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ABSTRACT OF THE DISSERTATION

Primal-Dual Interior Methods for Quadratic Programming

by

Anna Shustrova

Doctor of Philosophy in Mathematics with a Specialization in Computational
Science

University of California, San Diego, 2015

Professor Philip E. Gill, Chair

Interior methods are a class of computational methods for solving a con-

strained optimization problem. Interior methods follow a continuous path to the

solution that passes through the interior of the feasible region (i.e., the set of points

that satisfy the constraints). Interior-point methods may also be viewed as meth-

ods that replace the constrained problem by a sequence of unconstrained problems

in which the objective function is augmented by a weighted “barrier” term that is

infinite at the boundary of the feasible region. Convergence to a solution of the

constrained problem is achieved by solving a sequence of unconstrained problems

in which the weight on the barrier term is steadily reduced to zero.

This thesis concerns the formulation and analysis of interior methods for

x



the solution of a quadratic programming (QP) problem, which is an optimization

problem with a quadratic objective function and linear constraints. The linear con-

straints may include an arbitrary mixture of equality and inequality constraints,

where the inequality constraints may be subject to lower and/or upper bounds. QP

problems arise in a wide variety of applications. An important application is in se-

quential quadratic programming methods for nonlinear optimization, which involve

minimizing a sequence of QP subproblems based on a quadratic approximation of

the nonlinear objective function and a set of linearized nonlinear constraints.

Two new interior methods for QP are proposed. Each is based on the prop-

erties of a barrier function defined in terms of both the primal and dual variables.

The first method is suitable for a QP with all inequality constraints. At each iter-

ation, the Newton equations for minimizing a quadratic model of the primal-dual

barrier function are reformulated in terms of a symmetric indefinite system of equa-

tions that is solved using an inertia controlling factorization. This factorization

provides an effective method for the detection and convexification of nonconvex

problems. The second method is intended for problems with a mixture of equality

and inequality constraints. In this case, the QP constraints are converted to so-

called standard form and a primal-dual augmented Lagrangian is used to ensure

the feasibility of the equality constraints in the limit.

xi



1 Introduction

1.1 Overview

Quadratic programming (QP) involves minimizing a quadratic objective

function subject to linear constraints on the variables. The most general quadratic

program is given by

minimize
x∈Rn

q(x) = 1
2
xTHx+ cTx

subject to ` ≤
(
Ax− b
x

)
≤ u,

(1.1)

where q(x) is the quadratic objective function, c ∈ Rn, H is an n × n symmetric

matrix, A is an m×n constraint matrix, and ` ≤ u ∈ Rm+n. An equality constraint

or fixed variable may be defined by setting `i = ui.

By introducing slack variables s ∈ Rm, the general problem (1.1) can be

written in the equivalent form

minimize
x∈Rn,s∈Rm

q(x)

subject to Ax− s = b

` ≤
(
s

x

)
≤ u.

(1.2)

An additional benefit of adding slack variables to the inequalities is that the con-

straint matrix
(
A Im

)
has full row rank. The assumption of full rank is required

in many optimization methods. To simplify exposition, however, we will not explic-

itly include slack variables, but instead make the assumption that the constraint

matrix has full row rank when required. Therefore, without loss of generality we

1
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can write (1.2) as

minimize
x∈Rn

q(x)

subject to Ax = b, ` ≤ x ≤ u.
(1.3)

Although methods can be extended to both upper and lower bounds, to simplify

exposition in the theoretical part of the thesis, only nonnegativity bounds on x are

considered. In this case, the QP is said to be in standard form, and is written as

minimize
x∈Rn

q(x)

subject to Ax = b, x ≥ 0.
(1.4)

For some of the methods discussed in this thesis it is convenient to consider

quadratic problems in so-called all-inequality form. To achieve this formulation

one could for instance rewrite the equality constraints as

Ax ≥ b and Ax ≥ −b.

Thus, without loss of generality, we can assume that the QP in all-inequality form

is written as
minimize

x∈Rn
q(x)

subject to Ax ≥ b.
(1.5)

The difficulty of solving a quadratic program largely depends on the con-

vexity of the objective function q. If the Hessian H of the objective function is

positive semidefinite, then the QP is said to be convex. In this case, a local so-

lution of the QP is also a global solution. If H is negative definite or indefinite,

the QP is said to be nonconvex. Nonconvex quadratic programs, are known to be

NP-hard—even for the calculation of a local minimizer. Additionally, a nonconvex

QP may be unbounded below.

There are many methods for finding local minimizers of a QP, but most

fall into two categories: active-set methods and interior-point methods. Each has

its advantages and disadvantages. Active-set methods are iterative methods that

solve a sequence of equality-constrained quadratic subproblems. These constraints

correspond to the current prediction of the optimal active set, which is the set

of constraints that are satisfied with equality at the optimal point. In contrast,
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interior methods solve the QP by converting it into a parameterized sequence

of unconstrained problems whose solutions form a differentiable path that passes

through a solution of the QP. In the simplest case, the path is parameterized by a

positive scalar parameter µ, such that as µ→ 0, a point x(µ) on the path converges

to the solution of the QP. In general, interior methods require fewer iterations, but

each iteration is more expensive because it requires finding the solution of a linear

systems involving all the variables and constraints, whereas active-set methods

some smaller systems involving only a subset of the variables and constraints.

Our interest in quadratic programming methods is primarily motivated by

their usefulness in solving nonlinear optimization problems in the context of se-

quential quadratic programming (SQP) methods. SQP methods solve a sequence

of quadratic programming subproblems in which a quadratic model of the objec-

tive function is minimized subject to a linearization of the nonlinear constraints.

Active-set methods are often preferred for solving these subproblems because of

their ability to take advantage of good starting points, making them particularly

efficient in solving a sequence of related problems. Interior-point methods, on the

other hand, are generally considered to be less effective for solving sequences of

related problems because a good starting point may lie far from the path x(µ). In

general, when close to an optimal point, a step towards the path is not well-defined,

and it may take many iterations to move onto the path.

1.2 Contributions of this Thesis

This thesis considers a new interior-point method for solving quadratic pro-

grams. The method is based on existing barrier methods and incorporates features

of both primal-dual barrier methods and modified barrier methods. In particular it

inherits the effectiveness of primal-dual methods at following the barrier trajectory

and, like modified barrier methods, eliminates the need for the barrier parameter

to go to zero to force convergence.

Chapter 2 provides a review of some basic tools and ideas often used in

interior methods, including unconstrained minimization, necessary and sufficient
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optimality conditions for quadratic programs, and a brief introduction to penalty

functions. We also discuss matrix factorization, specifically inertia controlling sym-

metric indefinite factorization, and its use in solving primal-dual KKT systems that

arise within interior methods. An overview of existing barrier methods, including

a more detailed look at classical and modified barrier functions as well as primal-

dual methods is presented in Chapter 3. Chapter 4 introduces a new primal-dual

modified barrier method for solving QPs in all-inequality form (1.5) starting from

a given feasible point. Chapter 5 focuses of solving QPs in standard form (1.4).

Here we take advantage of existing primal-dual augmented lagrangian methods to

treat equality constraints and combine them with the barrier method proposed in

Chapter 4 to deal with the nonnegativity bounds on x. In Chapter 6, we briefly

discuss how to extend the method of Chapter 5 to include upper and lower bounds

on the variables and provide numerical results for the proposed algorithm.

1.3 Notation

• q(x), quadratic objective function evaluated at x.

• g(x) = c+Hx, the gradient of the quadratic objective evaluated at x.

• (xk, zk), approximate primal-dual solution to the QP in all-inequality form,

where zk is a vector of dual variables for the inequality constraints.

• (xk, yk, zk), approximate primal-dual solution to the QP in standard form at

step k, where yk is a vector of dual variables for the equality constraints and

zk is a vector of dual variables for the nonnegativity constraints.

• qk = q(xk), gk = g(xk).

• e = (1, . . . , 1)T , the column vector all ones whose size depends on the context.

• I, identity matrix.

• ej, vector representing the jth column of I.
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• X = diag(x1, . . . , xn), diagonal matrix with the components of the vector x

on the diagonal.

• If x, y ∈ Rn, x · y and x ·/ y are vectors in Rn such that [x · y]i = xiyi and

[x ·/ y]i = xi/yi.

• For a symmetric matrix B, λmin(B) and λmax(B) represent the smallest and

the largest eigenvalues of B, respectively.

• Unless otherwise specified, ‖ · ‖ denotes ‖ · ‖2.

• B(x, δ) = y ∈ Rn : ‖x− y‖ < δ denotes an open ball around x with radius δ.

• S(x, r) = y ∈ Rn : ‖x− y‖ = r denotes a sphere or radius r centered at x.

1.4 Definitions

Definition 1.4.1 (Unconstrained (Strict) Local Minimizer). Let f : Rn → R.

Then x∗ is a local minimizer of f if there exists a δ > 0 such that f(x) ≥ f(x∗) for

all x ∈ B(x∗, δ). If the inequality is strict, then it is said to be a strict minimizer.

Definition 1.4.2 (Feasible Region). Feasible region for an optimization problem,

denoted F , is the set of all points that satisfy the constraints for that problem.

Definition 1.4.3 (Constrained (Strict) Local Minimizer). Let f : Rn → R. Then

x∗ is a constrained local minimizer of f if there exists a δ > 0 such that f(x) ≥
f(x∗), for all x ∈ B(x∗, δ) ∩ F . If the inequality is strict, then it is said to be a

strict constrained minimizer.

Definition 1.4.4 (Isolated Constrained Local Minimizer). A constrained strict

local minimizer is isolated if there exists an open ball B(x∗, δ) such that x∗ is the

only constrained minimizer in B(x∗, δ).

Definition 1.4.5 ((Strictly) Convex Function). A twice-continuously differentiable

function f : Rn → R is said to be convex if ∇2f(x) is positive semidefinite for all

x ∈ Rn. It is strictly convex if ∇2f(x) is positive define for all x ∈ Rn.
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Definition 1.4.6 (Strongly Convex Function). A twice-continuously differentiable

function f : Rn → R is said to be strongly convex if there exists an ω > 0, such

that pT∇2f(x)p ≥ ω‖p‖2 for all x ∈ Rn and all nonzero p ∈ Rn, i.e., ∇2f(x) is

sufficiently positive definite for all x ∈ Rn.

Definition 1.4.7 (Descent Direction). Let f : Rn → R. Then p is a descent

direction for f at a if ∇f(a)Tp < 0.

Definition 1.4.8 (Direction of Sufficient Descent). A direction pk is a direction of

sufficient descent if pk is bounded and lim
k→∞
∇f(xk)

Tpk = 0 implies lim
k→∞
∇f(xk) = 0

and lim
k→∞

pk = 0.

Definition 1.4.9 (Direction of Negative Curvature). Let f : Rn → R. Then p is

a direction of negative curvature for f at a if pT∇2f(a)p < 0.

Definition 1.4.10 (Direction of Sufficient Negative Curvature). A direction pk is a

direction of sufficient negative curvature if pk is bounded and lim
k→∞

pTk∇2f(xk)pk = 0

implies lim
k→∞

λmin(H(xk)) = 0 and limk→∞ pk = 0.

Definition 1.4.11 (Inertia of a Matrix). If A ∈ Rn×n is a symmetric matrix, then

inertia of A, denoted In(A), is the integer triple (i+, i−, i0) indicating the number

of positive, negative and zero eigenvalues of A.

1.5 Useful Results

Result 1.5.1 (Sylvester’s Law of Inertia). If A ∈ Rn×n is a symmetric matrix and

S ∈ Rn×n is a nonsingular matrix, then In(STAS) = In(A).

Theorem 1.5.1. Let H ∈ Rn×n be a symmetric matrix, and A ∈ Rm×n. Assume

A has rank r ≤ m and let Z ∈ Rn×r be a matrix whose columns span the basis of

the null space of A. If

K =

(
H AT

A 0

)
,

then

In(K) = In(ZTHZ) + (r, r,m− r).
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Corollary 1.5.1. Let H ∈ Rn×n be a symmetric matrix, and A ∈ Rm×n. Assume

A has full row rank and let Z ∈ Rn×m be a matrix whose columns span the basis

of the null space of A. If

K =

(
H AT

A 0

)
,

then

In(K) = In(ZTHZ) + (m,m, 0).

If ZTHZ is positive definite, then

In(K) = (n,m, 0).

and we say K has correct inertia.

Theorem 1.5.2. Let H ∈ Rn×n be a symmetric matrix, D ∈ Rm×m a nonsingular

symmetric matrix and A ∈ Rm×n. If

K =

(
H AT

A D

)
,

then

In(K) = In(H − ATD−1A) + In(D).

Proof. Consider the nonsingular matrix

S =

(
In 0

−D−1A Im

)
.

Then

STKS =

(
H − ATD−1A 0

0 D

)
.

Hence, Sylvester’s Law gives

In(K) = In(STKS) = In(H − ATD−1A) + In(D).

Theorem 1.5.3 (Debreu’s Lemma). Let H ∈ Rn×n be a symmetric matrix and

A ∈ Rm×n. Then xTHx > 0 for all nonzero x ∈ Rn satisfying Ax = 0 if and only

if the exists a µ̄ ≥ 0 such that H+
1

µ
ATA is positive definite for all 0 < µ ≤ µ̄.
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Theorem 1.5.4 (Debreu’s Lemma Variation). Let H ∈ Rn×n be a symmetric

matrix, D ∈ Rm×m a symmetric positive-definite matrix and A ∈ Rm×n. Then

xTHx > 0 for all nonzero x ∈ Rn satisfying Ax = 0 if and only if the exists a

µ̄ ≥ 0 such that H +
1

µ
ATDA is positive definite for all 0 < µ ≤ µ̄.

Proof. (“⇐ ”) If H +
1

µ
ATDA is positive definite, then for all nonzero x ∈ Rn

xT
(
H +

1

µ
ATDA

)
x = xTHx+

1

µ
xTATDAx > 0.

Hence, for all nonzero x such that Ax = 0,

xT
(
H +

1

µ
ATDA

)
x = xTHx > 0.

(“⇒ ”) This direction is proved by contradiction. Let xTHx > 0 for all nonzero x

satisfying Ax = 0 and assume that there is no µ̄ such that H+
1

µ
ATDA is positive

definite for all 0 < µ ≤ µ̄. To that end, define a positive sequence {µk} such that

{µk} → 0 and a corresponding sequence {xk} with the property that

xTk

(
H +

1

µk
ATDA

)
xk ≤ 0. (1.6)

Without loss of generality, assume that ‖xk‖ = 1. Then {xk} ∈ S(0, 1) and since

S(0, 1) is a compact set, {xk} has a convergent subsequence {xk}K → x̄ ∈ S(0, 1).

Multiplying (1.6) by µk and taking limits on k ∈ K gives

x̄TATDAx̄ = lim
k∈K

xTk (µkH + ATDA)xk ≤ 0. (1.7)

Since D is symmetric and positive definite, it can be written as D = RTR, where

R is nonsingular. Hence

x̄TATDAx̄ = x̄TATRTRAx̄ = ‖RAx̄‖2

and (1.7) implies that RAx̄ = 0. Since R is nonsingular, it must be that Ax̄ = 0.

Next, (1.6) implies

µkx
T
kHxk + xTkA

TDAxk = µkx
T
kHxk + ‖RAxk‖2 ≤ 0.

As ‖RAxk‖ ≥ 0 and µk > 0, it must follow that xTkHxk < 0 for all k. Taking

limits on k ∈ K yields

x̄THx̄ = lim
k∈K

xTkHxk < 0.

So Ax̄ = 0, but x̄THx̄ < 0 which is a contradiction.



2 Background

2.1 Unconstrained Optimization

Consider the unconstrained minimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is twice-continuously differentiable.

This section reviews the necessary and sufficient conditions for a point to

be a local minimizer of f , as well as some basic methods for finding such points.

2.1.1 Optimality Conditions

Theorem 2.1.1 (First-Order Necessary Conditions). Let x∗ be a local minimizer

of f . Then ∇f(x∗) = 0.

This condition is not sufficient for optimality. The following theorems es-

tablish conditions on f that guarantee a minimum at x∗.

Theorem 2.1.2 (Second-Order Necessary Conditions). Let f : Rn → R be twice-

continuously differentiable. Then x∗ is a local minimizer of f only if

1. ∇f(x∗) = 0,

2. ∇2f(x∗) is positive semidefinite.

The conditions of Theorem 2.1.2 are necessary, but not sufficient for opti-

mality. The next theorem gives sufficient conditions that guarantee that x∗ is a

strict local minimizer.

9
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Theorem 2.1.3 (Second-Order Sufficient Conditions). Let f : Rn → R be twice-

continuously differentiable. Then x∗ is a strict local minimizer of f if

1. ∇f(x∗) = 0,

2. ∇2f(x∗) is positive definite.

2.1.2 Newton’s method

Given a differentiable function f : Rn → R, its minimizers are found among

the solutions of the system of equations ∇f(x) = 0, i.e., among the zeros of the

vector-valued function ∇f(x). In general this system is nonlinear and must be

solved using an iterative method. In this section we review variants of Newton’s

method for finding zeros of a vector-valued function.

Given a starting point x0, Newton’s method defines a sequence of points

{xk} that, under appropriate conditions, converges to a zero of ∇f at a quadratic

rate. Each new iterate xk+1 is defined as the zero of the linearization of ∇f(x) at

the previous iterate xk, i.e., xk+1 must satisfy

∇2f(xk)(xk+1 − xk) +∇f(xk) = 0.

Hence, if ∇2f(x) is nonsingular, the next iterate is given by xk+1 = xk + pk, where

pk satisfies

∇2f(xk)pk = −∇f(xk). (2.1)

Equations (2.1) are known as the Newton equations.

In the context of optimization, Newton’s method may be viewed as a

method for finding minimizers of a sequence of quadratic models of the objec-

tive function f . A quadratic model can be obtained by taking the first three terms

of the Taylor-series approximation of f about the current point xk, i.e.,

f(xk + p) ≈ f(xk) +∇f(xk)
Tp+

1

2
pT∇2f(xk)p.

This approximation is minimized if p minimizes the quadratic function

mk(p) = ∇f(xk)
Tp+

1

2
pT∇2f(xk)p,
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which models the change in the objective f(xk+p)−f(xk). From Section 2.1.1, any

minimizer of mk must satisfy ∇mk(p) = 0, or equivalently ∇2f(xk)p = −∇f(xk). If

∇2f(xk) is positive definite then p is the unique unconstrained minimizer of mk(x).

Algorithm 2.1.1 Pure Newton’s Method

INPUT: x0;

Set k = 0;

while ∇f(xk) 6= 0 do

Solve ∇2f(xk)pk = −∇f(xk);

xk ← xk + pk;

k ← k + 1;

end while

OUTPUT: xk

Newton’s method is attractive because of its potential quadratic rate of

convergence. However, the Newton method of Algorithm 2.1.1 has drawbacks. Far

from a solution the quadratic model may be a poor approximation for a general

nonlinear function f . As a consequence, if the starting point is not sufficiently

close to a solution, Newton’s method may fail to converge. Another drawback

is that if ∇2f(xk) is not positive definite, the quadratic model may not have a

bounded minimum (it may not even have a stationary point if ∇2f(xk) has a

zero eigenvalue). This implies that there is no guarantee that a stationary point

produced by Newton’s method is a minimizer unless the Hessian is positive definite,

i.e., unless f is locally strictly convex.

2.1.3 Line-Search Methods

As discussed in the previous section, Newton’s Method may not converge

to a solution unless the starting point is sufficiently close to a stationary point of

f . Safeguards must me implemented to guarantee convergence from any starting

point. A common strategy is to include a line search along the direction pk. In

this case, the new iterate is defined by xk+1 = xk + αkpk, where αk is a positive
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step length. The step αk is chosen so that the function is sufficiently reduced by

the move to xk+1. A common condition for guaranteeing such a reduction is that

the actual change in function value is at least a fraction of the change predicted

by the local model mk(x), i.e., we require

f(xk)− f(xk+1) ≥ η(mk(xk)−mk(xk+1)) = η(mk(xk)−mk(xk + αkpk)), (2.2)

for some η ∈ (0, 1
2
).

An essential requirement for any line-search model is the existence of a

positive αk that satisfies (2.2). In particular, we require that there exists an ᾱ

such that

f(xk + αpk) ≤ f(xk)− η(mk(xk)−mk(xk + αpk)), ∀α ∈ (0, ᾱ). (2.3)

Consider the following procedure for finding an acceptable step length.

Algorithm 2.1.2 Backtracking Line Search

INPUT: xk, pk, η ∈ (0, 1
2
), γ ∈ (0, 1);

Set α = 1;

while f(xk + αpk) > f(xk)− η(mk(xk)−mk(xk + αpk)) do

α← γα;

end while

xk+1 ← xk + αpk;

OUTPUT: xk+1

Under assumption (2.3) on the local model and given appropriate descent

directions pk, it can be shown that a backtracking line search is enough to guarantee

a sufficient decrease in f .

The local model mk used in line-search need not be the same model used

to define the vector pk. The model may be based on either first- or second-order

Taylor-series approximations of f at xk. For example, if the model is a first-order

approximation, i.e., mk(x) = f(xk) +∇f(xk)
T (x− xk), then condition (2.2) is

f(xk+1) ≤ f(xk) + ηα∇f(xk)
Tpk,

which is often referred to as the Armijo condition.
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2.1.4 Search Directions

As mentioned in Section 2.1.2, the search direction defined by the New-

ton equations is appropriate only when the Hessian is positive definite. As such,

including a line search with a Newton’s method is not enough to force global con-

vergence. Thus we would like to modify Newton’s method in such a way that the

computed direction is always a descent direction, but is identical to the Newton

direction in the neighborhood of a solution. Such modified Newton methods take

advantage of the fast local convergence of Newton’s method.

One approach is to modify ∇2f(xk) to make it positive definite. In this

case, instead of solving the conventional Newton equations, we solve

Bkpk = −∇f(xk), (2.4)

where Bk is some positive-definite approximation of ∇2f(xk) that is chosen so that

Bk = ∇2f(xk) if ∇2f(xk) is positive definite. The modified Hessian Bk is usually

given by Bk = ∇2f(xk) +E, where E is positive semidefinite (see Section 2.4.3 for

an example of how to compute E). As Bk is positive definite, the solution of the

modified Newton system (2.4) is guaranteed to be a descent direction.

However the modified Newton equations (2.4) still fail to provide a descent

direction if xk happens to be a saddle point or a maximizer, i.e., ∇f(xk) = 0, but

∇2f(xk) is indefinite or negative definite. In such cases the search direction pk can

be defined as a direction of negative curvature, i.e., it satisfies

pTk∇2f(xk)pk < 0. (2.5)

It is not uncommon to use search directions that are a combination of a

modified Newton direction and a direction of negative curvature. Consider, for

example the modified Newton method in Algorithm 2.1.3. Moré and Sorensen [19]

show that if sk and dk are directions of sufficient descent and negative curvature, re-

spectively, and the line search ensures that ∇f(xk)
T sk → 0 and dTk∇2f(xk)dk → 0,

then every limit point of the sequence of iterates {xk} will satisfy the second-order

necessary conditions for optimality.
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Algorithm 2.1.3 A Modified Newton’s Method with Backtracking Line Search

INPUT: x0, η ∈ (0, 1
2
), γ ∈ (0, 1);

k = 0;

while ∇f(xk) 6= 0 and ∇2f(xk) not positive semidefinite do

if ∇2f(xk) is p.d. then

Solve ∇2f(xk)sk = −∇f(xk);

dk = 0;

else

Solve Bkpk = −∇f(xk);

Find dk such that dTk∇2f(xk)dk < 0 and ∇f(xk)
Tdk < 0;

end if

pk ← sk + dk;

Set α = 1;

while f(xk + αpk) > f(xk)− η(mk(xk)−mk(xk + αpk)) do

α← γα;

end while

x← xk + αpk;

k ← k + 1;

end while

OUTPUT: xk

2.2 Quadratic Programming

Consider the mixed-constraint QP

minimize
x∈Rn

q(x) = 1
2
xTHx+ cTx

subject to Ax = b, Dx ≥ f.
(2.6)

In this section we discuss necessary and sufficient conditions for a point x∗ to be the

second-order minimizer of the mixed-constraint QP. These conditions can easily

be adapted to quadratic problems in either all-inequality form or standard form.
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2.2.1 Optimality Conditions

We begin by stating conditions that are necessary for a point x∗ to be a

first-order minimizer of the QP (2.6).

Definition 2.2.1 (KKT conditions). The vector x∗ ∈ Rn is a first-order KKT

point if there exist y∗ ∈ Rm and z∗ ∈ Rn such that

1. Ax∗ = b and Dx∗ ≥ f (feasibility),

2. g(x∗) = ATy∗ +DT z∗ (stationarity),

3. z∗ ≥ 0 (nonnegativity),

4. (Dx∗ − f) · z∗ = 0 (complementarity).

Unless the QP is convex, the KKT conditions are not enough to ensure

optimality and second-order conditions are required. Second-order optimality con-

ditions require the definition of the active set and inactive set of constraints at a

given point.

Definition 2.2.2. For the set of inequality constraints Dx ≥ f , we say that a

constraint i is active at a point x if dTi x = fi, and inactive if dTi x > fi. The active

set at x, denoted as A(x), is the set of indices of the constraints that are active at

x, i.e., A(x) = {i : dTi x = fi}. If the context is clear, the argument is dropped and

the active set is simply referred to as A. We also use the notation DA to denote a

submatrix consisting of rows of D whose indices are in A.

The following second-order sufficiency result is stated here without proof

(see Borwein [1], Contesse [5], Majthay [16] and McCormick [18]).

Theorem 2.2.1 (Second-order Necessary and Sufficient Conditions). The vector

x∗ ∈ Rn is a (strict) local minimizer of (2.6) if and only if

1. x∗ is a KKT point with multipliers y∗ and z∗.

2. pTHp(>) ≥ 0 for all nonzero p ∈ Rn satisfying Ap = 0, g(x∗)Tp = 0 and

DAp ≥ 0.
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An alternative formulation of Condition 2 is

2. pTHp(>) ≥ 0 for all nonzero p ∈ Rn satisfying Ap = 0, DA+
p = 0 and

DA0
p ≥ 0,

where A+(x∗) = {i ∈ A(x∗) : z∗i > 0} and A0(x
∗) = {i ∈ A(x∗) : z∗i = 0}. The pur-

pose of second-order sufficient conditions is to be able to verify that a given point

is indeed the minimizer. However, Condition 2 of the theorem above is not easy

to verify computationally. In particular, checking that pTHp ≥ 0 over all p satis-

fying DAp ≥ 0, if H is indefinite, is NP-hard (see Pardalos and Schnitger [20] and

Pardalos and Vavasis [21]). The difficulty arises in the presence of zero multipliers

that correspond to the active constraints at x∗. The complementarity condition

in Definition 2.2.1 forces z∗i to be zero if constraint i is inactive yet allows the

possibility that z∗i = 0 when constraint i is active. If there are no zero active mul-

tipliers, Condition 2 can be written in a computationally tractable form. Thus, it

may be necessary to restrict the set of possible multipliers by assuming that only

strictly positive multipliers correspond to active constraints. This assumption is

called strict complementarity and is formally defined below.

Definition 2.2.3 (strict complementarity). Strict complementarity holds at a

KKT point x∗, if there exists an z∗ such that z∗A > 0.

If we impose strict complementarity on a KKT point x∗, then Condition 2

is reduced to

2. pTHp(>) ≥ 0 for all nonzero p ∈ Rn satisfying Ap = 0 and DAp = 0

and is fairly straightforward to verify.

It is possible to state computationally tractable sufficiency conditions with-

out requiring strict complementarity by placing restrictions on H instead. This

new sufficiency condition 2 can be stated as

2. pTHp(>) ≥ 0 for all nonzero p ∈ Rn satisfying Ap = 0, DA+
p = 0.
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2.3 Penalty and Augmented Lagrangian Func-

tions

One way to solve a constrained optimization problem is to convert it into a

sequence of parameterized unconstrained problems. Typically, a penalty function

is used for the equality constraints and a barrier function is used for the inequal-

ity constraints. Barrier functions will be discussed in great detail in subsequent

chapters. This section provides a brief survey of penalty functions. To that end

consider the following equality constrained program

minimize
x∈Rn

f(x)

subject to c(x) = 0,
(2.7)

where f : Rn → R and c : Rn → Rm are twice differentiable functions.

One of the best-known penalty functions for treating the equality con-

straints of (2.7) is the classical quadratic penalty function

P (x;µ) = f(x) +
1

2µ
‖c(x)‖2,

where µ is a scalar parameter. Under certain assumptions (see e.g., [6], [9]), the

unconstrained minimizers of the penalty function P (x;µ) form a differentiable tra-

jectory that approaches the solution of the constrained problem (2.7) as µ → ∞.

The penalty method usually has as a two-level structure. The inner iterations

minimize the penalty function for the current value of the parameter µ, usually

using some form of Newton’s method. The outer iterations check the optimal-

ity conditions for the original problems and decrease the penalty parameter µ if

necessary.

As µ→ 0, the Newton equations become increasingly ill-conditioned. How-

ever, as the following theorem shows, this ill-conditioning is largely benign.

Theorem 2.3.1. Let J(x) denote the m × n Jacobian of c(x), and let Z(x) be

any matrix whose columns form a basis for the null space of J(x). Consider the

direction p satisfying the Newton equations ∇2P (x;µ)p = −∇P (x;µ). Then
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1. the Newton direction p satisfies the equations

 H J(x)T

J(x) −µI




 p

−y


 = −


∇f(x)

c(x)


 , (2.8)

where H = ∇2f(x) +
1

µ

m∑

i=1

ci(x)∇2ci(x),

2. if Z(x)THZ(x) is positive definite and ∇P (x;µ) 6= 0, then there exists a finite

non-negative µ̄ such that, for all µ̄ > µ, p is a descent direction for P (x;µ).

Proof. To simplicity the notation, we write g = ∇f(x), J = J(x) and c = c(x).

The Newton equations for minimizing P (x;µ) are

∇2P (x;µ)p = −∇P (x;µ),

where

∇P (x;µ) = g +
1

µ
JTc,

∇2P (x;µ) = ∇2f(x) +
1

µ

m∑

i=1

ci∇2ci +
1

µ
JTJ.

Noting that ∇2f(x) +
1

µ

m∑

i=1

ci∇2ci = H, we get

(H +
1

µ
JTJ)p = −(g +

1

µ
JTc).

On the other hand, equation (2.8) can be written explicitly as

Hp− JTy = −g
Jp+ µy = −c.

By first eliminating y and obtaining a system involving only p, we obtain the

equivalent systems

(H +
1

µ
JTJ)p = −(g +

1

µ
JT c) (2.9)

µy = −(c+ Jp).
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To prove part (2), it is necessary to show that ∇P (x;µ)Tp < 0 for all

µ sufficiently small. If Z(x)THZ(x) is positive definite, then pTHp > 0 for all

nonzero p satisfying Jp = 0. Then, by Theorem 1.5.3, there exists a µ̄ > 0 such

that H + 1
µ
JTJ is positive definite for all 0 < µ < µ̄. Noting that the right hand

side of equation (2.9) is just −∇P (x;µ), it follows that

∇P (x;µ)Tp = −∇P (x;µ)T
(
H +

1

µ
JTJ

)−1∇P (x;µ) < 0

as long as ∇P (x;µ) 6= 0.

Quadratic penalty methods were largely superseded by methods based on

the augmented Lagrangian function, which was proposed independently by Hestenes [15]

and Powell [23]. An augmented Lagrangian function has the form

P (x;µ, ya) = f(x)− c(x)Tya +
1

2µ
‖c(x)‖2,

where ya ∈ Rm is an estimate of the vector of Lagrange multipliers at a solution of

(2.7). The augmented Lagrangian function can be viewed as the classical quadratic

penalty function applied to the following shifted version of problem (2.7)

minimize
x∈Rn

f(x)

subject to c(x)− µya = 0.
(2.10)

If ya = y∗ and µ is sufficiently small, the solution x∗ associated with y∗ may

be found with a single unconstrained minimization of P (x;µ, ya). This result is

used to formulate methods in which the inner iterations involve minimizing an

unconstrained augmented Lagrangian function, and the outer iterations check for

termination and define a new multiplier estimate.

Further notable advances in penalty methods can be traced to the devel-

opment of efficient primal-dual path-following methods. A primal-dual penalty

function can be derived by defining a primal-dual pair (x(µ), y(µ)), such that x(µ)

minimizes P (x;µ), and y(µ) is the vector of Lagrange multipliers for the shifted

problem

minimize
x∈Rn

f(x)

subject to c(x) = c(x(µ)).
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The primal-dual pair (x(µ), y(µ)) satisfies the equations:

∇f(x)−
m∑

i=1

yi∇ci(x) = 0 and yi = − 1

µ
ci(x),

which may be rewritten as:

∇f(x)− J(x)Ty = 0,

c(x) + µy = 0,

where J(x) is the Jacobian of the constraints c(x). The Forsgren-Gill primal-dual

function for the equality constrained problem (2.7) is given by

P ν(x, y;µ) = f(x) +
1

2µ
‖c(x)‖2 +

ν

2µ
‖c(x) + µy‖2, (2.11)

for a fixed positive scalar ν (see [7]). The Forsgren-Gill penalty function is the

quadratic penalty function augmented by a term that penalizes deviations from

the trajectory of minimizers (x(µ), y(µ)).

A primal-dual function that does not require µ → 0 and allows the use

of estimates of the multipliers y, may be derived by applying the primal-dual

penalty function (2.11) to the shifted problem (2.10) (see Robinson [24], Gill and

Robinson [12, 13]). This gives the primal-dual augmented Lagrangian function

P ν(x, y;µ, ya) = f(x)− c(x)Tya +
1

2µ
‖c(x)‖2 +

ν

2µ
‖c(x) + µ(y − ya)‖2.

This function will be discussed in more detail in Chapter 5 in the context of solving

quadratic programs in standard form.

2.4 Convexification Methods

Convexification is a process for defining a local convex approximation of

a nonconvex problem. This approximation may be defined on the full space of

variables or just on some subset. Many model-based optimization methods use

some form of convexification. For example, line-search methods for unconstrained

and linearly-constrained optimization define a convex local quadratic model in

which the Hessian H(xk) is replaced by a positive-definite matrix H(xk) +Ek (see,
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e.g., Greenstadt [14], Gill and Murray [11], Schnabel and Eskow [25], and Forsgren

and Murray [10]). All of these methods are based on convexifying an unconstrained

or equality-constrained local model.

Ideally, any algorithm for computing Ek should be “minimally invasive”,

i.e., if Hessian is positive definite, then the modification should be zero.

2.4.1 Symmetric Indefinite Factorization

Each iteration of a primal-dual method requires the solution of a Newton

type system of equations involving a symmetric primal-dual KKT matrix

K =

(
H AT

A −D

)
, (2.12)

where H is an n × n symmetric matrix, A is an m × n matrix and D is an

m ×m positive-definite diagonal matrix. For systems with large dimensions this

computation dominates the cost of an iteration. Many methods, both iterative

and direct, have been proposed for solving these equations. Some of the most

successful methods rely on factorizing K using a symmetric indefinite factorization

(see Bunch and Parlett [4] and Bunch and Kaufman [2]). If K is defined as above,

then there exists a permutation P , a block-diagonal B = diag(B1, B2, . . . , Bs), and

a unit lower-triangular L, such that P TKP = LBLT . The diagonal blocks Bj are

either one-by-one or two-by-two and are nonsingular if
(
H AT

)
has full rank,

otherwise some trailing blocks Bj may be zero.

Before we can describe LBLT factorization, the following definition is needed.

Definition 2.4.1. Consider the following partition of a symmetric matrix K.

K =

(
K11 K12

K21 K22

)
,

where K12 = KT
21. The Schur complement of K11 in K, denoted K/K11, is defined

as

K/K11 = K22 −K21K
−1
11 K12.
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With this definition, K may be written in the form

(
K11 K12

K21 K22

)
=

(
I 0

K21K
−1
11 I

)(
K11 0

0 K/K11

)(
I K−111 K12

0 I

)
.

To start the factorization, a symmetric 1×1 or 2×2 pivot is chosen and brought to

the leading position using symmetric row and column interchanges. An elimination

step is then applied that, depending on the size of the pivot, yields the first one

or two columns of L. The pivot K11, (say) becomes the first diagonal block of B

and the associated Schur complement P T
1 KP1/K11 remains to be factorized. This

first elimination step may be written in the form

P T
1 KP1 =

(
K11 K12

K21 K22

)
= L1B11L

T
1 +

(
0 0

0 S

)
,

where K11 is 1× 1 or 2× 2,

L1 =

(
I

K21K
−1
11

)
, B11 = K11, and S = K22 −K21K

−1
11 K12.

In subsequent steps this procedure is repeated until the Schur complement has

dimension zero and complete LBLT factorization is obtained.

The numerical stability of the LBLT factorization depends of the choice of

pivots, and a number of strategies have been proposed (see, e.g., Bunch, Kaufman,

and Parlett [3]). In the next section a strategy is defined that controls the inertia

of the block diagonal matrix B.

2.4.2 The Inertia Controlling LBLT Factorization

An inertia controlling factorization may be used in conjunction with a con-

vexification method described in the next section, to define a modified Hessian

for the primal-dual KKT matrix (2.12). The factorization defines a pivot order

that facilitates the definition of a modified Hessian H + E giving a KKT matrix

of correct inertia (see Forsgren and Murray [10], Forsgren and Gill [7]).

If K is the primal-dual matrix (2.12) defined in the previous section, po-

tential pivots in the Schur complement can be labeled to reflect the position of the
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pivot in the original matrix. For example, a diagonal of the Schur complement will

be a D pivot if it is in the position occupied by an element of D in the original

matrix. Similarly, a two-by-two pivot with diagonal and off-diagonal positions oc-

cupied by elements from H and D will be an HD pivot. With this labeling, all

one-by-one pivots are either H or D pivots, and two-by-two pivots are HH, DD,

or HD pivots. We can further distinguish between pivot types based on, whether

the pivot has positive, negative, zero or mixed eigenvalues. Let the superscripts

+ and − denote the sign of the eigenvalue. For 1 × 1 pivots, the possible pivot

types are H+, H−, and D−. For 2× 2 pivots, the possibilities are HH++, HH+−,

HH−−, HD+− and DD−−.

The inertia-controlling factorization consists of two phases. To ensure a

certain inertia of the B matrix, only pivots of type H+, D−, HH++, HD+− and

D−− are allowed in the first phase. The first phase continues until no D pivots or

HD pivots remain in the Schur complement. For example consider the following

partition of K defined in (2.12)

K =




H11 H12 AT1

H21 H22 AT2

A1 A2 −D


 .

For the purpose of this discussion and without loss of generality, assume that the

order of pivots in the first phase doesn’t matter and all pivots come form the rows

corresponding to the H11 and D blocks. Let P̂ be the permutation such that at at

the end of phase one

P̂ TKP̂ =




H11 AT1 H12

A1 −D A2

H21 AT2 H22


 .

Thus, at the end of the first phase, we end up with

P̂ TKP̂ =

(
K11 K12

K21 K22

)
=

(
L11

L21

)
B11

(
LT11 LT21

)
+

(
0 0

0 S

)
,

where

K11 =

(
H11 AT1

A1 −D

)
,
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K21 = KT
12 =

(
H21 AT2

)
, K22 = H22 and S = K22 −K21K

−1
11 K12 is the Schur

complement left to be factorized. The proposed pivot strategy ensures that the

inertia of B11 block diagonal matrix is given by In(B11) = (n1,m, 0), where n1 ≤ n

depends of the number of H rows used in the first phase.

In the second phase, the choice of type of pivot is unrestricted, and the

only consideration is that ‖L‖ is bounded. On completion of phase two, we have

K22 −K21K
−1
11 K12 = L22B22L

T
22 and this gives the complete factorization

(
K11 K12

K21 K22

)
=

(
L11 0

L21 L22

)(
B11 0

0 B22

)(
LT11 LT21

0 LT22

)
. (2.13)

2.4.3 Computing a Modified KKT Matrix

The inertia controlling factorization allows us to easily compute a modified

matrix H̄ = H + E, where E is symmetric positive semidefinite, such that the

modified KKT matrix

K̄ =

(
H̄ AT

A −D

)
(2.14)

has correct inertia. Consider the complete factorization given by (2.13). As

B22 = diag(B1, . . . , Bl) is block diagonal, where each Bj block is either 1 × 1

or symmetric 2× 2, its is fairly straight forward to compute a symmetric positive

definite modification B̄22 = B22 +E22. For example, consider the following scheme

for computing E22. Let E22 = diag(E1, . . . , El), where each Ej has the same di-

mension as the corresponding Bj. Let 0 < ω � 1 be the tolerance for the smallest

eigenvalue allowed. If Bj is a 1× 1 block, then

Ej =





max(ω,−Bj)−Bj if Bj < ω

0 otherwise.

If Bj is a 2× 2 block, then Ej can be computed using eigenvalues of Bj. Note that

as Bj is symmetric, its two eigenvalues are real and can be easily computed. Let

α = max(ω,−λmin(Bj))− λmin(Bj)), then define

Ej =




αI if λmin(Bj) < ω

0 otherwise.
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As K22 consists entirely of elements from rows and columns of H, any modifi-

cation to B22 only affects H and we therefore obtain K̄ defined in (2.14), and a

symmetric positive semi-definite E = P̄ T diag(0, E22)P̄ , where P̄ is the appropriate

permutation matrix.

The following result follows.

Result 2.4.1. Let B̄22 be a sufficiently positive definite modification of B22 of the

completed inertia controlling factorization (2.13). Then

K̄ =

(
H̄ AT

A −D

)

has correct inertia and H̄ + ATD−1A is sufficiently positive definite.

Proof. Sylvester’s Law of Inertia gives

In(K) = In(P TKP ) = In(LBLT ) = In(B)

and hence

In(K) = In(B11) + In(B22) = (n1,m, 0) + In(B22).

So if B̄22 is sufficiently positive definite, In(K̄) = (n,m, 0). Theorem 1.5.2 gives

In(K̄) = In(H̄ + ATD−1A) + (0,m, 0) and so In(H̄ + ATD−1A) = n.



3 Barrier Methods

In this section we present an overview of barrier methods as they pertain

to a more general nonlinear optimization problem given by

minimize
x∈Rn

f(x)

subject to c(x) ≥ 0,
(3.1)

where f : Rn → R is twice continuously differentiable and c is an m-vector of

constraint functions with each ci : Rn → R twice continuously differentiable. We

say that the nonlinear program is convex, if the objective function is convex and

the inequality-constraint functions are concave (i.e., −ci(x) is a convex function).

Throughout this chapter the following notation will be used:

• J(x) is the constraint Jacobian;

• L(x, z) = f(x)− zT c(x);

• H(x, z) = Lxx(x, z) = ∇2f(x)−
m∑

i=1

zi∇2ci(x);

• (xk, zk) denotes an approximate primal-dual solution to (3.1) at step k, where

zk is a vector of dual variables for the inequality constraints;

• fk = f(xk), ∇fk = ∇f(xk), ck = c(xk), Jk = J(xk) and Hk = H(xk, zk);

• A = {i : ci(x
∗) = 0} denotes the index set of constraints that are active at a

solution x∗;

• A+ = {i ∈ A : z∗i > 0} denotes the index set of constraints active at a

solution for which a corresponding optimal Lagrange multiplier is strictly

positive;

26
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• F = {x ∈ Rn : c(x) ≥ 0} denotes the feasible set.

3.1 Optimality Conditions

In the convergence theorems for various barrier methods presented in this

chapter it is necessary to make certain first- and second-order assumptions on a

local minimizer x∗ of problem (3.1).

Definition 3.1.1. A point x∗ is a first-order KKT point, if there exists a z∗ ∈ Rm,

such that

1. c(x∗) ≥ 0,

2. ∇f(x∗)− J(x∗)T z∗ = 0,

3. z∗ ≥ 0, and

4. c(x∗) · z∗ = 0.

In general, the multipliers at a KKT point are not unique. The following

definition characterizes the set of acceptable multipliers at a KKT point x∗.

Definition 3.1.2. Given a KKT point x∗ for problem (3.1), the set of acceptable

multiplies is defined as

Mz(x
∗) = {z : ∇f(x∗) = J(x∗)T z, z ≥ 0, c(x∗) · z = 0}. (3.2)

In the case of quadratic programming, where the constraints are linear,

an optimal solution is a first-order KKT point. However, this is not the case for

a problem with nonlinear constraints unless certain constraint qualifications or

regularity conditions hold at x∗. There are many constraint qualifications that

guarantee a local minimizer is a KKT point. Here we give the two most common

ones.

Definition 3.1.3 (Linear Independence Constraint Qualification (LICQ)). For

problem (3.1), the linear independence constraint qualification holds at the feasible

point x, if x is strictly feasible, i.e., there are no constraints active at x, or if
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JA(x) has full row rank, i.e., if the gradients of the active constraints are linearly

independent.

Another constraint regularity is due to Mangasarian and Fromovitz [17].

Definition 3.1.4 (Mangasarian-Fromovitz Constraint Qualification(MFCQ)). For

problem (3.1), the Mangasarian-Fromovitz constraint qualification holds at the fea-

sible point x, if x is strictly feasible or if there exists a vector p such that JA(x)p > 0.

The main properties of these constraint qualifications may be summarized

as follows:

1. The MFCQ is a weaker condition then LICQ, in the sense that if LICQ holds,

then so does MFCQ, but not the other way around.

2. If LICQ holds at a KKT point x∗, then the Lagrange multiplier vector z∗ is

unique.

3. If MFCQ holds at a KKT point x∗, the set of acceptable Lagrange multipliers

Mz(x
∗) is bounded.

4. LICQ is more practical in the sense that is is computationally easier to verify.

We can now state first-order necessary conditions for a local minimizer.

Theorem 3.1.1 (First-order Necessary Conditions). For problem (3.1), if x∗ is a

local minimizer for which MFCQ holds, then x∗ is a KKT point.

As with quadratic programming, unless the nonlinear problem is convex,

first-order conditions are not enough to ensure optimality and second-order condi-

tions are required. We first state the necessary second-order conditions for a local

minimizer

Theorem 3.1.2 (Second-order Necessary Conditions). Let x∗ be a local minimizer

of problem (3.1) at which LICQ holds. Then x∗ is a KKT point and, further, it

must be true that pTH(x∗, z∗)p ≥ 0 for all p satisfying JA(x∗)p = 0.
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Necessary conditions let us check if a point is not a local minimizer. We

need sufficient conditions to conclude that x∗ is indeed a local minimizer of the

inequality constrained nonlinear program. Several second-order conditions exist

that guarantee a minimum.

Definition 3.1.5 (First Second-order Sufficient Condition (SSC1)). Let x∗ be a

KKT point of problem (3.1). Then SSC1 holds for (x∗, z∗) if there exists ω > 0

such that pTH(x∗, z∗)p ≥ ω‖p‖2 for all nonzero p satisfying g(x∗)Tp = 0 and

JA(x∗)p ≥ 0.

The SSC1 requires that the condition holds for just one z∗ in the set of acceptable

multipliers at x∗. The next sufficiency condition is more demanding in that it

places the requirement on all acceptable multipliers.

Definition 3.1.6 (Second Second-order Sufficient Condition (SSC2)). Let x∗ be

a KKT point of problem (3.1). Then SSC2 holds for x∗ if for all z∗ ∈ Mz(x
∗),

there exists ω > 0 such that pTH(x∗, z∗)p ≥ ω‖p‖2 for all nonzero p satisfying

g(x∗)Tp = 0 and JA(x∗)p ≥ 0.

The following theorem gives the sufficiency conditions that allow us to verify

that a certain point is a strict local constrained minimizer.

Theorem 3.1.3 (Second-order Sufficient Conditions for Strict Minimizer). The

point x∗ is a strict local constrained minimizer of problem (3.1) if

1. x∗ is a KKT point,

2. SSC1 holds at (x∗, z∗) for some z∗ ∈Mz(x
∗).

Verifying SSC1 for all p that satisfy g(x∗)Tp = 0 and JA(x∗)p ≥ 0 requires

finding the global minimizer of a possibly indefinite quadratic form over a cone,

which is an NP-hard problem. As in the QP case, computationally tractable suffi-

cient conditions may be stated by enlarging the set of all p for which pTH(x∗, z∗)p

must be sufficiently positive. This leads to the following more strict result.

Theorem 3.1.4 (Computational Second-order Sufficient Conditions for Strict

Minimizer). The point x∗ is a strict local constrained minimizer of problem (3.1)

if
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1. x∗ is a KKT point,

2. For z∗ ∈Mz(x
∗) from part (1) and all nonzero p satisfying g(x∗)Tp = 0 and

JA+
(x∗)p ≥ 0, there exists ω > 0 such that pTH(x∗, z∗)p ≥ ω‖p‖2.

As strict as these conditions are they are still not sufficient to guarantee

that the constrained minimizer is isolated. Constrained qualifications are needed

to prove that x∗ is an isolated local constrained minimizer of problem (3.1). We

also require the more strict SSC2 to holds.

Theorem 3.1.5 (Second-order Sufficient Conditions for Isolated Minimizer). The

point x∗ is an isolated local constrained minimizer of problem (3.1) if

1. x∗ is a KKT point, i.e., c(x∗) ≥ 0 and there exists a Lagrange multiplier

vector z∗ ∈Mz(x
∗) = {z : ∇f(x∗) = J(x∗)T z, z ≥ 0, c(x∗) · z = 0},

2. the MFCQ holds at x∗, i.e., there exists a vector p such that JA(x∗)p > 0,

3. the SSC2 holds, i.e., for all z∗ ∈Mz(x
∗) and all p 6= 0 satisfying g(x∗)Tp = 0

and JA(x∗)p ≥ 0, there exists ω > 0 such that pTH(x∗, z∗)p ≥ ω‖p‖2.

As in Theorem 3.1.3, verifying condition (3) is NP hard. In addition, con-

firming that MFCQ holds requires solving a linear program. The following result

gives sufficient conditions that are simpler to verify computationally.

Theorem 3.1.6 (Strong Second-order Sufficient Conditions for Isolated Mini-

mizer). The point x∗ is an isolated local constrained minimizer of problem (3.1)

if

1. the LICQ holds at x∗, i.e., JA(x∗) has full row rank,

2. x∗ is a KKT point and strict complementarity holds, i.e., the unique Lagrange

multiplier vector satisfies zi > 0 for all i ∈ A(x∗),

3. there exists ω > 0 such that pTH(x∗, z∗)p ≥ ω‖p‖2 for all nonzero p satisfying

JA(x∗)p = 0.
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3.2 The Classical Barrier Function

Classical barrier functions were developed as a way of solving nonlinearly

constrained optimization problems by converting them into a sequence of param-

eterized unconstrained problems. Important features of classical barrier functions

are that they preserve the continuity properties of the constraints on the set of

strictly feasible points and they are infinite on the boundary of the feasible region.

The most common classical barrier function (CBF) is the logarithmic function.

B(x;w) = f(x)−
m∑

i=1

wi ln ci(x),

where wi are positive barrier parameters chosen so that ‖w‖ → 0. If we let wi = µ

for all i, then the barrier function takes the form

B(x;µ) = f(x)− µ
m∑

i=1

ln ci(x).

Under appropriate conditions, minimizing B(x;µ) for a sequence of positive µ

converging to zero forces the sequence of unconstrained minimizers of B(x;µ) to

converge to the minimizer of the original problem (3.1).

The following theorem on the convergence of minimizers x(µ) of the param-

eterized sequence of barrier functions is stated without proof. The theorem also

gives conditions under which the vector x(µ), when regarded as a function of µ,

forms a differentiable path to a constrained minimizer x∗. This path is known as

the barrier trajectory, The proof and further discussion can be found, for example,

in Forsgren, Gill and Wright [9].

Theorem 3.2.1 (Barrier trajectory). Assume the set {x : ci(x) > 0, i = 1, . . . ,m}
of strictly feasible points is nonempty. Let x∗ be a local constrained minimizer for

which sufficient optimality conditions stated in Theorem 3.1.5 hold. Assume a

classical barrier method is applied so that µk converges monotonically to zero as

k →∞. Then

1. there is at least one subsequence of unconstrained minimizers of the barrier

function B(x;µk) converging to x∗,



32

2. for such a subsequence {xk}, the sequence of barrier multipliers {zk} is

bounded, where zk = µ ·/ c(xk),

3. lim
k→∞

zk = ȳk ∈Mz(x
∗).

If, in addition, strict complementarity holds, then

4. ȳA > 0,

5. for sufficiently large k, ∇2B(xk;µk) is positive definite;

6. a unique, continuously differentiable vector function x(µ) of unconstrained

minimizers of B(x;µ) exists for positive µ in the neighborhood of µ = 0,

7. lim
µ→0+

x(µ) = x∗,

8. ‖xk − x∗‖ = Θ(µk).

The following example illustrates the properties of the logarithmic barrier

function. Consider the QP

minimize
x

q(x1, x2) = 1
4
x21 + 3x1x2 + x22 − 3x1 − 6x2

subject to −5
2
x1 + x2 ≥ −19

4
, x1 ≥ 1

2
, x2 ≥ −1

2
.

(3.3)

For this problem the Hessian H, constraint matrix A and lower-bound vector b are

given by

H =

(
1
2

3

3 2

)
, A =




−5
2

1

1 0

0 1


 , b =




−19
4

1
2

−1
2


 .

Figure 3.1a shows the level curves of the objective function and the con-

straint functions. The feasible region is shown in grey. There are three stationary

points, two of which are local constrained minimizers. Figures 3.1b–3.1e show the

effect of the choice of µ on the level curves of the barrier function. As µ gets smaller

the contours start to resemble those of the original objective function, except on

the boundary, where the barrier function is infinite and the level curves become
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−5
2x1 + x2 ≥ −19

4

x2 ≥ −1
2

x1 ≥ 1
2

x∗

x̂

x̄

(a) Three Solutions.

µ = 0.15

(b) µ = .15.

µ = 10−1

(c) µ = .1.

µ = 10−2

(d) µ = .01.

µ = 10−3

(e) µ = .001.

µ = 10−3

(f) Barrier Trajectory.

Figure 3.1: Properties of Classical Barrier Function.
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bunched together. Figure 3.1f shows the trajectories of local unconstrained mini-

mizers of the logarithmic barrier function converging to the two local minimizers

x∗ and x̂ on the boundary.

The barrier trajectory theorem suggests an algorithm based on computing

the minimizers x(µ) of parameterized barrier functions for a sequence of barrier

parameters µ converging to zero. Analogous to the penalty-type methods discussed

in Chapter 2.3, this barrier algorithm is a two-tier method with inner and outer

iterations. In the inner iterations an approximate minimizer x(µ) of B(x, µ) is

computed using some variant of Newton’s method. In the outer iterations, a test

for convergence to a local constrained minimizer of problem (3.1) is performed and

parameter µ is reduced if necessary.

The classical Newton’s barrier equations are given by

∇2B(x;µ)∆x = −∇B(x;µ),

where

∇B(x;µ) = ∇f(x)−
m∑

i=1

µ

ci(x)
∇ci(x)

and

∇2B(x;µ) = ∇2f −
m∑

i=1

µ

ci(x)
∇2ci(x) + µJ(x)TC(x)−2J(x).

The derivatives of B(x;µ) may be simplified by defining a vector

π(x;µ) = µ ·/ c(x) = µC(x)−1e. (3.4)

This vector, referred to as the vector of primal multipliers, may be interpreted

as an estimate of the Lagrange multipliers in the sense that, as the sequence

{xk} → x(µ), it holds that {π(xk;µ)} → z(µ). Expressed in terms of π, the

gradient and the Hessian are

∇B(x;µ) = ∇f(x)− J(x)Tπ(x;µ)

and

∇2B(x;µ) = H(x, π(x;µ)) + J(x)TΠ(x;µ)C(x)−1J(x).

Algorithm 3.2.1 summarizes the classical Newton barrier method. The al-

gorithm uses a backtracking line search. While most common line-search methods
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use polynomial local models of the barrier function, such models may be inade-

quate for modeling the sharp increase of the barrier function that occurs near the

boundary.

Both the gradient and the Hessian of the barrier function are undefined on

the boundary. Moreover, if the optimal solution lies on the boundary, the Hessian

of B(x;µ) is increasingly ill-conditioned as µ → 0. This property may be charac-

terized more precisely as follows. Suppose that the barrier Hessian is evaluated at

a strictly feasible point that is close to the minimizer x∗ and relatively near the the

barrier trajectory (i.e., the smallest active constraint value is not too small com-

pared to µ, or more formally mini∈A c(x) = Ω(µ), so that maxi∈A π(x;µ) = O(1)).

At such a point, the barrier Hessian has two widely separated sets of eigenvalues.

In the first set the eigenvalues become unbounded as µ → 0. The second set of

eigenvalues are Θ(1) as µ→ 0. The subspace that corresponds to the large eigen-

values is close to the range of JTA , while the subspace that corresponds to the small

eigenvalues is close to the null space of JA. However, when evaluated at “bad”

points, that are not close to the trajectory (i.e., the constrained values are very

small compared to µ) the Hessian becomes arbitrarily ill-conditioned. In prac-

tice, ill-conditioning is not as harmful as one might think (see, e.g., Wright [27]).

When computed at “nice” points using backward stable methods and assuming er-

ror cancelation, the search directions are relatively accurate because of the special

structure of the Hessian at these points and the fact that the gradient lies almost

entirely in the range space of JTA . This result does not hold for “bad” points, thus

for the barrier method to be effective, the solution must be approached along the

barrier trajectory.

However, using the classical Newton barrier method is still inefficient, in

large part because of the properties of the exact Newton step (see, e.g., Wright

[26]). Immediately following the reduction of the barrier parameter µ, the Newton

step ∆x violates the constraints. In particular, when the current iterate x is close

to the solution x∗ and lies near the trajectory (i.e., maxi∈A π(x;µ) = O(1)), then

reducing the barrier parameter to µ̄ by a large enough factor may cause the next

x to be far from the trajectory (i.e, maxi∈A π(x;µ) = µ̄/µ).
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Algorithm 3.2.1 A Classical Newton’s Barrier Method

INPUT: x0 ∈ {x : c(x) > 0}, µ0;

Set constants γ ∈ (0, 1), 0 < τ � 1;

k = 0;

while not converged do

j = 1;

xj ← xk;

while ‖∇B(xj;µk‖) > τ do

Compute B(xj;µk), ∇B(xj;µk), ∇2B(xj;µk);

Compute E such that (∇2B(xj;µk) + E) is p.d.;

Solve (∇2B(xj;µk) + E)∆xj = −∇B(xj;µk);

Perform backtracking line search to find αj;

Update xj+1 = xj + αj∆xj;

j ← j + 1;

end while

xk+1 ← xj;

if optimality conditions hold then

converged← true

else

µk+1 = γµk;

end if

k ← k + 1;

end while

OUTPUT: xk
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Various improvements for the classical Newton’s barrier method exist that

address the ill-conditioning of the Hessian as µ → 0 as well as inefficiencies of

the exact Newton step each time µ is reduced. Specialized line-search methods

suitable for barrier functions have also been proposed. On the other hand, the

method presented in the next section completely eliminates the need to reduce µ

beyond a certain threshold.

3.3 The Modified Barrier Function

The modified barrier function (MBF) was originally developed to avoid the

need for µ to go to zero, keeping MBF and its derivatives well-defined on the

boundary. Most of the discussion and theorems in this section are based on the

work of Polyak [22].

The idea behind the MBF comes from noting that, for a fixed parameter

µ, the feasibility region F of the original nonlinear program (3.1) is identical to

{x ∈ Rn : µ ln(ci(x)/µ + 1) ≥ 0, i = 1, . . . , m}. Moreover, any KKT point of the

original problem is also a KKT point of the modified problem

minimize
x∈Rn

f(x)

subject to µ ln
(ci(x)

µ
+ 1
)
≥ 0, i = 1, . . . ,m,

(3.5)

where the multipliers ẑ∗i for problem (3.5) are given by

ẑ∗i =
(ci(x∗)

µ
+ 1
)
z∗i ,

where z∗i are multipliers associated with the KKT point x∗ of the original problem.

The modified barrier function is then defined as

B(x;µ, z) = f(x)− µ
m∑

i=1

zi ln
(ci(x)

µ
+ 1
)
, (3.6)

which may be viewed as the classical Lagrangian for the modified problem (3.5).

For an alternative motivation for the modified barrier function, consider a

shifted problem

minimize
x

f(x)

subject to c(x) + µe ≥ 0.
(3.7)
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ye =




0
4
0




µ = 10−1

(a) Optimal multipliers at x∗, µ = 0.1

ye =




0.1
4.1
0.1




µ = 10−1

(b) Slightly perturbed multipliers at

x∗, µ = 0.1.

Figure 3.2: Properties of Modified Barrier Function.

The weighted classical barrier function for this problem is

B(x;w) = f(x)−
m∑

i=1

wi ln(ci(x) + µ).

Let wi = µzai , where zai are multiplier estimates, then the weighted barrier function

for (3.7) is given by

B(x;w) = f(x)− µ
m∑

i=1

zai ln(ci(x) + µ)

and differs from the modified barrier function (3.6) by a constant.

Consider Example 3.3 from the previous section. Figures 3.2a–3.2b show

that the modified barrier function is well-defined at all feasible points, including the

boundary of F . Moreover, the function has the same smoothness as the objective

and constraint functions in the neighborhood of the boundary of the feasible set

F . It can also be seen that given the exact z∗ and µ sufficiently small, x∗ is a

minimizer of the modified barrier function. It is clear that µ does not need to go

to zero for the unconstrained minimizers to converge to the solution.

Result 3.3.1 (Properties of the MBF). Consider the modified barrier function

B(x;µ, za) defined in (3.6) and assume that x∗ is a local minimizer of the nonlinear
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program (3.1) for which the sufficient conditions of Theorem 3.1.6 hold. Then the

following properties follow

1. B(x∗;µ, z∗) = f(x∗) for all µ > 0,

2. there exists a µ̄ > 0 such that for all µ ≤ µ̄, x∗ satisfies second-order suffi-

ciency conditions for an unconstrained minimizer of B(x;µ, z∗).

Proof. The sufficient conditions of Theorem 3.1.6 imply that x∗ is a KKT point

with unique Lagrange multiplier z∗ with z∗i > 0 for all i ∈ A and zero otherwise.

It follows that

B(x;µ, z∗) = f(x)− µ
∑

i∈A
z∗i ln

( 1

µ
ci(x) + 1

)

and

∇B(x;µ, z∗) = ∇f(x)− µ
∑

i∈A

z∗i
ci(x) + µ

∇ci(x).

Similarly,

∇2B(x;µ, z∗) = ∇2f(x)− µ
∑

i∈A

z∗i
ci(x) + µ

∇2ci(x)

+ µ
∑

i∈A

z∗i
(ci(x) + µ)2

∇ci(x)T∇ci(x)

= H(x, µ(CA(x) + µI)−1z∗A) + µJTA (x)(CA(x) + µI)−2Z∗AJA(x).

To verify part (1), note that because ci(x) = 0 for all i ∈ A, it must hold

that

ln
( 1

µ
ci(x

∗) + 1
)

= 0,

and hence B(x∗;µ, z∗) = f(x∗).

For part (2) it must be shown that that∇B(x∗;µ, z∗) = 0 and∇2B(x∗;µ, z∗)

is positive definite for all µ ≤ µ̄. As x∗ is a KKT point, stationarity at (x∗, z∗)

must hold and thus

∇B(x∗;µ, z∗) = ∇L(x∗, z∗) = 0.

Evaluated at x∗,

∇2B(x∗;µ, z∗) = H(x∗, z∗A) +
1

µ
JTA (x∗)Z∗AJA(x∗).
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(a) i ∈ A (b) i /∈ A

Figure 3.3: Graphical Representation of the Set Di.

As the second-order condition of Theorem 3.1.6 requires the existence of ω > 0 such

that pTH(x∗, z∗)p ≥ ω‖p‖2 for all nonzero p satisfying JA(x∗)p = 0, the variation

of Debreu’s lemma (see Theorem 1.5.4) implies that there must exist a µ̄ > 0 such

that for all µ ≤ µ̄, ∇2B(x∗;µ, z∗) is positive definite.

The main global convergence result for modified barrier functions involves

the definition of a set D of “acceptable” multiplier estimates and barrier parame-

ters. The result requires the assumption of strict complementarity. Let δ > 0 and

0 < ε < mini∈A z∗i . Define Di = {zi : zi ≥ ε, |zi − z∗i | ≤ δ/µ, µ ≤ µ0} for i ∈ A
and Di = {zi : 0 ≤ zi ≤ δ/µ, µ ≤ µ0} for i /∈ A, (see Figure 3.3). Then define

D(µ0, z
∗, δ, ε) = D1 ⊗ · · · ⊗ Dr ⊗ · · · ⊗ Dm. (3.8)

It is also necessary to impose a certain “niceness” condition on the shifted feasible

set

Fµ = {x : ci(x) + µ ≥ 0, i = 1, . . . ,m}

Observe that F ⊂ Fµ. If problem (3.1) is convex, i.e., ci(x) are all concave, then

compactness of F implies compactness of Fµ. If the nonlinear program is not

convex, no such implication holds and the following growth condition is required:

∃µ0 > 0 and τ > 0 : max
{

max
1≤i≤m

ci(x) : x ∈ Fµ0
}

= θ(µ0) ≤ τ. (3.9)

It is clear that θ(µ) is a decreasing function of µ. Thus if the growth condition

holds for some µ0, then θ(µ) ≤ τ for all µ ≤ µ0. We are now ready to state the

main theorem for modified barrier functions.
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Theorem 3.3.1 (Local MBF convergence). Assume the set of strictly feasible

points {x : ci(x) > 0, i = 1, . . . ,m} is nonempty. Let x∗ be a local constrained

minimizer for which the sufficient optimality conditions stated in Theorem 3.1.6

hold. In addition, assume that the growth condition (3.9) holds. Then there exist

µ0 and a sufficiently small δ > 0 such that for any 0 < ε < mini∈A z∗i and any

(µ, za) in D(z∗, µ0, δ, ε), the following statements hold:

1. there exists a vector x̂ = x̂(µ, za) = argmin {B(x;µ, za) : x ∈ Rn} such that

∇B(x̂;µ, za) = 0,

2. for a pair of vectors x̂ and π̂ = π̂(µ, za) = µ(C(x̂(µ, za)) + µI)−1za, the

estimate

max{‖x̂− x∗‖, ‖π̂ − z∗‖} ≤ Kµ‖za − z∗‖

holds, with constant K independent of µ,

3. x̂(µ, z∗) = x∗ and π̂(µ, z∗) = z∗,

4. B(x;µ, za) is strongly convex in a neighborhood of x̂ = x̂(µ, za).

In order to apply the results of Theorem 3.3.1 it is necessary to know the

quantities (µ, za) ∈ D(µ, z∗, δ, ε). The following result shows how such a pair may

be found.

Theorem 3.3.2 (Global MBF Theorem). Assume the set of strictly feasible points

{x : ci(x) > 0, i = 1, . . . ,m} is nonempty. Let x∗ be a local constrained minimizer

for which the sufficient optimality conditions of Theorem 3.1.6 hold. In addition,

assume that the the growth condition (3.9) holds and that there exists a positive µ0

such that Fµ0 is compact. Then

1. for all µ ≤ µ0 there exists x(µ) = argmin {B(x;µ, e) : x ∈ Rn} such that

∇B(x(µ);µ, e) = 0 and lim
µ→0

f(x(µ)) = lim
µ→0

B(x(µ);µ, e) = f(x∗),

2. there exists a positive µ̄ such that x(µ) exists for all µ ≤ µ̄, and the estimate

max
{
‖x(µ)− x∗‖, ‖π(µ)− z∗‖

}
≤ Kµ

holds for some K > 0 independent of µ, with π(µ) = µ(C(x(µ)) + µI)−1e.
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3. B(x;µ, e) is strongly convex in the neighborhood of x(µ).

Making use of the theory above, we can now develop a modified barrier

method for finding constrained minimizers of the inequality-constraint nonlinear

program. In order to begin, it is necessary to find a strictly feasible point x0. This

may be done, for example, by solving argmax {min
i
ci(x)}.

If the threshold for µ̄ is known a priori, then Theorem 3.3.2 suggests a

simple procedure such that, given a primal-dual iterate (xk, z
a
k), the next iterate

(xk+1, z
a
k+1) is defined by setting xk+1 = argmin{B(x; µ̄, zak)} and updating the

multiplier estimates as zak+1 = µ(C(xk+1) + µI)−1zak . In general, µ̄ is not known

in advance, which suggests the possibility of reducing µ to achieve convergence to

the solution of the nonlinear program (3.1). As a consequence, once (xk+1, z
a
k+1) is

found, it may be necessary to define µk+1 such that µk+1 < µk. However, in this

case, xk+1 may not be in the interior of Fµk+1
, which implies that the modified

barrier function may not be well-defined. In this case xk+1 is reset to a known

strictly feasible point, or some iterative procedure is used to determine a feasible

point for the new set Fµk+1
.

As with the classical barrier method, each modified barrier function is mini-

mized approximately using a form of Newton’s method. The Newton directions are

given by the solution of the Newton equations ∇2B(x;µ, za)∆x = −∇B(x;µ, za),

where

∇B(x;µ, za) = ∇f(x)− J(x)T (C(x) + µI)−1zai

and

∇2B(x;µ, za) = H(x, µ(C(x) + µI)−1za) + µJ(x)T (C(x) + µI)−2ZaJ(x).

Given the vector of primal multipliers π(x) = µ(C(x) + µI)−1za, the derivatives

may be simplified to give

∇B(x;µ, za) = ∇f(x)− J(x)Tπ(x)

and

∇2B(x;µ, za) = H(x, π(x)) + J(x)T (C(x) + µI)−1Π(x)J(x).



43

Algorithm 3.3.1 A Newton’s Modified Barrier Method

INPUT: x0 ∈ F+
µ0

, µ0, z
a
0 ;

Set constants γ ∈ (0, .5], 0 < τ � 1;

k = 0, d = 1;

while not converged do

j = 1; xj ← xk;

while not min found do

Compute B(xj;µk, z
a
k), ∇B(xj;µk, z

a
k), ∇2B(xj;µk, z

a
k);

Solve (∇2B(xj;µk, z
a
k) + E)∆xj = −B(xj;µk, z

a
k);

Perform backtracking line search to find αj;

Update xj+1 = xj + αj∆xj;

if αj = 1 and‖∆xj‖ ≤ τ then

min found← true;

if ν(xj+1, π(xj+1;µk, z
a
k), µk) ≤ γd then

Update xk+1 = xj+1; z
a
k+1 = π(xj+1;µk, z

a
k);

d← d+ 1; τ ← τγ;

else

Set µk+1 < µk; τ ← µτ ; d← 1;

Reset zak+1 ← za0 ;

Adjust xk+1 ∈ Fµk+1
;

end if

end if

j ← j + 1;

end while

if optimality conditions hold then

converged← true;

end if

k ← k + 1;

end while

OUTPUT: xk



44

Algorithm 3.3.1 gives the Newton modified barrier method proposed in [22].

The algorithm starts with an arbitrary parameter µ0 and za = e, but requires an

initial iterate x0 ∈ F+
µ0

= {x : ci(x) > µ0, i = 1, . . . , m} ⊂ F . The test for

optimality involves the quantity

ν(x, za, µ) = max
{
− min

1≤i≤m
ci(x), ‖∇B(x;µ, za)‖,

m∑

i=1

zai |ci(x)|
}
.

It should be emphasized that the barrier parameter µ in the MBF may be

viewed as a regularization parameter for the constraint functions ci(x).

3.4 A Primal-Dual Barrier Function

Primal-dual interior methods are another class of methods that attempt to

alleviate the difficulties associated with the classical barrier method. The methods

are based on the properties of the barrier trajectory x(µ). In particular, note that

the gradient of the classical barrier function vanishes at x(µ), i.e., ∇B(x(µ);µ) = 0.

Substituting the definition of π(x(µ);µ) in the identity ∇B(x(µ);µ) = 0 yields

g(x(µ))− J(x(µ))T z(µ) = 0,

z(µ)− µC(x(µ))−1e = 0,

where the vector z(µ) = π(x(µ);µ) may be interpreted as a vector of approximate

multiplies. Unlike primal methods, which find primal minimizers x(µ) and com-

pute z(µ) as a by-product of the main computation, primal-dual methods treat

z as independent variables and define a pair (x, z) that satisfies the primal-dual

equations that hold at x(µ). That is, they seek a feasible solution (x(µ), z(µ)) (i.e.,

c(x(µ)) > 0 and z(µ) > 0) that satisfy the system

g(x)− J(x)T z = 0,

C(x)z − µe = 0.

These equations corresponds to perturbed first-order optimality conditions of the

original problem (3.1), in the sense that, as µ→ 0, the equations c(x(µ)) · z(µ) =
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µe define an increasingly accurate approximation of the complementarity condition

c(x∗) · z∗ = 0.

It is convenient to describe the equations above in terms of finding zeros of

the vector-valued function

F (x, z;µ) =

(
g(x)− J(x)T z

C(x)z − µe

)
.

This allows that application of Newton’s method to solve the equations F (x, z;µ) =

0 via Newton’s method. The Newton equations for a primal-dual search direction

∆v = (∆x,∆z) are then ∇F (x, z;µ)∆v = −F (x, z;µ), which correspond to the

primal-dual equations

(
H(x, z) −J(x)T

ZJ(x) C(x)

)(
∆x

∆z

)
= −

(
g(x)− J(x)T z

C(x)(z − π(x;µ))

)
. (3.10)

The success of primal-dual methods is due, in part, to their effectiveness at

following the barrier trajectory. In particular, the primal-dual direction (∆x,∆z)

computed at a point (x, z) = (x(µ), z(µ)) on the trajectory will provide a good

approximation of the step towards (x(µ̄), z(µ̄)), the point on the trajectory cor-

responding to µ = µ̄. This property does not hold for the the classical barrier

method.

An equivalent symmetric primal-dual system can be derived by multiplying

the last m rows of (3.10) by Z−1 and changing the sign of ∆z. This gives

(
H(x, z) J(x)T

J(x) Z−1C(x)

)(
∆x

−∆z

)
= −

(
g(x)− J(x)T z

Z−1C(x)(z − π(x;µ))

)
. (3.11)

For nonconvex problems, the symmetric form is preferable because it allows the

use of the symmetric indefinite factorization (see Section 2.4.1), and other methods

that rely on symmetry. These methods may be used to compute an appropriate

descent direction and check the second-order optimality conditions, which require

knowledge of the inertia of the Hessian H(x, z) in the subspace orthogonal to the

active constraint gradients.

It is important to note that as µ → 0, the diagonals of Z−1 corresponding

to the inactive constraints grow without bound, and the system (3.11) becomes
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increasingly ill-conditioned. However, it has been shown (see Forsgren, Gill, and

Shinnerl [8]) that this ill-conditioning is benign, and accurate primal-dual solutions

can be found using symmetric indefinite factorization of the type discussed in

Section 2.4.2.

To ensure global convergence of primal-dual methods from an arbitrary

starting point, it is necessary to use the primal-dual direction ∆v defined above

in conjunction with an appropriate merit function. For nonconvex programs, the

choice of an appropriate merit function is crucial. Here we consider a merit function

proposed by Forsgren and Gill [7].

The Forsgren-Gill merit function for inequality constraints can be viewed as

the classical barrier function augmented by a function that penalizes any deviation

from the barrier trajectory (x(µ), z(µ)). Given a positive µ, the function is given

by

Bν(x, z;µ) = f(x)− µ
m∑

i=1

(
ln(ci(x)) + ν

(
ln
(ci(x)zi

µ

)
+ 1− ci(x)zi

µ

))
. (3.12)

This function is well defined for all (x, z) such that c(x) > 0 and z > 0.

The following lemma summarizes the relationship between points that min-

imize Bν(x, z;µ) and points that lie on the primal-dual barrier trajectory.

Lemma 3.4.1. Let Bν(x, z;µ) be the barrier function (3.12) defined with any pos-

itive ν and µ. A point (x, z) such that c(x) > 0 and z > 0 is an unconstrained

local minimizer of Bν(x, z;µ) if and only if (x, z) = (x(µ), z(µ)). Furthermore,

minz B
ν(x, z;µ) = Bν(x, π(x, µ);µ) = Bν(x;µ), where π(x;µ) is as defined in

(3.4) and Bν(x;µ) is the classical barrier function (3.2).

This result suggests that points on the barrier trajectory (x(µ), z(µ)) may

be found by minimizing Bν(x, z;µ) with respect to both x and z. In order to

guarantee convergence to a local minimizer of a nonconvex problems, both first

and second derivatives are required. Differentiating with respect to both x and z

and making use of the vector π(x;µ) yields

∇Bν(x, z;µ) =

(
g(x)− (1 + ν)J(x)Tπ(x;µ) + νJ(x)T z

νZ−1C(x)(z − π(x;µ))

)
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and

∇2Bν(x, z;µ) =

(
∇2
xxB

ν(x, z;µ) νJ(x)T

νJ(x) νµZ−2

)

=

(
∇2
xxB

ν(x, z;µ) νJ(x)T

νJ(x) νC(x)Π(x;µ)Z−2

)
,

where ∇2
xxB

ν(x, z) is given by

∇2
xxB

ν(x, z) = H(x, (1 + ν)π(x;µ)− νz) + (1 + ν)J(x)TC(x)−1Π(x;µ)J(x).

For the minimization of the merit function Bν(x, z;µ), instead of using a

conventional Newton method, which involves the equations

∇2Bν(x, z;µ)

(
∆x

∆z

)
= −∇Bν(x, z;µ),

a modified Newton method is used. This method is defined by approximating the

primal-dual Hessian ∇2Bν(x, z;µ) by an approximate Hessian Sν(x, z;µ). This

approximate Hessian is defined by replacing the approximate multipliers π(x;µ)

by z in the matrix defining the Newton equations, i.e.,

Sν(x, z;µ) =

(
H(x, z) + (1 + ν)ZC(x)−1 νJ(x)T

νJ(x) νZ−1C(x)

)
(3.13)

The following theorem explores the relationship between the directions de-

fined by the modified Newton equations

Sν(x, z;µ)

(
∆x

∆z

)
= −∇Bν(x, z;µ) (3.14)

and the directions generated by the symmetric primal-dual equations (3.11). The

result also provides a crucial property of Sν(x, z;µ) at stationary points ofBν(x, z;µ).

Theorem 3.4.1. Assume that the barrier function Bν(x, z;µ) of (3.12) is defined

with any positive ν and µ. Let Sν(x, z;µ) denote the approximate Hessian (3.13). If

c(x) > 0 and z > 0, then the vector (∆x,∆z) solves the modified Newton equations

(3.14) if, and only if, it solves the primal-dual equations (3.10) and the symmetric

primal-dual equations (3.11). Moreover, if ∇Bν(x, z;µ) = 0, then Sν(x, z;µ) =

∇2Bν(x, z;µ).
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The proof, which is omitted here, is based on establishing the equivalence of the

modified Newton equations (3.14) and the symmetric primal-dual equations (3.11),

by premultiplying (3.11) by the nonsingular matrix

(
I (1 + ν)J(x)TZC(x)−1

0 I

)
.

The proposed primal-dual method generates a sequence {vk} of improving

estimates of a local minimizer of Bν , by computing a search direction ∆vk =

(∆xk, ∆zk) from the modified Newton system (3.14) and performing a line search

to ensure sufficient reduction in Bν . The search direction is computed as ∆vk =

sk + dk, where sk is a descent direction with respect to Bν(vk;µ) and dk is a

direction of negative for the modified Hessian Sν(vk;µ).

First, we state the algorithm for finding a local minimizer of Bν(v;µ). This

is followed by a description of how the search directions are computed, and a

discussion of the conditions needed to establish convergence to a second-order

local minimizer.

Algorithm 3.4.1 Modified Newton Method for minimizing Bν(vk;µ)

INPUT: v0 ∈ F , µ, ν;

Set η ∈ (0, .5);

k = 0;

while not converged do

Compute Bν(vk;µ), ∇Bν(vk;µ), ∇2Bν(vk;µ), Sν(vk;µ);

if Sν(vk;µ) is positive definite and ∇Bν(vk;µ) = 0 then

converged← true; break;

else if Sν(vk;µ) is positive definite then

Compute sk; dk ← 0;

else

Compute sk and dk;

end if

∆vk = sk + dk;

αk ← 1;
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while Bν(vk + αk∆vk;µ) > Bν(vk;µ) + η(αk∇Bν(vk;µ)T∆vk . . .

+1
2
α2 min(0, ∆vTk∇2Bν(vk;µ)∆vk)) do

α← α/2;

end while

vk+1 = vk + αk∆vk;

k ← k + 1;

end while

OUTPUT: xk;

As stated in Theorem 3.4.1, solving the modified Newton system (3.14) is

equivalent to solving the symmetric primal-dual equations (3.11). Therefore, the

search directions may be defined using the symmetric equations with the corre-

sponding primal-dual matrix

K =

(
H JT

J −D

)
, (3.15)

where D(x, z) = Z−1C(x). The matrix Sν is used to measure the approximate cur-

vature of the merit function, which requires that the inertia of Sν must be available

from the inertia of K. The following theorem gives the required relationship.

Theorem 3.4.2. Let K be as defined in (3.15) with H a symmetric matrix and D

a symmetric positive-definite matrix. Similarly, let Sν be the approximate Hessian

(3.13), with ν > 0. Then

In(Sν) = In(H + JTD−1J) + (m, 0, 0),

In(K) = In(H + JTD−1J) + (0,m, 0).

Moreover, if H + JTD−1J has at least one negative eigenvalue, then

λmin(H + JTD−1J) ≤ λmin(Sν).

The search directions are computed using the inertia-controlling symmetric

indefinite factorization of K discussed in Chapter 2.4.2. Given such a factorization,
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the descent direction s is computed using a modification that guarantees the correct

inertia of the modified matrix K̄ (see Chapter 2.4.3), i.e.,

(
H̄ JT

J −D

)(
sx

−sz

)
= −

(
g − JT z
D(z − π)

)
, (3.16)

where H̄ is a symmetric modification such that H̄+JTD−1J is sufficiently positive

definite. The following lemma establishes that the computed vector s is a descent

direction with respect to Bν(x, z;µ).

Lemma 3.4.2. Let s satisfy (3.16). Then

sT∇Bν(x, z;µ) = −sTx (H̄ + JTD−1J)sx − ν(z − π)TD(z − π).

Moreover, sx = 0 if and only if g−JTπ = 0. Finally, if sx = 0, then sz = π−z.

The direction of negative curvature is also computed using the inertia-

controlling LBLT . In this case

(
dx

−dz

)
= P d̃, where

(
LT11 LT21

0 LT22

)
d̃ = ±σ

(
0

u

)
. (3.17)

In this definition, σ =
√
−λmin(B22), and u is the normalized eigenvector associ-

ated with λmin(B22). The sign of σ in (3.17) is chosen to give dT∇Bν(vk;µ) ≤ 0.

The following lemma establishes that d is a direction of negative curvature for Sν .

Lemma 3.4.3. Let d satisfy (3.17). Then Jdx + Ddz = 0 and dTSν(x, z;µ)d =

−λmin(B22)
2. Furthermore, as Jdx +Ddz = 0, it holds that

dTx (H + JTD−1J)dx =
(
dTx −dTz

)
K

(
dx

−dz

)

=
(
dTx dTz

)
Sν

(
dx

dz

)
.

We now turn to a brief discussion of convergence of the proposed algo-

rithm. The principal role of the line search performed on each search direction

∆vk is to ensure that ∇Bν(vk;µ)T sk → 0 and dTk∇2Bν(vk;µ)dk → 0. If these con-

ditions are satisfied and the directions sk and dk are directions of sufficient descent
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and sufficient negative curvature respectively (see Definitions 1.4.8 and 1.4.10),

then every limit point of the sequence {vk} will satisfy the second-order necessary

conditions for optimality (see Moré and Sorensen [19]). Algorithm 3.4.1 imposes

negative curvature conditions on dTk S
ν(vk;µ)dk rather than on dTk∇2Bν(vk;µ)dk.

However, properties of Sν ensure that dTk S
ν(vk;µ)dk → dTk∇2Bν(vk;µ)dk, when-

ever ∇Bν(vk;µ) → 0. It remains to show that directions sk and dk, computed

as described above, are indeed sufficient. The following two theorems give the

necessary results.

Theorem 3.4.3. Assume that the sequence of directions {sk} satisfies (3.16). Fur-

thermore assume that

i. lim supk→∞ ‖H̄‖ <∞,

ii. lim supk→∞ ‖Jk‖ <∞,

iii. lim infk→∞ λmin(Dk) > 0,

iv. lim supk→∞ λmax(Dk) <∞, and

v. lim infk→∞ λmin(H̄k + JTk D
−1
k Jk) > 0.

Then, if

lim
k→∞
∇Bν(vk;µ)T sk = 0,

it holds that

lim
k→∞

sk = 0 and lim
k→∞
∇Bν(vk;µ) = 0.

Theorem 3.4.4. Assume that the sequence of directions {dk} satisfies (3.17). As-

sume that for each LkBkL
T
k factorization, the matrices Bk have more than m neg-

ative eigenvalues. Furthermore, assume that lim supk→∞ ‖Lk‖ <∞. Then, if

lim
k→∞

dTk S
ν(vk;µ)dk = 0,

it holds that

lim
k→∞

dk = 0 and lim
k→∞

λmin(Sν(vk;µ)) = 0.
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Note that the algorithm proposed here gives to scheme for reducing µ to

force convergence to the constrained local minimizer of (3.1), and no proof is given

for a global convergence to such a minimizer as µ→ 0.



4 A Primal-Dual Modified

Barrier Method

In this chapter a new primal-dual interior method is introduced for solv-

ing a quadratic program in all-inequality form. The method can be viewed as

a combination of the modified barrier and the primal-dual methods described in

Chapter 3.

4.1 Optimality Conditions

The problem to be solved is given by

minimize
x∈Rn

q(x) = 1
2
xTHx+ cTx

subject to Ax ≥ b.
(4.1)

The second-order optimality conditions for problem (4.1) (see discussion in Chap-

ter 2.2) are

Theorem 4.1.1 (Second-order Necessary Conditions). The vector x∗ ∈ Rn is a

local minimizer of (4.1) only if

1. x∗ is a KKT point, i.e., there exists a z∗ such that

(i) Ax∗ ≥ b (feasibility),

(ii) g(x∗) = AT z∗ (stationarity),

(iii) z∗ ≥ 0 (nonnegativity),

(iv) (Ax∗ − b) · z∗ = 0 (complementarity),

53
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2. pTHp ≥ 0 for all nonzero p ∈ Rn satisfying g(x∗)Tp = 0 and AAp = 0.

Second-order sufficient conditions can be obtained with the additional as-

sumption of strict complementarity.

4.2 The Primal-Dual Modified Barrier Function

The primal-dual modified barrier function for (4.1) is derived by applying

the Forsgren-Gill function (3.12) to the shifted QP given by

minimize
x∈Rn

q(x) = 1
2
xTHx+ cTx

subject to Ax− b+ µe ≥ 0.
(4.2)

The resulting function is given by

q(x)−
m∑

i=1

(
wi ln(ri + µ) + νwi

(
ln
((ri + µ)zi

wi

)
+ 1− (ri + µ)zi

wi

))
,

where r = r(x) = Ax− b, ν > 0 and wi are the barrier parameters associated with

each constraint. This function has the same stationary points as the function

Bν(x, z;w) = q(x)−
m∑

i=1

(wi(ln(ri + µ) + ν(wi ln((ri + µ)zi) + wi − (ri + µ)zi))

= q(x)−
m∑

i=1

(wi ln((ri + µ)ν+1zνi ) + ν(wi − (ri + µ)zi)).

Let za be an estimate of an optimal multiplier vector z∗. Then, if w is defined as

w = µza, the primal-dual modified barrier function is given by

Bν(x, z;µ, za) = q(x)−
m∑

i=1

(µzai ln((ri + µ)ν+1zνi ) + νµ(zai − zi)− νrizi).

With the notation R = diag(r1(x), . . . , rm(x)) and g = g(x), the gradient of

Bν(x, z;µ, za) may be written as

∇Bν(x, z;µ, za) =

(
g − AT ((1 + ν)µ(R + µI)z

a − νz)

−ν(µZ−1za − (r + µe))

)

=

(
g − AT (π + ν(π − z))

ν
(
R + µI

)
Z−1(z − π)

)
, (4.3)
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where π = π(x;µ, za) denotes the vector-valued auxiliary function

π(x;µ, za) = µ
(
R(x) + µI

)−1
za. (4.4)

Similarly, the Hessian of Bν(x, z;µ, za) may be written as

∇2Bν(x, z;µ, za) =

(
H + (1 + ν)ATΠ

(
R + µI

)−1
A νAT

νA νΠ
(
R + µI

)
Z−2

)
. (4.5)

4.3 Definition of the Search Direction

As in Chapter 3.4, at a point v = (x, z) the search direction ∆v = (∆x,∆z)

is defined using an approximate Hessian of Bν(x, z;µ, za) given by

Sν(x, z;µ) =

(
H + (1 + ν)ATZ

(
R + µI

)−1
A νAT

νA ν
(
R + µI

)
Z−1

)
. (4.6)

The resulting modified Newton system

Sν(x, z;µ)

(
∆x

∆z

)
= −∇Bν(x, z;µ, za),

is equivalent to the primal-dual system

(
H AT

A −
(
R + µI

)
Z−1

)(
∆x

−∆z

)
= −

(
g − AT z

(
R + µI

)
Z−1(z − π)

)
,

which may be verified by premultiplying the modified Newton equations Sν(v;µ)∆v =

−∇Bν(v;µ, za) by the nonsingular matrix

N =

(
I −

(
1+v
v

)
AT
(
R + µI

)−1
Z

0 1
v
I

)
. (4.7)

The following lemma provides the relationship between the inertia of Sν and the

inertia of the primal-dual matrix

K =

(
H AT

A −
(
R + µI

)
Z−1

)
. (4.8)
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Lemma 4.3.1. Let Sν be as in (4.6) and let K be as in (4.8), with µ > 0 and

ν > 0. Also, let (x, z) be such that z > 0 and Ax− b+µe > 0 so that
(
R+µI

)
Z−1

is diagonal positive definite. Then

In(Sν) = In(H + AT
(
R + µI

)−1
ZA) + (m, 0, 0),

In(K) = In(H + AT
(
R + µI

)−1
ZA) + (0,m, 0).

Moreover, if H + AT
(
R + µI

)−1
ZA has at least one negative eigenvalue, then

λmin

(
H + AT

(
R + µI

)−1
ZA
)
≤ λmin(Sν).

Proof. Theorem 1.5.2 gives

In(K) = In(H + AT
(
R + µI

)−1
ZA) + In(−

(
R + µI

)
Z−1)

= In(H + AT
(
R + µI

)−1
ZA) + (0,m, 0).

Similarly,

In(Sν) = In(H + (1 + ν)ATZ
(
R + µI

)−1
A− νATZ

(
R + µI

)−1
A)

+ In(ν
(
R + µI

)
Z−1)

= In(H + AT
(
R + µI

)−1
ZA) + (m, 0, 0),

as required. For the eigenvalue result, let Q and D denote the symmetric matrices

Q =

(
H + AT (R + µI)−1ZA 0

0 0

)
, and D =

(
0 0

0 Z−1(R + µI)

)
,

and let T denote the nonsingular block-triangular matrix

T =

(
I 0

Z(R + µI)−1A I

)
.

Consider the identity

Sν = Q+ T TDT. (4.9)

As T is nonsingular and D is positive semidefinite, Sylvester’s law of inertia implies

that T TDT is positive semidefinite. Also, as H + AT (R + µI)−1ZA has at least
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one negative eigenvalue, it holds that λmin(B) = λmin(H + AT (R + µI)−1ZA). It

follows that

λmin(Sν) = λmin(Q+ T TDT )

= min
u6=0

(uTQu
uTu

+
uTT TDTu

uTu

)

≥ min
u6=0

(uTQu
uTu

)

= λmin(H + AT (R + µI)−1ZA).

The modified Newton system is solved using an inertia controlling LBLT

factorization. At each step a new search direction ∆vk = sk + dk is computed,

where sk and dk are directions of descent and negative curvature, respectively. The

descent direction sk is computed using a symmetric modification S̄ν of Sν , such that

H̄+AT (R+µI)−1ZA is sufficiently positive definite. The required modification can

be computed using inertia-controlling symmetric indefinite factorization LBLT of

K, with modifications to the block diagonal matrix B in a way that ensures that

K has correct inertia (see Chapter 2.4.3). It follows that s = (sx; sz) is given by

(
H̄ AT

A −
(
R + µI

)
Z−1

)(
sx

−sz

)
= −

(
g − AT z

(
R + µI

)
Z−1(z − π)

)
, (4.10)

where H̄ is a symmetric modification such that H̄+AT
(
R+µI

)−1
ZA is sufficiently

positive definite. The following lemma establishes that the vector s defined in this

way is a descent direction with respect to Bν(x, z;µ, za).

Lemma 4.3.2. Let sk satisfy (4.10). Then

sT∇Bν(x, z;µ, za) = −sTx (H̄+AT
(
R+µI

)−1
ZA)sx−ν(z−π)T

(
R+µI

)
Z−1(z−π).

Moreover, sx = 0 if and only if g − ATπ = 0. Finally, if sx = 0, then sz = π − z.

Proof. As sk satisfies (4.10), we can write sz in terms of sx

sz = π − z − (R + µI
)−1

ZAsx. (4.11)

The equivalence between the modified primal-dual equations (4.10) and the system

S̄ν∆v = −∇Bν implies that sk satisfies S̄νsk = −∇Bν and sTk∇Bν = −sTk S̄νsk.
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Substitution of (4.11) gives the required result. Also, if sx = 0, equation (4.11)

gives sz = π−z. Finally, as sk satisfies (4.10), the relation H̄sx−AT sz = −g+AT z

holds, and substitution from (4.11) gives (H̄ + AT (R + µI
)−1

ZA)sx = ATπ − g.

The positive definiteness of H̄ +AT (R+ µI
)−1

ZA implies that sx = 0 if and only

if ATπ − g = 0.

The direction of negative curvature dk can also be computed using the

inertia-controlling LBLT . Given the factorization (2.13), if B22 has at least one

negative eigenvalue, then write

(
dx

−dz

)
= P d̃, where

(
LT11 LT21

0 LT22

)
d̃ = ±σ

(
0

u

)
. (4.12)

In this definition, σ =
√
−λmin(B22), and u is the normalized eigenvector associ-

ated with λmin(B22). The sign of σ in (4.12) is chosen to give dT∇Bν(vk;µ, z
a) ≤ 0.

The following lemma establishes that d is a direction of negative curvature for Sν .

Lemma 4.3.3. Let d satisfy (4.12). Then d satisfies Adx +
(
R + µI

)
Z−1dz = 0,

with dTSν(x, z;µ)d = −λmin(B22)
2. Furthermore, as Adx +

(
R+ µI

)
Z−1dz = 0, it

holds that

dTx (H + AT
(
R + µI

)−1
ZA)dx =

(
dTx −dTz

)
K

(
dx

−dz

)

=
(
dTx dTz

)
Sν

(
dx

dz

)
.

Proof. From the definition of dk in (4.12) we have

K

(
dx

−dz

)
= PLBLTP d̃ = ±PLB

(
0

u

)
.

The nonzero rows of ±PLB
(

0

u

)
correspond to the H rows of K, and it follows
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that Adx +
(
R + µI

)
Z−1dz = 0. Also

d̃TLBLT d̃ = σ2
(

0 u
)(B11 0

0 B22

)(
0

u

)

= σ2λmin(B22)u
Tu

= −λmin(B22)
2.

Forming dTk S
νdk and substituting the identity Adx +

(
R + µI

)
Z−1dz = 0, gives

dTx (H + AT
(
R + µI

)−1
ZA)dx. Similarly, from the definition of K we obtain

(
dx −dz

)
K

(
dx

−dz

)
= dTx (H + AT

(
R + µI

)−1
ZA)dx.

Once ∆vk is computed, a backtracking line search is performed to ensure

sufficient decrease. In this case a quadratic line-search model function is defined

from the first three terms of the Taylor-series expansion of Bν(vk;µk, z
a
k). An

initial step αk = 1 is reduced by a constant factor until the reduction in Bν(vk +

αk∆vk;µk, z
a
k) is at least as large as a fixed factor η ∈ (0, 1

2
) of the reduction

predicted by the quadratic model. In particular, the new point vk+αk∆vk satisfies

Bν(vk + αk∆vk;µk, z
a
k) ≤ Bν(vk;µk, z

a
k) + η(αk∇Bν(vk;µk, z

a
k)T∆vk

+ 1
2
α2 min(0, ∆vTk∇2Bν(vk;µk, z

a
k)∆vk), (4.13)

for some αk ∈ (0, 1).

4.4 Multiplier and Barrier Parameter Updates

and Convergence Test

We would like to update the multiplier estimates za as often a possible, but

to ensure convergence it is necessary to impose optimality filter conditions. The

proposed optimality filters are

φL(x, z) = ψ(x, z) + βω(x, z) and φO(x, z) = βψ(x, z) + ω(x, z),

where

ψ(x, z) = ‖g(x)− AT z‖ and ω(x, z) = ‖min(r(x), z)‖.



60

These filters provide a weighed measure of the accuracy of (x, z). The estimates

za are updated if the new iterate vk provides a sufficient decrease in either one of

the two filters.

We also update the multiplier estimates if an approximate solution of the

unconstrained optimization problem has been found, that is if ∇Bν(vk;µk, z
a
k) is

sufficiently close to zero.

In general, the barrier parameter µ plays the role of a regularization pa-

rameter and we prefer not to reduce it unless the inertia of K is not correct (i.e.,

Sν is not sufficiently positive definite). However, to guarantee convergence we may

occasionally need to reduce it when the optimality filters fail, but the approximate

solution of ∇Bν(v;µ, za) = 0 is reached.

The iterations are performed until optimality conditions for the original QP

are sufficiently satisfied, that is ‖ropt‖ is near zero, where

ropt(v) =

(
g(x)− AT z
min(r(x), z)

)
. (4.14)

4.5 The Algorithm

This section gives the formal statement of the proposed algorithm. It is

important to note that a feasible starting point x0 is required. If no such point is

known, a separate feasibility phase is necessary.

The algorithm is similar to the inner-outer iterate algorithms, where the

inner iterations minimize the penalty function for the current value of the barrier

parameter, while the outer iterations check for optimality and update the param-

eter when necessary. The major difference here is the use of multiplier estimates

as additional parameters. As such, after the search direction and appropriate step

length are computed as described in Section 4.3, the multiplier estimates and the

barrier parameter are updated as discussed in Section 4.4. This gives rise to the

following classification of iterates. An iterate is called an L-iterate if the optimality

filter φL is sufficiently reduced by the new iterate computed. Similarly, an iterate

is an O-iterate if φO is sufficiently reduced. In both instances multiplier estimates

zak are updated to zk+1. If the filters are not sufficiently reduced but the new iter-
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ate is an approximate minimizer of Bν(x, z;µk, z
a
k), then the new iterate is called

a B-iterate. In this case the multiplier estimates are again updated and both the

barrier parameter µk and the subproblem tolerance τk are reduced. Otherwise, an

iterate is called an F-iterate and the multiplier estimates zak remain fixed.

Algorithm 4.5.1 Primal-dual Modified Barrier Method

INPUT: v0 = (x0; z0), such that Ax0 − b > 0 and z0 > 0;

Set control parameters ν > 1, η ∈ (0, 1
2
), 0 < τstop � 1, kmax > 0, 0 < β � 1;

Set τ0 > 0, µ0 > 0;

k = 0;

za0 ← z0;

Compute q0, r0 = Ax0 − b, g0;
for k = 0 : max k do

if ‖ropt(vk)‖ ≤ τstop then

exit;

end if

k ← k + 1;

Solve for sk and dk according to (4.10) and (4.12);

Set ∆v = sk + dk;

Set αk = 1;

while Equation (4.13) not satisfied do

αk ← γααk;

end while

vk+1 ← vk + αk∆vk;

Compute qk+1, rk+1, gk+1;

if φL(vk+1) ≤ 1
2
φmax
L then . [L-iterate]

φmax
L ← 1

2
φmax
L ;

zak+1 = zk+1; τk+1 = τk;

else if φO(vk+1) ≤ 1
2
φmax
O then . [O-iterate]

φmax
O ← 1

2
φmax
O ;

zak+1 = zk+1; τk+1 = τk;
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else if vk+1 satisfies ‖∇B(vk+1, µk, z
a
k)‖ ≤ τk then . [B-iterate]

µk+1 = γµµk;

Reset xk, zk such that xk is feasible;

Reset optimality filters;

zak+1 = zk+1; τk+1 = 1
2
τk;

else . [F-iterate]

zak+1 = zk; τk+1 = τk;

end if

if Sν is not sufficiently p.d. then

µk+1 = γµµk;

Reset xk, zk such that xk is feasible;

Reset optimality filters and τ ;

end if

end for

OUTPUT: xk+1; zk+1;

4.6 Convergence Results

We can now give a proof of convergence of the proposed algorithm. First, we

show that for fixed µ and za the primal-dual modified barrier functionBν(x, z;µz,a )

converges to a second-order local unconstrained minimizer.

Theorem 4.6.1. Assume the sequence {vk} is contained in a compact set and

(x0, z0) is such that r(x0) = Ax0 − b > 0 and z0 > 0. Further assume that each

search direction ∆vk = sk + dk is computed using an inertia controlling LBLT

factorization, with limk→∞ ‖Lk‖ < ∞, such that sk is a direction of descent and

dk is a direction of negative curvature and a backtracking line search is performed

to ensure sufficient descent. Finally, assume that

lim inf
k→∞

λmin(Rk + µI)Z−1k > 0,

lim sup
k→∞

λmax(Rk + µI)Z−1k <∞ and

lim inf
k→∞

λmin(H̄k + AT (Rk + µI)−1ZA) > 0.
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Then each sk is a direction of sufficient descent, each dk is a direction of sufficient

negative curvature, and ∇Bν(x, z;µ, za)→ 0 as k →∞.

Proof. The principal role of the line search performed on each search direction ∆vk

is to ensure that ∇Bν(vk;µ)T sk → 0 and dTk∇2Bν(vk;µ)dk → 0. If these condi-

tions are satisfied and the directions sk and dk are directions of sufficient descent

and sufficient negative curvature respectively (see Definitions 1.4.8 and 1.4.10),

then every limit point of the sequence {vk} will satisfy the second-order necessary

conditions for optimality (see Moré and Sorensen [19]). Algorithm 3.4.1 imposes

negative curvature conditions on dTk S
ν(vk;µ)dk rather than on dTk∇2Bν(vk;µ)dk.

However, properties of Sν ensure that dTk S
ν(vk;µ)dk → dTk∇2Bν(vk;µ)dk, when-

ever ∇Bν(vk;µ)→ 0. It remains to show that directions sk and dk are sufficient in

the sense that if {‖sk‖} is bounded and

lim
k→∞
∇Bν(vk;µ, z

a)T sk = 0,

then it holds that

lim
k→∞

sk = 0 and lim
k→∞
∇Bν(vk;µ, z

a) = 0.

In addition, if {‖dk‖} is bounded and

lim
k→∞

dTk S
ν(vk;µ)dk = 0,

then it holds that

lim
k→∞

dk = 0 and lim
k→∞

λminS
ν(vk;µ) = 0.

First we show that the directions sk are sufficient. Note that S̄νk can be written as

S̄ν(vk) = MT
k WkMk, where

W =

(
H̄k + AT (Rk + µI)−1ZA 0

0 −ν(Rk + µI)Z−1

)
and

M =

(
I 0

(Rk + µI)−1ZA I

)
.



64

Together with the boundedness assumptions this gives lim infk→∞ λmin(S̄νk) > 0

and lim supk→∞ λmax(S̄
ν
k) <∞. As the sequence of directions {sk} satisfies (4.10),

premultiplying by (4.7) implies that each sk satisfies S̄νksk = −∇Bν
k . Hence

sTk S
ν
ksk = −sTk(∇Bν

k )T sk → 0, and as Sνk is positive definite, with eigenvalues

bounded away from zero, sk → 0. This in turn implies ∇Bµ
k = −S̄νksk → 0.

Now we show that the dk vectors are sufficient. Assume that infinitely many

of the matrices H + AT (Rk + µI)−1ZA are not positive definite (otherwise the dk

are zero for k sufficiently large), then K has more then m negative eigenvalues

and λmin(H +AT (Rk +µI)−1ZA) < 0. As the sequence of directions {dk} satisfies

(4.12), it must hold that dTk S
ν
kdk = −λmin(B22, k)2. Therefore, if limk→∞ dTk S

ν
kdk,

it must be the case that limk→∞ λmin(B22) = 0. The boundedness of {‖Lk‖} then

implies that that dk → 0. The last limit can be obtained by considering the inertia

controlling LBLT factorization (2.13), with K22 −K21K
−1
11 K12 = L22B22L

T
22 and

λmin(K22 −K21K
−1
11 K12 = L22B22L

T
22) ≤ λmin(H + AT (Rk + µI)−1ZA) < 0.

As {‖Lk‖} is bounded and Lk are all unit lower triangular, {‖L22‖} and {‖L−122 ‖}
are bounded, and it must hold that

lim
k→∞

λmin(K22 −K21K
−1
11 K12) = lim

k→∞
λmin(L22B22L

T
22) = 0.

Together with Lemma 4.3.1, this implies limk→∞ λmin(Sνk ) = 0.

The next theorem gives the main convergence result for Algorithm 4.5.1.

Theorem 4.6.2. Let the assumptions of Theorem 4.6.1 hold, then either

1. Algorithm 4.5.1 terminates with an approximate primal-dual first-order so-

lution vk satisfying ‖ropt(vk)‖ ≤ τstop, where ropt is defined by (4.14), or

2. there exists a subsequence S such that limk∈S µk → 0, limk∈S τk → 0, and for

each k ∈ S the vector vk+1 is an approximate unconstrained local minimizer

of Bν(vk;µk, z
a
k) and, furthermore, limk∈S µk → 0, forces convergence to the

first-order solution of (4.1).
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Proof. If there exists a subsequence of ‖ropt(vk)‖ that converges to zero, then part 1

holds. Therefore, assume no such subsequence exists, i.e., ‖ropt(vk)‖ is bounded

away from zero.

From the definitions of the functions φL and φO and the update strategies for

φmax
L and φmax

O , it is clear that the number of L-iterates and O-iterates is finite. We

claim that there must be an infinite number of B-iterates. To show this, assume to

the contrary that there is a finite number of B-iterates. Then there must exist a k̂

such that all iterates such that k > k̂ are F-iterates. That implies that for all k > k̂

the barrier parameter and the multiplier estimates remain constant, i.e., µk = µk̂

and zak = zk̂
a for all k > k̂. In addition, this implies that τk = τk̂ for all k > k̂.

However, Theorem 4.6.1 ensures that with fixed barrier parameter and multiplier

estimates, {vk} converges to an unconstrained local minimizer as k → ∞, i.e.,

∇Bν(vk;µk̂, zk̂) → 0. This implies that τk → 0 and we have a contradiction. It

follows that there must be an infinite number of B-iterates.

As τk is reduced at each B-iterate, an infinite number of such iterates implies

that τk → 0. It follows that the gradient of Bν converges to the zero vector, with

∇Bν(vk;µk, z
a
k) =

(
gk − AT (πk + ν(πk − zk))
ν
(
Rk + µkI

)
Z−1k (zk − πk)

)
→ 0.

This implies that πk → zk, i.e., Rkzk + µk(zk − zak) → 0 as k → ∞, and, in turn,

gk − AT zk → 0. From the definition of a B-iterate we also have that µk → 0 as

k → ∞. Together with Rkzk + µk(zk − zak) → 0 this implies that Rkzk → 0. It

follows that as k →∞, vk converges to the first-order KKT point of (4.1).

4.7 Numerical Results

This section provides some numerical results to illustrate the properties

of Algorithm 4.5.1. All test QPs are taken from the CUTEr collection of test

problems. Each such test problem is given by

minimize
x∈Rn

q(x)

subject to

(
c`

x`

)
≤
(
Ax− b
x

)
≤
(
cu

xu

)
,
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Here we only consider a subset of quadratic test problems for which c` < cu (i.e.,

there are no linear equality constraints) and for which a feasible x0 is provided

by CUTEr. Also, since implementation is done in MATLAB, only problems of

moderate size are considered. For all problems presented here the algorithm was

initialized with the parameters and initial values summarized in Table 4.7.1.

Table 4.7.1: Control Parameters and Initial Values for Algorithm 4.5.1

.
Parameter Value Parameter Value Parameter Value

ν 1.0 kmax 500 µ0 1.0e-5

η 1.0e-2 τstop 1.0e-6 γµ 0.1

β 1.0e-5 τ0 1.0e-2 γα 0.5

For each test problem Table 4.7.2 specifies the name of the CUTEr prob-

lem, its size (i.e., the number of variables n and the number of linear inequality

constraints m), function value Opt q(x) at the solution, the number of iterations

the algorithm took to converge to that solution and the final barrier parameter.

The table also provides statistics for the number of L-, O-, B-, and F-iterates used,

where LO-Itr% gives the percentage of all iterates that were L- and O-iterates,

etc. The d 6= 0 indicates the number of directions of negative curvature computed.

Of all the problems tested with the parameters listed in Table 4.7.1 only one,

QUDLIN, failed to converge. However, given more iterations and varying some of

the parameters this problem converges, with µ essentially converging to zero.

Table 4.7.2: Results for a Subset of CUTEr test QPs

QP Name n m Opt q(x) Itr µF L0-Itr% B-Itr% F-Itr% d 6= 0

BQP1VAR 1 0 -4.8358e-10 16 1.0e-05 100 0 0 0

BQPGABIM 46 0 -3.7903e-05 23 1.0e-05 95.7 0 4.35 0

BQPGASIM 50 0 -5.5198e-05 23 1.0e-05 95.7 0 4.35 0

HS118 15 17 6.6482e+02 35 1.0e-05 88.6 0 11.4 0

HS21 2 1 4.0000e-02 43 1.0e-05 55.8 0 44.2 0

HS268 5 5 -1.4463e+04 80 1.0e-05 85 0 15 0

HS3 2 0 -2.2204e-16 1 1.0e-05 100 0 0 0

HS35 3 1 -8.8889e+00 21 1.0e-05 100 0 0 0

HS35I 3 1 -8.8889e+00 20 1.0e-05 100 0 0 0

HS35MOD 2 1 -6.2500e+00 22 1.0e-05 100 0 0 0

HS3MOD 2 0 -2.2204e-16 1 1.0e-05 100 0 0 0

HS44 4 6 -1.3000e+01 43 1.0e-05 51.2 0 48.8 8

HS44NEW 4 6 -1.5000e+01 21 1.0e-05 95.2 0 4.76 2
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Table 4.7.2: Results for a Subset of CUTEr test QPs, Continued

QP Name n m Opt q(x) Itr µF LO% B% F% d 6= 0

HS76 4 3 -4.6818e+00 22 1.0e-05 95.5 0 4.55 0

HS76I 4 3 -4.6818e+00 22 1.0e-05 100 0 0 0

OSLBQP 8 0 6.2500e+00 79 1.0e-05 73.4 2.53 24.1 0

PALMER1C 8 0 -1.0741e+05 1 1.0e-05 100 0 0 0

PALMER1D 7 0 -1.0741e+05 1 1.0e-05 100 0 0 0

PALMER2C 8 0 -1.6103e+04 1 1.0e-05 100 0 0 0

PALMER3C 8 0 -1.5824e+04 1 1.0e-05 100 0 0 0

PALMER4C 8 0 -1.7275e+04 1 1.0e-05 100 0 0 0

PRIMAL1 325 85 -3.5013e-02 39 1.0e-05 92.3 0 7.69 0

PRIMAL2 649 96 -3.3734e-02 34 1.0e-05 91.2 0 8.82 0

PRIMAL3 745 111 -1.3576e-01 46 1.0e-05 89.1 0 10.9 0

PRIMAL4 1489 75 -7.4609e-01 44 1.0e-05 90.9 0 9.09 0

PRIMALC1 230 9 -6.1553e+03 80 1.0e-05 68.8 0 31.2 0

PRIMALC2 231 7 -3.5513e+03 83 1.0e-05 61.4 0 38.6 0

PRIMALC5 287 8 -4.2723e+02 62 1.0e-05 80.6 0 19.4 0

PRIMALC8 520 8 -1.8309e+04 158 1.0e-05 34.8 0 65.2 0

S268 5 5 -1.4463e+04 80 1.0e-05 85 0 15 0

SIM2BQP 1 0 -5.9136e-10 25 1.0e-05 68 0 32 0

SIMBQP 2 0 -5.0354e-10 27 1.0e-05 81.5 0 18.5 0

TOINTQOR 50 0 -1.1598e+03 1 1.0e-05 100 0 0 0

ZANGWIL2 2 0 -8.4267e+01 1 1.0e-05 100 0 0 0

ZECEVIC2 2 2 -4.1250e+00 32 1.0e-05 71.9 0 28.1 0

BIGGSB1 100 0 -1.9850e+00 381 1.0e-05 13.6 0 86.4 0

CHENHARK 100 0 -2.0000e+00 37 1.0e-05 100 0 0 0

CVXBQP1 100 0 2.2725e+02 23 1.0e-05 100 0 0 0

DEGTRID 101 0 -9.9500e+01 45 1.0e-05 100 0 0 0

DEGTRID2 101 0 -9.9500e+01 191 1.0e-06 35.1 14.7 50.3 0

DIXON3DQ 100 0 -2.0000e+00 1 1.0e-05 100 0 0 0

DQDRTIC 100 0 0.0000e+00 1 1.0e-05 100 0 0 0

HARKERP2 100 0 -5.0000e-01 2 1.0e-05 100 0 0 0

HILBERTA 2 0 2.9582e-31 1 1.0e-05 100 0 0 0

HILBERTB 10 0 4.0388e-29 1 1.0e-05 100 0 0 0

JNLBRNG1 64 0 -1.7896e-01 56 1.0e-05 42.9 0 57.1 0

JNLBRNG2 64 0 -3.9528e+00 33 1.0e-05 66.7 0 33.3 0

JNLBRNGA 64 0 -3.6116e-01 73 1.0e-05 47.9 0 52.1 0

JNLBRNGB 64 0 -7.2552e+00 76 1.0e-05 48.7 0 51.3 0

LISWET1 103 100 -2.5861e+01 78 1.0e-05 48.7 2.56 48.7 0

LISWET2 103 100 -1.7360e+01 107 1.0e-05 42.1 11.2 46.7 0

LISWET3 103 100 -1.0562e+01 108 1.0e-05 40.7 12 47.2 0

LISWET4 103 100 -7.6508e+00 64 1.0e-05 48.4 0 51.6 0

LISWET5 103 100 -1.6540e+02 78 1.0e-05 55.1 3.85 41 0

LISWET6 103 100 -2.2469e+01 88 1.0e-05 50 5.68 44.3 0

LISWET7 103 100 -2.5485e+01 131 1.0e-05 29 0.763 70.2 0

LISWET8 103 100 -2.5489e+01 41 1.0e-05 68.3 0 31.7 0

LISWET9 102 100 -5.5605e+00 97 1.0e-05 34 0 66 0
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Table 4.7.2: Results for a Subset of CUTEr test QPs, Continued

QP Name n m Opt q(x) Itr µF LO% B% F% d 6= 0

LISWET10 103 100 -2.5997e+01 68 1.0e-05 42.6 0 57.4 0

LISWET11 103 100 -2.4788e+01 142 1.0e-05 21.8 0 78.2 0

LISWET12 103 100 -5.6574e+00 160 1.0e-05 16.9 0 83.1 0

MOSARQP1 100 10 -1.5420e+02 28 1.0e-05 100 0 0 0

MOSARQP2 100 10 -2.0652e+02 26 1.0e-05 100 0 0 0

NCVXBQP1 100 0 -1.9956e+06 253 1.0e-08 20.6 0 79.4 182

NCVXBQP2 100 0 -1.3236e+06 294 1.0e-07 16.3 0 83.7 233

NCVXBQP3 100 0 -6.6599e+05 339 1.0e-08 15.9 0 84.1 261

NOBNDTOR 64 0 -5.5211e-01 57 1.0e-05 43.9 0 56.1 0

OBSTCLAE 64 0 1.3979e+00 27 1.0e-05 100 0 0 0

OBSTCLAL 64 0 1.3979e+00 120 1.0e-05 23.3 0 76.7 0

OBSTCLBL 64 0 2.8750e+00 156 1.0e-05 14.7 0 85.3 0

OBSTCLBM 64 0 2.8750e+00 19 1.0e-05 100 0 0 0

OBSTCLBU 64 0 2.8750e+00 140 1.0e-05 15.7 0 84.3 0

PENTDI 100 0 -7.5000e-01 169 1.0e-06 56.8 10.7 32.5 0

TESTQUAD 1000 0 0.0000e+00 1 1.0e-05 100 0 0 0

TORSION1 64 0 -4.9234e-01 48 1.0e-05 54.2 0 45.8 0

TORSION2 64 0 -4.9234e-01 26 1.0e-05 100 0 0 0

TORSION3 64 0 -1.2705e+00 23 1.0e-05 73.9 0 26.1 0

TORSION4 64 0 -1.2705e+00 24 1.0e-05 100 0 0 0

TORSION5 64 0 -2.8971e+00 2 1.0e-05 100 0 0 0

TORSION6 64 0 -2.8971e+00 25 1.0e-05 100 0 0 0

TORSIONA 64 0 -4.0570e-01 49 1.0e-05 53.1 0 46.9 0

TORSIONB 64 0 -4.0570e-01 27 1.0e-05 96.3 0 3.7 0

TORSIONC 64 0 -1.1766e+00 23 1.0e-05 73.9 0 26.1 0

TORSIOND 64 0 -1.1766e+00 23 1.0e-05 100 0 0 0

TORSIONE 64 0 -2.7984e+00 2 1.0e-05 100 0 0 0

TORSIONF 64 0 -2.7984e+00 25 1.0e-05 100 0 0 0

TRIDIA 100 0 -1.0000e+00 1 1.0e-05 100 0 0 0

YAO 200 200 -7.5658e+00 50 1.0e-05 50 0 50 0



5 A Primal-Dual Modified

Lagrangian-Barrier Method

The method described in Chapter 4 must have a feasible starting point

to obtain a solution of (4.1). To get convergence from any starting point, one

could first run a phase one algorithm to attain feasibility. Here we present an-

other solution. By adding slack variables (see Introduction), the proposed method

converts all linear inequalities into a set of linear equalities and simple bounds.

The bounds are treated using the primal-dual modified barrier method, while the

equality constrains are treated using a penalty type method. In particular, the

algorithm proposed in this section uses the primal-dual augmented Lagrangian,

briefly discussed in Section 2.3. To simplify exposition, it is assumed that the

problem to be solved is in standard form.

5.1 Optimality Conditions

Consider the QP in standard form

minimize
x∈Rn

cTx+ 1
2
xTHx

subject to Ax = b, x ≥ 0.
(5.1)

Based on the discussion of Chapter 2.2, the second-order optimality conditions for

this problem are

Theorem 5.1.1 (Second-order Necessary Conditions). The vector x∗ ∈ Rn is a

local minimizer of (5.1) only if

1. x∗ is a KKT point, i.e., there exist y∗ and z∗ such that

69
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i. Ax∗ = 0 and x ≥ 0 (feasibility),

ii. g(x∗) = ATy∗ + z∗ (stationarity),

iii. z∗ ≥ 0 (nonnegativity),

iv. x∗ · z∗ = 0 (complementarity),

2. pTHp ≥ 0 for all nonzero p ∈ Rn satisfying g(x∗)Tp = 0, pA = 0 and Ap = 0.

Second-order sufficient conditions are achieved if we require strict comple-

mentarity.

5.2 The Merit Function

Using a primal-dual augmented lagrangian for the equality constraints and

a primal dual augmented barrier term for the nonnegativity bounds, we can convert

(5.1) into the following unconstrained problem.

minimize
x,y,z

Mν(x, y, z;µE, y
a, µI, z

a),

where

Mν(x, y, z;µE, y
a, µI, z

a) = cTx+ 1
2
xTHx− (Ax− b)Tya +

1

2µE

‖Ax− b‖2 (5.2)

+
ν

2µE

‖Ax− b+ µE(y − ya)‖2 (5.3)

−
n∑

i=1

µIz
a
i ln

(
(xi + µI)

ν+1zνi
)

(5.4)

− ν
n∑

i=1

(
µI(z

a
i − zi)− xizi

)
. (5.5)

The vectors y and z are the multipliers for the equality and nonnegativity con-

straints, respectively.
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Differentiating Mν(x, y, z;µE, y
a, µI, z

a) yields

∇Mν(x, y, z;µE, y
a, µI, z

a) =




g − AT
(
(1 + ν)πE − νy

)
− (1 + ν)πI + νz

ν
(
Ax− b+ µE(y − ya)

)

ν
(
− µIZ

−1za + µIe+ x
)




=




g − ATy − z + (1 + ν)(AT
(
y − πE

)
+ (z − πI)

νµE(y − πE)

ν
(
X + µII

)
Z−1(z − πI)


 ,

where πE = πE(x) = ya − 1

µE

(
Ax− b

)
and πI = πI(x) = µI

(
X + µII

)−1
za are the

auxiliary vector-valued functions. Differentiating again, gives the Hessian

∇2Mν(x, y, z;µE, y
a, µI, z

a) =




H1 νAT νI

νA νµEI 0

νI 0 νΠI

(
X + µII

)
Z−2


 ,

where H1 = H + 1
µE

(1 + ν)ATA+ (1 + ν)ΠI

(
X + µII

)−1
.

5.3 Search Directions

Analogous to Chapter 4, instead of solving the standard Newton equations

∇2Mν∆v = −∇Mν , modified equations Sν∆v = −∇Mν are used. The approxi-

mation Sν is obtained by replacing πI with z. Resulting modified Hessian is given

by

Sν(x, y, y;µE, µI) =




H2 νAT νI

νA νµEI 0

νI 0 ν
(
X + µII

)
Z−1


 , (5.6)

where H2 = H +
1

µE

(1 + ν)ATA+ (1 + ν)
(
X + µII

)−1
Z.

Premultiplying Sν∆v = −∇Mν by the nonsingular matrix

N =




I − 1+ν
νµE

AT −
(
X + µII

)−1
Z

0 1
ν
I 0

0 0 1
ν

(
X + µII

)−1
Z


 (5.7)
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gives an equivalent primal-dual system



H +
(
X + µII)−1Z −AT 0

A µEI 0
(
X + µII

)−1
Z 0 I







∆x

∆y

∆z


 = −




g − ATy − πI

µE(y − πE)

z − πI


 ,

or
(
H +

(
X + µII)−1Z AT

A −µEI

)(
∆x

−∆y

)
= −

(
g − AT (y − πI)

µE(y − πE)

)
, (5.8)

∆z = −(z − πI +
(
X + µII

)−1
Z∆x). (5.9)

Therefore, we can find the search direction using inertia-controlling factorization

of the matrix K discussed in Section 2.4.2, where

K =

(
H +

(
X + µII)−1Z AT

A −µEI

)
.

As in previous chapters, the search direction is given by ∆v = s+ d, where

s is a descent direction and d is a direction of negative curvature. The descent

direction s is obtained by solving
(
H̄ +

(
X + µII)−1Z AT

A −µEI

)(
sx

−sy

)
= −

(
g − ATy − πI)

µE(y − πE)

)
, (5.10)

sz = −(z − πI +
(
X + µII

)−1
Zsx), (5.11)

where H̄ is a symmetric modification of H such that H̄ +
(
X +µII)−1Z + 1

µE
ATA

is sufficiently positive definite.

Note that the above system is equivalent to S̄νs = −∇Mν , where

S̄ν =




H̄ + 1
µE

(1 + ν)ATA+ (1 + ν)
(
X + µII

)−1
Z νAT νI

νA νµEI 0

νI 0 ν
(
X + µII

)
Z−1


 .

Lemma 5.3.1. Let s satisfy (5.10),then sT∇Mν ≤ 0.

Proof. Since s satisfies (5.10) we can write sy and sz in terms of sx:

sy = πE − y −
1

µE

Asx

sz = πI − z −
(
X + µII

)−1
Zsx,
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and as (5.10) is equivalent to S̄νs = −∇Mν , we have

sT∇Mν = −sT S̄νs

= −sTx (H̄ +
1

µE

(1 + ν)ATA+ (1 + ν)
(
X + µII

)−1
Z)sx

− 2νsTxA
T sy − 2νsTx sz − νµsTy sy − νsTz

(
X + µII

)
Z−1sz

= −sTx (H̄ +
1

µE

ATA+
(
X + µII

)−1
Z)sx −

ν

µE

sTxA
TAsx

− νsTx
(
X + µII

)−1
Zsx − 2νsTxA

T (πE − y) + 2
ν

µE

sTxA
TAsx

− 2νsTx (πI − z) + 2νsTx
(
X + µII

)−1
Zsx − νµE(πE − y)T (πE − y)

+ 2νsTxA
T (πE − y)− ν

µE

sTxA
TAsx − ν(πI − z)T

(
X + µII

)
Z−1(πI − z)

+ 2νsTx (πI − z)− νsTx
(
X + µII

)−1
Zsx

= −sTx (H̄ +
1

µE

ATA+
(
X + µII

)−1
Z)sx

− νµE(πE − y)T (πE − y)− νsTx
(
X + µII

)−1
Zsx

≤ 0.

The direction of negative curvature d can be computed from

(
LT11 LT21

0 LT22

)
d̃ = ±σ

(
0

u

)
, (5.12)

with (
dx

−dy

)
= P d̃ and dz = −

(
X + µII

)−1
Zdx,

where σ =
√
−λmin(B22) and u is an eigenvector of unit length associated with

λmin(B22). The sign of d is chosen such that dT∇M ≤ 0. As we solve a condensed

primal-dual system and thus cannot use the gradient directly, an alternate but

equivalent condition to determine the sign of d is required. The following lemma

gives the necessary result.
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Lemma 5.3.2. Requiring dT∇Mν ≤ 0 is equivalent to
(
dTx dTy

)
q ≤ 0, where

q =

(
∇xMν −

(
X + µII

)−1
Z∇zM

∇yMν

)
.

Proof. From definition of d, dz = −
(
X + µII

)−1
Zdx. Hence

dT∇Mν = dTx∇xMν + dTy∇yMν + dTz∇zMν

= dTx∇xMν + dTy∇yMν − dTx
(
X + µII

)−1
Z∇zMν

= dTx (∇xMν −
(
X + µII

)−1
Z∇zMν) + dTy∇yMν .

Finally, we verify that thus defined d is indeed a direction of negative cur-

vature.

Lemma 5.3.3. Let d satisfy (5.12). Then d is a direction of negative curvature

with respect to Sν, i.e. dTSνd ≤ 0.

Proof. From definition of d we have

(
H +

(
X + µII)−1Z AT

A −µEI

)(
dx

−dy

)
= PLBLTP TP d̃

= ±σPLB
(

0

u

)

= ±σP
(

0

L22B22u

)

=

(
∗
0

)
,
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where * is of length n and contains ±σL22B22u. Hence Adx + µdy = 0. Consider

(
dTx −dTy

)(H +
(
X + µII)−1Z AT

A −µEI

)(
dx

−dy

)

= d̃P TPLBLTP TP d̃

= σ2uTB22u

= σ2λmin(B22)u
Tu

= −λmin(B22)
2,

also

(
dTx −dTy

)
[K]

(
dx

−dy

)
= dTx (H +

(
X + µII)−1Z)dx − 2dTxA

Tdy − µEd
T
y dy

= dTx (H +
(
X + µII)−1Z)dx +

2

µE

dTxA
TAdx

− 1

µE

dTxA
TAdx

= dTx (H +
1

µE

ATA+
(
X + µII)−1Z)dx,

and finally,

dTSνd =dTx (H +
1

µE

(1 + ν)ATA+ (1 + ν)
(
X + µII

)−1
Z)dx

− 2νdTxA
Tdy − 2νdTx dz − νµEd

T
y dy − νdTz

(
X + µII

)
Z−1dz

= dTx (H +
1

µE

(1 + ν)ATA+ (1 + ν)
(
X + µII

)−1
Z)dx +

2ν

µE

dTxA
TAdx

+ 2νdTx
(
X + µII

)−1
Zdx −

ν

µE

dTxA
TAdx − νdTx

(
X + µII

)−1
Zdx

= dTx (H +
1

µE

ATA+
(
X + µII

)−1
Z)dx

= −λmin(B22)
2

≤ 0.

Once ∆vk is computed, a backtracking line search is performed to ensure
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sufficient decrease. Here we require that vk + αk∆vk satisfies

Mν(vk + αk∆vk) ≤Mν(vk) + η(αk∇Mν(vk)
T∆vk

+ 1
2
α2∆vTk min(0,∇2Mν(vk)∆vk). (5.13)

5.4 Updates to the Multiplier Estimates, Barrier

Parameter and Convergence Test

As in the previous chapter, multiplier estimates ya, za are updated when

certain optimality conditions are met. For the primal-dual modified Langrangian-

Barrier method the optimality filters are

φV (x, z) = η(x, y) + βω(x, y, z) + βψ(x, z),

φL(x, y, z) = βη(x, y) + ω(x, y, z) + βψ(x, z) and

φO(x, y, z) = βη(x, y) + βω(x, y, z) + ψ(x, z),

where

η(x, y) = ‖Ax− b‖, ω(x, y, z) = ‖g(x)−ATy− z‖ and ψ(x, z) = ‖min(x, z)‖.

These filters provide a weighed measure of the optimality of a given triple (x, y, z).

The multiplier estimates are updated if the new iterate vk provides a sufficient

decrease in either one of the three filters.

We also update the multiplier estimates if an approximate solution of the

unconstrained optimization problem has been found, that is if ∇Mν(vk;µk, z
a
k) is

sufficiently close to zero.

In general, the barrier parameter and the Lagrangian parameter are used

for constraint regularization and thus it is preferable not to reduce them unless

necessary for convergence. Usually both are reduced when the optimality filters

fail, but the approximate solution of ∇Mν(vk;µE, y
a, µIz

a) = 0 is reached.

The iterations are performed until optimality conditions for the original QP
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are sufficiently satisfied, that is ‖ropt‖ is near zero, where

ropt(v) =




Ax− b
g(x)− ATy − z

min(x, z)


 . (5.14)

5.5 The Algorithm

This section gives the formal statement of the proposed algorithm. As in

the previous chapter, each new iterate is classified based on weather the opti-

mality filters are sufficiently reduced or an approximate subproblem minimizer is

found. Here however, there are three filters to consider. Thus we have L-, V-, and

O-iterates for φL, φV and φO, respectively. In all three cases both yak and zak are up-

dated. If the new iterate is an approximate minimizer of Mν(x, y, z;µEk , y
a
k , µ

I
k, z

a
k),

then it is called an M-iterate. In this case, both yak and zak are updated and µk is

reduced. Otherwise, an iterate is called an F-iterate and all multiplier estimates

remain fixed.

Algorithm 5.5.1 Primal-dual Modified Lagrangian-Barrier Method

INPUT: v0 = (x0, y0, z0).

If necessary move x0 with in bounds and z0 > 0.

Set control parameters ν > 1, η ∈ (0, 1
2
), 0 < τstop � 1, kmax > 0, 0 < β � 1;

Set τ0 > 0, µE0 > 0, µI0 ;

k = 0;

ya0 ← y0, z
a
0 ← z0;

Compute q0, g0;

for k = 0 : max k do

if ‖ropt(vk)‖ ≤ τstop then

exit;

end if

k ← k + 1;

Solve for sk and dk according to (5.10) and (5.12);

Set ∆v = sk + dk; αk = 1;
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while Equation (5.13) not satisfied do

αk ← γαk;

end while

vk+1 ← vk + αk∆vk;

Compute qk+1, gk+1;

if φV (vk+1) ≤ 1
2
φmax
V then . [V-iterate]

φmax
V ← 1

2
φmax
V ;

yak+1 = yk+1; z
a
k+1 = zk+1; τk+1 = τk;

else if φL(vk+1) ≤ 1
2
φmax
L then . [L-iterate]

φmax
L ← 1

2
φmax
L ;

yak+1 = yk+1; z
a
k+1 = zk+1; τk+1 = τk;

else if φO(vk+1) ≤ 1
2
φmax
O then . [O-iterate]

φmax
O ← 1

2
φmax
O ;

yak+1 = yk+1; z
a
k+1 = zk+1; τk+1 = τk;

else if vk+1 satisfies ‖∇Mν(vk+1, µk, z
a
k)‖ ≤ τk then . [M-iterate]

µEk+1 = 1
10
µk;

µIk+1 = 1
10
µk;

Move xk+1 within bounds (if necessary), reset zk+1 away from zero;

Reset optimality filters;

yak+1 = max(−ymaxe,min(yk+1, ymax)); z
a
k+1 = zk+1; τk+1 = 1

2
τk;

else . [F-iterate]

zak+1 = zk; τk+1 = τk;

end if

if Sν is not sufficiently p.d. then

µIk+1 = 1
10
µk;

Reset xk, zk as before;

Reset optimality filters and τ ;

end if

end for

OUTPUT: xk+1; yk+1; zk+1;
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5.6 Convergence Results

The results are very similar to the ones in Chapter 4. First convergence of

the merit function (5.2) for fixed parameters is shown.

Theorem 5.6.1. Assume the sequence {vk} is contained in a compact set and

(x0, z0) is such that x0 > 0 and z0 > 0. Further assume that each search direction

∆vk = sk+dk is computed using inertia controlling LBLT , with limk→∞ ‖Lk‖ <∞,

such that sk is a direction of descent and dk is a direction of negative curvature

and a backtracking line search is performed to ensure sufficient descent. Finally,

assume that

lim inf
k→∞

λmin(Xk + µI)Z−1k > 0,

lim sup
k→∞

λmax(Xk + µI)Z−1k <∞ and

lim inf
k→∞

λmin(H̄k + (Xk + µI)−1ZA) > 0.

Then each sk is a direction of sufficient descent, each dk is a direction of sufficient

negative curvature and ∇Mν(vk;µE, y
a, µI, z

a)→ 0 as k →∞.

Now we can state the general convergence theorem.

Theorem 5.6.2. Let the assumptions of Theorem 5.6.1 hold, then either

1. Algorithm 5.5.1 terminates with an approximate primal-dual first-order so-

lution vk satisfying ‖ropt(vk)‖ ≤ τstop, where ropt is defined by (5.14), or

2. there exists a subsequence S such that limk∈S µEk → 0, limk∈S µIk → 0,

limk∈S τk → 0, and for each k ∈ S the vector vk+1 is an approximate un-

constrained local minimizer of Mν(vk;µ
E
k , y

a
k , µ

I
k, z

a
k) and, furthermore, since

barrier and penalty parameters converge to zero, convergence to the first-

order solution of (5.1) is achieved.



6 Numerical Results

In this chapter we describe numerical experiments for the algorithm pro-

posed in Chapter 5. The implementation was done in MATLAB and run on an

iMac machine. The numerical results are intended to show that the proposed

method is reasonable and illustrate its properties.

The quadratic programs tested here all come from the CUTEr collection of

test problems. Both convex and nonconvex problems of moderate size are consid-

ered. The CUTEr problems are all defined with the format

minimize
x∈Rn

q(x)

subject to

(
c`

x`

)
≤
(
Ax− b
x

)
≤
(
cu

xu

)
.

With addition of slack variables (see Introduction) it is converted into an equivalent

form
minimize

x∈Rn
cTx+ 1

2
xTHx

subject to Ax = b, ` ≤ x ≤ u.
. (6.1)

We can extend the Algorithm 5.5.1 with upper and lower bounds on the variables

instead of just nonnegativity constraints.

6.1 Extension to Upper and Lower Bounds

Here we give a brief discussion of how the method of Chapter 5 is imple-

mented to deal with upper and lower bounds.

As in the previous chapter, we use a primal dual augmented lagrangian for

the equalities and primal dual augmented barrier terms for the lower and upper

80
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bounds to convert this QP into the following unconstrained problem.

minimize
x,y,z1,z2

Mν(x, y, z1, z2;µE, y
a, µI, z

a
` , z

a
u),

where

Mν(x, y, z`, zu;µE, y
a, µI, z

a
` , z

a
u) = q(x)− (Ax− b)Tya +

1

2µE

‖Ax− b‖2

+
ν

2µE

‖Ax− b+ µE(y − ya)‖2

−
n∑

i=1

µI[z
a
` ]i ln

(
(xi − `i + µI)

ν+1[z`]
ν
i

)

− ν
n∑

i=1

(
µI([z

a
` ]i − [z`]i)− (xi − `i)z`i

)

−
n∑

i=1

µI[z
a
u]i ln

(
(u− xi + µI)

ν+1[zu]
ν
i

)

− ν
n∑

i=1

(
µI([z

a
u]i − [zu]i)− (ui − xi)[zu]i

)
,

where y, z`, zu are the multipliers for the equalities, lower and upper bounds,

respectively.

The gradient ∇Mν(x, y, z`, zu;µE, y
a, µI, z

a
` , z

a
u) is given by

∇Mν =




g − AT
(
(1 + ν)πE − νy

)
− (1 + ν)π` + νz` + (1 + ν)πu − νzu

ν
(
Ax− b+ µE(y − ya)

)

ν
(
− µIZ

−1
` za` + µIe+ x− l

)

ν
(
− µIZ

−1
u zau + µIe+ u− x

)




=




g − AT
(
(1 + ν)πE − νy

)
− (1 + ν)π` + νz` + (1 + ν)πu − νzu
νµE(y − πE)

ν
(
X − L+ µII

)
Z−1` (z` − π`)

ν
(
U −X + µII

)
Z−1u (zu − πu)



,

where πE = πE(x) 4= ya − 1

µE

(
Ax − b

)
, π` = π`(x) 4= µI

(
X − L + µII

)−1
za` and

πu = πu(x) 4= µI

(
U −X + µII

)−1
zau.
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The Hessian ∇2Mν(x, y, z`, zu;µE, y
a, µI, z

a
` , z

a
u) is then given by

∇2Mν =




H1 νAT νI −νI
νA νµEI 0 0

νI 0 νΠ`

(
X − L+ µII

)
Z−2` 0

−νI 0 0 νΠu

(
U −X + µI

)
Z−2u



,

whereH1 = H+ 1
µE

(1+ν)ATA+(1+ν)Π`

(
X−L+µII

)−1
+(1+ν)Πu

(
U−X+µII

)−1
.

Again, we solve ∇2Mν∆v = −∇Mν using a modified Newton method, with

Sν(x, y, z`, zu, µE, µI). Specifically, we consider the approximate Hessian obtained

by replacing π` and πu with z` and zu, respectively. This gives us

Sν =




H̄1 νAT νI −νI
νA νµEI 0 0

νI 0 ν
(
X − L+ µII

)
Z−1` 0

−νI 0 0 ν
(
U −X + µI

)
Z−1u



,

where H̄1 = H+ 1
µE

(1+ν)ATA+(1+ν)
(
X−L+µII

)−1
Z`+(1+ν)

(
U−X+µII

)−1
Zu.

After left multiplying Sν∆v = −∇Bν by the nonsingular matrix



I − 1+ν
νµE

AT −
(
X − L+ µI

)−1
Z`

(
U −X + µI

)−1
Zu

0 1
ν
I 0 0

0 0 1
ν

(
X − L+ µII

)−1
Z` 0

0 0 0 1
ν

(
U −X + µII

)−1
Zu



,

we get the equivalent system



H2 −AT 0 0

A µEI 0 0
(
X − L+ µII

)−1
Z` 0 I 0

−
(
U −X + µII

)−1
Zu 0 0 I







∆x

∆y

∆z`

∆zu




= −




r2

µE(y − πE)

z` − π`
zu − πu



,

where H2 = H +
(
X − L+ µII

)−1
Z` +

(
U −X + µII

)−1
Zu

and r2 = c+Hx− ATy − π` + πu,or
(
H2 AT

A −µEI

)(
∆x

−∆y

)
= −

(
r2

µE(y − πE)

)
,

∆z` = −z` + π` −
(
X − L+ µII

)−1
Z`∆x

∆zu = −zu + πu +
(
U −X + µII

)−1
Zu∆x.
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The descent direction s in then computed is by solving

(
H̄2 AT

A −µEI

)(
sx

−sy

)
= −

(
r2

µE(y − πE)

)
,

sz` = −z` + π` −
(
X − L+ µII

)−1
Z`sx

szu = −zu + πu +
(
U −X + µII

)−1
Zusx,

where H̄2 = H̄ +
(
X − L+ µII

)−1
Z` +

(
U −X + µII

)−1
Zu and H̄ is a symmetric

modification of H such that H̄2 + 1
µE
ATA is sufficiently positive definite. While

the direction of negative curvature d is computed via

(
LT11 LT21

0 LT22

)
d̃ = ±σ

(
0

u

)
,

with

(
dx

−dy

)
= P d̃, dz` = −

(
X − L+ µII

)−1
Z`dx and dzu =

(
U −X + µII

)−1
Zudx,

where σ =
√
−ηmin(B22), and u is an eigenvector of unit length associated with

ηmin(B22). The sign of d is chosen such that dT∇Mν ≤ 0.

Lemma 6.1.1. The condition dT∇Mν ≤ 0 is equivalent to
(
dTx dTy

)
q ≤ 0, where

q =

(
∇xMν −

(
X − L+ µII

)−1
Z`∇z`Mν +

(
U −X + µII

)−1
Zu∇zuMν

∇yMν

)
.

6.2 Results

For all problems presented here the algorithm was initialized with the pa-

rameters and initial values summarized in Table 6.2.1.

For each test problem the results Table 6.2.2 specifies the name of the

CUTEr problem, its size (i.e, the number of variables n and the number of linear

inequality constraints m), function value Opt q(x) at the solution, the number of

iterations the algorithm took to converge to that solution and the final barrier

parameters. The table also provides statistics for the number of V-, O-, L-, M-,
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Table 6.2.1: Control Parameters and Initial Values for Algorithm 5.5.1

Parameter Value Parameter Value Parameter Value

ν 1.0 kmax 1000 µE0 1.0e-4

η 1.0e-2 τstop 1.0e-6 µI0 1.0e-5

β 1.0e-5 γα 0.5 τ0 1.0e-2

and F-iterates used, where VOL% gives the percentage of all iterates that were V-

L-, and O-iterates, etc. The d 6= 0 column gives the number of times a direction

of negative curvature was computed. While the last column states the outcome:

1 if an optimal solution was found in under the maximum iterations allowed, 0

otherwise.

Table 6.2.2: Results for CUTEr test QPs

QP n m OptQ Itr µFE µFI V0L% M% F% d 6= 0 conv

AVGASA 8 10 -4.6319e+00 54 1.9e-12 1.0e-05 48.1 0 51.9 0 1

AVGASB 8 10 -4.4832e+00 60 6.3e-13 1.0e-05 51.7 0 48.3 0 1

BIGGSC4 4 7 -2.4500e+01 68 1.0e-05 1.0e-06 77.9 1.47 20.6 0 1

BQP1VAR 1 0 2.4567e-10 17 3.9e-15 1.0e-05 100 0 0 0 1

BQPGABIM 50 0 -3.7903e-05 21 1.0e-04 1.0e-05 100 0 0 0 1

BQPGASIM 50 0 -5.5198e-05 20 1.0e-04 1.0e-05 100 0 0 0 1

DUAL1 85 1 3.5013e-02 46 1.2e-10 1.0e-05 100 0 0 0 1

DUAL2 96 1 3.3734e-02 38 3.0e-10 1.0e-05 100 0 0 0 1

DUAL3 111 1 1.3576e-01 54 9.1e-10 1.0e-05 100 0 0 0 1

DUAL4 75 1 7.4609e-01 44 7.2e-10 1.0e-05 100 0 0 0 1

DUALC1 9 215 6.1553e+03 248 1.1e-12 1.0e-05 31.5 0 68.5 0 1

DUALC2 7 229 3.5513e+03 197 7.2e-16 1.0e-05 38.1 0 61.9 0 1

DUALC5 8 278 4.2723e+02 89 1.4e-18 1.0e-05 88.8 0 11.2 0 1

DUALC8 8 503 1.8309e+04 189 4.7e-10 1.0e-06 73 0 27 0 1

GENHS28 10 8 9.2717e-01 2 2.1e-15 1.0e-05 100 0 0 0 1

GMNCASE1 175 300 2.6697e-01 37 1.0e-04 1.0e-05 100 0 0 0 1

GMNCASE2 175 1050 -9.9444e-01 28 1.0e-04 1.0e-05 100 0 0 0 1

GMNCASE3 175 1050 1.5251e+00 25 1.0e-04 1.0e-05 100 0 0 0 1

GMNCASE4 175 350 5.9469e+03 6 1.0e-04 1.0e-05 100 0 0 0 1

GOFFIN 51 50 -1.1369e-13 2 1.0e-04 1.0e-05 100 0 0 0 1

GOULDQP1 32 17 -3.4853e+03 42 1.0e-04 1.0e-05 100 0 0 0 1

HATFLDH 4 7 -2.4500e+01 55 1.0e-05 1.0e-06 94.5 1.82 3.64 0 1

HS118 15 17 6.6482e+02 37 1.0e-04 1.0e-05 100 0 0 0 1

HS21 2 1 4.0000e-02 51 5.1e-16 1.0e-05 88.2 0 11.8 0 1

HS268 5 5 -1.4463e+04 94 8.9e-10 1.0e-05 100 0 0 0 1

HS3 2 0 -8.4703e-22 5 2.5e-32 1.0e-05 100 0 0 0 1

HS35 3 1 -8.8889e+00 22 1.3e-14 1.0e-05 100 0 0 0 1

HS35I 3 1 -8.8889e+00 22 1.4e-14 1.0e-05 100 0 0 0 1
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Table 6.2.2: Results for CUTEr test QPs, Continued

QP n m OptQ Itr µFE µFI V0L% M% F% d 6= 0 conv

HS35MOD 3 1 2.5000e-01 47 9.5e-10 1.0e-05 100 0 0 0 1

HS3MOD 2 0 -1.1102e-16 2 3.9e-24 1.0e-05 100 0 0 0 1

HS44 4 6 -1.3000e+01 50 4.5e-14 1.0e-05 70 0 30 9 1

HS44NEW 4 6 -1.5000e+01 21 2.6e-14 1.0e-05 100 0 0 2 1

HS51 5 3 0.0000e+00 1 8.3e-25 1.0e-05 100 0 0 0 1

HS52 5 3 5.3266e+00 2 7.4e-11 1.0e-05 100 0 0 0 1

HS53 5 3 4.0930e+00 20 1.6e-16 1.0e-05 100 0 0 0 1

HS76 4 3 -4.6818e+00 21 1.0e-04 1.0e-05 100 0 0 0 1

HS76I 4 3 -4.6818e+00 21 1.0e-04 1.0e-05 100 0 0 0 1

LOTSCHD 12 7 2.3984e+03 31 6.9e-15 1.0e-05 64.5 0 35.5 0 1

MAKELA4 21 40 3.1086e-15 8 1.0e-04 1.0e-05 100 0 0 0 1

OSLBQP 8 0 6.2500e+00 65 9.7e-10 1.0e-05 100 0 0 0 1

PALMER1C 8 0 -1.0741e+05 1 7.9e-12 1.0e-05 100 0 0 0 1

PALMER1D 7 0 -1.0741e+05 1 3.3e-12 1.0e-05 100 0 0 0 1

PALMER2C 8 0 -1.6103e+04 1 1.7e-12 1.0e-05 100 0 0 0 1

PALMER3C 8 0 -1.5824e+04 1 5.7e-13 1.0e-05 100 0 0 0 1

PALMER4C 8 0 -1.7275e+04 1 7.3e-13 1.0e-05 100 0 0 0 1

PRIMAL1 325 85 -3.5013e-02 39 1.0e-04 1.0e-05 100 0 0 0 1

PRIMAL2 649 96 -3.3734e-02 33 1.0e-04 1.0e-05 100 0 0 0 1

PRIMAL3 745 111 -1.3576e-01 48 1.0e-04 1.0e-05 100 0 0 0 1

PRIMAL4 1489 75 -7.4609e-01 50 1.0e-04 1.0e-05 96 0 4 0 1

PRIMALC1 230 9 -6.1553e+03 853 1.0e-05 1.0e-06 9.38 0.117 90.5 0 1

PRIMALC2 231 7 -3.5513e+03 77 1.0e-04 1.0e-05 50.6 0 49.4 0 1

PRIMALC5 287 8 -4.2723e+02 59 1.0e-04 1.0e-05 71.2 0 28.8 0 1

PRIMALC8 520 8 -1.8309e+04 291 1.0e-04 1.0e-05 15.5 0 84.5 0 1

QPCBLEND 83 74 -7.8413e-03 88 1.0e-05 1.0e-06 80.7 0 19.3 0 1

QPCBOEI1 384 351 1.8016e+05 1000 1.0e-04 1.0e-05 0.6 0 99.4 0 0

QPCBOEI2 143 166 1.5512e+07 1000 1.0e-14 1.0e-15 22.8 0 77.2 0 0

QPCSTAIR 467 356 4.2938e+05 1000 1.0e-04 1.0e-05 0.3 0 99.7 0 0

QPNBLEND 83 74 -8.7044e-03 102 1.0e-05 1.0e-06 71.6 0 28.4 0 1

QPNBOEI1 384 351 1.5600e+05 1000 1.0e-04 1.0e-05 0.6 0 99.4 0 0

QPNBOEI2 143 166 1.0776e+05 1000 1.0e-04 1.0e-05 0.4 0 99.6 217 0

QPNSTAIR 467 356 4.5354e+06 1000 1.0e-07 1.0e-08 6.1 0 93.9 0 0

S268 5 5 -1.4463e+04 94 8.9e-10 1.0e-05 100 0 0 0 1

SIM2BQP 2 0 5.6968e-10 22 1.4e-14 1.0e-05 100 0 0 0 1

SIMBQP 2 0 4.0354e-10 23 8.1e-15 1.0e-05 100 0 0 0 1

STEENBRA 432 108 1.6958e+04 307 5.9e-10 1.0e-06 26.4 0 73.6 5 1

TAME 2 1 0.0000e+00 33 1.1e-51 1.0e-05 100 0 0 0 1

TOINTQOR 50 0 -1.1598e+03 1 8.3e-21 1.0e-05 100 0 0 0 1

ZANGWIL2 2 0 -8.4267e+01 1 0.0e+00 1.0e-05 100 0 0 0 1

ZECEVIC2 2 2 -4.1250e+00 32 1.0e-04 1.0e-05 100 0 0 0 1

ALLINQP 100 50 -9.1593e+00 202 1.0e-05 1.0e-06 37.1 0.495 62.4 0 1

AUG2D 220 100 1.1080e+02 3 7.5e-22 1.0e-05 100 0 0 0 1

AUG2DC 220 100 1.8424e+02 3 2.3e-20 1.0e-05 100 0 0 0 1

AUG2DCQP 220 100 3.0399e+02 339 3.1e-13 1.0e-05 14.7 0 85.3 0 1
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Table 6.2.2: Results for CUTEr test QPs, Continued

QP n m OptQ Itr µFE µFI V0L% M% F% d 6= 0 conv

AUG2DQP 220 100 1.7797e+02 319 1.0e-09 1.0e-05 33.5 0 66.5 1 1

AUG3D 156 27 8.3333e-02 2 8.2e-20 1.0e-05 100 0 0 0 1

AUG3DC 156 27 3.5843e+01 2 2.4e-14 1.0e-05 100 0 0 0 1

AUG3DCQP 156 27 3.9288e+01 144 5.3e-14 1.0e-05 36.1 0 63.9 0 1

AUG3DQP 156 27 4.1833e+00 216 1.6e-10 1.0e-06 62.5 0.463 37 17 1

BIGGSB1 100 0 -1.9850e+00 58 1.0e-05 1.0e-06 96.6 1.72 1.72 0 1

BLOCKQP1 210 101 -9.4000e+01 33 1.0e-04 1.0e-05 87.9 0 12.1 13 1

BLOCKQP2 210 101 -9.3806e+01 22 1.0e-04 1.0e-05 100 0 0 1 1

BLOCKQP3 210 101 -4.5000e+01 132 1.0e-04 1.0e-05 27.3 0 72.7 119 1

BLOCKQP4 210 101 -4.5776e+01 25 1.0e-04 1.0e-05 100 0 0 2 1

BLOCKQP5 210 101 -4.5000e+01 157 1.0e-04 1.0e-05 22.3 0 77.7 141 1

BLOWEYA 202 102 -4.4543e-01 1000 1.0e-10 1.0e-11 31.9 0.6 67.5 0 0

BLOWEYB 202 102 -2.9699e-01 1000 4.8e-12 1.0e-12 35.2 0.7 64.1 0 0

BLOWEYC 202 102 -3.0275e-01 1000 3.1e-12 1.0e-12 36.4 0.7 62.9 0 0

CHENHARK 100 0 -2.0000e+00 39 9.5e-10 1.0e-05 100 0 0 0 1

CVXBQP1 100 0 2.2725e+02 20 2.7e-12 1.0e-05 100 0 0 0 1

CVXQP1 100 50 1.1591e+04 27 9.7e-11 1.0e-05 100 0 0 0 1

CVXQP2 100 25 8.1209e+03 29 2.8e-14 1.0e-05 100 0 0 0 1

CVXQP3 100 75 1.1943e+04 36 9.1e-13 1.0e-05 100 0 0 0 1

DEGENQP 10 1005 1.5528e-10 31 3.7e-14 1.0e-05 100 0 0 0 1

DEGTRID 101 0 -9.9500e+01 47 9.2e-10 1.0e-05 100 0 0 0 1

DEGTRID2 101 0 -9.9500e+01 115 1.6e-10 1.0e-06 99.1 0.87 0 0 1

DEGTRIDL 101 1 5.0000e-01 51 8.7e-10 1.0e-05 100 0 0 0 1

DIXON3DQ 100 0 -2.0000e+00 1 0.0e+00 1.0e-05 100 0 0 0 1

DQDRTIC 100 0 0.0000e+00 1 0.0e+00 1.0e-05 100 0 0 0 1

FERRISDC 400 103 -5.8247e-05 267 1.0e-06 1.0e-07 80.5 0 19.5 77 1

GOULDQP2 199 99 9.3976e-07 32 1.5e-08 1.0e-05 100 0 0 0 1

GOULDQP3 199 99 2.2133e-03 23 1.7e-10 1.0e-05 100 0 0 0 1

HARKERP2 100 0 -4.9999e-01 54 5.6e-10 1.0e-05 100 0 0 0 1

HILBERTA 2 0 2.9582e-31 1 3.3e-24 1.0e-05 100 0 0 0 1

HILBERTB 10 0 4.0388e-29 1 5.0e-21 1.0e-05 100 0 0 0 1

HUES-MOD 100 2 3.4830e+07 51 2.9e-19 1.0e-05 90.2 0 9.8 0 1

HUESTIS 100 2 3.4830e+09 173 4.1e-16 1.0e-06 53.8 0 46.2 0 1

JNLBRNG1 100 0 -1.7896e-01 78 9.2e-14 1.0e-05 53.8 0 46.2 0 1

JNLBRNG2 100 0 -3.9528e+00 34 7.4e-12 1.0e-05 100 0 0 0 1

JNLBRNGA 100 0 -3.6116e-01 76 1.7e-13 1.0e-05 72.4 0 27.6 0 1

JNLBRNGB 100 0 -7.2552e+00 76 2.4e-15 1.0e-05 77.6 0 22.4 0 1

LISWET1 103 100 -2.5861e+01 76 8.3e-10 1.0e-05 86.8 0 13.2 0 1

LISWET2 103 100 -1.7360e+01 92 8.5e-10 1.0e-05 91.3 0 8.7 0 1

LISWET3 103 100 -1.0562e+01 84 9.1e-10 1.0e-05 100 0 0 0 1

LISWET4 103 100 -7.6508e+00 59 5.4e-10 1.0e-05 96.6 0 3.39 0 1

LISWET5 103 100 -1.6540e+02 74 9.9e-10 1.0e-05 100 0 0 0 1

LISWET6 103 100 -2.2469e+01 79 8.8e-10 1.0e-05 97.5 0 2.53 0 1

LISWET7 103 100 -2.5485e+01 182 3.6e-10 1.0e-05 36.8 0 63.2 0 1

LISWET8 103 100 -2.5489e+01 73 1.3e-10 1.0e-05 82.2 0 17.8 0 1
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Table 6.2.2: Results for CUTEr test QPs, Continued

QP n m OptQ Itr µFE µFI V0L% M% F% d 6= 0 conv

LISWET9 102 100 -5.5606e+00 154 5.6e-10 1.0e-05 26.6 0 73.4 0 1

LISWET10 103 100 -2.5997e+01 60 4.0e-10 1.0e-05 91.7 0 8.33 0 1

LISWET11 103 100 -2.4788e+01 364 2.2e-15 1.0e-06 26.1 0 73.9 0 1

LISWET12 103 100 -5.6573e+00 461 1.4e-17 1.0e-09 40.3 0 59.7 0 1

MOSARQP1 100 10 -1.5420e+02 28 1.6e-13 1.0e-05 100 0 0 0 1

MOSARQP2 100 10 -2.0652e+02 26 3.0e-16 1.0e-05 100 0 0 0 1

NCVXBQP1 100 0 -1.9956e+06 273 1.0e-07 1.0e-08 38.1 0 61.9 194 1

NCVXBQP2 100 0 -5.5390e+04 1000 1.0e-04 1.0e-05 1.5 0 98.5 1000 0

NCVXBQP3 100 0 -5.8559e+04 1000 1.0e-04 1.0e-05 1.3 0 98.7 1000 0

NCVXQP1 100 50 -7.2975e+05 410 1.0e-05 1.0e-06 20.2 0 79.8 232 1

NCVXQP2 100 50 -5.4468e+05 287 1.0e-06 1.0e-07 40.1 0 59.9 197 1

NCVXQP3 100 50 -2.7833e+05 532 1.0e-09 1.0e-10 36.7 0 63.3 404 1

NCVXQP4 100 25 -9.1739e+05 298 1.0e-06 1.0e-07 31.5 0 68.5 150 1

NCVXQP5 100 25 -6.3385e+05 313 1.0e-06 1.0e-07 38.7 0 61.3 194 1

NCVXQP6 100 25 -3.3018e+05 340 1.0e-07 1.0e-08 36.8 0 63.2 244 1

NCVXQP7 100 75 -4.9111e+05 433 1.0e-06 1.0e-07 26.1 0 73.9 72 1

NCVXQP8 100 75 -3.4298e+05 656 1.0e-06 1.0e-07 20.9 0.152 79 260 1

NCVXQP9 100 75 -2.1121e+05 178 1.0e-06 1.0e-07 48.9 0 51.1 102 1

NOBNDTOR 100 0 -5.5211e-01 24 1.0e-04 1.0e-05 100 0 0 0 1

OBSTCLAE 100 0 1.3979e+00 28 3.2e-11 1.0e-05 100 0 0 0 1

OBSTCLAL 100 0 1.3979e+00 53 2.6e-11 1.0e-05 100 0 0 0 1

OBSTCLBL 100 0 2.8750e+00 21 1.0e-04 1.0e-05 100 0 0 0 1

OBSTCLBM 100 0 2.8750e+00 17 1.0e-04 1.0e-05 100 0 0 0 1

OBSTCLBU 100 0 2.8750e+00 21 1.0e-04 1.0e-05 100 0 0 0 1

PENTDI 100 0 -7.5000e-01 1000 1.0e-09 1.0e-05 10.4 0 89.6 0 0

PORTSNQP 100 2 3.1801e+01 35 2.1e-12 1.0e-05 100 0 0 3 1

PORTSQP 100 1 3.1587e+01 25 3.5e-11 1.0e-05 100 0 0 0 1

POWELL20 100 100 5.2703e+04 629 5.9e-11 1.0e-05 5.41 0 94.6 0 1

QUDLIN 120 0 -7.2000e+05 30 1.0e-04 1.0e-05 100 0 0 7 1

SOSQP1 200 101 4.1605e-16 19 3.2e-05 1.0e-05 100 0 0 0 1

SOSQP2 200 101 -4.8738e+01 202 1.0e-04 1.0e-05 24.3 0 75.7 0 1

STCQP1 257 128 4.0405e+03 32 1.0e-04 1.0e-05 100 0 0 0 1

STCQP2 257 128 1.4294e+03 28 4.3e-13 1.0e-05 100 0 0 0 1

STNQP1 257 128 -4.4730e+03 22 1.0e-04 1.0e-05 100 0 0 1 1

STNQP2 257 128 -7.2320e+03 24 1.0e-04 1.0e-05 100 0 0 2 1

TESTQUAD 1000 0 0.0000e+00 1 0.0e+00 1.0e-05 100 0 0 0 1

TORSION1 100 0 -4.9234e-01 26 1.0e-04 1.0e-05 100 0 0 0 1

TORSION2 100 0 -4.9234e-01 24 1.0e-04 1.0e-05 100 0 0 0 1

TORSION3 100 0 -1.2705e+00 23 1.0e-04 1.0e-05 100 0 0 0 1

TORSION4 100 0 -1.2705e+00 22 1.0e-04 1.0e-05 100 0 0 0 1

TORSION5 100 0 -2.8971e+00 25 1.0e-04 1.0e-05 100 0 0 0 1

TORSION6 100 0 -2.8971e+00 24 1.0e-04 1.0e-05 100 0 0 0 1

TORSIONA 100 0 -4.0570e-01 27 1.0e-04 1.0e-05 100 0 0 0 1

TORSIONB 100 0 -4.0570e-01 25 1.0e-04 1.0e-05 100 0 0 0 1

TORSIONC 100 0 -1.1766e+00 23 1.0e-04 1.0e-05 100 0 0 0 1
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Table 6.2.2: Results for CUTEr test QPs, Continued

QP n m OptQ Itr µFE µFI V0L% M% F% d 6= 0 conv

TORSIOND 100 0 -1.1766e+00 22 1.0e-04 1.0e-05 100 0 0 0 1

TORSIONE 100 0 -2.7984e+00 25 1.0e-04 1.0e-05 100 0 0 0 1

TORSIONF 100 0 -2.7984e+00 24 1.0e-04 1.0e-05 100 0 0 0 1

TRIDIA 100 0 -1.0000e+00 1 3.1e-19 1.0e-05 100 0 0 0 1

UBH1 99 60 1.1474e+00 160 9.5e-10 1.0e-05 74.4 0 25.6 0 1

YAO 202 200 8.1384e+00 1000 9.3e-06 1.0e-06 7.1 0.1 92.8 0 0
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