
TunIO:
An AI-powered Framework for Optimizing HPC I/O

Neeraj Rajesh, Keith Bateman∗, Jean Luca Bez†, Suren Byna‡,Anthony Kougkas, Xian-He Sun∗
∗ Illinois Institute of Technology, † Lawrence Berkeley National Lab, ‡ Ohio State University & Lawrence Berkeley National Lab

∗{nrajesh, kbateman}@hawk.iit.edu, †jlbez@lbl.gov, ‡byna.1@osu.edu, ∗{akougkas, sun}@iit.edu

Abstract—I/O operations are a known performance bottleneck of
HPC applications. To achieve good performance, users often employ
an iterative multistage tuning process to find an optimal I/O stack
configuration. However, an I/O stack contains multiple layers, such
as high-level I/O libraries, I/O middleware, and parallel file systems,
and each layer has many parameters. These parameters and layers
are entangled and influenced by each other. The tuning process is
time-consuming and complex. In this work, we present TunIO, an AI-
powered I/O tuning framework that implements several techniques to
balance the tuning cost and performance gain, including tuning the high-
impact parameters first. Furthermore, TunIO analyzes the application
source code to extract its I/O kernel while retaining all statements
necessary to perform I/O. It utilizes a smart selection of high-impact
configuration parameters of the given tuning objective. Finally, it uses a
novel Reinforcement Learning (RL)-driven early stopping mechanism to
balance the cost and performance gain. Experimental results show that
TunIO leads to a reduction of up to ≈73% in tuning time while achieving
the same performance gain when compared to H5Tuner. It achieves a
significant performance gain/cost of 208.4 MBps/min (I/O bandwidth for
each minute spent in tuning) over existing approaches under our testing.

Index Terms—AI-powered I/O tuning, storage stack tuning, autotun-
ing, source code transformations, and I/O performance optimization

I. INTRODUCTION

Modern applications, often organized in coupled workflows, have
grown complex in terms of software and hardware dependencies.
Extracting maximum performance from the computing environment
they run on is a complicated and costly activity [1]. Application
developers often utilize an optimization process called tuning to
determine the appropriate configurations for the application and its
dependencies before they are run in production. Tuning is an iterative
process that aims to determine which configuration to apply to an
application or library to achieve a given objective. It has several
essential steps, as follows: generate a set of initial configurations,
evaluate the impact of the set of configurable parameters in terms
of a given objective (e.g., maximize performance or minimize storage
footprint), and reiterate the process until the optimal set of parameter
values has been reached. The objective of tuning varies [2], [3], [4], but,
most commonly, it is attempting to maximize application performance
on the target environment in order to minimize the number of core
hours spent by the user. Tuning is typically considered useful when the
tuning benefit, or time gained running the application in production,
supersedes the cost of tuning, or time spent tuning the application.

Scientific applications demonstrate many configurations and
dependencies which modify their behavior and performance [5], [6],
[7]. The application complexity is compounded by the intricacies
of the HPC I/O stack, which is typically organized in a multi-layered
design. High-level I/O libraries (e.g., HDF5 [8], PNetCDF [9], and
ADIOS [10]) capture the data representation; middleware libraries
(e.g., MPI-IO [11], Hermes [12], and UnifyFS [13]) map application

I/O characteristics to the underlying I/O system; and the storage
layer (e.g., Lustre [14], and BeeGFS [15]) interfaces directly with
I/O hardware. Over time, there has been an explosion of I/O-related
libraries that abstract the complexities of the underlying storage
infrastructure. Each I/O library adds significantly to the configuration
complexity of the I/O stack [16]. I/O is the major performance
bottleneck of most modern scientific applications [17] and therefore
represents the largest area for potential performance gain.

Existing tuners (e.g., Vizier [18], H5Tuner [19], [20], DEAP [21])
perform a search in a potentially large parameter configuration
space to identify optimal parameter values, which results in a large
tuning cost that may negate the benefits of tuning. For example,
some applications may have low aggregated executions across their
production run, which would not get adequately reimbursed unless the
time spent tuning is small enough. Thus, it is imperative to balance the
tuning cost and benefit gained. Three main challenges are associated
with balancing the tuning budget while optimizing the tuning
objective: (a) There is a need to prioritize tuning for I/O performance,
which is the largest area of potential benefit for an application. As
each run of the application is expensive, it is better to pick a single
area of behavior to focus on when evaluating the application objective.
(b) There is a need to prioritize the largest benefit parameters of the
I/O stack. Since the configuration space experiences an exponential
increase caused by the utilization of multiple I/O libraries, it is vital to
minimize it by intelligently isolating high-impact parameters for the
tuning objective. (c) There is a need for intelligent decision-making
to determine whether to continue tuning so that unnecessary tuning
is averted when the return on investment starts diminishing.

To address the above challenges in tuning, this paper introduces
TunIO, an AI-powered optimization framework for tuning the HPC
I/O stack. It consists of a set of optimizations that can be attached
to any I/O tuning pipeline. TunIO builds upon the key insight that
the best way to balance benefit and cost is to perform the most
impactful tuning first, so that objective gains can be maximized when
stopping tuning early to avoid diminishing tuning returns. One way
to apply this logic is to reduce the part of the HPC stack being tuned
to the category which provides the largest benefit. Therefore, TunIO
prioritizes tuning I/O first and foremost. It has three components,
each contributing to decreasing the tuning cost as follows:

• Application I/O Discovery: This component simplifies the
application code for the purpose of objective evaluation so that
only the critical sections with respect to I/O are run, resulting in
a faster evaluation of the impact of tuning on the objective.

• Smart Configuration Generation: This component isolates high-
impact parameters for the tuning objective using reinforcement
learning, resulting in a smaller configuration space.



• Early Stopping: This component determines when to stop tuning
using Reinforcement Learning, resulting in a balance between
utilizing the tuning budget and optimizing the tuning objective.
In this paper, we present and evaluate the TunIO techniques

integrated into H5Tuner. We discuss existing tuning techniques
and motivation for TunIO’s advancements in § II. We showcase
TunIO’s design, the reasoning for that design, and some limitations
and implications in § III. We evaluate TunIO’s design in § IV. We
summarize related work and describe their distinctions from TunIO
in § V. Finally, we present conclusions and future work in § VI.

II. BACKGROUND

Tuning is an iterative, multistep process of finding optimal
configuration values of a system by (1) generating multiple
configurations, (2) evaluating, and (3) analyzing the impact of those
configurations with respect to a well-defined objective, usually
optimizing a measurable metric, such as maximizing performance,
minimizing energy consumption, and/or minimizing latency. The
process repeats until an adequate configuration is achieved or until the
tuning budget has run out. The tuning budget is defined as the cost
of tuning the application, expressed in units of resource allocation
(e.g., CPU, storage) or time spent tuning (e.g., seconds, iterations).

Tuning is performed by either system admins deploying super-
computers or by users running applications on those supercomputers,
depending on the system being optimized. Lower-level systems such
as Parallel File Systems (PFSs) or I/O forwarders can be configured by
system admins, but user-level libraries and applications have to be con-
figured by users. Tuning is time-consuming and complex to perform
across many iterations. While system admins have weeks or months
to optimize when deploying a system, the amount of time the users
have to spend tuning is typically relatively small and will cost them
allocation hours. In addition, users develop their applications in cycles,
which leads to a variety of constraints. During the debug phase or when
scaling up, the user needs to ensure the correctness of the application.
During the final tuning for the target system, the user wants to optimize
performance without exhausting their core hours. Users also have
varying areas of expertise, and therefore some may lack knowledge of
the exact parameters of the HPC stack which need to be configured.

A. I/O Stack Tuning
Historically, CPU performance has improved at a much faster rate

than I/O performance [22]. Considering that I/O is the major bottle-
neck in most data-intensive applications, it follows that it represents
an area of significant potential gains in performance [23]. The current
HPC I/O stack is fairly complex and designed in a multi-layered man-
ner, including the file system (e.g., XFS, F2FS, EXT2/3/4), low-level
libraries (e.g., STDIO, POSIX I/O [24]), and high-level I/O libraries
(e.g., Hermes [12], MPI-IO [25], HDF5 [8]) [26]. Tuning could
optimize any of these layers, given the appropriate permissions. There
is a myriad of configuration parameters across the entirety of the stack.
For example, in HDF5 [27] one could configure the cache size or the
alignment of I/O requests to the disk representation, and in Lustre [7]
one could configure the stripe size or stripe count. These are highly
dependent on the workload characteristics and are expected to result in
subpar performance if misconfigured. Due to a lack of expertise, users
tend to deploy I/O services with the default configuration parameter
set [27]. However, these defaults are designed to support generic
workloads and fail to take advantage of customization opportunities to
improve performance. To make things worse, each of the layers in the

I/O stack must be configured in coordination with the layers above
or below [16]. This is necessary to avoid performance degradation, re-
source misutilization, and unintended behavior from the storage stack.
For example, ideally, HDF5 chunks would correspond to Lustre stripes
so that one chunk is written on one Lustre OSD, or HDF5 and MPI-IO
would both either enable or disable collective I/O appropriately.

B. Configuration Space Optimizations
Tuning the I/O stack is ultimately a search problem, and therefore

is bottlenecked by the number of parameters in the configuration
space [28]. The search algorithms employed in user-level tuning
have usually been AI techniques such as genetic algorithms [29],
random search [30], hill climbing algorithms [31], and, more recently,
reinforcement learning [32], [20].

The tuning search space has an expected space complexity of
O(mn) [33], where m is the number of possible inputs to a parameter
and n is the number of possible parameters. When performing a
search on this space, the number of parameters n represents the
most significant bottleneck to performance, even in optimized search
algorithms [28].

Diverse HPC storage devices have the potential for high perfor-
mance, but this has caused the software stack to become more complex
with new libraries. This can be seen in Figure 1, which demonstrates
the user-level parameter permutations of several HPC I/O libraries
and storage systems. These are calculated utilizing a lower bound of
two values for discrete parameters and five for continuous parameters.
The baseline number of parameters was determined using existing
information about HDF5 [5], PNetCDF [34], MPI [6], ADIOS [35],
OpenSHMEMX [36], and Hermes [12]. These parameter counts
represent lower bounds, as these libraries may contain additional
configurable parameters. It can be seen from this table that the number
of permutations of a full-stack tune would be very large. For example,
a stack that includes HDF5 and MPI would have 3.81×1023 param-
eter value permutations. Multilayer tuning can cause an exponential
increase in the search complexity in the worst case when all parameters
are related. Even in the best case where each parameter is independent,
there is still a linear increase in search complexity. Configuration space
minimization is a practical and necessary technique for improving the
average and best case performances of tuning by eliminating certain
parameters from the search before exploring the parameter space [27].
However, configuration space minimization has the limitation that
it may leave performance on the table and restrict the flexibility
of the configuration, causing difficulty in adapting to changing
conditions or requirements. Configuration space minimization has
been accomplished via Bayesian Optimization [37], which determines
the most valuable parameters from a static analysis and then groups
the related parameters and tunes them together. Bez et al. [38] apply
contextual bandits to determine which subsets of parameters need to be
tuned to optimize the performance of the singular I/O forwarding layer.

C. Early Stopping
There can be instances when the tuning pipeline gets stuck in

different local optima, which they are unable to escape within a
reasonable amount of time [39], thus not justifying the benefit
gained. In this case, quitting tuning and trying again would be best.
Figure 2 demonstrates the I/O bandwidth achieved by HACC [40],
FLASH [41], and VPIC [42] I/O kernels at different iterations when
tuned using H5Tuner. It can be seen that application performance in
tuning follows a logarithmic curve, where performance improvements



Fig. 1: Explosion of user-level search space, discretizing continuous
parameters to 5 values for simplicity.

Fig. 2: Bandwidth (MB/s) across tuning iterations of HACC, FLASH,
and VPIC I/O kernels at four node scale.

diminish over time. This observation suggests the need for early
stopping [43], [18], a technique which involves prematurely ending
a search after not observing a significant change in the results across
a certain number of application runs.

III. TUNIO

As an AI-powered I/O optimization framework, TunIO aims to
address the challenges associated with the expensive costs of tuning
HPC I/O stacks. Its main objective is to balance the cost and benefit
of tuning an I/O stack. TunIO’s set of optimizations is intended to be
portable and used across any I/O tuning pipeline. TunIO conceptual-
izes optimizations to shorten the route to a fully tuned application by
using Reinforcement Learning techniques to intelligently select a sub-
set of parameters to be tuned, as well as to identify when to terminate
the tuning pipeline without perceptible loss of optimization potential.
TunIO is inspired by modern software stack compositions, where
applications rely on a wide variety of I/O-related libraries running on
top of modern hardware designs. TunIO targets I/O performance first,
to mitigate known bottlenecks by capitalizing on improvements from
a per-application tuned I/O stack. To achieve these goals, TunIO is de-
signed and implemented with the following design principles in mind:

1) I/O-focused Objective Evaluation: Reduce the prohibitive
expense of running the application via low-cost automatic
isolation of the I/O kernel of the application.

2) Impact-First Tuning: Parameters that have a high impact should
be tuned first. This allows for high-performant configurations to
be discovered sooner in the tuning pipeline, effectively minimizing
the configuration space.

3) Constraint-based Tuning Cost and Benefit Balancing:
Searching should be tailored to the constraints of the user and
their application and balance the impact of tuning with the cost of

Fig. 3: Visualization of the tuning pipeline with TunIO.

tuning. This will prevent the over-tuning of the application beyond
the point where it stops being impactful.

A. High-Level Architecture

The design of TunIO can be seen in Figure 3. TunIO takes as inputs
the tuning specification (including all user constraints) and source
code. As a preprocessing step, the source code is passed through the
Application I/O Discovery component (step 1), and an I/O kernel
binary is generated. This kernel encapsulates all the I/O operations of
the application and is passed to the tuner for evaluating the impact of
tuning in a reduced manner. TunIO first uses the Smart Configuration
Generation (§ III-C) component to decide on a set of configurations
to evaluate (steps 2 and 3). This accomplishes the objective of Impact-
First Tuning by intelligently selecting subsets of the total configuration
space (demonstrated in the evaluation section - § IV-B). It passes
the selected subset of parameters to be tuned to the Configuration
Evaluation (steps 4 and 5), which evaluates the objective using the
I/O kernel generated by the Application I/O Discovery (§ III-B)
component. This accomplishes I/O-focused Objective Evaluation
because the utilized application is reduced to only the calls essential to
I/O. The Configuration Evaluation passes a list of measured objectives
to Tuning Optimization (§ III-D) (step 6), which sends feedback (step
7) about whether to stop and return the optimal configuration found
or continue tuning. This accomplishes Constraint-based Tuning Cost
and Benefit Balancing by stopping the tuning pipeline when the cost
outweighs the benefit (demonstrated in evaluation - § IV-C).

In its reference implementation, TunIO targets HDF5 applications
due to HDF5’s ubiquitous use in different domains [44], as a vehicle
to demonstrate the effectiveness of the proposed tuning techniques.
It builds off of the existing H5Tuner library [45], [46], [27], using its
mechanisms to override the configuration parameters of HDF5 appli-
cations via an XML file. The tuner code was implemented in Python
3.6+ [47] as with all other components mentioned below. The tuning
framework is built using Distributed Evolutionary Algorithms in
Python (DEAP) [21], a generic framework for evolutionary algorithms
used to drive tuning forward. It is used to generate the configuration,
use the results of the configuration evaluation to select the next
generation’s parents, and also provides a variety of other optimizations
for generic evolutionary algorithms. The tuning pipeline employs
elitism [48], a genetic algorithm technique used to ensure the best so-
lution found so far is always carried through and not lost. Elitism, how-
ever, has the drawbacks of over-specializing the population and limit-
ing the search space exploration, resulting in the genetic algorithm get-
ting stuck at a local optimum. To account for these drawbacks, TunIO



Fig. 4: Application I/O Discovery Component Architecture.

Fig. 5: Example of I/O Discovery; shows the partial consequences
(one parent, immediate dependents, and eventual removals) of
marking an H5 call.

employs tournament selection [49], a technique where three individu-
als are chosen randomly from the population of an iteration/generation,
and the best two are carried forward as parents for the next generation.

B. I/O-focused Objective Evaluation

To collect objectives efficiently, TunIO passes the application
through an Application I/O Discovery component before tuning begins.
The application has to be passed through this component only once,
but every evaluation of the objective will benefit from the improved
runtime. There is no chance of an increase in the application runtime,
as the number of instructions run will be the same or less so that, in the
worst case, the application runtime will remain the same. In addition,
if the I/O kernel of the application causes an error, TunIO will revert
to using the full application. However, this should not happen under
ordinary circumstances. To parse the source code of the application,

the Application I/O Discovery component uses the Clang Python
library [50] (particularly the cindex and enumerations modules).

The Application I/O Discovery component follows the process
shown in Figure 4. It takes in the application’s source code and outputs
an I/O kernel, which the tuning pipeline can then use as the represen-
tative of its I/O behavior. To reduce source code to a kernel, the Appli-
cation I/O Discovery component generates an Abstract Syntax Tree
(AST), finds and marks I/O calls and related code in a marking loop,
reconstructs the kernel from kept lines, and reduces the kernel by trans-
forming those lines, ultimately outputting an I/O kernel to the tuner.
In the prototype implementation of TunIO, the I/O calls are HDF5
calls. TunIO marks source code elements to keep on a per-line basis.
An alternative would be to mark statements if the compiler-generated
AST can distinguish them. Clang provides a large amount of nuance
which makes it difficult to isolate statements [50], and therefore TunIO
uses lines as a substitute. To get as close to one-statement-per-line as
possible, TunIO uses a custom clang-format preprocessing step which
avoids line breaking with a 200-character column limit while placing
curly braces on distinct lines and splitting multi-statement lines.

To reduce the AST while maintaining consistency in application
logic, the marking loop traverses the AST, finds I/O calls, and marks
them to keep. TunIO continues by marking related source code
elements as dependents of the kept lines. The dependents for a function
call are its arguments and the left-hand side of its assignment (e.g.,
dep = foo(dep, dep, ...) where dep marks the de-
pendents). The dependents for a conditional are the boolean statement
(e.g., if (dep) {body}). The dependents for a loop are its
initialization, update, and condition statements (e.g., for (dep;
dep; dep) {body}). The dependents for an assignment are its
left-hand side (e.g., dep = rhs). Whenever a variable is marked, a
backward traversal must be applied to mark all assignments associated
with that variable (e.g., var = dep). After marking dependents,
TunIO uses the AST to find and mark the contextual parent of each
dependent (e.g., the contextual parent of a for loop body statement
is the loop header). Those parents will themselves have dependents
and parents that need to be marked to maintain application logic, so the
marking loop will continue until it reaches the source code’s top-level.

Once the kept lines have been discovered for all I/O calls, the code
is reconstructed with those lines and reduced using a technique such as
loop reduction or I/O path switching. These exist to further improve the
runtime of the application at the cost of the accuracy of its I/O kernel,
and they are optional to apply (a null reduction step could be used
instead). Loop Reduction incorporates a percentage decrease in iter-
ations of loops containing I/O so that some locality can be maintained
while significantly reducing the quantity of I/O operations performed
to storage. The scalable metrics for that I/O are then multiplied by the
loop reductions to achieve a prediction for the original loop. This dras-
tically improves tuning time, but will trade some information about
hardware locality and caching. Another technique that TunIO employs
is I/O Path Switching, which prepends every path written or read with
a path to memory (e.g., /dev/shm or tmpfs) so that calls are not
actually performed to slow disks. This can be good for improving
tuning time, but it loses some accuracy due to not tuning for the target
storage device. Both these techniques are user-configurable and can
capture the user tuning constraints (e.g., debugging or production job).

We show a partial example of the marking process in Figure 5.
It can be seen that lines 8 and 10-15 contain compute and variable
declarations not necessary to I/O, which will not be kept. Line 32
contains an H5Dwrite call and will be kept, along with its parent



Fig. 6: Overview of TunIO Smart Configuration Generation.

for loop. That H5Dwrite call requires both dataset_id and
data_ptr as dependents to function correctly, so lines 5 and
28-29 which assign to dataset_id and lines 7, 17, and 20
which assign to data_ptr will also be kept as a direct result of
keeping line 32. There are other lines that contain H5 calls, and the
process will continue after the results of this figure until it is finished
inspecting them. In addition, the parent and dependent markings will
recursively trigger further parent and dependent markings.

C. Impact-First Tuning
In application tuning, not all available parameters would impact the

application’s performance. Tuning all the parameters would explode
the configuration space exponentially, making it harder to find an
optimal configuration. The Smart Configuration Generation involves
only tuning a subset of the parameters at each iteration to ensure that
the search space utilized to find a tuned configuration is minimized
and application evaluations are reduced. It then ranks the selected
parameters in order of descending impact on the tuning objective
to maximize benefit at earlier iterations.

The Smart Configuration Generation component, as seen in
Figure 6 is implemented as an RL agent. The agent gets the parameter
subset and the best perf achieved during that iteration, and returns the
subset of parameters to use in the next tuning iteration. TunIO defines
the I/O performance objective as perf≡(1−α)∗BWr+α∗BWw,
where α denotes the ratio of data written over total data transferred,
and BW denotes the bandwidth of either read r or write w operations
in MB/s. The agent uses a State Observer, created using a Neural
Network (NN)-based context bandit [51]. The observer uses the
inputs provided to the RL agent to produce a state observation
which represents a relationship between the application and the
tuning environment; specifically, the state demonstrates how the
performance of the application varies with inputs within the tuning
environment as observed by the agent. The state observation is
fed to the Subset Picker, created using an NN-based Q-Learning
function, which determines the appropriate subset to use in the
next tuning iteration based on the state observation. The NNs are
created in Keras [52] and the RL agents using OpenAI Gym [53].
The reward function is dependent on the normperf(perf) −
normparam(num parameterssubset), where norm() is a normal-
izing function, num parameterssubset is the number of parameters
used in the subset. The perf is normalized using the constant

1
BWsingle×num nodes and num parameterssubset is normalized
by 1

num parameters , the total number of parameters. It also utilizes
a 5-iteration delay on the reward function to avoid bias introduced by
short-term gains. To understand parameter impact efficiently, the agent
is first trained offline to get a baseline model that improves the sub-
sequent online training of the agent by minimizing the warm-up time
for the model. The offline training process is accomplished by first
doing a simple parameter sweep on some representative I/O kernels,
including VPIC, FLASH, and HACC. During the parameter sweep,
their appropriate perf values are collected as performance metrics.
The parameters swept are HDF5, MPI-IO and Lustre parameters, and

Fig. 7: Overview of TunIO Early Stopping.

include sieve buf size, chunk cache, alignment, meta block size,
col meta ops, mdc conf, coll metadata write, striping factor, strip-
ing unit, cb nodes, and cb buffer size. These parameters were cho-
sen because they have demonstrated the best changes in performance
for these libraries [5], [6], [7]. After performing a sweep on each I/O
kernel, a Principal Component Analysis (PCA) analysis is performed
on the parameters with respect to perf to train the model to isolate the
most impactful parameters. The trained model is ultimately utilized
in the configuration generation phase of the tuning pipeline, where
it continues to learn from the applications it is exposed to.

D. Balancing Tuning Cost and Benefit
The Early Stopping component is designed to determine whether

to stop or continue the tuning pipeline. This component ensures that
the tuning pipeline stops when there is no measurable improvement
in performance over recent tuning iterations. This aims to balance
the performance gained with the time spent tuning. This usually
stops the tuning pipeline when the balanced configuration has been
determined, without wasting tuning cycles. Nonetheless, in rare cases,
it may get stuck in a local optimum, due to the overspecialization
of the population, where it cannot determine whether further tuning
will bring sufficient benefit.

The Early Stopping component, implemented with similar RL
techniques as the Smart Configuration Generation component, gets
the iteration and the performance from the tuner as inputs and returns
whether the tuner should stop or continue. Its design is shown in
Figure 7. The observed state is sent to the Action Decider, which
determines the appropriate action. The inputs are perf gained in the
respective iteration and the number of iterations. Given this input, the
agent decides if the tuning pipeline should stop or continue. To train the
agent offline, tuning is emulated using generated log curves, as tuning
performance follows a log curve (as was demonstrated in Figure 2)
where performance is gained initially and attenuates as it approaches
a tuned configuration. The log curves generated for training include
noise in the form of randomized shifts down the curve to account
for tuning cases where the wrong parameter is chosen briefly before
adjusting. The agent utilizes a reward function with a 5-iteration delay.
Each simulated application has a log curve with different characteris-
tics such as initial value, growth rate, etc. The offline training runs until
the average reward of the agent begins to stagnate in most simulated
applications, indicated in this case by 5% or less increase across five
iterations. Once trained, the agent is integrated into the tuning pipeline,
where it learns from trends of the applications it is exposed to.

E. Implementation Details
API: TunIO separates its components and provides an interface

so that they can be used by other tuning pipelines. The interfaces
provided by the TunIO library are presented in Table I. It can be seen
that the Early Stopping component takes the parameters of the current
tuning iteration and the best perf attained in that iteration as inputs,
and outputs a suggestion to stop or continue. The Application I/O
Discovery component takes the source code and options and outputs



a modified I/O kernel. Options may include manually indicated
keep regions and flags for source code modifiers such as I/O path
switching. Finally, the Smart Configuration Generation component
takes the performance and the parameter subset used and outputs
a subset of the parameter set to test.

Function Input Output
stop current iteration, best perf, stop/continue
discover io source code, options I/O kernel
subset picker perf, current parameter set next parameter set

TABLE I: API for TunIO

Use Case: TunIO can be accessed as a user-level library and provides
a CLI tool for the Application I/O Discovery component. This tool
converts the source code to its equivalent I/O kernel, which the user
can compile using their preferred method and use as a substitute for the
application during the configuration evaluation phase. To demonstrate
how these components are used, we create an example use case
with DEAP and the H5Tuner library. DEAP provides a framework
that allows the user to simply specify the termination condition,
population generation, crossover, mutation, and fitness functions,
as well as select optimizations for the genetic algorithm. This can
represent a tuning pipeline, with the population generation mapping
to configuration generation, the crossover and mutation mapping
to search space optimization, and the fitness function mapping to
configuration evaluation. In TunIO’s case, DEAP calls the Smart
Configuration Generation component within its population generation,
calls Python subprocess() to spawn an I/O kernel job with the
appropriate configurations set and monitor bandwidth (using monitor-
ing hooks such as Darshan [54]) within its fitness function, and calls
the Early Stopping component to determine its termination condition.
To generate the I/O kernel, this use case calls the Application I/O
Discovery component before using the DEAP framework.

F. Limitations and Considerations

While TunIO achieves its objective of balancing the tuning cost
with the benefit gained, there are some considerations associated with
its design. First, source code modification techniques that reduce the
runtime will less accurately represent the I/O of the full application.
It is possible that performance will be left on the table when tuning
the kernel instead of the real application. Second, when only tuning
the most impactful parameters, the configuration space is highly
reduced, but performance may not be maximized for all workloads.
This does imply that Impact-First tuning will likely never obtain the
global optimal configuration set due to some parameters not being
tuned. However, it will trade missed performance potential for better
resource utilization while still acquiring near-optimal application I/O
performance. Third, when early stopping happens based on statistical
patterns in tuning performance and user constraints, there is a
possibility that a better configuration would be discovered in a future
iteration. However, if the application is stuck in a local optimum that is
hard to escape from, it could take a long time before this improvement
is seen. TunIO may choose to exit early even when suboptimal results
have been obtained. The rationale behind this design choice is that
tuning follows a logarithmic curve in performance (as in Figure 2),
and minor improvements in performance do not justify the prolonged
convergence of the tuning pipeline.

IV. EVALUATION

Methodology: To assess the efficacy of our components, we conduct
evaluations using the HDF5 library. This allows us to determine the vi-
ability of each component and measure their success in achieving their
defined objectives. For our evaluations, we tune a subset of 12 parame-
ters across HDF5, MPI, and Lustre, which gives a search space of over
2.18 billion permutations. Finally, a comprehensive evaluation is con-
ducted to assess the impact of all components on the tuning pipeline.
Testing environment: All tests were performed on the Haswell nodes
on Cori supercomputer [55]. Cori has a total of 2,388 Haswell nodes,
each with a 16-core 2.3GHz Intel Xeon processor and 128 GB of
2133 MHz DDR4 memory. Where storage was required, tests used
the scratch Lustre filesystem available on Cori [56], which has 30
PB of disk space and an aggregate I/O bandwidth of approximately
700 GB/sec. Each test uses 4 nodes and 128 processes for individual
components. The end-to-end test was performed on Cori with 500
nodes and 1600 processes. To mitigate the volatility of the Cori plat-
form, each application run is performed 3 times and bandwidths are
averaged. The time cost of running the application is not accumulated
across runs, because different systems have different volatility, and
the extra runs can be seen as a necessary expense for a given platform.
Metrics: To quantify the cost-benefit balance of tuning, we need
a metric that is proportional to the improvement in application
performance gained from tuning and inversely proportional to the
time spent tuning. We call this metric Return on Tuning Investment
(RoTI), and it has its basis in financial return on investment
metrics [57]. RoTI is represented by the formula

RoTI(t)≡ perfachieved(t)−perfachieved(0)

t
where perfachieved(t) represents the maximum achieved perf in
MB/S at a certain time t in the tuning pipeline, perfachieved(0)
represents the initial perf in MB/s of the default configuration before
tuning. This metric is an ascending value, with higher values providing
higher returns in performance for the same tuning overhead (i.e., time
spent tuning in minutes). Since these returns are bandwidths, an RoTI
of 40 MB/s per minute spent tuning would represent an increase in
bandwidth of 40 MB/s for each minute of tuning overhead. From this
description, it can be seen that RoTI is fundamentally an application of
return on investment to I/O tuning. We also use iterations as a duration
metric, representing the current generation of the genetic algorithm.

A. Analysis of I/O-focused Objective Evaluation
To demonstrate how the Application I/O Discovery component

achieves I/O focused objective evaluation (objective 1), we ran the
tuning pipeline on two versions of MACSio [58]: one which was
reduced to its I/O kernel by the Application I/O Discovery component
and one which was not. Since MACSio is a workload generator, we
based the ratio of compute-to-I/O on observed values from running
VPIC programs with the Dipole configuration. We show the RoTI
for these two tuning curves in Figure 8(a).

These results show an improved RoTI for the I/O kernel. The reason
is that running only the parts of the application critical to I/O takes
less time than running the full application at each step, which causes a
smaller investment to achieve the same performance gain. As a result,
the peak RoTI is 2.87 compared to the 2.47 peak RoTI of the regular
application, which represents an additional improvement in application
I/O bandwidth of 0.4 MB/s for each minute of tuning overhead
when using I/O discovery compared to the regular application. The
overall time to reach peak RoTI is reduced from 639 minutes to 549,



(a) Return on Tuning Investment with and without Application I/O Discovery.

(b) Return on Tuning Investment with and without loop reduction.

(c) Percentage Similarity of MACSio VPIC with and without loop reduction.

Fig. 8: I/O Discovery Evaluations

which represents a 14% decrease in tuning time. This improvement
occurs because the application I/O Discovery component will remove
unnecessary computing and networking statements, leaving only
statements necessary to I/O. The exact improvement will vary
depending on the application, and other techniques such as I/O path
switching can be utilized to obtain an improvement in that case.

In Figure 8(b), we add the technique of loop reduction to our I/O
Discovery process and observe the RoTI gained. The loop reduction
applied was to perform 1% of the iterations. Loop reduction is a
powerful technique, and in this particular case, it increases peak RoTI
to 23.30, which is a very large boost over the 2.47 peak RoTI of
the original application (over 9×). This represents an additional I/O
bandwidth gain of 20.83 MB/s for each minute of tuning overhead
with loop reduction compared to the original application. This is

Fig. 9: Bandwidth achieved by the Smart Configuration Generation
component over iterations of tuning FLASH.

because there is a significant reduction in I/O performed while
maintaining enough calls to show the benefits of data locality. While
this may introduce some inaccuracy, we found that the reported
bandwidths, in this case, were 97.10% accurate. It is important to
note that this technique will not always be applicable. Whenever
the loop iterations are too small to reduce (less than one iteration
on reduction), loop reduction will not be able to do anything.

In Figure 8(c), we show the absolute percentage error of a few
metrics to contrast the generated I/O kernels with and without loop
reduction to the original application. The percentage similarity is
a simple division of the metric for the kernel by the metric for the
original application. For the reduced kernel, we multiplied the metric
by 100 to show the quantity of I/O that would be assumed by the
kernel before doing the comparison. We find that the number of
bytes written for the kernel and reduced kernel both have a very low
absolute percentage error of less than 1% (0.0002% for kernel and
0.19% for reduced kernel). For the number of write operations, there
is greater inaccuracy. The kernel has an error of 19.05%, which is
due to the removal of some trivial writes, which may include logging
operations or print statements. The reduced kernel has a lower error
of 4.87%, which probably means that more I/O is being performed
in early loop iterations than later ones so that the implied number
of operations is greater than the true number that would have been
performed and therefore makes up for a few of the absent logging
operations when compared to the original application.

B. Analysis of Impact First Tuning

To evaluate the Smart Configuration Generation component, which
achieves our criteria for impact first tuning (objective 2), we attach
the Smart Configuration Generation component to the tuning pipeline
for the FLASH I/O kernel, and we measure the overall performance
gained over tuning iterations with respect to the time spent tuning.
We compare this performance with the performance achieved in
the tuning pipeline without the Smart Configuration Generation
component. The result of this evaluation can be seen in Figure 9.
We observe that Impact-First Tuning reaches a bandwidth of 2.3
GB/s at tuning iteration 6, while No Impact-First Tuning reaches this
bandwidth at iteration 43. This represents an improvement of 86.05%
in the number of tuning iterations. It is also worth noting that in the
second iteration, Impact-First Tuning chooses a suboptimal subset
(lower performance than the previous iteration) causing performance
to drop between iterations, but based on that feedback it is able to



determine more optimal subsets to achieve optimal performance
faster. The final configuration determined in tuning changes seven
parameters from their default values, with the remaining five not
having a significant impact on the tuning process.

C. Tuning Cost-Benefit Analysis

To evaluate the effectiveness of the Early Stopping component
to balance the tuning cost and benefit (objective 3), we attach
the component to the tuning pipeline for HACC and measure the
performance gained. Additionally, we keep tuning to determine
if there was any further increase in performance and compare it
against heuristic early stoppers [18]. Heuristic-based early stoppers
decide to stop the tuning pipeline when there is no improvement
in the performance over a specified number of iterations. We set
those thresholds at 5% improvement and 5 iterations, since 5% is
a common measure of statistical significance [59].

In Figure 10(a), we observe that TunIO’s early stopper terminates
tuning at the 35th of 50 generations of the tuning pipeline, achieving
2.2 GB/s bandwidth (≈ 4× improvement from the non-tuned
application bandwidth of 0.55 GB/s). If the tuning was allowed to
continue for the remainder of the 15 generations, the performance
would have only gained a negligible 0.08 GB/s (i.e., 0.14× gain) over
the bandwidth chosen by TunIO’s early stopper. In addition, TunIO’s
Early Stopping component intelligently avoids getting caught in the
plateau around the 10th to 20th iterations. In contrast, the traditional
heuristic-based early stopper is undoubtedly affected at iteration 14
when it decided to stop, achieving only 1.2 GB/s bandwidth. This
results in a mere 2× performance improvement over the non-tuned
application. This is ≈83% less than TunIO’s outcome (i.e., TunIO
boosted performance by 4×); this loss in potential is significant,
considering the time spent tuning the application across 14 generations
would be expected to precipitate more performance than this.

In Figure 10(b), we plot the RoTI of tuning HACC. The
perfect RoTI for this application would be 2.31, achieved by stopping
at iteration 35. We observe that TunIO’s early stopping mechanism
has an RoTI of 2.09, which is 90.5% of the best return. Maximizing
Performance represents an alternate stopping method where tuning
stops immediately on getting the optimal performance. Models which
utilize Maximizing Performance stopping would typically take a
few iterations to determine that the true optimal was reached, but
we assume a perfect model for this evaluation. The Maximizing
Performance stopping method gets 1.99 RoTI or 86.1% of the best
return; TunIO stopping achieves an additional 0.1 MB/s improvement
in I/O bandwidth for each minute of tuning overhead compared to
this method. The heuristic model of stopping achieves 1.37 RoTI
or 59.3% of the best return; TunIO stopping achieves an additional
0.72 MB/s of I/O bandwidth for each minute of tuning overhead
compared to this method. If the user had a maximized tuning budget
of 50 iterations, that would give an RoTI of 1.8 or 77.9% of the
best return. In addition to giving a better RoTI, TunIO stops at 744
minutes as opposed to the 800 minutes of Maximizing Performance
stopping, which represents a 7.61% time improvement. The findings
indicate that the use of TunIO stopping results in better returns
compared to not using early stopping or methods that stop based on
maximizing performance or heuristic criteria. Additionally, TunIO
reaches near-optimal returns faster than all other methods.

(a) Tuning while using Early Stopper.

(b) Return on Tuning Investment.

Fig. 10: Visualization of Tuning HACC with Early Stopping.

D. TunIO Pipeline Analysis

We need to quantify the overall benefit of using all the TunIO
components in their respective phases of the tuning pipeline.

We measure the performance gained and the number of iterations
needed to get to a tuned configuration. We run several tuning jobs for
BD-CATS [60], [61], H5Tuner with No Stop, H5Tuner with Heuristic
Stop, TunIO, H5Tuner + I/O Kernel with No Stop, H5Tuner + I/O
Kernel with Heuristic Stop, and TunIO + I/O Kernel. The Heuristic
Stop refers to the same 5% heuristic explained in section IV-C.

Figure 11(a) shows the bandwidth of tuning the job, with stop
markers indicating where TunIO finds that RoTI diminishes or
where the Heuristic decides to stop. TunIO observes no improvement
from iterations 4 to 5, and this could be due to a suboptimal subset
being tuned, resulting in a reduction in performance for that iteration.
However, due to elitism, which carries over the best configuration
from the previous generation, the performance stays the same over
the 4th and 5th iterations. By the 6th TunIO iteration, the application
reaches its peak bandwidth at 88 GB/s. The RL-based Early Stopping
component stops the tuning pipeline at the 9th iteration due to a
lack of further improvement of the bandwidth of the application. The
reduction in the search space by the parameter selection agent helps the
tuning pipeline converge faster. We compare this with an application
being tuned in H5Tuner, which does not have TunIO’s optimizations
(Application I/O Discovery, Smart Configuration Generation, and RL-
based Early Stopping). We observe that it is harder for the tuning
pipeline to find a good configuration due to the noise of parameters
that do not impact the performance of the application within a large



(a) Bandwidth of BD-CATS with TunIO.

(b) RoTI of BD-CATS with H5Tuner.

Fig. 11: End-to-end evaluation of BD-CATS.

search space. This, unfortunately, prolongs the tuning time and ends
with the application using a large allocated tuning budget of 1750
minutes. TunIO, by contrast, only uses a tuning budget of ≈ 468
minutes, an improvement of ≈73%. Note that H5Tuner without stop
is able to leverage additional parameter configurations to achieve
a better max bandwidth of 90.8 GB/s, but this 3% I/O bandwidth
improvement is only achieved after significant time and tuning effort.
Alternatively, we can compare to H5Tuner with Heuristic Stop, which
uses a tuning budget of ≈ 538 minutes to achieve a bandwidth of
47.7 GB/s. TunIO achieves 1.84× I/O bandwidth in 87% of the time.

Figure 11(b) plots an RoTI curve for the tuning pipeline. We
observe that, compared to H5Tuner with Heuristic Stop, TunIO
provides a higher RoTI of 215 compared to the H5Tuner with
Heuristic Stop return of 41.6. This represents a gain of 173.4
MB/s of I/O bandwidth in application performance for each minute
of tuning overhead. We further observe that using the I/O kernel
instead of the original application improves return significantly, with
TunIO achieving an RoTI of 250, which represents an additional
performance improvement of 35 MB/s for each minute of tuning
overhead compared to H5Tuner with Heuristic Stop. When using the
I/O kernel instead of the original application in H5Tuner with Heuristic
Stop, there is an RoTI of 91.6, representing an additional performance
improvement of 50 MB/s for each minute of tuning overhead.

We observe that TunIO provides the right balance of performance
and investment of tuning time and resources, and consistently
provides a higher Return on Tuning Investment for the user.

Tuning an application will achieve a better runtime for that

Fig. 12: Demonstration of overall lifespan time of BD-CATS when
incorporating various tuning methodologies for different numbers
of executions in production.

application in production, but at the cost of the time spent tuning.
When running an application only once, tuning will only achieve a
time cost benefit for the extreme case of poorly configured programs,
if at all. For production workloads, however, an application is expected
to execute more times across multiple steps and iterations and achieve
a benefit. This benefit is achieved when the overall time spent across
the tuning process and the totality of the period of continued execution
becomes less than it would be if tuning was not applied. In figure 12,
we demonstrate the overall time of the application lifecycle across
various numbers of executions applied to BD-CATS, comparing
TunIO with H5Tuner and No-Tuning cases. We do this to demonstrate
the time it takes to tune (shown as the y-intercept), the time at which
tuning becomes viable over No-Tuning (shown as intersections), and
the overall time cost benefits that TunIO has over H5Tuner across the
lifespan of BD-CATS. TunIO takes 403 minutes to tune BD-CATS,
while H5Tuner takes 1560 minutes to tune BD-CATS. TunIO has
a viability point of 1394 executions, while H5Tuner has a viability
point of 5274 executions. Note that this viability is dependent on
the application being tuned and the tuning method, and cannot be
generalized. In this case, TunIO achieves tuning viability in 73.6%
fewer executions than H5Tuner. TunIO maintains a better overall
time than H5Tuner until 3.99 million executions. This occurs because
the benefit that H5Tuner achieves takes a very long time to manifest,
and therefore TunIO retains its advantage for numerous executions.

V. RELATED WORK

A. Tuning
Some works on optimizing the tuning pipeline involve changing

how the search space is represented. Chen et al. [39], proposed a
meta multi-objectivization model (MMO) that utilizes an auxiliary
performance objective (e.g., throughput in addition to latency) to
prevent the search from being trapped in a local optimum. This
technique leads to a 42% gain in overcoming the trap while achieving
the same performance targets. However, these improvements
are domain-agnostic, as opposed to TunIO, which addresses the
ever-increasing search spaces specific to I/O tuning.

The work by Bez et al. [38] has performed I/O stack tuning, as
it uses contextual bandits to optimize the I/O forwarding layer. This
technique leverages I/O access patterns to determine the performance
impact of a parameter. While this is tuning of a layer of the I/O stack,
it is aimed at tuning performed by the system admin rather than by



the users. TunIO is aimed at a higher level in the I/O stack, and, as
a result, it can apply different techniques, such as I/O kernel reduction
and collaborative tuning.

H5Tuner [45], [46] has proposed user-level tuning of the HDF5
I/O library using genetic algorithms. However, this work lacks
TunIO’s multilayer tuning, smart configuration generation, and early
stopping mechanisms. While H5Tuner could utilize I/O kernels, it
lacks TunIO’s unique I/O Discovery, which enables the application
configuration to be incorporated into the tuning process if desired.

B. I/O Discovery
The detection of critical regions of code is a process which

is usually performed manually. It can be utilized alongside
semi-empirical performance modeling in order to improve the tuning
pipeline, as in the work by Hoefler et al. [62]. However, this work
suffers from its generality. It requires manual determination of
critical sections of code because generic application tuning is not
allowed to make unsupervised assumptions about which regions are
critical. Since TunIO is specific to tuning for I/O, it can automatically
determine which regions of the code are critical to I/O via the
application of I/O knowledge. This sort of determination of source
code sections critical to I/O has been seen before in Vidya [63], which
uses source code analysis to isolate I/O regions in order to determine
I/O phases of the application and improve profiling. However, Vidya
does not reassemble the I/O regions of the code to produce an I/O
kernel as TunIO does, nor does it apply the technique to tuning. There
are tools, such as in Behzad et al. [64] or Skel [65], which utilize
trace files or ADIOS configurations to generate a similar I/O kernel,
but, curiously, none directly utilize the source code. Admittedly, the
Behzad work points to a limitation that source code may not always
be available, but the benefit of using source code is that the I/O kernel
generated will be robust to the different potential configurations of the
application. This is necessary if the application is included in a tuning
pipeline, as each application configuration would require its own
trace obtained via running the application, exploding the required
number of runs and therefore removing any value the I/O kernel had.

C. Smart Configuration Generation
Works to reduce the configuration space to aid in better con-

figuration generation include Menon et al. [37]. However, their
process reduces the parameter set, implying that it needs to run
some configurations with the entire parameter space. Depending on
the size of the parameter set, this would require a significant number
of configurations to be evaluated prior to identifying the relationships
between parameters with respect to the objective. This differs from the
TunIO approach in that we start by determining a subset of parameters
that allow the application to achieve performance improvements. This
approach allows us to arrive at a tuned configuration faster. Addition-
ally, when the component is exposed to new applications, it can learn
from the new trends it sees and can provide improved results in the fu-
ture. H5Tuner [20] uses modeling to reduce the search space to the 20
parameters that are the most impactful to I/O performance. However,
this work has limitations with the applicability of the model across
different applications, as well as with the same application at different
scales. Additionally, the choice of a specific number of impactful pa-
rameters could lead to an erroneous number of parameters being tuned.

D. Early Stopping
Early stopping has been explored in works by Golovin et al.[18].

They propose two methods, one which creates a performance

prediction curve using regression and uses it to estimate the final
value, and the other checks for a decrease in the objective from
a running average. The heuristic nature of these methods makes
them lightweight, but this limits them to not being able to adapt to
application trends and changes in trends that deviate from their initial
model. Additionally, early stopping as a technique is also used in
training Artificial-Intelligence (AI) models. It is used similarly to its
application within the context of I/O tuning, but to maximize accuracy
or minimize a relevant error metric. Ultimately, they follow a heuristic
where they stop if the performance objective does not improve by
a threshold over a period of time [66]. By contrast, TunIO’s approach
uses RL to achieve robustness to varied application patterns.

VI. CONCLUSIONS AND FUTURE WORK

We have presented TunIO, an AI-powered I/O optimization
framework, and its three primary components. The Application I/O
Discovery component reduces an application to an I/O kernel, which
aids in reducing the time spent evaluating the objective during the
tuning pipeline. The Smart Configuration Generation component
provides a subset of parameters to be tuned, which aids in reducing
the overall tuning search space. Finally, the Early Stopping component
determines whether to stop the tuning pipeline based on appropriate
feedback, which aids in balancing the tuning budget and the
application performance improvement. We observe that incorporating
all the techniques of TunIO into the tuning pipeline can improve the
time it takes to achieve a tune of comparable performance by ≈73%
over H5Tuner. TunIO efficiently tunes applications, with an expected
additional performance improvement of 208.4 MB/s in I/O bandwidth
achieved for each minute of tuning overhead for select applications.

During designing and developing TunIO, we discovered several
key points in the tuning space that require further consideration. As
future work, we will continue improving TunIO by addressing some
of the limitations mentioned in Section III-F. Specifically, we will
explore more use cases of source-code modification techniques. There
are a wide variety of techniques that can be utilized to transform the
generated I/O kernel in interesting ways, such as simulating loops,
removing blind writes, simulating necessary compute, and more.
While these techniques were dismissed for use in TunIO, they could
still apply elsewhere. The generality of source code modification
needs further work to properly explore its possibilities. We would like
to explore adding an interactive session feature where a configuration
can be refined over time across a series of runs. Finally, we want to
improve our early stopping model by including the expected number
of production runs as input, to allow TunIO to continue tuning if the
user knows that they expect to run the application long enough for
the extra tuning to be worthwhile.

VII. ACKNOWLEDGEMENT

This research was partially supported by the National Science
Foundation under grants OCI-1835764 and OAC-2104013, and by
the Department of Energy under grant DE-SC0023263. This research
used the resources of the National Energy Research Scientific
Computing Center (NERSC). This research was supported in part by
The Ohio State University under a subcontract (GR130493) that was
funded by the director of the Office of Science, the Office of Advanced
Scientific Computing Research (ASCR) of the U.S. Department of
Energy (DOE) under contract number DE-AC02-05CH11231 (at
LBNL), with program managers Hal Finkel and Margaret Lentz.



REFERENCES

[1] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth, B. Norris,
and R. Vuduc, “Autotuning in high-performance computing applications,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 2068–2083, 2018.

[2] R. Schoonhoven, B. Veenboer, B. van Werkhoven, and K. J. Batenburg, “Going
green: optimizing gpus for energy efficiency through model-steered auto-tuning,”
arXiv preprint arXiv:2211.07260, 2022.

[3] M. F. Ringenburg, A. Sampson, L. Ceze, and D. Grossman, “Profiling and
autotuning for energy-aware approximate programming,” in Workshop on
approximate computing across the system stack (WACAS), 2014.

[4] M. Khan, P. Basu, G. Rudy, M. Hall, C. Chen, and J. Chame, “A script-based
autotuning compiler system to generate high-performance cuda code,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 9, no. 4, pp.
1–25, 2013.

[5] B. Xie, H. Tang, S. Byna, J. Hanley, Q. Koziol, T. Li, and S. Oral, “Battle of
the defaults: Extracting performance characteristics of hdf5 under production
load,” in 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). IEEE, 2021, pp. 51–60.

[6] S. Pellegrini, R. Prodan, and T. Fahringer, “Tuning mpi runtime parameter setting
for high performance computing,” in 2012 IEEE International Conference on
Cluster Computing Workshops. IEEE, 2012, pp. 213–221.

[7] M. Seiz, P. Offenhäuser, S. Andersson, J. Hötzer, H. Hierl, B. Nestler, and
M. Resch, “Lustre i/o performance investigations on hazel hen: experiments
and heuristics,” The Journal of Supercomputing, pp. 1–29, 2021.

[8] T. H. Group, “The hdf5(r) library & file format - the hdf group,” 2022. [Online].
Available: https://www.hdfgroup.org/solutions/hdf5

[9] E. C. Project, “Pnetcdf,” 2023. [Online]. Available:
https://parallel-netcdf.github.io/

[10] O. R. L. C. Facility, “Adios – oak ridge leadership computing facility,” 2023.
[Online]. Available: https://www.olcf.ornl.gov/center-projects/adios/

[11] R. Thakur, W. Gropp, and E. Lusk, “Optimizing noncontiguous accesses in
mpi–io,” Parallel Computing, vol. 28, no. 1, pp. 83–105, 2002.

[12] A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: a heterogeneous-aware
multi-tiered distributed i/o buffering system,” in Proceedings of the 27th
International Symposium on High-Performance Parallel and Distributed
Computing, 2018, pp. 219–230.

[13] L. L. N. S. LLC, “Unifyfs: A file system for burst buffers – unifyfs 1.0.1
documentation,” 2023. [Online]. Available: https://unifyfs.readthedocs.io/en/dev/

[14] Oracle, “Lustre* software release 2.x operations manual,” Oracle, Tech. Rep.,
2017. [Online]. Available: https://doc.lustre.org/lustre{\ }manual.pdf

[15] J. Heichler, “An introduction to beegfs,” 2014.
[16] H. Tang, B. Xie, S. Byna, P. Carns, Q. Koziol, S. Kannan, J. Lofstead, and S. Oral,

“SCTuner: An Autotuner Addressing Dynamic I/O Needs on Supercomputer
I/O Subsystems,” in 2021 IEEE/ACM Sixth International Parallel Data Systems
Workshop (PDSW), Nov. 2021, pp. 29–34.

[17] P. Harrington, W. Yoo, A. Sim, and K. Wu, “Diagnosing parallel i/o bottlenecks in
hpc applications,” in International Conference for High Performance Computing
Networking Storage and Analysis (SCI7) ACM Student Research Competition
(SRC), 2017.

[18] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google Vizier: A Service for Black-Box Optimization,” in Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’17. New York, NY, USA: Association for
Computing Machinery, Aug. 2017, pp. 1487–1495. [Online]. Available:
https://doi.org/10.1145/3097983.3098043

[19] B. Behzad, J. Huchette, H. V. T. Luu, R. Aydt, S. Byna, Y. Yao,
Q. Koziol, and Prabhat, “A framework for auto-tuning hdf5 applications,”
in Proceedings of the 22nd International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 127–128. [Online]. Available:
https://doi.org/10.1145/2462902.2462931

[20] B. Behzad, S. Byna, S. M. Wild, M. Snir et al., “Dynamic model-driven parallel
i/o performance tuning,” in 2015 IEEE International Conference on Cluster
Computing. IEEE, 2015, pp. 184–193.

[21] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,
“DEAP: Evolutionary algorithms made easy,” Journal of Machine Learning
Research, vol. 13, pp. 2171–2175, jul 2012.

[22] A. F. Furtunato, K. Georgiou, K. Eder, and S. Xavier-de Souza, “When parallel
speedups hit the memory wall,” IEEE Access, vol. 8, pp. 79 225–79 238, 2020.

[23] V. Averbukh, A. Bersenev, M. Forghani, A. Igumnov, D. Manakov, A. Popel,
S. Sharf, and P. Vasev, “Visualizing a supercomputer: A case of objects regroup-
ing,” in CEUR Workshop Proceedings, vol. 2485. CEUR-WS, 2019, pp. 74–76.

[24] D. Hildebrand, A. Nisar, and R. Haskin, “pnfs, posix, and mpi-io: a tale of
three semantics,” in Proceedings of the 4th Annual Workshop on Petascale Data
Storage, 2009, pp. 32–36.

[25] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost, M. Snirt,
B. Traversat, and P. Wong, “Overview of the mpi-io parallel i/o interface,” in
Input/Output in Parallel and Distributed Computer Systems. Springer, 1996,
pp. 127–146.

[26] C. Wang, K. Mohror, and M. Snir, “File system semantics requirements of
hpc applications,” in Proceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing, 2021, pp. 19–30.

[27] B. Behzad, S. Byna, Prabhat, and M. Snir, “Optimizing I/O Performance
of HPC Applications with Autotuning,” ACM Transactions on Parallel
Computing, vol. 5, no. 4, pp. 15:1–15:27, Mar. 2019. [Online]. Available:
https://doi.org/10.1145/3309205

[28] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol,
and M. Snir, “Taming parallel I/O complexity with auto-tuning,” in SC ’13:
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, Nov. 2013, pp. 1–12, iSSN: 2167-4337.

[29] S. Sivanandam and S. Deepa, “Genetic algorithms,” in Introduction to genetic
algorithms. Springer, 2008, pp. 15–37.

[30] Z. B. Zabinsky et al., “Random search algorithms,” Department of Industrial
and Systems Engineering, University of Washington, USA, 2009.

[31] R. Greiner, “Palo: A probabilistic hill-climbing algorithm,” Artificial Intelligence,
vol. 84, no. 1-2, pp. 177–208, 1996.

[32] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”
arXiv preprint arXiv:1611.01578, 2016.

[33] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[34] P. Wauteleta and P. Kestenera, “Parallel io performance and scalability study
on the prace curie supercomputer,” White paper, Prace, vol. 115, p. 180, 2011.

[35] O. R. N. Laboratory, “Supported engines,” 2020. [Online]. Available: https:
//adios2.readthedocs.io/en/latest/engines/engines.html#supported-engines

[36] Cray, “Tuning parameters – cray openshmemx 10.1.0 documentation,” 2023.
[Online]. Available: https://cray-openshmemx.readthedocs.io/en/latest/tuning
parameters.html

[37] H. Menon, A. Bhatele, and T. Gamblin, “Auto-tuning Parameter Choices in HPC
Applications using Bayesian Optimization,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), May 2020, pp. 831–840, iSSN:
1530-2075.

[38] J. L. Bez, F. Z. Boito, R. Nou, A. Miranda, T. Cortes, and P. O. Navaux,
“Adaptive request scheduling for the i/o forwarding layer using reinforcement
learning,” Future Generation Computer Systems, vol. 112, pp. 1156–1169, 2020.

[39] T. Chen and M. Li, “Multi-objectivizing software configuration tuning (for a
single performance concern),” arXiv preprint arXiv:2106.01331, 2021.

[40] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel,
V. Morozov, G. Zagaris, T. Peterka et al., “Hacc: Simulating sky surveys on
state-of-the-art supercomputing architectures,” New Astronomy, vol. 42, pp.
49–65, 2016.

[41] G. Lukat and R. Banerjee, “A gpu accelerated barnes–hut tree code for flash4,”
New Astronomy, vol. 45, pp. 14–28, 2016.

[42] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and D. J.
Kerbyson, “0.374 pflop/s trillion-particle kinetic modeling of laser plasma
interaction on roadrunner,” in Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, ser. SC ’08. IEEE Press, 2008.

[43] M. Li, M. Soltanolkotabi, and S. Oymak, “Gradient descent with early stopping
is provably robust to label noise for overparameterized neural networks,” in
International conference on artificial intelligence and statistics. PMLR, 2020,
pp. 4313–4324.

[44] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An overview of the
hdf5 technology suite and its applications,” in Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases, 2011, pp. 36–47.

[45] B. Behzad, J. Huchette, H. V. T. Luu, R. Aydt, S. Byna, Y. Yao, Q. Koziol,
and Prabhat, “A framework for auto-tuning HDF5 applications,” in Proceedings
of the 22nd international symposium on High-performance parallel and
distributed computing, ser. HPDC ’13. New York, NY, USA: Association
for Computing Machinery, Jun. 2013, pp. 127–128. [Online]. Available:
https://doi.org/10.1145/2462902.2462931

[46] B. Behzad, R. Aydt, S. Byna, and J. Huchette, “Auto-Tuning of Parallel I/O
Parameters for HDF5 Applications,” p. 3.

[47] P. S. Foundation, “Python release python 3.6.0 — python.org,” 2023. [Online].
Available: https://www.python.org/downloads/release/python-360/

[48] C. W. Ahn and R. S. Ramakrishna, “Elitism-based compact genetic algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 7, no. 4, pp. 367–385,
2003.

[49] B. L. Miller, D. E. Goldberg et al., “Genetic algorithms, tournament selection,
and the effects of noise,” Complex systems, vol. 9, no. 3, pp. 193–212, 1995.

[50] T. L. Team, “Clang indexing library bindings – libclang 14.0.6 documentation,”
2022. [Online]. Available: https://libclang.readthedocs.io/en/latest/index.html

[51] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire, “Taming the
monster: A fast and simple algorithm for contextual bandits,” in International
Conference on Machine Learning. PMLR, 2014, pp. 1638–1646.



[52] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.
[53] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.
[54] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J. Wright,

“Modular hpc i/o characterization with darshan,” in 2016 5th workshop on
extreme-scale programming tools (ESPT). IEEE, 2016, pp. 9–17.

[55] NERSC, “Cori - nersc documentation,” 2022. [Online]. Available:
https://docs.nersc.gov/systems/cori/

[56] ——, “Cori scratch - nersc documentation,” 2023. [Online]. Available:
https://docs.nersc.gov/filesystems/cori-scratch/

[57] H. Erdogmus, J. Favaro, and W. Strigel, “Return on investment,” Ieee Software,
vol. 21, no. 3, pp. 18–22, 2004.

[58] L. L. N. Laboratory, “Github - llnl/macsio: A multi-purpose, application-
centric, scalable i/o proxy application,” 2023. [Online]. Available:
https://github.com/LLNL/MACSio

[59] R. M. Craparo, “Significance level,” Encyclopedia of measurement and statistics,
vol. 3, pp. 889–891, 2007.

[60] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukić, V. Roytershteyn,
M. J. Anderson, Y. Yao, and P. Dubey, “Bd-cats: big data clustering at trillion
particle scale,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2015, pp. 1–12.

[61] t. L. B. N. L. The Regents of the University of California, “Bd-cats-io benchmark,”
2017. [Online]. Available: https://github.com/glennklockwood/bdcats-io

[62] T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance modeling for
systematic performance tuning,” in SC’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2011, pp. 1–12.

[63] H. Devarajan, A. Kougkas, P. Challa, and X.-H. Sun, “Vidya: Performing
code-block io characterization for data access optimization,” in 2018 IEEE 25th
International Conference on High Performance Computing, Data, and Analytics.
IEEE, 2018.

[64] B. Behzad, H.-V. Dang, F. Hariri, W. Zhang, and M. Snir, “Automatic generation
of i/o kernels for hpc applications,” in 2014 9th Parallel Data Storage Workshop.
IEEE, 2014, pp. 31–36.

[65] J. Logan, S. Klasky, J. Lofstead, H. Abbasi, S. Ethier, R. Grout, S.-H. Ku, Q. Liu,
X. Ma, M. Parashar et al., “Skel: generative software for producing skeletal
i/o applications,” in 2011 IEEE Seventh International Conference on e-Science
Workshops. IEEE, 2011, pp. 191–198.

[66] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient descent
learning,” Constructive Approximation, vol. 26, no. 2, pp. 289–315, 2007.


