

A2

Application

Application
Interface SNSP

CS allows a controller to
set the state of a group of
components

Augmented with a command mechanism
“Close the blinds in the living room”

11

Name = attribute + scope (temperature:kitchen)

Using Semantic
Addressing

Names are not unique
Names may change during network operation

“read temperature in the kitchen”

kitchen

C

Enables ad-hoc operation and provides robustness

12

A Programming Abstraction

User App

User SDK

Platform
specific

Platform
independent

Compiler

Service lib
Service
Middleware
(“TinyServices”)

+

13

Pseudo-code Control

Price Display ControlCooling Control
Global price;
PriceDisplayCntl(short id){

sensorRequestQuery(PG&E,
PriceSense,);

...
//receive results
sensorResponse(price);

actuatorRequestCommand(LR,
PriceDisp.price = price);

}

Global temp;
ACCntl(short id, short rate){

sensorRequestQuery(kitchen,
TempSense.samplerate = rate);

...
//receive results
sensorResponse(temp);
if temp > 70

act = ON;
else

act = OFF;
actuatorRequestCommand(kitchen,
ACCntl.activate = act);

}

These functions are capabilities & can be re-used

14

tinyServices

User Interface
Initiating application:

• Request
• Result

Responding application
• Invoke
• Response

Concept Repository

Middleware:
Manages queries/commands
Interfaces with routing & app
Keeps track of repository

15

tinyServices User Interface
Interface for application to access capability
Interface for capability to respond

Request
“Heat On”

Result
“Success”

Response
“Success”

Invoke
“Heat On”

Control
App

Actuator
App

SNSP
Thermo
stat

Heater

16

Auxiliary Services provide Sense of
Space, Time and Concept

“heat bathroom at 7am”

C

Location service Time synchronization service

Concept
repository service

“bathroom ≡ (x1,y1), (x2,y2)”
CRS maintains a (distributed)
repository of capabilities of the
network and meta-objects

17

Example (from X11 environment)

18

Concept Repository:
Enabling true ad-hoc deployment

Goals:

Avoid large set-up efforts, eases parameterization
Introduce meta-concepts such as “kitchen” and
“dawn”
Enable dynamic extension of functionality

E.g. Addition of humidity sensors

Present up-to-date overview of network capabilities

19

Sensors Repository Rep
Price SensorTemperature Sensor

--
Name: manufacturer
Value: Honeywell
Type: string

Descriptors

Name: Price
Type: Short
Descript Name: Max
Descript Val: 1

Name: Temperature
Type: Short
Descript Name: Units
Descript Val: Celsius

Outputs

--Name: SampleRate
Type: Short

Inputs

Capability
PriceSense

Capability
TempSense

Concept
Name

PriceTemperaturePrimitive

20

tinyService Middleware

• Middleware provides 3 functionalities

Constraint
satisfaction

Repository
(service discovery
& concept storage)

SNSP
(query and
command)

Physical
network
design

Modified
publish/subscribe

Normal
publish/subscribe

21

Status

Implemented First-Order Version of
TinyServices
Demonstrated DR application on MICA

Next:
Porting to other platforms
Full implementation of Concept Repository and
other supporting services (location, time)
Demonstration of functional extensibility

