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Abstract 
The current study investigates the transient human physiological and comfort responses during            
sedentary activity following a period of elevated activity in a hot condition. Such metabolic and               
thermal down-steps are common in buildings as occupants arrive after commuting in summer. It              
creates a serious problem for thermostatic control, since arriving occupants find their transition             
uncomfortably warm at temperatures that resident occupants find comfortable. Fifty-nine          
participants (29 men, 30 women) dressed in 0.6 clo were tested while sedentary for 60 min in 26                  
°C, after having been exposed to 30 °C for 15min, during which they performed activities               
metabolically simulating commuting: sitting (SE- 1.2 met), or doing three levels of stair-step             
exercises: low (LEx- 2.2 met), medium (MEx - 3.0 met), and high (HEx - 4.4 met). Subjective                 
comfort and physiological responses (metabolic rate, skin temperature, skin blood flow rate,            
heart rate, core temperature, and skin wettedness) were collected. Results show that sedentary             
conditions at 26°C became comfortable and acceptable within 2 min, but thermal sensation             
required much longer to change from ‘warm’ or ‘hot’ to ‘neutral’: 0, 8, 17, 30 min after SE, LEx,                   
MEx, HEx respectively. Skin wettedness and core temperature did not recover within the60 min.              
The delays are mainly due to body heat stored during the exercise. A room temperature of 26°C                 
may not provide sufficient cooling after summer commuting. Localized convective cooling of            
transitional spaces and work areas by ceiling or desk fans represent a way to enhance comfort                
recovery. 
 
Keywords: Metabolic rate, Commute, Thermal comfort, Thermo-physiological responses,        
Thermal transients 
 
List of symbols and abbreviations 
 
ADu Du Bois body surface area 
AMA Air movement acceptability 
AMP Air movement preference 
EE Energetic equivalent 
Ex Exercise 
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HEx High exercise intensity, simulating cycling 
HR Heart rate 
MET Metabolic rate 
MEx Medium exercise intensity, simulating fast walking 
LEx Low (light) exercise intensity, simulating slowly walking 
Pa Ambient vapor pressure 
Pm Vapor pressure at the skin surface 
post-Ex Post-exercise 
Pssk Saturated vapor pressure at skin temperature 
pre-Ex Pre-exercise 
RM ANOVA One-way Analysis of Variance repeated measures 
RPE Borg Rating of Perceived Exertion (RPE) Scale 
RQ Respiratory quotient 
SBF Skin blood flow 
SE Sedentary, simulating driving 
SD Standard deviation 
TA Thermal acceptability 
Tb Body temperature 
TC Thermal comfort 
Tcr Core temperature 
TP Thermal preference 
TS Thermal sensation 
Tsk Skin temperature 
VCO2 Carbon dioxide generation rate 
VO2 Oxygen consumption rate 
WET Skin wettedness 
 
 
 
 

1. INTRODUCTION 
Although thermal comfort research and standards assume steady metabolic rates, they are            

naturally transient in people's daily life. For example, occupants usually arrive at offices,             
schools, railway/subway stations, museums or other types of indoor environments by a variety of              
means (e.g. walking, cycling, or driving), almost all of which involve higher levels of physical               
exertion than the ultimate state of sedentary office work. Metabolic rate is typically elevated              
outdoors and drops after entering the building. Such metabolic down-steps, accompanied by            
downward outdoor-indoor temperature transients in warm weather, influencing occupants'         
thermal comfort after entering indoor spaces. However, current thermal comfort standards,           
models, and design guidance have mainly focused on the condition of lengthy sedentary office              
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activity [1,2]. When occupants transition from high to low metabolic rates, the comfort zones for               
sedentary activity might be perceived as too warm for many minutes during the cool-down              
period. The occupants may complain about the space being too warm or stuffy (a correlate of                
warmth sensation). Building operators respond to such complaints by changing zone setpoints,            
often permanently, rendering the entire space cooler thereafter than is necessary for sedentary             
work. This could contribute to the widely observed problem of summer overcooling [3] and the               
energy use of the building [4]. 

Many studies have addressed temperature step-changes at a constant sedentary metabolic rate            
[5–9]. They generally found that under sudden temperature transients, the human psychological            
response is significantly affected by the previous thermal conditions experienced, and that            
thermal sensation and comfort often quickly anticipate the new condition, ahead of the             
physiological responses that take more time to transition [5]. This phenomenon, sometimes            
called thermal sensation overshoot, is more likely to occur when people move from warm/hot              
temperatures to neutral/cool temperatures, such as moving from summer outdoors into           
air-conditioned buildings. Based on these studies, recommendations have been made for the            
environmental design of transitional spaces, such as allowable temperature differences between           
transitional spaces and building interior spaces that should not be higher than 3 °C to avoid                
burden on human thermoregulatory system [10,11]. 

However, it is doubtful that results from studies that dealing only with temperature transients              
will apply if metabolic rate also changes. During steady-state exercise, elevated metabolic rates             
increase human core temperature, skin temperature, and sweat rates [12], resulting in different             
thermal neutral temperature from sedentary [13,14], as well as preferred skin temperature and             
skin wettedness [15,16]. Using four subjects exercising at different intensities in 10, 20 and 30               
°C Gagge et al. [17] found that during metabolic rate transients, comfort and thermal sensation is                
primarily related to body temperature, while in steady-state thermal responses are dominated by             
skin temperature and skin wettedness. Therefore, different underlying mechanism may exist for            
steady-state and transients. Goto et al. [18] investigated the effect of metabolic transients on              
human thermal responses at 26 °C and 21 °C, finding that metabolic rate step-changes (up-steps               
and down-steps) significantly affected thermal sensation immediately after the onset and           
cessation of exercise. They applied weights to preceding metabolic levelsn a model predicting             
thermal sensation changes after transients. However, the temperature in their study remained the             
same so that thecombined effect of temperature and metabolic rate transients was not explored.              
Recently, several other studies [19–24] have examined thermal transients induced by both            
temperature and metabolic rate, but they focused on effective ways to alleviate thermal             
discomfort induced by exercise in the heat, rather than investigating the underlying mechanism             
of human thermal responses under such conditions. 

In sports science, it has been shown that a large amount of heat can be stored during exercise.                  
This is mainly due to the lag of evaporative heat loss in the early stage of exercise [25], resulting                   
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in elevated core and muscle temperatures that persist throughout the exercise and even an hour               
after prolonged exercise [26]. Post-exercise thermoregulation studies show that the stored heat            
requires a longer time to dissipate because of marked suppression in heat loss responses, such as                
skin surface blood flow and sweat rate right after cessation of exercise [27]. This would reduce                
the convective heat transfer between muscle and blood and between blood and the body core               
region. In addition, the convective and evaporative heat losses from the skin are also reduced               
because the air velocity induced by exercise reduces to zero after the cessation of the exercise.                
Therefore, prolonged core temperature recovery time has been observed, although the           
mechanism of the compromised ability of heat dissipation has not been fully understood and              
mainly attributed to nonthermal factors. These findings have important implications for           
understanding thermal comfort after exercise, but they are not directly applicable to typical             
building environments, because they do not obtain subjects’ thermal and comfort sensations, and             
they are mainly done at high activity levels with subjects dressed in shorts. 

Overall, to-date there has been little investigation of the effect of previous activity levels on               
subsequent human thermal responses in buildings or vehicles. For the design and operation of              
office buildings, it would be very helpful to be able to know how the thermal experience                
(physiological and subjective) induced by commuting outdoors in the heat affects human            
physiological and thermal comfort responses after a transition to cooler (near-neutral) indoor            
environments and to sedentary activities. Therefore, the objective of this study is to investigate              
how the persistence of heat or sweat from previous metabolic exertion affects subjects’ response              
to the thermal environment during subsequent lower activity levels. 

 

2. METHODS 
The experiments were conducted at the climate-controlled chamber at the Xi’an University of             

Architecture and Technology in August 2017 and June to July 2018. The outdoor temperatures              
during this period were generally warm, ranging from low at 22-26 ºC to high at 32-39 ºC.  

2.1 Subjects and clothes 
Fifty-nine healthy Chinese college-age students (29 men, 30 women) participated in all 4             

experiments as human subjects. Their demographic information is summarized in Table 1. They             
were dressed in the Kansas State University uniform (0.6 clo) that has been a de-facto standard                
in many comfort studies [1], provided by the research group. It is comprised of a cotton                
long-sleeve shirt, long cotton pants, shoes, socks, and the subject’s own underwear. The study              
was approved by the Xi’an University of Architecture and Technology Committee for the             
Protection of Human Subjects. 

Table 1 Subjects’ demographic information 
 Sample size Age Height (cm) Weight (kg) BMIa(kg/m2) 

Building and Environment, 2019, Volume 157                                 4                                   https://escholarship.org/uc/item/15p549z1 

 

https://escholarship.org/uc/item/15p549z1


Men 29 23.3 ± 3b 175.4 ± 5 65.8 ± 6 21.4 ± 2 
Women 30 22.4 ± 3 162.5 ± 7 52.8 ± 6 19.9 ± 2 

all 59 22.9 ± 3 168.9 ± 9 59.2 ± 9 20.7 ± 2 
a Body Mass Index (BMI) = Mass (kg) / Height (m)2 

b Standard deviation 

2.2 Experimental conditions  
The tests were conducted in two climate chambers connected by a door (Fig 1a). One test                

chamber (Room B, measuring 3.0 m×2.1 m×2.4 m) was controlled to simulate the summer              
outdoor condition (30 ºC, 50% RH); the other (Room A, Fig 2a, measuring 4.5 m×3.9 m×2.7 m)                 
was used to simulate a typical office environment (26 ºC, 50% RH). Both chambers are located                
inside a building, isolating from outdoor weather. They are also heavily insulated (100 mm              
polyurethane board) to ensure stable indoor thermal environment control. The chambers control            
temperature to an accuracy of ± 0.2 °C, and RH ± 5%. During the tests, room air speed was                   
controlled lower than 0.1 m/s, and mean radiant temperature the same as room air temperature               
during all test conditions. 

The experiment was separated into three phases (Table 2): (1) Preexercise phase (pre-Ex), during              
which subjects stayed in Room A for 30 min; (2) exercise phase (Ex) in Room B, in which                  
subjects were asked to perform stepping activities on a 14 cm height bench for 15 min. There                 
were three exercise levels: (1) walking slowly, light exercise intensity (LEx), simulated by             
stepping at 20 steps/min; (2) walking fast, medium exercise intensity (MEx), 30 steps/min; and              
cycling, high exercise intensity (HEx), 40 steps/min. In addition, a fourth condition had the              
subjects remaining sedentary (SE) in Room B, to simulate driving or taking public transit in the                
heat; this condition also serves as the control condition since it involved no exercise. (3)               
Post-exercise recovery phase 
in Room A where subjects remained sedentary for an hour.  

Table 2 Experimental conditions, durations, and activity levels 
Phase Time (min) Location T (ºC) RH MET* Activity 
pre-Ex  -30-0 Room A 26 50% 1.2 Sedentary 

SE (control) 0-15 Room B 30 50% 1.2 Sedentary 
LEx   2.2 Stepping, 20 steps/min 
MEx   3.0 Stepping, 30 steps/min 
HEx   4.4 Stepping, 40 steps/min 

post-Ex 15-75 Room A 26 50% 1.2 Sedentary 

2.3 Measurements 
2.3.1 Environmental parameter measurements.  
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In addition to the sensors in the chamber control system, additional measurements were made:              
air temperature/relative humidity (TD/TR-72ui, T&D Corp., Nagano-ken, Japan, temperature         
accuracy ± 0.3 °C, RH accuracy ±5%), globe temperature (HQZY-1, TianJianhuayi Co., Ltd,             
Beijing, China, accuracy ± 0.3 °C), and air speed (WFWZY-1, TianJianhuayi Co., Ltd, Beijing,              
China, accuracy± 0.05m/s), to make sure that the test chambers were controlled according to the               
experimental design. The sensors are installed in the middle of Room A (pre- and post-exercise),               
and near a corner of Room B (exercise). The exact places are shown in Fig. 1a. 

 

Fig. 1. (a) Experimental set-up, (b) Cosmed K5 to measure metabolic rate, (c) Ingestible              
telemetry pill for core temperature measurement, (d) iButton for skin temperature           
measurement, (e) iButtion for skin wittedness measurement, (f) Polar strap for heart rate             
monitoring, (g) Laser Doppler system for skin blood flow monitoring.  
2.3.2Physiological measurements.  

Two sets of experiments were conducted. The first, performed at the same time of the               
subjective voting tests, measured heart rate (HR), skin temperature (Tsk) (N=28 out of the 59               
subjects) and skin wettedness (WET) (N=19 out of the 59 subjects). The second set measured the                
physiological responses for a subset of the initial subjects on separate occasions after the initial               
tests, including metabolic rate (MET) (n=9), core temperature (Tcr) (n=9), and skin blood flow              
(SBF) (n=3). All physiological parameters were sampled continuously every 1 min. The            
physiology measurement sensors are shown in Figure 1. 

Tsk was continuously measured using small wireless temperature sensors (Fig. 1d,           
PyroButton-L, Opulus Ltd, PA, USA). The measuring points were arranged on the left upper              
chest, left forearm, middle of left- thigh and middle of the left shin. Mean Tsk was calculated as                  

Building and Environment, 2019, Volume 157                                 6                                   https://escholarship.org/uc/item/15p549z1 

 

https://escholarship.org/uc/item/15p549z1


 

an area-weighted average of measurements using the following equation, adapted from NL            
Ramanthan [28].  

 mTsk =0.3*Tarm +0.3*Tchest +0.2*Tthigh +0.2*Tshin     (1) 
 
WET was calculated using the following equation, adapted from Kerslake [29] 

WET = (Pm - Pa) / (Pssk – Pa)                                                (2) 
Where 
Pm   = vapor pressure at skin surface 
Pa   = ambient vapor pressure 
Pssk  = saturated vapor pressure at skin temperature 
 

Pa, is considered to be constant around the body and is based on the average temperature and                 
humidity of the surrounding air. Pm, is based on the measurement of the temperature and relative                
humidity in the space between the skin and clothing. Pssk is calculated from measurements of the                
skin temperature using eq.4. The temperature and relative humidity in the space between the skin               
and clothing was continuously measured by using small wireless temperature and relative            
humidity sensors (Fig. 1d, Hygrochron, EDS, USA). The total accuracy is ±5% RH in the range                
0-100% RH with a time constant of 30 sec. In order to meet the measurement requirements,                
sensors were housed inside a short length of plastic tubing. When taped to the body, the sensors                 
were positioned less 3 mm above the skin surface and exposed through a lateral opening in the                 
tubing, enabling the measurements of temperature and relative humidity above the skin surface. 

The measuring points were arranged on the same points as the skin temperature             
measurements: chest, forearm, thigh and shin. Mean WET was calculated as an area-weighted             
average of measurements using the same weightings as the mTsk [30]. 

WET =0.3*warm +0.3*wchest +0.2*wthigh +0.2*wshin                                                    (3) 
 

MET was measured using indirect calorimetry (Fig. 1b). Human oxygen consumption rate            
(VO2) and carbon dioxide generation rate (VCO2) was monitored from -10 min to 75 min (15                
min exercise + 60 min resting) continuously by a wearable metabolic measurement system             
(COSMED K5, COSMED S.r.l.,Italy). The K5 gas sensors, flow rate, and pressure sensors were              
calibrated before each testing. A face mask was used to collect expired gas from the subjects, and                 
the captured gas was analyzed in a micro-dynamic mixing chamber to obtain: VO2, VCO2,              
ventilation, and respiratory exchange ratio. The metabolic rate was then determined by the             
measured VO2, VCO2, respiratory quotient (RQ), and body surface area (ADu) according to the              
equations (4), (5), and (6) provided by ISO 8996 [31], as follows:  

   QR = V o2

V co2    (4) 
 E .88×(0.23RQ .77)E = 5 + 0  (5) 
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E×V oM = E 2 × 1
ADu

 (6) 

 .202×WADu = 0 b
0.425 × Hb

0.725  (7) 
RQ   is the respiratory quotient; 
EE   is the energetic equivalent, in watt-hour per liter of oxygen (W h/l O2); 
M   is the metabolic rate, in watts per square meter (W/m2); 
ADu    is the body surface area, in square meters (m2), given by the Du Bois formula, 
Wb   is the weight (kg), Hb   is the height, (m). 

Tcr was measured using telemetry pills (Fig. 1c, accuracy ± 0.1 ºC; CorTemp®, HQ Inc,               
Florida, USA) in four tests, for four metabolic levels. Subjects ingested pills with warm water               
(36.7 ºC) 2 hrs before the test. Data were transmitted from the telemetry pill to a receiver                 
attached on the right back hip of the subjects. Body temperature (Tb) was calculated based on                
measured Tsk and Tcr. Tsk and Tcr were weighted by 0.1 and 0.9 respectively, based on the                 
equation proposed by Gagge et al. [13].  

 Tb =0.8×Tcr +0.2×Tsk  (8) 
HR was continuously monitored by a Polar H10 (Fig. 1f, Polar Electro Oy, Kempele, Finland)               

by connecting wirelessly to a cell phone. SBF was measured by a PeriFlux System 5000 with a                 
probe attached on the left forearm of the subject (Fig. 1g).  

2.4 Subjective survey questions.  

Paper-based surveys were administrated during the exercise in Room A, while computer-based            
surveys were administered both before and after the exercise in Room B when subjects were               
sedentary. The surveys appeared at predefined intervals, to obtain point-in-time subjective           
responses on their thermal sensation (TS), thermal comfort (TC), thermal acceptability (TA), air             
movement acceptability (AMA), thermal preference (TP) (an example shown in Fig. 2, the full              
survey is shown in Fig. A1). The TS scale is continuous, and its units are:−4 very cold, −3 cold,                   
−2 cool, −1 slightly cool, 0 neutral, 1 slightly warm, 2 warm, 3 hot, 4 very hot. TC, TA, and                    
AMA were measured on a ten-point scale with a break, in which the positive values (0.01 ‘just                 
acceptable’ to 4‘clearly acceptable’) represent satisfaction and the negative values (−0.01 ‘just            
unacceptable’ to −4 ‘clearly unacceptable’) represent dissatisfied. Three-point scales are used for            
thermal preference (−1 want cooler, 0 no change, 1 want warmer) and air movement preference               
(AMP) (−1 want less, 0 no change, 1 want more). The survey schedule is presented in Fig. 3. In                   
addition to the regular thermal comfort questions, the subjects were asked after each exercise              
level to vote their perceived physical exertion on the Borg Rating of Perceived Exertion (RPE)               
Scale [32] (Fig. A2). 
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Fig. 2. Sample survey rating scales used in the experiment 

2.5 Experimental procedure 
Prior to the main experiments, pilot tests on 4 subjects were conducted to validate the               

feasibility of the experimental design. After the test procedure was confirmed, 59 subjects were              
recruited for the fullscale tests. Subjects arrived at the test chamber in groups of 4 for each test.                  
They were asked to avoid intensive exercise or consume alcohol or caffeine-containing drinks             
for the day before the test. Fig. 3 shows the test procedure. The subjects were asked to arrive at                   
least 10 min before the test to avoid entering the chamber with an elevated metabolic rate. Before                 
entering the chamber, subjects changed into test uniforms and secured the temperature, humidity             
sensors and HR belt to their bodies. The three phases of the test procedure were: pre-exercise,                
exercise, and post-exercise, as described in the experimental condition section. The subjects in             
each experiment were first sedentary in Room A at neutral temperature of 26 °C, 50% RH for 30                  
min to simulate the exposure to a neutral condition in their homes, after which they entered the                 
second climate chamber 30 °C, 50% RH (Room B) and exercised for 15 min. They went through                 
these Room B sequences (SE, LEx, MEx, and HEx) in random order to simulate the four                
commute modes. At the end of this period, they returned to Room A, and remained sedentary for                 
60 min until the experiment ended, to simulate the office environment. Survey questionnaires             
were administrated every 10 min during the first 30 min exposure before exercise, at 0, 3, 5, 10                  
and 15 min during the exercise (only TS, TA were asked to save time), every 1 min after the                   
exercise for 6 times, then every 3 min from 21 to 36 min, and then every 10 min till the end of                      
the test (Fig. 3). 
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Fig. 3. Experimental procedure 

2.6 Statistical analyses 
The observed physiological and subjective responses for each individual were averaged and only             
mean values plus standard deviations (SD) were reported in the paper. Statistical analysis was              
performed using Graphpad Prism 6 for Windows (GraphPad Software, San Diego, California            
US). The experiment was treated as a repeated measures design. The stabilized time was              
obtained by running one-way Analysis of Variance with repeated measures (RM ANOVA) with             
post-hoc analysis (Paired T-test), using exposure time as the factor. Comparisons between            
different activity levels (SE, LEx, MEx, and HEx) were made by RM ANOVA at a specific time                 
point, using Activity level as the factor. Significance was accepted at 0.05. 
 

3. RESULTS 

3.1 Physical environment measurements 
As shown in table 3, the physical conditions of the experiments were accurately controlled as               

planned.  

Table 3 Experimental conditions and measured thermal environmental values 

 Room A Room B 
Planned Measured Planned Measured 

Ta (℃) 26 25.9 ± 0.7* 30 30.1 ± 1.2 
RH (%) 50 48.3 ± 2.1 50 45.5 ± 3.8 
V (m/s) ＜0.1 0.02 ± 0.04 ＜0.1 0.12 ± 0.08 

MRT (℃) 26 26.1 ± 0.6 30 29.9 ± 0.7 
*Standard deviation 
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3.2 Physiological responses 
Fig. 4a shows the average metabolic rate as observed during the experiments. Results show              

that the method of simulating different activity intensities by different stepping speeds is             
effective. During the exercise period, the steady state MET were 1.2 met, 2.2 met, 3.0 met and                 
4.4 met correspond to SE, LEx, MEx, and HEx respectively, significantly higher over sedentary              
control condition SE (p < 0.05) and sedentary pre-Ex, which also served as the baseline in the               
data analysis (MET = 1.2, p < 0.05). 

The MET values responded to the on and off of the exercise quickly. In all but the SE                  
condition, MET increased rapidly at the start of exercise, and reached a stable value in 2–5 min.                
In the post-Ex sedentary condition, MET also recovered rapidly, reaching pre-Ex values within             
5 min, and remained constant thereafter. The metabolic rate at SE floated slightly upward before              
and after the transients due to the moving of subjects from Room A to Room B, and remained                  
constant at 1.2 met for the rest of the 15 min exercise period. 

Fig. 4b shows the average HR changes. The change profiles are very similar to the MET                
change profiles in the way that they responded to the onset and cessation of the exercise within a                  
few minutes. The difference is that during the exercise, unlike MET which reached stable values,               
HR kept increasing. After the 30 min pre-Ex exposure, HR was 80 ± 1.6 beats/min. Following             
the start of the exercise, the abrupt increases in HR happened in the first 2 or 3 min for LEx,                   
MEx, and HEx. Then the HR continuously elevated compared to the pre-Ex baseline (p < 0.05).              
HR did not reach a steady state, especially at the higher activity levels (3.0 met - MEx and 4.4                   
met - HEx). HR was 89, 100, 114, and 132 beats/min at the end of the 15 min transient period for                    
SE, LEx, MEx, and HEx, respectively. During the post-exercise phase, like MET, HR decreased              
immediately and returned to a steady state at the pre-exercise level in approximately 5 min. 

The skin, core, body temperatures and skin wettedness show similar trends (Fig. 5, Fig. 6) that                
are different from MET and HR changes. During the exercise, they all increased continuously              
and did not reach a stable condition. Some of the increases had a few minutes delay. After the                  
exercise, they took much longer time to reach stable values, in some cases not reaching stability. 

Fig. 5a shows the average Tsk (n = 28). Baseline Tsk at 26 °C ambient temperature was              
similar for all tests, at a steady-state around 34 °C. Tsk started to rise immediately after subjects                
entered Room B at 30 °C and started the exercise phase, even in the 1.2 met SE condition in                  
which there was no metabolic increase, indicating a significant effect of ambient temperature on              
Tsk. At the end of the exercise period, Tsk was 34.3 °C, 34.4 °C, 34.5 °C and 34.8 °C               
respectively, about 0.3–0.8 °C higher than the baseline Tsk (p < 0.05). After the highest level of              
exercise (HEx, 4.4 met), the skin temperature continued to increase for about 2 min before it               
started to decrease. For the other exercise intensities, skin temperature started to drop right after               
the exercise stopped. Unlike MET and HR, Tsk decreased slowly, decreased exponentially            
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before stabilizing at a new level slightly higher than 34 °C within 3 min for 1.2 met, 7 min for                 
2.2 met, 10 min for 3.0 met and 30 min for 4.4 met. 

 
Fig. 4. Measured mean (a) metabolic rate (MET) (n=9) and (b) heart rate (HR) (n=59). Error bars 

show SD. 
Tcr reached a steady-state at 37.3 °C after the 30 min pre-exercise exposure (Fig. 5b).             

Throughout the entire experiment at 1.2 met SE, Tcr decreased slightly but continuously from              
37.4 °C from 37.3 °C. For LEx, MEx, and HEx, unlike Tsk that changed immediately after the               
exercise started, Tcr began to change only 5 min after the onset of the exercises, rising               
continuously to 37.5 °C, 37.6 °C and 37.6 °C, significantly elevated above the baseline           
(p < 0.05). After the exercise, Tcr continued to increase for about 5 min for LEx and MEx before                
decreasing. HEx started to decrease right after the exercise stopped. However, all core             
temperatures remained elevated throughout the 60 min recovery period. 
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Fig. 5. Measured means (a) mean skin temperature (n=28) (b) core temperature (n=9) (c) body 

temperature (n=9). Error bars show SD.  
As shown by Eq. (8), Tb is mainly affected by the core temperature. Therefore, it shows a                 

similar trend as Tcr (Fig. 5c). Tb was around 37 °C for all test conditions at the end of the                   
pre-exercise phase. After 15 min exercise at LEx, MEx, and HEx, Tb was elevated to 37.2, 37.4                
and 37.5 °C respectively, and remained elevated for an hour throughout the entire experiment.             
Since Tb represents heat storage in the body, it can be estimated that the higher the activity level,                  
the higher the heat storage in the human body. 
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Fig. 6. Measured mean and SD skin wettedness (WET). Error bars show SD. 
 

Fig. 6 shows the temporal change in the mean WET for all test conditions. The mean WET                 
was 0.2 after 30 min of exposure in the baseline. It increased immediately after the start of the                 
exercise in 30 °C, and continuously increased 0.07, 0.28, 0.37, and 0.46 for SE, LEx, MEx, and                
HEx during the 15 min exercise without reaching stable conditions. After the exercise, WET             
continued to increase for about another 2 min for the HEx test condition before decreasing.              
During the post-exercise period, WET went back to the baseline level for the SE after 15 min,                
but continued to be at elevated levels for the full hour in the 2.2, 3.0, and 4.4 met tests. 

 
Fig. 7. Measured skin surface blood flow (SBF). Error bars show SD. 

Fig. 7 shows the result of skin blood flow (SBF) change of the subjects for all test conditions.                  
The SBF stabilized around 9.0 perfusion units (PU) for the pre-exercise baseline condition (Fig.              
7). During the 15 min exercise and temperature transient period, for SE, the 15 min exposure to               
the 30 °C ambient temperature only increased SBF slightly to around 10 PU. However, the              
increase in MET at LEx, MEx, and HEx significantly elevated SBF, reaching 18, 26 and 86 PU                 
in the 2.2, 3.0 and 4.4 met exercise periods. They reached a stable level quickly within 2 min                 
except for the HEx (4.4 met) test. For HEx, the SBF kept increasing, a pattern similar to HR and                   
other skin temperature changes. During the post-exercise period, SBF quickly returned to            
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baseline levels for LEx (1 min) and MEx (3min). 8 min was required for SBF return to baseline                 
for HEx, longer than the HR but shorter than the skin temperature recovery speeds. In general,                
similar to MET and HR, SBF responded to the exercise and temperature step changes quickly. 

3.3 Subjective responses 
Fig. 8a presents the TS for all test conditions. During the baseline exposure, mean TS               

stabilized at 0.3, between neutral and slightly warm. The first group of TS votes after entering                
Room B were obtained before the exercise started (time 0 in Fig. 8a). Therefore, the TS changes                 
were caused only by the step-change in ambient temperature. The change from 26 °C (Room A)               
to 30 °C (Room B) caused TS to increase about 1.3 scale unit, from close to neutral to a value                   
between slightly warm and warm. During the 15 min exercises in the 30 °C environment,             
sensations kept increasing and did not reach stable values. After the 15 min exposure, for SE,               
LEx, MEx and HEx, TS increased another 0.4, 1.0, 1.6 and 1.7 sensation scale units to reach 1.7                  
(warm), 2.2 (warm), 2.8 (hot) and 3.0 (hot) scale units respectively, significantly elevated from              
the baseline (0.3) (p < 0.05). Post-exercise, TS showed an extreme drop at the moment the              
subjects returned to Room A (26 °C). For SE, there was an initial over-shoot in the thermal                
sensation drop (cooler than neutral), then it quickly reached a stable neutral condition. For LEx,               
it took about 8 min to reach 0.5 scale unit and it took about 30 min to reach the level as same as                     
baseline. For the MEx and HEx, it took about 17 min and 30min for TS to reach 0.5 scale unit,                   
and about 40 min and 50 min to reach the baseline TS level. The recovery speeds were longer                
than the skin temperature recovery speeds but shorter than the core temperature recovery speeds. 

Fig. 8b shows the TC votes for each test conditions, ranging from “Very uncomfortable” (−4)               
to “Very comfortable” (4). The subjects felt thermally comfortable during the 30 min exposure in              
the pre-Ex neutral condition. The profiles of the TC votes after entering Room B almost mirror                
the TS votes in the opposite direction. TC was just uncomfortable (the TC valued to zero) right                 
after subjects entered into Room B before the exercise started, then decreased significantly at the               
end of the exercise. TC votes were on the uncomfortable side of the scale (below zero) in all                  
conditions. However, from the beginning of the post-Ex period directly after the subject             
re-entered Room A, they returned to “comfortable” for the SE and LEx conditions and were               
below “uncomfortable” for MEx and HEx. TC increased rapidly in the following time and              
stabilized at comfortable within 3 min at SE, 15 min at LEx, 20 min at MEx and 30 min at HEx             
conditions. 
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Fig. 8. Mean (a) thermal sensation (TS)and (b) thermal comfort (TC) votes. Error bars show SD. 

 
Fig. 9a shows TA votes, ranging from “Very unacceptable (−4) to “Very acceptable” (4). The               

profiles of TA and TC votes are similar, but the magnitudes are different. The subjects felt                
thermally acceptable (2.2) during the 30 min baseline exposure. TA was “just acceptable” (0.4)             
when subjects had just entered into Room B. TA continuously decreased during the exercise              
phase. At the end of the phase, subjects were still on the just acceptable level (0.1) for SE, but for                    
LEx, MEx, and HEx, subjects were on the unacceptable side of the scale (−0.6, −1.1 and 1.9                 
respectively). During the Post-exercise, TA immediately jumped to the positive side of the scale              
right after entering Room A, for all met conditions. TA reached stability in 5 min at SE and LEx,                 
and 30 min for MEx and HEx. 

The percentage dissatisfied (PD) was determined based on the acceptability (TA) votes. When             
the acceptability vote was negative, it is counted as dissatisfied. The PD at each condition is                
shown in Fig. 9b. During the 30 min baseline exposure, PD was lower than 10% at all                
conditions. Upon entering Room B (30 °C) from Room A (26 °C), PD immediately rose to 30%.               
PD continuously increased during the 15 min exercise-exposure period, reached 53%, 66%, 76%            
and 86% for SE, LEx, MEx, and HEx at the end of the period. Post-exercise, PD went below                  
20% immediately after subjects returned to neutral Room A (26 °C) for SE and LEx. However, it                
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took longer, about 5 min, for PD to drop below 20% for MEx and HEx, and return to pre-Ex                  
level after 30 min. 

 

 
 

Fig. 9 Thermal acceptability(TA) votes (a) and (b) percentage dissatisfied(PD). Error bars 
show SD. 

 

Fig. 10 shows the percentage of subjects voting on the thermal preference scale (I want to be                 
“cooler, no change, warmer”). There was no significant difference between all conditions in the              
pre-exercise phase. The percentages of “prefer cooler” are between 20%–40%. Subjects           
generally preferred to be cooler (more than 90%) after entering into Room B (30 °C) as well as at                  
the end of the exercise phase. In the first 10 min of the Post-exercise period, over 50% of                 
subjects still preferred a cooler environment. The greater the exercise level, the more the subjects               
preferred to be cooler in the early post phase. After 30 min, the percentages of the               
preferring-cooler population were the same for all test conditions, and continuously declined in             
the following 30 min, reaching around 20% which is slightly lower than the baseline values. 
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Fig. 10. Percentage want to be cooler  

Fig. 11 shows the percentage of subjects voting on the air movement preference scale (AMP,               
votes on “prefer more”, “prefer less”, “prefer no change”). Similar to the percentage preferring              
cooler, there were still more than 20% subjects wanting more air movement in the baseline, and                
it increased to over 90% in the exercise phase at all activity conditions. Post-exercise, the               
percentage of preferring more air movement fell to the baseline level in 5 min for SE. For LEx,                 
MEx, and HEx, it took about 20 min to AMP to return to pre-exercise level. 
  

 
Fig. 11. Percentage wanted more air movement 

Fig. 12 shows a large variation in perceived exertion on the Borg scale. Overall, the study's range                 
of metabolic conditions produced significant differences in perceived exertion at each test            
conditions. Subjects median perceived exertion were respectively 7, 12, 13, 14 at SE, LEx, MEx,              
and HEx conditions, corresponding to “very light”, “fairly light”, “somewhat hard” and “hard”             
effort. 
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Fig. 12. Rate of perceived exertion on Borg scale 

4. DISCUSSION  
In people's daily life, they commonly experience temperature changes between indoors and            

outdoors. They also experience changes in their metabolic rate as they move. Unlike previous              
studies of human thermal comfort during temperature step-changes, this study addresses the            
effect of both temperature and metabolic rate changes. Our results indicate a significant effect in               
thermal experience induced by elevated exercise on both the immediate and subsequent human             
thermal responses, physiologically and subjectively. 

A key finding of the present study is that the time needed to return to thermal sensation                 
neutrality (mean TS between −0.5 and + 0.5) after temperature and metabolic transients depend              
on previous activity levels. For continuous sedentary activity, the subjective thermal sensation            
and thermal comfort quickly returned to the baseline value after the temperature down-step.             
Higher metabolic rates however significantly extended the recovery time; with the higher activity             
levels requiring longer times to return to neutral. It required 8, 40, 50 min for 2.2, 3.0, and 4.4                   
met respectively. Compared to thermal sensation, subjects were able to reach thermal comfort             
(mean thermal comfort votes higher than 0) more rapidly (1–3 min) when returning to the neutral                
environment. PD also went below the 20% threshold faster (1–5 min) than TS. This indicates               
that after the thermal stress caused by exercising in a warm environment, entering the neutral               
environment provided immediate relief of thermal stress (alliesthesia) soon after the transient.            
However, despite the shorter recovery time for thermal comfort, it still took 10–50 min for               
subjects to reach the same thermal sensation level as in the pre-exposure phase, depending on the                
intensity of previous activity levels. 

Compared to studies addressing only temperature down-steps [[7], [8], [9], [10]], our findings             
at 1.2 met (SE-control condition) were similar. However, after exercise, there were marked             
differences in the time needed to return neutral. This is mainly due to heat stored in the body                  
during exercise in a warm environment, as evident in the increase in Tb after the 15 min exercise                 
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(Fig. 5c). Heat was stored when the rate of heat loss lagged the rate of heat production [20].                  
After the onset of exercise, metabolic rate tended to increase immediately (Fig. 4a). However,              
sweating, the main source of heat loss in such conditions, only initiated slowly after onset of                
exercise and could not reach a steady level after 15 min exercise (Fig. 6). This finding is in line                  
with a classical study by Saltin et al. [12], which suggested that sweating only caught up with                 
metabolic heat production after at least 10 min during moderate exercise, and longer for vigorous              
exercise. Consequently, the higher the previous metabolic level, the higher the Tb (body heat              
storage) when exercise stopped, and the longer the time for the body to return to neutral. Because                 
the heat stored in the body needs this period to disperse, thermal sensation continued to be warm                 
over 20–30 min in the recovery phase. Skin wettedness did not return to the base condition               
within 60 min for any of the three exercise levels. 

These findings could shed light on the findings in previous field studies of spatial transition               
from outdoors to indoors [[33], [34], [35], [36]]. They generally found that occupant (visitors)              
who just arrived the buildings tended to feel warmer than those who stayed longer. These studies                
tended to associate thermal sensation and comfort after entering the buildings in the first 20 min               
with outdoor temperatures. Our findings suggest that the warm sensation was mainly due to the               
elevated metabolic rates of the previous activities, rather than previous outdoor temperatures. We             
demonstrate that the temperature difference alone between outdoors and indoors did not cause             
occupants to remain thermally unacceptable after entering the neutral room (the SE - 1.2 met             
case), rather, they perceived the neutral room as cooler-than-neutral immediately after the            
transient. It was the heat storage induced by the elevated metabolic rate in warm outdoor               
temperatures that made occupants feel warmer during the indoor exposure. Also, they may have              
felt uncomfortable due to elevated skin wettedness although we did not survey skin wettedness              
perception. 

This study provides two significant findings pertaining to building operation. 1) Although the             
air conditioning temperature of 26 °C in summer is not cool enough to make people's thermal               
sensation return to neutral quickly right after the metabolic exertion of commuting, thermal             
comfort and acceptability returned to positive quickly within 2 min. 2) As evident in Fig. 11, a                
large number of subjects prefer more air movement in the first 20 min after exercise, during the                
same time that they were also preferring a cooler environment (Fig. 9), probably due to the                
elevated core temperature and skin wettedness in the post-exercise period. Providing air            
movement has been proved to be a very effective way to restore thermal comfort after exercise                
[22,37,38] by enhancing convective and evaporative heat loss from the human body. Therefore,             
it is desirable for fan cooling to be available in the early stage of the recovery process, for                  
example in the building's lobby or entrance areas where the metabolic and temperature step              
change transients begin. Having fan cooling available may be desirable at the office workstation              
as well. Future studies would be needed to explore the effectiveness of air movement on               
maintaining comfort in different room setpoint temperatures after exercise metabolic transients.           
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Also, it would be helpful to investigate the effectiveness of personalized comfort systems (PCS)              
at different indoor setpoint temperatures [39]. 

 

This study addresses thermal comfort effects experienced after entering an office environment            
following four different rates of exercise in a warm environment. Restricted by experimental             
conditions, the exercise simulations did not include all the relative air motions generated by              
actual walking or cycling. A follow-up field study will help to examine those effects for a few                 
realistic cases. We also plan another lab study with varying levels of air speed applied to the                 
subjects during the simulated outdoor exercise and during the transition to indoors. Due to limits               
in time and resources, our study only addressed one temperature step-change. The effect of              
combinations of multiple thermal environment parameters (temperature, humidity, wind speed,          
solar radiation) will need to be explored in the future. Due to experimental limits, it was not                 
possible to precisely monitor the amount of body heat storage, or the evaporative heat loss.               
Therefore, a heat balance model could not be established in the current study. This could be done                 
in the future by using simultaneous direct and indirect calorimetry [[40], [41], [42]] in future               
studies. 

Finally, whether people would have different expectations from participating in a lab study             
versus real life, and how the difference might affect comfort perceptions, are general questions              
that deserve further study. Our unburdened student subjects may have been more accepting of              
elevated temperatures than workers in actual offices. We believe the field study can be designed               
to help answer these questions. 

5. CONCLUSIONS 
We have investigated the effects of a range of activity levels caused by commuting in heat                

(30 °C) on human physiological and comfort responses after entering a neutral room (26 °C) and              
resuming sedentary activity. 

We show that a short period of elevated metabolic rate in the heat has significant effects on                 
human physiological and subjective responses during and after the metabolic changes. During            
exercise, metabolic rate responses were prompt in elevating to stable conditions from            
pre-exercise levels (2–5 min), while sweating responses (represented by skin wettedness, Fig. 6)            
was slower and could not reach stable conditions even after 15 min exposure. This discrepancy              
between heat generation and the main avenue of heat loss results in heat storage during the                
commute, which leads to elevated core temperature, body temperature, and skin temperature by             
the end of the exercise phase. During exercise, subjective thermal sensation was also elevated              
from the baseline, while thermal acceptability significantly reduced. 

Post-exercise, the stored body heat needed time to dissipate before the body recovered to              
neutral state and thus delayed the time for thermal sensation and comfort returning to              
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pre-exercise level. For SE, where there was no heat storage, temperature step change from 30 °C               
to 26 °C result in immediate TS and TC recovery. The time for human thermal sensation to be                 
restored to its pre-commute baseline level depended on the activity intensities. The higher the              
commute activity (2.2 met, 3.0 met and 4.4 met), the longer it took for thermal sensation to reach                  
thermal sensation neutrality. For MEx (3.0 met), and HEx (4.4 met), the time for TS to come                 
below 0.5 were 0, 8, 17 and 30 min, and were 0, 30, 40 and 50 min to reach pre-Ex levels. These                    
are significant periods for building controls indoors; so that after the metabolic down-step of a               
commute, people will be requesting cooler ambient temperatures that would likely be too cold              
for the people already working in the building. In addition, skin wittedness, which by itself               
represents a source of discomfort, remained elevated throughout the 60 min indoor period. 

Most subjects preferred to be cooler and to have more air movement in the post-exercise               
period. To save energy while maintaining comfort for occupants in the down-step after a              
commute, it is suggested that personal thermal comfort devices, such as fans, could be provided               
to rapidly evaporate sweat, extract body heat, and enhance thermal sensation and comfort. 
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Appendix 1. Survey questionnaries 
 

 

 
Fig. A1. (a) thermal acceptable, (b) thermal sensation, thermal comfort and thermal 
preference, (c) air movement acceptable, air movement preference, (d) different areas of 
thermal sensation 

 
Fig. A2. Borg Rating of Perceived Exertion (RPE) Scale 
 

Building and Environment, 2019, Volume 157                                 26                                   https://escholarship.org/uc/item/15p549z1 

 

https://escholarship.org/uc/item/15p549z1

