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Abstract

Choice deadlines are commonly imposed in decision-making
research to incentivize speedy responses and sustained atten-
tion to the task settings. However, computational models of
choice and response times routinely overlook this deadline, in-
stead simply omitting trials past the deadline from further anal-
ysis. This choice is made under the implicit assumption that
parameter estimation is not significantly affected by ignoring
these omissions. Using new tools from likelihood-free infer-
ence, here we elucidate the degree to which omitting omis-
sions, even in seemingly benign settings, can lead researchers
astray. We explore the phenomenon using a Sequential Sam-
pling Model (SSM) with collapsing boundaries as a test-bed.
Keywords: likelihood-free; Bayesian; DDM; sequential sam-
pling models; omissions

Introduction
Joint modeling of choices and response times is a core
methodological staple of cognitive science. The broad class
of evidence accumulation or sequential sampling models
(SSMs), with the drift diffusion model (DDM) representing
a widely used variant, form the dominant modeling paradigm
for this purpose. SSMs, a very flexible class of models, grew
out of the desire to capture detailed aspects of choices and RT
distributions in increasingly complex experimental settings,
which tested the limits of the original DDM (Ratcliff, 1978;
Ratcliff, Smith, Brown, & McKoon, 2016).

According to SSMs, choices and response times are jointly
generated as a result of a stochastic evidence accumulation
process. The evidence evolves over time and eventually
reaches a prescribed lower or upper boundary (sometimes re-
ferred to as the decision threshold).

Alternative variants of these models abound (for example,
leaky competing accumulation model, race models, models
which include collapsing boundaries etc.) (Usher & Mc-
Clelland, 2001; Reynolds & Rhodes, 2009; Krajbich, Lu,
Camerer, & Rangel, 2012; Hawkins, Forstmann, Wagenmak-
ers, Ratcliff, & Brown, 2015; Malhotra, Leslie, Ludwig, &
Bogacz, 2018). However, many such variants are rarely used

in practice, due to limitations in the affordances of the sup-
porting software infrastructure (Voss & Voss, 2007; Wiecki,
Sofer, & Frank, 2013; Ahn, Haines, & Zhang, 2017; Fengler,
Bera, Pedersen, & Frank, 2022). A particular limitation is
that many theoretically interesting models lack closed-form
expressions for the likelihood of choice-RT pairs, impeding
the ability to perform Bayesian parameter estimation with-
out requiring prohibitively long and expensive computational
simulations (Fengler, Govindarajan, Chen, & Frank, 2021).

Prior work in this area has expanded the suite of models
that can be rigorously evaluated beyond the canonical DDM
(Fengler et al., 2021; Boelts, Lueckmann, Gao, & Macke,
2022; Durkan, Bekasov, Murray, & Papamakarios, 2019).
Using simulators as training data generators to learn likeli-
hood functions and / or posteriors cracked this bottleneck,
with software support built around these innovations emerg-
ing (Fengler et al., 2022; Tejero-Cantero et al., 2020).

Here, we focus on the consequences of even seemingly
more benign choices that researchers employ when model-
ing real data-especially the choice to exclude trials in which
choices are not observed, and how likelihood-free methods
are able to remedy them. Specifically, we focus on exper-
imental designs that involve response deadlines, a typical
form of experimental manipulation to induce prioritization of
speed in decision making and a means to ensure sustained
attention. While deadlines incentivize speedy decision mak-
ing, a notable byproduct is a percentage of omission trials in
which the participant did not commit a decision before the
deadline. It is common-place in empirical practice to ignore
omissions and focus the data analysis on the trials with com-
mitted responses. The implicit assumption is that a few omit-
ted trials will not significantly impact parameter estimation,
and therefore downstream conclusions. We will show here
that this assumption is invalid and can indeed be pernicious.

We use the framework of Likelihood Approximation Net-
works (LANs) (Fengler et al., 2021), to empirically inves-
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Figure 1: Graphic illustration of the standard DDM (left) and
ANGLE (right) models. ANGLE model is used as the test-
bed for our numerical experiments.

tigate the de-facto vulnerability towards misleading conclu-
sions when omitting omissions. To account for omissions we
add a second network that is trained directly on the omission
probability p(o|θ,d), given model parameters θ and a dead-
line d (Omission-Probability Network; OPN). We explain the
resulting adjustments to likelihood computations in the meth-
ods section. With a series of numerical experiments, we show
that parameter estimation (and therefore conclusions about
mechanisms driving cross-condition differences in behavior)
can be severely affected if omissions are not explicitly mod-
eled, even when relatively few trials were omitted.

Methods
Cognitive Models
Because LANs, in conjunction with OPNs, allow us to inves-
tigate this phenomenon not only in the standard DDM model,
but in a large class of SSMs, we focus our analysis here on an
SSM with collapsing boundary (Cisek, Puskas, & El-Murr,
2009; Hawkins et al., 2015). This choice is motivated by
two reasons: (i) to highlight that the risks we identify are not
specialized toward the basic DDM, and (ii) because collaps-
ing bounds have been used in particular for situations with
response deadlines, as a rational decision maker can force
themselves to decide with incomplete evidence (Frazier &
Yu, 2007). As a test-bed for our investigation, we choose
a DDM with linearly collapsing boundaries (ANGLE, right
in Figure 1; standard DDM with fixed boundaries on left in
Figure 1 for reference).

In general, SSMs are based on stochastic differential equa-
tions of the general form,

dXt = a(t,x)dt +b(t,x)dBt , X0 = z

where X represents the state of evidence in an accumula-
tion process, a(t,x) represents a drift function, which may
depend on the position of X, b(t,x) represents a noise scal-
ing process, Bt is the incremental noise process and X0 is the
starting point. Decisions are made at the first point of exit
of Xt from a region of interest, usually as soon as X exits the
region prescribed by symmetric upper and lower bounds, pre-
scribed as a function fbound. This framework is very flexible,
subsuming many theoretical models proposed in the literature

(Usher & McClelland, 2001; Reynolds & Rhodes, 2009; Kra-
jbich et al., 2012; Malhotra et al., 2018; Wieschen, Voss, &
Radev, 2020).

The standard DDM is represented in this framework by set-
ting f DDM

bound(t) = c, a fixed boundary value, a(t,x) = v a fixed
drift over time, b(t,x) = 1, a fixed noise scaling over time,
and setting the incremental noise process to be Gaussian. It
is common to add a non-decision time τ, to the model as a
means to collect residual time spent on perceptual or motor
processes not related to the choice process.

The ANGLE model, instead uses

f ANGLE
bound (t;c,θ) = a−

(
t ∗ sin(θ)

cos(θ)

)
.

as the shape of boundary and is otherwise identical to the
DDM model. The linearly collapsing boundary serves to rep-
resent the concept of urgency in decision making, which has
been proposed as theoretically relevant repeatedly (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Cisek et al., 2009;
Malhotra et al., 2018). All of our analysis in the following
focus on the ANGLE model.

Likelihoods
The likelihoods for SSMs are described by a set of two de-
fective distributions (one for each choice, c = 1 and c =−1),
fc(t;θSSM), where,∫

∞

0
f−1(t;θSSM)+ f1(t;θSSM)dt = 1

and θSSM represents the set of parameters for our given Se-
quential Sampling model. For our ANGLE model θSSM =
(v,a,z, t,θ), where v is the drift rate, a is the boundary sepa-
ration, z is the starting-point bias, t is the non-decision time
and θ is the angle of boundary collapse.

We are specifically concerned with incorporating omis-
sions, however, and hence there are two types of data for
which we need to specify likelihoods.

1. Standard: di = (rti,ci) where rti ≤ deadline, where both RT
and choice are observed

2. Omission: oi = (rti,ci) where rti > deadline, where neither
RT nor choice is recorded

For standard data-points we use our functions fc(rt;θSSM)
above. For omissions, however, we need to compute the fol-
lowing integral,

p(omission|θSSM,d) =
∫

∞

d
f−1(t;θSSM)+ f1(t;θSSM)dt

In this integral, d indicates the response deadline imposed
by experiment and is treated as a known parameter. These
integrals are not typically considered or available in relevant
software packages for SSM parameter estimation, and instead
researchers simply treat omissions as missing data, and thus
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Figure 2: Illustration of the log-likelihood formulation with the help of a LAN and an OPN. The OPN provides a function,
f OPN(.) for the log-likelihood of omissions, given a deadline setting. We simply multiply the log-likelihood of omissions by
the number of omissed trials, which is enough for the numerical experiments introduced here. In principle, trial-wise deadlines
can be incorporated at no extra cost. The LAN provides the function, f LAN

c (.) for the log-likelihood of observing a given (rt,c)
response time and choice pair prior to the deadline. Both networks take as parameters θANGLE the underlying parameters of the
ANGLE model. The LANs input adds to this the observed pair (rt,c), while the OPN adds to this the deadline d. The general
framework is applicable for a very large class of cognitive models, of which our ANGLE model is simply a concrete example
(Fengler et al., 2021; Boelts et al., 2022; Fengler et al., 2022).

perform inference using only the probability density func-
tions fc(t;θSSM).

Here we address this problem using the framework of
likelihood approximation networks (LANs) (Fengler et al.,
2021), to enable fast inference of the ANGLE model, while
including the likelihood of omissions explicitly. In particular,
we can use a simulator that returns the probability of missing
the deadline, which can then be used to train a LAN along
with its typical use to compute the functions fc(t;θSSM).

Hence we train two LANs for each model, one for
the function f LAN

c (t|θSSM), and one for the function
f OPN(omission|θSSM,d). The log-likelihood of a given
dataset {D,O}, is then computed as,

logl({D,O}|θSSM,d) =
|D|

∑
i=0

f LAN
ci

(rti|θSSM)+

|O| ∗ f OPN(omission|θSSM,d)

this combined model enables estimation of θSSM via fitting
observed choice data and omissions jointly.

Numerical Experiments
To illustrate the extent to which misleading results may de-
rive from data analysis that ignores omission trials, we use

two sets of numerical experiments exemplified on ANGLE
model. We note that in our numerical experiments, we use
the simplest approach to omissions. Omissions strictly derive
from the same process as recorded response times. In empir-
ical data analysis, often a lapse distribution or lapse proba-
bility is introduced, adjusting the likelihood of outlier data-
points. Incorporating such lapse distributions may be fruitful
for an even more comprehensive analysis in the future, how-
ever we would like to point out that the results we report in
this paper happen for the easiest possible case. Adding lapse
probabilities will only make the situation even more difficult,
not easier.
Parameter Recovery First, we run a parameter recovery
study for the ANGLE model. We simulate synthetic datasets,
with ground-truth v, z, t fixed (v = 1.5,z = 0.5, t = 0.3),
and boundary parameters (a, θ) sampled from a 2-D space
of realistic values for each of the respective model parame-
ters. We then impose a deadline (1.25s) and exclude param-
eter sets with too many omissions (> 30%), so that the syn-
thetic datasets generate omission percentages in the range of
0− 30%. We then proceed with parameter inference in two
ways:

1. Simply ignore omissions and evaluate only the LAN
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(LAN-only model). This represents the workflow shortcut
widely applied in the community.

2. Incorporate omissions via a second omission probability
network (LAN+OPN model).

To reduce the influence of randomness in the simulated
data, we repeat the parameter recovery for the same set of
parameters on 20 different simulated datasets and evaluate
parameter recovery based on the average across datasets.

Synthetic Experiment Second, we run four synthetic ex-
periments in which we simulate data across two experimental
conditions. In each experiment, the conditions share the same
deadline (1.25s) and model parameters (e.g., v, a) except for
the boundary collapse parameter θ. In Condition 1, the true
boundary collapse is 0.9 rad (larger collapse), while in Con-
dition 2 the collapse is 0.7 rad (smaller collapse) so the true
difference in collapse is 0.2 rad.

For each experiment, we generated 1000 trials per condi-
tion (2000 trials in total) and obtained samples from the pos-
terior distribution of ∆θ (condition 1 - condition 2) by fitting
LAN-only and LAN+OPN models with the simulated data.
We then compared the posterior distribution with the ground
truth ∆θ. We evaluated the prediction of omission rate from
the two types of models and compared the predictions with
the rate in the simulated data.

Results
Parameter Recovery When there is no omission in the
simulated data, we observe similar performance on parameter
recovery for the boundary parameters (a and θ) (blue dots in
Figure 3) regardless of whether the analysis is based on only
a LAN or included an OPN. When omissions exist in the data
(reddish dots in Figure 3), recovered values of a and θ are
higher than the true values when only LAN is used. This over-
estimation bias exists even when the rate of omission is very
low (< 5%). Specifically, we found that the LAN-only model
overestimated a especially when a is high, and overestimated
θ when θ is low. This leads to an overestimated change in
a (steeper lines in Figure 3A) and an underestimated change
in θ (flattened lines in Figure 3B). These general patterns of
bias in the LAN-only model persist across different levels of
drift rate. Parameter recovery analysis also demonstrates that
LAN-only model (but not LAN+OPN model) induces a mag-
nified correlation between a and θ so that higher a is more
likely to produce higher θ values even if the ground truth
value of θ is the same (Figure 4).

As might be expected, the bias increases as omission rate
increases (e.g., more missing data). However, it is worth not-
ing that significant bias emerges at very low levels of omis-
sion already. In contrast, we obtained reliable parameter re-
covery with LAN+OPN model for various combinations of
(a,θ) and different levels of omission rate. Altogether this
suggests that omitting omissions is risky and may lead to mis-
leading conclusions when parameter inference is an important
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Figure 3: Parameter recovery performance for the ANGLE
model, when either ignoring omissions (LAN-only model; A,
B) or including them via the omission probability network
as explained in Figure 2 (LAN+OPN model; C, D). (A, C)
Patterns of parameter recovery from the two models for the
boundary separation parameter a, varying true angle of the
boundary collapse, θ (across solid lines). (B, D) Patterns for
the boundary collapse parameter θ with varying true bound-
ary parameter a (across solid lines). Error bars refer to 95%
confidence interval of mean posteriors across multiple data
sets from the same parameter configuration. Dashed lines
represent identity lines.

aspect of a given study, even if omission rate is at a very low
level.

Synthetic Experiment In addition to the overestimation
bias, our parameter recovery analysis suggests that the LAN-
only model may fail to correctly assign relative differences in
parameters due to an experimental condition (here we focus
on θ, but the analysis yields similar results with regards to the
remaining model parameters). In the synthetic two-condition
experiment, we found that the LAN-only model underesti-
mates the difference in θ between two conditions (∆θ = 0.2).
while LAN+OPN model instead correctly recovers this dif-
ference between conditions Figure 5B. When the OPN was
included, the model was able to recover the difference in col-
lapse (θ) between the two synthetic experiment conditions for
multiple combinations of drift rate and threshold (Figure 5B).
Focusing on posterior predictives, the omission rates gener-
ated from the LAN-only model cannot capture the true omis-
sion rate of each condition (Figure 5C) while, again including
the OPN resolves this discrepancy.

Discussion
When implementing cognitive models, it is common to apply
assumptions or shortcuts to simplify the computational pro-
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cedure. In the context of choice and RT modeling with dead-
lines, one such shortcut is to leave omissions out of the dataset
when estimating computational model parameters. It seems
straightforward to reason that, with a low percentage of omis-
sions, parameter estimation will not be severely impacted by
this methodological shortcut. Hence, this shortcut is inessen-
tial or benign. This shortcut allows experimental scientists to
incorporate response deadlines in the experimental paradigms
without concerns about omission trials. While this shortcut
simplifies the cognitive model of choice behavior, its poten-
tial contaminating influence on modeling is ignored before
thorough examination. Importantly, the lack of investigation
in this shortcut originates from the fact that few modeling
methods can properly account for omissions (Howard, Fox,
Evans, Loft, & Houpt, 2023).

Enabled by modern computational tools (Fengler et al.,
2021, 2022), in this paper, we sought to quantitatively ex-
amine the effects of this common shortcut and we come to
the, perhaps surprising, following conclusion. As illustrated
in Figures 3 even when omission rates are very low (5% or
less), parameter recovery was severely impacted when ignor-
ing omissions at inference. As we show via a synthetic exper-
iment (Figure 5), this can result in highly misleading conclu-
sions when comparing parameter values across separate ex-
perimental conditions, in search of mechanistic explanations
of the effects of experimental manipulations.

We hope to have convincingly shown that omissions should
not be disregarded, however small their number, when the
goal of a study is parameter inference of computational cog-
nitive models, especially (as is commonly the case) the com-
parison of inferred parameters across groups. On a broader
scale, we think this investigation pointedly shows the value
of continued re-examination of collective methodological
choices. Taking advantage of the continuous development
of novel inference tools, such efforts become progressively
more feasible at the frontier of the computational sciences
(Cranmer, Brehmer, & Louppe, 2020; Tejero-Cantero et al.,
2020; Radev, Mertens, Voss, Ardizzone, & Köthe, 2020; Fen-
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spondingly omission rates in posterior predictive distributions
are wrongly calibrated if omissions are not appropriately ac-
counted for during the inference stage. Models fit without
omissions systematically predict much lower overall omis-
sion rates and smaller variance in omission rate.

gler et al., 2021).

The dearth of computational investigations to this effect
(e.g. a rigorous workflow should employ a parameter recov-
ery study for synthetic datasets otherwise equivalent to what
is proposed for a given study, including trial or condition
wise deadlines) stem from a simple phenomenon, which si-
multaneously explains the fields rigid focus on simple DDMs
(Ratcliff et al., 2016) over an array of theoretically interest-
ing model variations (Bogacz et al., 2006; Cisek et al., 2009;
Wieschen et al., 2020) in the past: analytical convenience.
Both cases-first the correct incorporation of deadlines in like-
lihood computations, as well as second, the exploration of
model variants like e.g. the ANGLE model used as the ba-
sis for our investigation-imply a significant increase in ef-
fort as compared to the standard workflows established by
canonical tools in the discipline (Wiecki et al., 2013; Voss &
Voss, 2007). The effects of some of the resulting shortcuts
remain untested. We wish to emphasize that the framework
of simulation-based inference (Cranmer et al., 2020) and a
focus on learning of likelihoods functions from simulations
(Fengler et al., 2021; Boelts et al., 2022; Papamakarios, Ster-
ratt, & Murray, 2019) in particular, present the emergence of a
general purpose toolkit, which can fruitfully be employed for
investigations like the present one on a much broader class of
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cognitive computational models as well as experimental de-
signs. New toolboxes (Fengler et al., 2022; Tejero-Cantero
et al., 2020) are designed to suggest a workflow that exposes
the moving pieces in a computational modeling endeavor ex-
plicitly, while at the same time streamlining the otherwise an-
alytically tedious aspects that adjustments of likelihood com-
putations entail, through strong reliance on simulation. This
approach fundamentally enabled the present investigation and
is available to the wider community. We hope this investiga-
tion elucidates why it is not optional, but necessary, to use
these modern tools to help diffuse computational best prac-
tices in the quest to avoid misleading conclusions from scien-
tific work based on computational modeling.
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