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Energy Performance Contracts (EPC) are types of agreement in which a service provider guarantees 

that customers’ building will achieve a specified energy performance (e.i., minimum energy savings) to 

reduce the risk of their investment in energy efficiency improvements. EPC requires prediction of future 

energy consumption of the building, at the design stage, before construction or major retrofit. To this end, 

building energy simulations taking into account all the major energy-using components are performed. In 

particular, fans can contribute significantly to the total building consumption. The overall efficiency of fans 

is the combination of three factors: mechanical, motor and variable frequency drive (VFD). Manufacturers 

usually provide fan mechanical efficiency curves for a broad operating range. In contrast, motor and VFD 

efficiencies are generally given at rating conditions only. To represent part-load conditions, correlations are 

typically used to estimate motor and VFD efficiency variations, to evaluate the overall electricity 

consumption. The first aim of this study is to evaluate existing correlations for motor and VFD efficiency as 

a function of load and speed, by comparison to manufacturer data, for a vendor that has shared its detailed 

test data. While VFD efficiency correlations from the literature provide reasonable accuracy against real 

data, motor correlations under-predict actual motor efficiency at low loads. The second aim of the paper is 

to improve such correlations using Bayesian inference to fit the available data.  

 

Introduction 

                                                
1 * Corresponding author email: lisa.rivalin@gmail.com 



According to the International Energy Agency, the primary energy demand has doubled in the last three 

decades, leading to the depletion of natural resources (International Energy Agency (IEA) 2017). During the 

same period, CO2 emissions, driven by electricity and heat generation, increased by 50%, raising serious 

concerns about climate change (International Energy Agency (IEA) 2017). Further, building consumption 

has become a prominent concern since it contributes to 40% of primary energy use in most countries 

(International Energy Agency (IEA) 2016). Electric motors and the systems they drive are responsible for 

43%-46% of total electricity consumption, and even more in the industrial sector (64% (Waide and Brunner 

2011)). In particular, fans account for around 19% of total motor electricity demand (Waide and Brunner 

2011) and may account for 20% to 80% of HVAC energy consumption, especially in large commercial 

buildings (Krukowski and Wray 2013). 	

To mitigate climate change and strive for a more sustainable future, several initiatives around the world 

have been launched to reduce energy consumption in every sector (CERC 2017; European Union 2018). In 

the last two decades, Energy Performance Contracting (EPC)2 has emerged as an effective solution to 

increase the energy efficiency of new and existing buildings, reducing the financial risk for customers 

(European Commission 2017; ICF International and National Association of Energy Service Companies 

2007; Rivalin et al. 2018). To do so, the company providing the service typically needs to run energy 

simulations to predict energy use and cost of different designs (e.g., different types of HVAC). These detailed 

simulations take into account all the energy-using components in a building, at early-stage of the design. 

Modeling the energy consumption of building fans is a key challenge for EPC since inaccurate modeling of 

their efficiency can lead to substantial deviations in the estimation of the overall energy consumption (Radgen 

and Oberschmidt 2008). 	

Large fans for HVAC applications are generally driven by a motor and a variable frequency drive (VFD) 

to vary its output flow rate as shown in Figure 1.  

                                                
2 Energy Performance Contracting is a service that provides customers with a set of energy efficiency (and sometimes 
renewable energy and distributed generation) measures accompanied by guarantees that the savings will be sufficient to 
finance the full cost of the project (ICF International and National Association of Energy Service Companies 2007). 
 

 



 
Figure 1: Power levels of VFD-motor-fan driveline 

 

The required power of a VFD motor fan driveline is given by (Patel, Sheth, and kamlesh Patel 2015):  

 
𝑃"# =

𝑄.𝐻
𝜂)*+ × 𝜂-./ × 𝜂/01#2 × 𝜂31#

 (1)  

 

Where Q is the airflow rate and H the total pressure head.  

The various efficiencies refer to (Brendel 2010): 

• 𝜂31# : Fan efficiency; the fan transfers only a portion of the power it receives to its shaft due to: 

• Mechanic losses dissipated in the bearings of the fan 

• Aerodynamic  losses due to the passage of the discharge flange and airstream shocks at the input of 

the wheel, by the friction of the fluid on the wheel walls 

• Flow losses due to the clearance between the wheel and volute, creating swirls and a partial return 

of the fluid aspiration. 

• 𝜂/01#2 : transmission efficiency due to belt losses 

• 𝜂-./ : motor efficiency describing the losses inside the motor 

• 𝜂)*+: VFD efficiency accounting for variable frequency drive losses 



Modeling a VFD-motor-fan driveline power requires knowing accurately each of the efficiencies above. 

Manufacturers usually provide fans or pumps mechanical efficiency curves for a broad operating range. 

Transmission losses are often considered negligible (Bernier and Bourret 1999), therefore 	𝜂/01#2 = 1. The 

challenge lies in the lack of manufacturers data in most of the building projects for motor and VFD 

efficiencies which are usually given at rating conditions only (i.e., full load).	When some manufacturer's part 

load efficiencies are available, fitted correlations are built from Bernier’s method (Li and Wang 2017; Ma 

and Wang 2009; Wu et al. 2014). These correlations are built on the assumption that the efficiency of the 

motor can be expressed as a function of the power and the efficiency of the VFDs as a function of the speed 

ratio (Patel et al. 2015; Sfeir and Bernier 2005). However, in the most common case, when no data but the 

rated efficiency are available, correlations are generally used with this single value to evaluate fan or pump 

motor and variable frequency drive (VFD) efficiencies (Caillet, Rivière, and Adnot 2010; Michopoulos et al. 

2015; Simpson and Marchi 2013; Vilanova and Balestieri 2015). Bernier,  in his 1999 and 2005 studies, gives 

examples of coefficients to be used in this case, for pumping systems. Moreover, the simulation tool 

EnergyPlus3 (EnergyPlus 2011) offers a built-in correlation where the coefficients are determined from DOE 

MotorMaster+ Data or manufacturer’s data (U.S. Department of Energy (DOE) Industrial Technologies 

Program 2003). 

One can wonder if the correlations and coefficients established in the past decades can still fit modern 

equipment. Indeed, the technology used in motors has evolved to reduce losses, including improvements on 

the continuously operated fixed-speed motor, optimization of stator and rotor design, electric material 

properties and quantity (for instance, copper is more and more used instead of aluminum for the rotors) 

(Dyess et al. 2007; Hiroyuki Mikami et al. 2011). In 2008, a European standard was published to harmonize 

existing motor efficiency classes aiming to support efforts to reduce energy consumption (Figure 2) 

(International Electrotechnical Commission 2015). This new standard defines new classes of efficiency and 

establishes a minimum motor performance starting from 2011, whereas no minimum efficiency was required 

before (Figure 3). Another recent report (Reine and Analyst 2015) shows that the efficiency of motors has 

significantly increased, for instance, from the late 1990s the majority of motors belonged to category “Eff3” 

and that they disappeared in 2002, replaced by more performant motors. 	

                                                
3 EnergyPlus is a popular energy simulation tool used by researchers and industry and funded by the USA Department 
of Energy (Department of Energy 2017). 



 
Figure 2: Efficiency classes for four-pole motors of standard IE1, IE2, IE3 and 
IE4 (International Electrotechnical Commission 2015) 
 

 
Figure 3: European Market share for low voltage motors by efficiency class from 
1998 to 2007 (Waide and Brunner 2011) 

 

Given the recent evolution of the market and the importance of fan efficiency in estimating energy use 

in buildings, this paper aims to answer two questions: 1) are Bernier’s correlations for motors and VFD still 

working for modern products? 2) If the correlations are not adequate, how can we improve them, considering 

the fact that manufacturers do not provide a large amount of data?  

Background and Method 

Existing correlations 



Bernier and Bourret (1999) and Sfeir and Bernier (2005) have modeled pump energy consumption for 

building applications. These methods provided VFD and motor correlations with examples of coefficients to 

estimate motor and VFD efficiencies as a function of, respectively, the part load and speed ratios. These 

correlations are used as a starting point to develop new correlations adapted to fans. Fan and pumps behave 

similarly because they both obey the affinity laws (Liu, Liu, and Liao 2015; Patel et al. 2015; Thambidura 

and Y 2013). The difference lies in the fluid they use; this allows us to use Bernier’s correlation to our data.  

 

Bernier and Bourret Correlation (1999) 

Bernier and Bourret (1999)’s correlation which express the motor efficiency as a function of nameplate 

load is the following : 	

 𝜂-./ = 94.187 × (1 − 𝑒=>.>?>@A) (2)  

Where 𝜏 is the percentage of nameplate load: the ratio of shaft power supplied by the motor and power 

to the maximum shaft (rated kW). 

The suggested correlation presents the VFD efficiency as the function of nameplate speed is the 

following: 

 𝜂)D+ = 50.87 + 1.283	𝜔 − 0.0142𝜔K + 5.834 × 10=L	𝜔M (3)  

Where ω is the percentage of speed used as a function of the rated speed of the engine.	

 

Sfeir and Bernier Correlation (2005)  

Sfeir and Bernier (2005) later published an updated correlation in which motor efficiency depends on 

the percentage of rated load: 

 𝜂-./ = 𝜂# × 𝐹O (4)  

Where 𝜂# is the full-load efficiency of the engine for a given power rate: 

 
𝜂# = 79.35 +

14.3 × 𝑃#
3.18 + 𝑃#

 (5)  

𝑃# is the rated shaft power. 𝐹O is a degradation coefficient calculated as follows: 



 
𝐹O =

𝑎 × 𝜏
𝑐 + 𝜏 − 𝑏 × 𝜏 (6)  

Where a, b and c are coefficients provided in a table in which the values vary according to the rated 

power of the engine and the motor nameplate load rate.  

Bernier and Sfeir’s VFD suggested correlation is:	

 𝜂)D+ = 87.84 + 0.225 × 𝜔 − 0.001228 × 𝜔K (7)  

Where 𝜔 is the percentage of the speed used in relation to the nameplate speed of the engine. 

Manufacturer data description and method 

The first objective of the paper is to find out whether the correlations presented above are adequate to 

model modern motor data. To answer this question, we obtained data from a manufacturer, under the 

restriction of keeping its name confidential. The data represents a selection of motors and VFD used for large 

HVAC fans. In particular, the motor data cover 20 2014 IE3 motors characterized by four rotation speeds 

(1200 rpm, 1600 rpm, 2400 rpm, and 3000 rpm) and 5 powers (1 kW, 5 kW, 10 kW, 20 kW and 30 kW). 

Each of them is described by a table that lists for different speeds and percentage of torque, the motor losses, 

the VFD losses, the overall efficiency of the group (taking into account motor and VFD losses) and the 

maximum of combined losses (VFD and motor). Table 1 shows an example of data for a 1200 rpm speed and 

a rated shaft of 1 kW. The diagonals of each table (shaded cells) represent values for a constant pressure drop 

network.  

Table 1. Data provided by the manufacturer for a motor nameplate speed of 1200 rpm 
and a nameplate shaft of 1kW 

 
Motor load     Motor losses [kW] - Lmot   % torque   
Load type fan load  speed [rpm] 4% 16% 36% 64% 100% 

n min [rpm] 1200   240 0.05 0.05 0.06 0.08 0.14 
n base [rpm] 1200   480 0.06 0.06 0.07 0.1 0.15 
n max [rpm] 1200   720 0.07 0.08 0.08 0.11 0.16 
Pbase [kW] 1   960 0.09 0.09 0.1 0.13 0.18 
Tbase [Nm] 7.96   1200 0.11 0.11 0.12 0.15 0.21 
Drive load     Drive losses [kW] LVFD         
Icont [A] 2.85   speed [rpm] 4% 16% 36% 64% 100% 
Imax [A] 2.85   240 0.03 0.03 0.03 0.03 0.04 

      480 0.03 0.03 0.03 0.03 0.04 



      720 0.03 0.03 0.03 0.03 0.04 
      960 0.03 0.03 0.03 0.04 0.04 
      1200 0.03 0.03 0.03 0.04 0.05 

Combined Drive & Motor(s) Efficiency %           
      speed [rpm] 4% 16% 36% 64% 100% 
      240 9.6 29.1 45 52.2 53.3 
      480 15.5 41.8 59 66.5 67.9 
      720 19.4 48.2 65.5 72.7 74.3 
      960 21.6 51.8 68.7 76 77.8 
      1200 22.9 53.7 70.5 77.7 79.9 

Worst case losses including full 
positive tolerance [kW]             

      speed [rpm] 4% 16% 36% 64% 100% 
      240 0.087 0.091 0.103 0.137 0.206 
      480 0.102 0.104 0.117 0.152 0.223 
      720 0.117 0.121 0.134 0.169 0.244 
      960 0.136 0.14 0.154 0.191 0.27 
      1200 0.159 0.163 0.178 0.217 0.3 

 

VFD efficiencies are typically normalized dividing by the maximum efficiency to help compare them. 

The VFD efficiency and percentage of nameplate speed are calculated for each manufacturer product as: 	

 
𝜂)*+ =

𝑃2S13/ + 𝐿-./
𝑃2S13/ + 𝐿-./ + 𝐿)*+

 (8)  

Where 𝐿-./ and 𝐿)*+ are the motor and VFD losses. The shaft power can be expressed as:  

 
𝑃2S13/ = 𝑇V12W ×%𝑇𝑜𝑟𝑞𝑢𝑒 × 𝑠𝑝𝑒𝑒𝑑 ×

2𝜋
60 (9)  

 

Where 𝑇V12W the base Torque [Nm], %Torque is the percentage of Tbase and 𝑠𝑝𝑒𝑒𝑑 the rotation speed 

of the fan in revolutions per minute [rpm]. 

To compare the adequacy of 1999 and 2005’s correlation, the maximum and minimum relative errors 

are computed as follows:  

 
𝜀 = 	

𝜂)*+-1# − 𝜂)*+cDdecf

𝜂)*+-1#  (10)  

 



Where 𝜂)*+-1#is the VFD efficiency given by the manufacturer and 𝜂)*+cDdecfthe theoretical VFD efficiency 

given by 1999 or 2005 curves. 

Likewise, the motor efficiency can be computed as follows:	

 
𝜂-./ =

𝑃2S13/
𝑃2S13/ + 𝐿-./

 

 

(11)  

The relative error between data and correlation is calculated similarly : 	

 
𝜀 = 	

𝜂-./-1# − 𝜂-./cDdecf

𝜂-./-1#  (12)  

As no standard or guideline defining the acceptable threshold of error for motor and VFD efficiencies 

estimation, we followed industry expertise which uses a threshold of 20% error between the estimated, and 

the actual efficiency is arbitrarily adopted as the success criterion (Rivalin, Cogné, and Caciolo 2013). Above 

20% error, it is considered that the estimation could lead to a non-compliance of the energy performance 

contracting. 

Bayesian inference 

Literature has shown that researchers have a good understanding of the general relationships governing 

fan efficiency (section “Existing correlations”), but they lack measured manufacturer data (section 

“Manufacturer data description and method”). If our test (sections “Testing VFD efficiency correlations” and 

“Testing motor efficiency correlations”) proves these correlations to be outdated, Bayesian statistics will be 

an effective technique to develop new ones.  

Bayesian inference is a method to update a knowledge-based model with experimental observations 

(Gregory 2005). The Bayesian probability is seen as a “degree of belief” of the phenomena (O’Hagan 2004) 

which is revised if new information (observation) is provided. Thus, “uncertainty” in the Bayesian paradigm 

can describe both the lack of knowledge of a parameter and its variability. In practice, to set a Bayesian 

calibration, a model linking data to parameters is build. Then, a formulation of uncertainty knowledge about 

the parameters is provided “a priori”. The model is combined with experimental values through the Bayes 

formula to obtain the “a posteriori” distribution (Parent and Bernier 2007). Bayesian inference can be seen 



as an inversion problem as it permits to understand the causes through the effects given by the observation 

(Christian P. Robert 2007).  

The Bayesian paradigm can also be seen as a mathematical formalization of the usual scientific process: 

first, an assumption is made, then it is compared to observations to validate or update the assumption. The 

particularity of this method lies in associating a confidence level with the starting hypothesis (the "a priori"). 

That allows, on the one hand, to nuance expert information with data or, on the other hand, to ponderate a 

small dataset with strong expertise. Therefore, this method is suitable for our case, where we have a strong 

knowledge (Bernier's correlations) that suited data for the past decades and a few new data from a more 

recent technology.  

Let D be the data and θ the model parameter. The “a priori” distribution	P(θ), provided by an expert, 

describes the belief (or uncertainty) given to the value of	θ. As it is impossible to know the “true” distribution 

of parameter	θ, we consider the observation data of a given statistical realization	P(D|θ). Bayes’ theorem 

aims to combine those distributions to obtain the “a posteriori” distribution knowing the data: P(θ|D) and so, 

update the “a priori” distribution (Kuss et al. 2005) (Figure 4).	

 
Figure 4: General process of Bayesian Inference 

 

Bayesian inference has received increasing attention as an inverse method to calibrate unknown 

parameters in building energy models by taking into account prior information on the uncertain inputs while 

using a small amount of evaluations from a time-consuming building model (Heine, Choudhary, and Petersen 

2017)(Tian et al. 2018)(Yuan, Nian, and Su 2017) or a small amount of observed values (Lim and Zhai 

2018)(Sokol, Cerezo Davila, and Reinhart 2017)(Chong and Menberg 2018)(Kristensen, Choudhary, and 

Petersen 2017).  

Our paper aims to calibrate a sub-system of a whole building energy model, for which a few data are 

available, and we want to include the expertise that has been formulated and used in the industry for decades. 

Moreover, the result may be used in further sensitivity and uncertainty analysis un larger building energy 



models to generate energy performance contracting. In this context, the Bayesian framework is a perfect 

candidate as it not only results in a deterministic value but outputs probabilistic densities modeling 

uncertainty around the parameter, given the prior and the possible measurement or modeling errors. 

Results 

Testing VFD efficiency correlations 

Figure 5 shows normalized efficiency for each product provided by the manufacturer, based on equation 

(8), in comparison to 1999 (dashes) and 2005 (dots) correlations. Note that for each VFD, we do not have 

any efficiency data under 20% of speed rotation. 	

The normalization method is the following : 	

 
η)*+#.0-1h"2Wi(%𝑠𝑝𝑒𝑒𝑑) = 	

𝜂)*+(%𝑠𝑝𝑒𝑒𝑑)
𝜂)*+(100%	𝑠𝑝𝑒𝑒𝑑)

 (13)  

 

Figure 5: Normalized VFD manufacturer 1999 and 2005 efficiencies 
 

We compute the error ε	using equation (10). Positive and negative values of ε	represent respectively 

relative errors for curve lying above and below the reference curve. Figure 6 shows that 1999 correlation 
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never exceeds 12% of relative error for low nameplate speed rate. The maximum and minimum relative errors 

are relatively symmetric showing this correlation represents our data adequately. Instead, the 2005 correlation 

shows results exceeding 35% of relative error for low loads, which is above our 20% error criteria. Also, the 

results are predominantly negative, indicating that the correlation tends to overestimate the manufacturer 

efficiency curves. The 1999 correlation is more adapted to model VFD efficiency based on the percentage of 

nameplate speed. 1999 ASHRAE correlation provides an error less than 12%, below our 20% error criteria; 

thus the VFD correlation will not be modified.	

  

Figure 6: Percent relative errors of VFD efficiencies for 1999 and 2005 
correlations 

 

Testing motor efficiency correlations 

Figure 7 shows every normalized motor efficiency and 1999 (dashes) and 2005 (dots) correlations.  Note 

that for each motors, the efficiency data starts at 0.8% of full load. 	

As previously, we normalize the efficiencies so that all curves can have a 100% asymptote. 	

The normalization method is the following : 	

 
η-./#.0-1h"2Wi(%𝑠𝑝𝑒𝑒𝑑) = 	

𝜂-./(%𝑠𝑝𝑒𝑒𝑑)
𝜂-./(100%	𝑠𝑝𝑒𝑒𝑑)

 (14)  
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Figure 7: Normalized motor manufacturer 1999 and 2005 efficiencies 
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The 2005 correlation seems to underestimate the efficiency. As previously, we calculated relative errors 

to determine the validity of the correlations for our data (Figure 8).	

Figure 8: Percent relative error of motor efficiencies for 1999 and 2005 
correlations 

 

The correlations show a percent relative error up to 80%, far from our 20% error threshold. Thus, none 

of the correlations is acceptable for our fan motor data. As figures 6 and 8 show, all the correlations tested 

are accurate (under our 20% error criteria) for rated loads higher than 40%. As expected, the correlations’ 

accuracy decreases dramatically under 40% of the rated load. Then, to characterize if a correlation is suitable 

or not; we’ll focus on the maximum and average error on efficiencies for low rated loads (i. e under 40% of 

rated load). Table 2 summarizes the results of the evaluation of existing correlations using manufacturer data 

for modern motors. For VFD, the 1999 correlation is adopted, because the maximum error under 40% of the 

rated load is 11%. However, none of the correlations are acceptable for the motors, as the max and average 

errors for low loads are above 40% of error. As both errors for 1999 and 2005 motor correlations are large 

(Table 2), we will adapt both of them with Bayesian inference to select the best one. We will start adjusting 

the 1999 motor correlation as the corresponding VFD correlation fits the data better. 

Table 2. Summary table of maximum errors in absolute values for correlations from the 
literature applied to the new dataset	

 1999 correlation 2005 correlation 

 
Max error for 

loads below 40% of 
rated load 

Average error for 
loads below 40% of 

rated load 

Max error for 
loads below 40% of 

rated load 

Average error for 
loads below 40% of 

rated load 
Motor 88% 44% 83% 43% 

  

-80%
-60%
-40%
-20%
0%
20%
40%
60%
80%
100%

0% 20% 40% 60% 80% 100%

%
 o

f r
el

at
iv

e 
er

ro
r

%	of	rated	load

1999 motor correlation relative error 

Maximum error Minimum error

-10%
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

0% 20% 40% 60% 80% 100%

%
 o

f r
el

at
iv

e 
er

ro
r

% of rated load

2005 motor correlation relative error 
Maximum error Minimum error



VFD 11% 6% 38% 16% 
	

Use of Bayesian inference to improve correlations 

Bayesian inference use in 1999 motor efficiency correlation 

In the previous section, we compared 2005 and 1999 motor correlations with fan manufacturer’s data, 

finding relative errors that exceeded 40% (Table 2), for low loads. As we do not have many data points, but 

both correlation shapes seem to track the data, we will use the same mathematical expression for the 1999 

correlation and apply Bayesian statistics to correct the coefficients and to fit the data (see section “Bayesian 

inference”): 

 𝜂-./ = 𝑎 × (1 − 𝑒=V×A) (15)  

The coefficient b corresponds to the growth rate of the curve. WinBUGS software (Lunn, D.J., Thomas, 

A., Best, N. y Spiegelhalter 2000) is used to carry out the Bayesian regression by means of Markov Chain 

Monte Carlo (MCMC) (Gilks, Richardson, and Spiegelhalter 1996) to new “a” and “b” coefficients of the 

“a  posteriori” distributions.	

To create the “a priori” distribution, we define Gaussian with a mean (expertise) and a standard deviation 

(confidence). The means of the a priori distributions are the value Bernier gave to the coefficients; we 

consider this is our “expertise” (Bernier and Bourret 1999). The confidence of the b coefficient is weak 

because it does not fit the manufacturer data (Figure 7). To the contrary, we give strong confidence to the “a” 

coefficient as it relates to the full load of the motor.  

The Bayesian model (likelihood) is formulated as :  

𝑌"~𝒩(𝜂-./, 𝜎K) 

A Normal distribution is chosen to express the prior information for a and b and a Gamma distribution 

for the precision τ = σ−2. Hence,  

𝑎~𝒩(94.187,5) 

𝑏~𝒩(0.0904, 400) 

𝜏~Γ(0.01,0.01) 

 



Figure 9 and 10 show the “a priori” and “a posteriori” distribution WinBUGs obtain for both coefficients. 	

 

  
Figure 9: Coefficient “a” a priori (left) and updated with data (right) 
 

  
Figure 10: Coefficient b a priori (left) and updated with data (right) 

 

As we associated the “a” coefficient with strong confidence (see figure 9), the posterior probability, 

updated with measured data has the same mean value (94.19) with a wider standard deviation induced by the 

observation. On the contrary, b coefficient has been adjusted: median is updated from 0.0904 to 0.22, and the 

standard deviation is reduced (figure 10). The Markov Chain Error (MC Error) is the error computed by 

different samples simulated by the Markov Chain. Table 3 shows the MC Error for coefficients a and b. 

Table 3. Summary Statistics 
Density mean std MC Error 

a prior 94.19 0.44 1E-3 
posterior 94.19 0.7 1.5E-3 

b prior 0.0904 0.05 1.2E-4 
posterior 0.22 0.03 1.15E-4 

	

Then, the result of the new curve is: 	



 𝜂-./ = 94.19 × (1 − 𝑒=>.KK×t) (16)  

Figure 11 shows the new correlation compared to manufacturer data.	

 

Figure 11: Normalized motor efficiencies and new correlation 
 

The relative error generated by this adapted correlation is displayed in Figure 12.	
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Figure 12: Percent relative errors of motor efficiencies for 1999 modified 
correlation 

 

We can see that the coefficient adaptation gives a better accuracy under 40%, but is still above 20% of 

error, especially at very low loads. This is due to the fact that we try, as Bernier first did, to fit the correlation 

to a wide range of power shafts and rotation speeds. Thus, as the accuracy is still not satisfying, we try to 

adapt in the following section 2005 correlation which is more adapted to a wide range of power shafts. 	

 

Bayesian inference use in 2005 motor efficiency correlation 

The 2005 correlation provides different sets of coefficients depending on the motor power. This 

correlation is a product of 2 terms: equation (5) that expresses the full-load efficiency of the engine for a 

given power, and (6) which is a degradation coefficient given the percentage of nameplate load. 	

As table 4 shows, equation (5) fits very well our data, with less than 2% of error for the efficiency at 

full-load as a function of the power rate. 	

Table 4. Comparison of theoretical full-load efficiency with our data 
Shaft power (kW) Average of the full-load 

efficiency data 
Theoretical full-load 

efficiency (5) 
Error 

1 83% 83% 0% 
5 88% 88% 0% 

10 90% 92% 2% 
20 92% 94% 2% 
30 92% 94% 2% 
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Given the errors of this correlation compared to our manufacturers’ data (see section “Testing motor 

efficiency correlations”) that are not due to (5) (see Table 4) we shall have to adapt equation (6). This equation 

expresses the degradation coefficient Fc, where a, b and c, in the 2005 correlation are given in a table resulting 

from experimental data that we will use as means to our a priori density. 

Using a similar approach of section “Bayesian inference use in 1999 motor efficiency correlation”, we 

use WinBUGS to adjust the coefficients In the 2005 correlation, coefficients are given depending on a range 

of motor power (see Table 5). Given the significant error of the 2005 correlation (as in Figure 9), the “a 

priori” distributions created for each coefficient of the table are associated with low confidence.	

Table 5. Original (“a priori”) coefficients to be used in (6) of 2005 correlation (Sfeir and 
Bernier 2005) 

Motor 
Power 
(HP) 

a b c 

 Mean Std Mc error Mean Std Mc error Mean Std Mc error 

1 144.56 31.62 0.09 0.16 0.1 3.13E-4 26.27 10 0.03 

1.5-5 220.86 31.62 0.09 0.64 0.1 3.15E-4 35.56 10 0.03 

7.5-10 145.02 31.62 0.09 0.28 0.1 3.07E-4 14.58 10 0.03 

15-25 124.74 31.62 0.09 0.17 0.1 3.02E-4 7.75 10 0.03 

30-60 111.99 31.62 0.07 0.0798 0.031 7.03E-5 4 10 0.07 

 

As previously, we update the “a priori” distributions with data for each the motors. The mean-value of 

the “a posteriori” distribution gives us new coefficients shown in table 6.	

 

Table 6. New (“a posteriori”) coefficients to be used in (6) obtained by Bayesian 
inference 

Motor 
Power 
(HP) 

a b c 

 Mean Std Mc 
error 

Mean Std Mc 
error 

Mean Std Mc 
error 

1 1.23 0.82 0.015 0.00154 0.0029 1.22E-4 7.126 2 0.018 

5 1.089 1 0.013 6.35E-04 0.0035 1.05E-4 3.021 1.44 0.07 



10 1.02 0.8 0.007 8.95E-05 0.0022 4.64E-5 1.192 0.45 0.02 

20 1.012 0.6 0.006 2.47E-05 0.0015 4.32E-5 0.9681 0.4 0.013 

30 1.018 0.4 0.006 1.17E-04 0.0018 5.94E-5 0.8138 0.32 0.07 

 

Figure 13 shows a clear reduction of the error over the previous coefficients for each motor power. With 

the exception of 1kW Motor power, that peaks at 40% error, for all the other motors the error is below 20% 

(e.g., 14% for 30 kW Motor). The larger the motor, the smaller the error is. 	
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Figure 13: Percent relative errors of motor efficiencies for 2005 modified 
correlation 

 

With the dataset provided by the manufacturer, we do not have enough data to create a correlation 

for power ranges similar to what is provided by the literature (e.g., 2005 correlation, Figure 7). Therefore we 

propose a new correlation to generalize these findings to cases when motor power is unknown or not equal 

to one of our measured values. 	

To estimate new correlation coefficients, we calculated the mean of the ASHRAE coefficients, and then 

applied Bayesian inference considering all the data. The result is a general degradation correlation usable for 

all motor powers that can be used as in equation (4) in cases when the  motor power is unknown, but the full-

load efficiency is given:	

 
𝐹O =

0.982 × 𝜏
1.309 + 𝜏 + 	3.59	. 10

=@ × 𝜏 (17)  

The error of this generalized equation is shown in Figure 14. The generalized 2005 correlation shows 

less than 20% of error for all the motors from 40% of rated load, and seems to be well balanced: real data are 

both above or below the estimation, which avoids continuous over or under-estimations. Moreover, the 

average error below 40% of the rated load is better with this approach than using the modified 1999 ASHRAE 

correlation (see table 6).	
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Figure 14: Error of the general degradation correlation when used with known 
data 

 

Table 6 summarizes the results obtained using Bayesian statistics to adapt the correlation equations. 

Table 6. Summary of the improvement of new correlations testes on modern motor data 
Adapted motor 

efficiency correlation 
1999 2005 (using available 

motor sizes) 
2005 (generalized) 

Figure Figure 12 Figure 13 Figure 14 
Max error for load 

below 40% of rated load 
71% 1 kW: 39%	

5 kW: 19%	
10 kW: 10%	
20 kW: 8%	
30 kW: 14%	

100% 

Average error for load 
below 40% of rated load 

24% 1 kW: 14%	
5 kW: 6%	

10 kW: 3%	
20 kW: 2%	
30 kW: 3% 

18% 

 

Discussion and Conclusion 
The first goal of this study was to evaluate pump correlations for motors and VFD established in 1999 

and 2005 to estimate the performance of modern (2014) motors. 1999 VFD correlation fit our data with less 

than 15% error without any modification and thus can be used for modern products. However, 1999 and 2005 

correlations for motor efficiency generate large errors, when applied to new motors. This was expected as 

motor technologies, and new standards have led to significant improvements in performance.  
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 To reduce the error, we proposed an approach to correct the existing equations (second goal). Since 

we had a small dataset but strong “expertise” provided by correlation being used for several years, we applied 

Bayesian statistics to update both correlations and identify new coefficients. The Bayesian paradigm is widely 

used in domains where uncertainty is high but physical modeling (using equations) is rarely possible, like in 

medicine or finance. However, we suggest its use in domains where physical modelization is possible, but 

technology is constantly evolving. In this case, a law’s coefficients or parameters can be updated to a few 

real-world data. The strength of Bayesian statistics lies in the fact that we can implicitly reuse previous studies 

by giving confidence to the coefficients of the laws and update them with the current data. The more general 

we want the correlation to be, the more data we would need. 	

Realizing that Bernier’s equation errors were particularly large at low loads we used Bayesian statistics 

to update the 2005 degradation factor Fc. When the power motor was known and between 1kW and 30kW, 

we created new correlations to calculate the degradation factor (see table 5), leading to less than 20% of 

average error for low load. To provide reliable values when motor power is unknown or out of these ranges, 

we suggested using our adaptation of 2005 correlation with generalized coefficients, that leads to an average 

error of 25% for low load, but it is more widely applicable. 	

The new correlations can be used in a building model to predict energy consumption: if the shaft power 

is known, the modeler can use equation (4) with the new coefficients provided in Table 5. If even the shaft 

power is not known (early design process), we suggest using the generalized 2005 correlation with the new 

degradation coefficient (16) in (4). Using these correlations prevents overestimations of the fan energy 

consumption and improves overall energy prediction accuracy. An accurate prediction of fan efficiency and 

fan power is critical in EPC since fans contribute significantly to the total energy use of a building and a 

company’s profit can be negatively impacted by inaccurate predictions.	

Bayesian methods has been used to calibrate building energy models in the literature, but we haven’t 

met this method applied to subsystems. More broadly this technique can be used by researchers or engineers 

to update model coefficients using new data from manufacturers and taking advantage of the existing 

“expertise” provided by previous engineering and statistical models. 	

Future work should test these new correlations with a broader manufacturer dataset to validate the new 

2005 correlations obtained here. In addition, we would like to explore the use of this approach with other 

systems, like heat pumps (COP curves) and chilled beams (induction ratios). 	
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